Science.gov

Sample records for 3-axis stabilized spacecraft

  1. Spacecraft stability and control

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.

  2. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  3. Liapunov stability analysis of spinning flexible spacecraft.

    NASA Technical Reports Server (NTRS)

    Barbera, F. J.; Likins, P.

    1973-01-01

    The attitude stability of a class of spinning flexible spacecraft in a force-free environment is analyzed. The spacecraft is modeled as a rigid core having attached to it a flexible appendage idealized as a collection of elastically interconnected particles. Liapunov stability theorems are employed with the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, used as a testing function. The Hamiltonian is written in terms of modal coordinates as interpreted by the hybrid coordinate formulation, thus allowing truncation to a level amenable to literal stability analysis. Testing functions are constructed for a spacecraft with an arbitrary (discretized) appendage, and closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane which contains the center of mass and is orthogonal to the spin axis. The criteria are (except for idealized cases on the stability boundary line in the parameter space) both necessary and sufficient for stability for any spacecraft characterized by the planar appendage model, such as a spacecraft containing solar panels and/or radial booms.

  4. Stability analysis of spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1990-01-01

    The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.

  5. A charging model for three-axis stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Massaro, M. J.; Green, T.; Ling, D.

    1977-01-01

    A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented.

  6. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    NASA Technical Reports Server (NTRS)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  7. Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices

    NASA Technical Reports Server (NTRS)

    Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar

    2011-01-01

    A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.

  8. Attitude stabilization of a flexible spacecraft under actuator complete failure

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Yang, Hao; Jiang, Bin; Wen, Liyan

    2016-06-01

    This paper considers the attitude and angular velocity stabilization problem of a class of flexible spacecraft under actuator complete failure. Firstly a new model simplification strategy is put forward to weaken the coupling effects. Then an adaptive observer-based estimation method is proposed to estimate the uncertainty of flexibility, based on which a feedback fault-tolerant control scheme is further developed which guarantees the system stability and asymptotic attitude converging properties. The simulation results illustrate the efficiency of the theoretical results.

  9. Science aspects of 1980 ballistic missions to comet Encke, using Mariner and Pioneer spacecraft

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Elachi, C.; Giffin, C. E.; Huntress, W.; Newburn, R. L., Jr.; Parker, R. H.; Taylor, F. W.; Thorpe, T. E.

    1976-01-01

    Science aspects of a 1980 spacecraft reconnaissance of Comet Encke are considered. The mission discussed is a ballistic flyby (more exactly, a fly-through) of P/Encke, using either a spin stabilized spacecraft, without despin of instruments, or a 3-axis stabilized spacecraft.

  10. Spacecraft Attitude Stabilization with Piecewise-Constant Magnetic Dipole Moment

    NASA Astrophysics Data System (ADS)

    Celani, Fabio

    2016-05-01

    In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.

  11. Stability of a dual-spin spacecraft with spherical dampers

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Likins, P. W.; Sirlin, S.

    1984-01-01

    The present investigation is concerned with the stability characteristics of a specific dual-spin satellite configuration marked by a high degree of symmetry. The configuration includes a platform and a rotor. Both components contain arbitrarily located internal spherical dampers. The symmetry of the system configuration makes it possible to illustrate clearly the relationship between Routhian analysis, energy sink analysis, and digital simulation of the full nonlinear equations. Although the dual-spin spacecraft configuration contains energy dissipating devices on both platform and rotor, it is still possible to employ the rigorous, but relatively simple, Routh stability method. This method, unlike Floquet theory, has the potential of producing closed-form stability criteria. The energy sink method is capable of providing a closed-form stability criterion. Numerical simulation is a necessary requirement in the latter stages of design when the realistic perturbation environment must be considered.

  12. Characterizing DSN System Frequency Stability with Spacecraft Tracking Data

    NASA Technical Reports Server (NTRS)

    Pham, T.; Machuzak, R.; Bedrossian, A.

    2010-01-01

    This paper describes a recent effort in characterizing frequency stability performance of the ground system in the NASA Deep Space Network (DSN). Unlike the traditional approach where performance is obtained from special calibration sessions that are both time consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This method significantly increases the amount of data available for analysis, roughly by two orders of magnitude; making it possible to conduct trend analysis with reasonable confidence. Since the system is monitored daily, any significant variation in performance can be detected timely. This helps the DSN maintain its performance commitment to customers.

  13. Improved Nutation Damper for a Spin-Stabilized Spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark A.

    2004-01-01

    A document proposes an improved liquid- ring nutation damper for a spin-stabilized spacecraft. The improvement addresses the problem of accommodating thermal expansion of the damping liquid. Heretofore, the problem has been solved by either (1) filling the ring completely with liquid and accommodating expansion by attaching a bellows or (2) partially filling the ring and accepting the formation of bubbles. The disadvantage of (1) is that a bellows is expensive and may not be reliable; the disadvantage of (2) is that bubbles can cause fluid lockup and consequent loss of damping. In the improved damper, the ring would be nearly completely filled with liquid, and expansion would be accommodated, but not by a bellows. Instead, an escape tube would be attached to the ring. The escape tube would be positioned and oriented so that the artificial gravitation and the associated buoyant force generated by the spin of the spacecraft would cause the bubbles to migrate toward the tip of the tube. In addition, when the spacecraft was on the launch pad, the escape tube would be at the top of the ring, so that bubbles would rise into the tube.

  14. Orbital Stability of Spacecraft Exploring Multiple Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Burns, Keaton; Marchis, F.; Bellerose, J.

    2011-05-01

    Space missions to study the composition and formation histories of multiple asteroid systems require the identification of safe orbits for the observing spacecraft. To identify regions of orbital stability, we developed an n-body simulation and Monte Carlo scheme to test a large selection of orbits around the components of multiple asteroid systems. Our n-body program integrates the equations of motion of the spacecraft, asteroid system components, and the sun for 20 days, taking into account solar radiation pressure on the spacecraft and modeling asteroids as systems of rigid points when their shape model is known. We utilized a Monte Carlo scheme to test the stability of polar and retrograde orbits from uniformly distributed starting positions with normally distributed tangential velocities around each component. We present preliminary results of simulations testing hundreds of thousands of polar and retrograde orbits around the components of the 2001 SN263 near-earth triple asteroid system, and the (90) Antiope doublet and (45) Eugenia triple systems in the main-belt. These systems are potential targets for several space mission concepts, including: the Amor mission to visit and land on the components of 2001 SN263, Jones et al. (LPSC 42, #2695, 2011), the Diversity mission to explore several asteroid systems including (45) Eugenia and (90) Antiope, Marchis et al. (LPSC 42, #2062, 2011), and the ASTER mission to visit a NEA multiple asteroid, Sukhanov et al. (Cosmic Research 48-5, p. 443-450, 2010). Analysis of stable regions in position and velocity may assist in planning scientific orbits and instrumental specifications for such missions.

  15. Flexible spacecraft maneuver - Inverse attitude control and modal stabilization

    NASA Technical Reports Server (NTRS)

    Singh, Sahjendra N.

    1988-01-01

    A control law is presented for three-axis rotational maneuvers of a spacecraft (orbiter)-beam-tip body (antenna or a reflector) configuration based on nonlinear inversion and modal velocity feedback. Using invertibility and functional reproducibility results, a decoupling attitude control law is presented such that, in the closed-loop system, the attitude angles of the spacecraft are independently controlled using the control moments acting on the space vehicle. This controller asymptotically decouples the flexible dynamics from the rigid one and also allows the decomposition of the elastic dynamics into two subsystems representing the transverse deflections of the beam in two orthogonal planes. These low-order subsystems are used for derivation of a modal velocity feedback stabilizer using the force and moment actuators at the end body. Simulation results are presented to show that, in the closed-loop system, attitude control and elastic mode stabilization are accomplished in spite of the parameter uncertainty and disturbance torque input in the system.

  16. Spacecraft

    NASA Technical Reports Server (NTRS)

    Feoktistov, K. P.

    1974-01-01

    The task of building a spacecraft is compared to the construction of an artificial cybernetic system able to acquire and process information. Typical features for future spacecraft are outlined and the assignment of duties in spacecraft control between automatic devices and the crew is analyzed.

  17. Attitude stabilization of a rigid spacecraft using two momentum wheel actuators

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan; Mcclamroch, N. Harris; Reyhanoglu, Mahmut

    1993-01-01

    It is well known that three momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished using smooth feedback. If failure of one of the momentum wheel actuators occurs, it is demonstrated that two momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished. Although the complete spacecraft equations are not controllable, the spacecraft equations are small time locally controllable in a reduced nonlinear sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using a time-variant continuous feedback control law, but discontinuous feedback control strategies are constructed which stabilize any equilibrium attitude of the spacecraft in finite time. Consequently, reorientation of the spacecraft can be accomplished using discontinuous feedback control.

  18. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  19. Optimal control of spin-stabilized spacecraft with telescoping appendages

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1976-01-01

    The control of a spin-stabilized spacecraft consisting of a rigid central hub and one or two movable offset telescoping booms (with end masses) is considered. The equations of rotational motion are linearized about either of two desired final states. A control law for the boom end mass position is sought such that a quadratic cost functional involving the weighted components of angular velocity plus the control is minimized when the final time is unspecified and involves the solution of the matrix Riccati algebraic equation. For three axis control more than one offset boom (orthogonal to each other) is required. For two-axis control with a single boom offset from a symmetrical hub, an analytic solution is obtained; when this system is used for nutation decay the time constant is one order of magnitude smaller than previously achieved using nonoptimal control logic. For the general case results are obtained numerically.

  20. Effectiveness of large booms as nutation dampers for spin stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Eke, F. O.

    1991-01-01

    The issue of using long slender booms as pendulous nutation damping devices on spinning aircraft is discussed. Motivation comes from experience with the Galileo Spacecraft, whose magnetometer boom also serves as a passive nutation damper for the spacecraft. Performance analysis of a spacecraft system equipped with such systems are relatively insensitive to changes in the damping constant of the device. However, the size and arrangement of such a damper raises important questions concerning spacecraft stability in general.

  1. Attitude stabilization of a rigid spacecraft using gas jet actuators operating in a failure mode

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan; Reyhanoglu, Mahmut; Mcclamroch, Harris

    1993-01-01

    The attitude stabilization of a rigid spacecraft using control torques supplied by gas jet actuators about only two of its principal axes is considered. First, the case where the uncontrolled principal axis of the spacecraft is not an axis of symmetry is considered. In this case, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft cannot be asymptotically stabilized to an equilibrium attitude using time-invariant continuous feedback. A discontinuous stabilizing feedback control strategy is constructed which stabilizes the spacecraft to an equilibrium attitude. Next, the case where the uncontrolled principal axis of the spacecraft is an axis of symmetry is considered. In this case, the complete spacecraft dynamics are not even accessible. However, the spacecraft dynamics are strongly accessible and small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to an equilibrium attitude using time-invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy is constructed. In both cases, the discontinuous feedback controllers are constructed by switching between one of several feedback functions.

  2. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers

    NASA Astrophysics Data System (ADS)

    Celani, Fabio

    2015-02-01

    In this work feedback control laws are designed for achieving three-axis attitude stabilization of inertial pointing spacecraft using only magnetic torquers. The designs are based on an almost periodic model of geomagnetic field along the spacecraft's orbit. Both attitude plus attitude rate feedback and attitude only feedback are proposed. Both feedback laws achieve local exponential stability robustly with respect to large uncertainties in the spacecraft's inertia matrix. The latter properties are proved using general averaging and Lyapunov stability. Simulations are included to validate the effectiveness of the proposed control algorithms.

  3. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  4. Slosh wave excitation and stability of spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1990-01-01

    The instability of liquid and gas interface can be induced by the pressure of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have been investigated. Results show that lower frequency gravity jitters excite slosh waves with higher ratio of maximum amplitude to wave length than that of the slosh waves generated by the higher frequency gravity jitters.

  5. Attitude stability of a spinning spacecraft during appendage deployment/retraction

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Fullerton, Wayne

    1994-01-01

    The work presented is motivated by the need for a national satellite rescue policy, not the ad hoc policy now in place. In studying different approaches for a national policy, the issue of capture and stabilization of a tumbling spacecraft must be addressed. For a rescue mission involving a tumbling spacecraft, it may be advantageous to have a rescue vehicle which is compact and 'rigid' during the rendezvous/capture phase. After capture, passive stabilization techniques could be utilized as an efficient means of detumbling the resulting system (i.e., both the rescue vehicle and captures spacecraft). Since the rescue vehicle is initially compact and 'rigid,' significant passive stabilization through energy dissipation can only be achieved through the deployment of flexible appendages. Once stabilization is accomplished, retraction of the appendages before maneuvering the system to its final destination may also prove advantageous. It is therefore of paramount interest that we study the effect of appendage deployment/retraction on the attitude stability of a spacecraft. Particular interest should be paid to appendage retraction, since if this process is destabilizing, passive stabilization as proposed may not be useful. Over the past three decades, it has been an 'on-again-off-again affair' with the problem of spacecraft appendage deployment. In most instances, these studies have been numerical simulations of specific spacecraft configurations for which there were specific concerns. The primary focus of these studies was the behavior of the appendage during deployment; the effects of appendage retraction was considered only in one of these studies. What is missing in the literature is a thorough study of the effects of appendage deployment/retraction on the attitude stability of a spacecraft. This paper presents a rigorous analysis of the stability of a spinning spacecraft during the deployment or the retraction of an appendage. The analysis is simplified such that

  6. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  7. Four methods of attitude determination for spin-stabilized spacecraft with applications and comparative results

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1975-01-01

    The attitude of a spacecraft is determined by specifying independent parameters which relate the spacecraft axes to an inertial coordinate system. Sensors which measure angles between spin axis and other vectors directed to objects or fields external to the spacecraft are discussed. For the spin-stabilized spacecraft considered, the spin axis is constant over at least an orbit, but separate solutions based on sensor angle measurements are different due to propagation of errors. Sensor-angle solution methods are described which minimize the propagated errors by making use of least squares techniques over many sensor angle measurements and by solving explicitly (in closed form) for the spin axis coordinates. These methods are compared with star observation solutions to determine if satisfactory accuracy is obtained by each method.

  8. Telemetry down-link Doppler as an attitude sensor for spin stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Hendry, S. D.

    1995-01-01

    The communications antenna on a spin stabilized spacecraft is seldom located on the spin axis, hence, the antenna is in motion relative to the center of mass of the spacecraft. The Doppler shift observed at the ground or space relay communications receivers will include oscillations whose frequency and amplitude are functions of the motion of the antenna and the attitude of the spacecraft relative to the line of sight (LOS). This functional dependence creates the possibility of estimating attitude parameters from Doppler measurements. This paper presents mathematical models of Doppler oscillations from spinning spacecraft, including the effects of nutation. Algorithms for estimating spin rate, attitude and nutation angle are described. Results of analysis of Doppler tracking of GOES-8 and WIND are also discussed.

  9. Combined control of fast attitude maneuver and stabilization for large complex spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Jing-Rui

    2013-12-01

    In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and stabilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are separately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's requirement of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.

  10. Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft

    NASA Technical Reports Server (NTRS)

    Natanson, Gregory

    2005-01-01

    The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.

  11. Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Kelkar, Atul G.

    2014-01-01

    This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.

  12. An approach to attitude determination for a spin-stabilized spacecraft (IMP 1)

    NASA Technical Reports Server (NTRS)

    Fang, A. C.

    1972-01-01

    The analysis and the FORTRAN program are presented for the determination of attitude of a spin-stabilized spacecraft. The use of telemetry data that provide information about two reference vectors and their relation to the spin is outlined. A technique for the determination of the spin-axis orientation that employs only simple calculations is described.

  13. Nutational stability of a spinning spacecraft with internal mass motion and axial thrust

    NASA Technical Reports Server (NTRS)

    Mingori, D. L.; Yam, Y.

    1986-01-01

    Stability conditions are developed for a spinning spacecraft with internal mass motion and axial thrust. The results show that rapid cone angle growth is possible if the thrust magnitude is sufficiently large and the moving mass is aft of the system mass center. The instability does not rely on internal or external dissipation.

  14. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1994-01-01

    This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.

  15. Pulsed 3-Axis Vector SERF Magnetometer

    NASA Astrophysics Data System (ADS)

    Hedges, Morgan; Romalis, Michael

    2016-05-01

    We demonstrate a 3-axis atomic vector magnetometer operating in the SERF regime, using a single beam path, and capable of operating in Earth's field using field feedback. It has similar sensitivity along all 3 axes that is fundamentally limited by photon and atom shot noise. The scheme uses a high intensity pump pulse to polarize Rb atoms in ~ 1 μs and a sequence of magnetic field pulses applied while the atoms are monitored during free precession. The sequence used provides minimal sensitivity to pulse errors, while also allowing unambiguous discrimination between external magnetic fields and misalignment between laser and magnetic coil axes.

  16. Attitude stability of a flexible solar electric spacecraft - A parametric study

    NASA Technical Reports Server (NTRS)

    Marsh, E. L.

    1974-01-01

    The influence of large area solar array flexibility on the attitude control of a solar electric spacecraft is analyzed. The spacecraft consists of a rigid central body, two flexible roll-out solar arrays, and a cluster of three electric propulsion engines. Each engine has gimballing or translational capacity, or both, for attitude control purposes. A parametric stability study of various spacecraft configurations was made, using hybrid coordinate techniques in an eigenvalue analysis. Parameters varied were solar array aspect ratio, solar array first natural frequency, solar array rotation angle about the yaw axis, and sensor gain factors. Only the first six modes of solar array vibration were included in the study. The attitude response characteristics of the various spacecraft configurations were obtained by means of a digital computer simulation program of the system's equations of motion. The feasibility of using the thrusters for attitude control of electric propulsion spacecraft is demonstrated. It is also shown that although the dynamics effects of large-area flexible solar arrays can be harmful, changes in the control system parameters can insure stable attitude control.

  17. Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1996-01-01

    The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.

  18. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves

  19. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques

    NASA Astrophysics Data System (ADS)

    Gui, Haichao; Vukovich, George

    2015-12-01

    The spin-axis stabilization of an axisymmetric spacecraft by two control torques perpendicular to the symmetry axis is addressed. Two control laws are designed to align the symmetry axis along a desired inertial direction despite the revolution around the symmetry axis. The first controller takes a saturated proportional-derivative form and can stabilize the spin-axis to the desired direction with a priori bounded torques in the absence of modeling uncertainties. In order to achieve better robustness, an adaptive controller is then designed to account for the inertia uncertainties and disturbances, in addition to actuator saturation. Numerical examples are presented to demonstrate the advantageous features of the proposed algorithm compared with conventional spin-axis stabilization methods.

  20. The dynamics of spin stabilized spacecraft with movable appendages, part 2

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.

    1976-01-01

    The dynamics and stability of a spin stabilized spacecraft with a hinged appendage system are treated analytically and numerically. The hinged system consists of a central hub with masses attached to (assumed) massless booms of fixed length whose orientation relative to the main part can change. The general three dimensional deployment dynamics of such a hinged system is considered without any restriction on the location of the hinge points. The equations of motion for the hinged system, with viscous damping at both hinge points, are linearized about the nominal equilibrium position where the booms are orthogonal to the nominal spin axis for the case of two dimensional and three dimensional motion. Analytic stability criteria are obtained from the necessary condition on the sign of all the coefficients in the system characteristic equation.

  1. Development of Low-Toxicity Urine Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Mitchell, Julie L.; Pickering, Karen D.

    2012-01-01

    Wastewater stabilization is an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater is two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort is to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  2. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie L.; Adam, Niklas; Pickering, Karen D.; Alvarez, Giraldo N.

    2015-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-milliliter volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  3. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Mitchell, Julie; Pickering, Karen; Carrier, Chris; Vega, Letty; Muirhead, Dean

    2014-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  4. Study to define logic associated with CMGS to maneuver and stabilize an orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to define the logic associated with the control moment gyroscopes to maneuver and stabilize an orbiting spacecraft. The study objectives are as follows: (1) to define mission requirements and feasible attitudes for a shuttle-like vehicle that will meet mission objectives, (2) to determine the control moment gyroscope (CMG) and system configurations that will best meet overall mission requirements, (3) to define all of the software required to manage and control the selected CMG systems, and (4) to verify by computer simulation the adequacy of the selected CMG system and specified software package in meeting the overall mission requirements.

  5. Attitude stability of a spacecraft on a stationary orbit around an asteroid subjected to gravity gradient torque

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Shijie

    2013-04-01

    Attitude stability of spacecraft subjected to the gravity gradient torque in a central gravity field has been one of the most fundamental problems in space engineering since the beginning of the space age. Over the last two decades, the interest in asteroid missions for scientific exploration and near-Earth object hazard mitigation is increasing. In this paper, the problem of attitude stability is generalized to a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid. This generalized problem is studied via the linearized equations of motion, in which the harmonic coefficients C_{20} and C_{22} of the gravity field of the asteroid are considered. The necessary conditions of stability of this conservative system are investigated in detail with respect to three important parameters of the asteroid, which include the harmonic coefficients C_{20} and C_{22}, as well as the ratio of the mean radius to the radius of the stationary orbit. We find that, due to the significantly non-spherical shape and the rapid rotation of the asteroid, the attitude stability domain is modified significantly in comparison with the classical stability domain predicted by the Beletskii-DeBra-Delp method on a circular orbit in a central gravity field. Especially, when the spacecraft is located on the intermediate-moment principal axis of the asteroid, the stability domain can be totally different from the classical stability domain. Our results are useful for the design of attitude control system in the future asteroid missions.

  6. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.

  7. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/ deviation so that further analysis can be directed and corrective actions followed.

  8. Environmentally-induced discharge transient coupling to spacecraft

    NASA Technical Reports Server (NTRS)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  9. Effects of the motions of a platform-mounted payload on the nutational stability of a dual-spin spacecraft - A Galileo case study

    NASA Technical Reports Server (NTRS)

    Man, G. K.; Eke, F. O.

    1984-01-01

    In the presence of spacecraft nutation, tracking of an inertially fixed target by the Galileo scan platform requires the use of two control loops to move the scan platform and the stator in such a way as to compensate for spacecraft motion. The effect of these control loops on spacecraft nutational stability is examined using an eigenvalue analysis approach as well as several computer analysis packages. It was found that the actions of these control loops tend to drive nutation to the point of neutralizing, and even overpowering the damping actions of the spacecraft nutation damper, for pointing directions close to the spacecraft's poles. Stable and unstable zones are mapped out for two sets of spacecraft mass properties, and contributions of rotor asymmetry and stator flexibility are also discussed.

  10. Attitude control of the LACE satellite: A gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Ivory, J. E.; Campion, R. E.; Bakeris, D. F.

    1993-01-01

    The Low-power Atmospheric Compensation Experiment (LACE) satellite was launched in February 1990 by the Naval Research Laboratory. The spacecraft's pitch and roll are maintained with a gravity gradient boom and a magnetic damper. There are two other booms with much smaller tip masses, one in the velocity direction (lead boom) of variable length and the other in the opposite direction (balance boom) also of variable length. In addition, the system uses a momentum wheel with its axis perpendicular to the plane of the orbit to control yaw and keep these booms in the orbital plane. The primary LACE experiment requires that the lead boom be moved to lengths varying from 4.6 m to 45.7 m. This and other onboard experiments require that the spacecraft attitude remain within tight constraints while operating. The problem confronting the satellite operators was to move the lead boom without inducing a net spacecraft attitude disturbance. A description of a method used to change the length of the lead boom while minimizing the disturbance to the attitude of the spacecraft is given. Deadbeating to dampen pitch oscillations has also been accomplished by maneuvering either the lead or balance boom and is discussed.

  11. Attitude stability of a spacecraft with two flexible solar arrays on a stationary orbit around an asteroid subjected to gravity gradient torque

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jiang; Zhao, Chang-Yin

    2014-06-01

    In the gravity field of an asteroid with the second order and degree harmonics C 20 and C 22, the attitude stability of a spacecraft with two flexible solar arrays on a stationary orbit subjected to the fourth-order gravity gradient torque is investigated in this paper. The sufficient conditions of attitude stability of the spacecraft are obtained, the effect of the direction of the flexible solar arrays and some special cases are discussed. Taking the asteroids 4769 Castalia, 25143 Itokawa and the imaginary asteroids as examples, the attitude stability domains, determined by the sufficient conditions, of the spacecrafts moving on stationary orbits around them are presented. It is found that the attitude stability domains of the spacecraft with two flexible solar arrays are evidently different when the solar arrays are installed in different directions; the effect of the harmonics C 20 and C 22 of the asteroids has the significant influence on the attitude stability domains of the spacecrafts with flexible appendages moving on stationary orbits; in the certain case, the effect of the harmonics C 20 and C 22 of the asteroids has no influence on the attitude stability domains of the rigid spacecrafts moving on stationary orbits, but in the other cases, the effect of the harmonics C 20 and C 22 of the asteroids has also the significant influence on the attitude stability domains of the rigid spacecrafts moving on stationary orbits; whether the harmonics C 20 and C 22 of the asteroids are considered or not, the effect of flexible appendages decreases the attitude stability domains.

  12. Increased ephemeris accuracy using attitude-dependent aerodynamic force coefficients for inertially stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Baker, David F.

    1991-01-01

    The FREEMAC program used to generate the aerodynamic coefficients, as well as associated routines that allow the results to be used in other software is described. These capabilities are applied in two numerical examples to the short-term orbit prediction of the Gamma Ray Observatory (GRO) and Hubble Space Telescope (HST) spacecraft. Predictions using attitude-dependent aerodynamic coefficients were made on a modified version of the PC-based Ephemeris Generation Program (EPHGEN) and were compared to definitive orbit solutions obtained from actual tracking data. The numerical results show improvement in the predicted semi-major axis and along-track positions that would seem to be worth the added computational effort. Finally, other orbit and attitude analysis applications are noted that could profit from using FREEMAC-calculated aerodynamic coefficients, including orbital lifetime studies, orbit determination methods, attitude dynamics simulators, and spacecraft control system component sizing.

  13. Gyroless yaw control system for a three axis stabilized, zero-momentum spacecraft

    NASA Technical Reports Server (NTRS)

    Stetson, Jr., John B. (Inventor)

    1993-01-01

    A satellite attitude control system is usable in the absence of any inertial yaw attitude reference, such as a gyroscope, and in the absence of a pitch bias momentum. Both the roll-yaw rigid body dynamics and the roll-yaw orbit kinematics are modelled. Pitch and roll attitude control are conventional. The model receives inputs from a roll sensor, and roll and yaw torques from reaction wheel monitors. The model produces estimated yaw which controls the spacecraft yaw attitude.

  14. Parametric excitation induced by solar pressure torque on the roll-yaw attitude motion of a gravity-gradient stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Takeichi, Noboru

    2010-12-01

    The parametric excitation of a gravity gradient stabilized spacecraft induced by the periodic solar pressure torque is discussed. The solar pressure torque in the linearized equations of motion appears as linear terms with periodic coefficients. The attitude stability is analyzed numerically through the calculation of the Floquet multiplier. The perturbation method is also applied to identify the instability condition analytically. It is made clear that the periodic solar pressure torque can destabilize the coupled roll and yaw attitude motion of the spacecraft. It is also shown that the conditions of parametric resonance are included in the gravity gradient stability condition. Nonlinear simulations are also carried out to verify the effect of the parametric resonance. The numerical simulation using actual parameters shows that the spacecraft inevitably experiences a large amplitude attitude motion due to the periodic solar pressure torque even if the gravity gradient stability condition is satisfied.

  15. Extreme Ultraviolet Explorer attitude determination support with a multimission three-axis stabilized spacecraft flight dynamics support system

    NASA Astrophysics Data System (ADS)

    Harman, Richard; Lee, Michael

    The Extreme Ultraviolet Explorer (EUVE) was launched June 7, 1992 by an expendable Delta 2 launch vehicle. The Flight Dynamics Facility (FDF) at NASA Goddard Space Flight Center used a multimission three-axis stabilized spacecraft (MTASS) Flight Dynamics Support System (FDSS) to support the EUVE launch and mission operations. For EUVE, MTASS has been used to monitor attitude sensor performance, study OBC attitude determination performance, and study attitude perturbations. The current status of these efforts are summarized. After its successful implementation for EUVE, the Upper Atmosphere Research Satellite (UARS), and the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), MTASS has demonstrated multimission flight dynamics support systems can effectively bridge the gap between single-mission support systems of the past and future generic systems.

  16. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  17. Moisture interaction and stability of ZOT (Zinc Orthotitanate) thermal control spacecraft coating

    NASA Technical Reports Server (NTRS)

    Mon, Gordon R.; Gonzalez, Charles C.; Ross, Ronald G., Jr.; Wen, Liang C.; Odonnell, Timothy

    1988-01-01

    Two of the many performance requirements of the zinc orthotitanate (ZOT) ceramic thermal control paint covering parts of the Jupiter-bound Galileo spacecraft are that it be sufficiently electrically conductive so as to prevent electrostatic discharge (ESD) damage to onboard electronics and that it adhere to and protect the substrate from corrosion in terrestrial environments. The bulk electrical resistivity of ZOT on an aluminum substrate was measured over the ranges 22 C to 90 C and 0 percent RH to 100 percent RH, and also in soft (10 (minus 2) Torr) and hard (10 (minus 7) Torr) vacuums. No significant temperature dependence was evident, but measured resistivity values ranged over 9 orders of magnitude: 10 to the 5th power ohm-cm at 100 percent RH greater than 10 to the 12th power ohm-cm in a hard vacuum. The latter value violates the ESD criterion for a typical 0.019 cm thick coating. The corrosion study involved exposing typical ZOT substrate combinations to two moisture environments - 30 C/85 percent RH and 85 C/85 percent RH - for 2000 hours, during which time the samples were periodically removed for front-to-back electrical resistance and scratch/peel test measurements. It was determined that the ZOT/Al and ZOT/Mg systems are stable (no ZOT delamination), although some corrosion (oxide formation) and resistivity increases observed among the ZOT/Mg samples warrant that exposure of some parts to humid environments be minimized.

  18. Semi-globally input-to-state stable controller design for flexible spacecraft attitude stabilization under bounded disturbances

    NASA Astrophysics Data System (ADS)

    Hu, Qinglei

    2010-02-01

    Semi-globally input-to-state stable (ISS) control law is derived for flexible spacecraft attitude maneuvers in the presence of parameter uncertainties and external disturbances. The modified rodrigues parameters (MRP) are used as the kinematic variables since they are nonsingular for all possible rotations. This novel simple control is a proportional-plus-derivative (PD) type controller plus a sign function through a special Lyapunov function construction involving the sum of quadratic terms in the angular velocities, kinematic parameters, modal variables and the cross state weighting. A sufficient condition under which this nonlinear PD-type control law can render the system semi-globally input-to-state stable is provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. In addition to detailed derivations of the new controllers design and a rigorous sketch of all the associated stability and attitude convergence proofs, extensive simulation studies have been conducted to validate the design and the results are presented to highlight the ensuring closed-loop performance benefits when compared with the conventional control schemes.

  19. Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 1. Theory

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, D. A.; Park, C. A.

    1975-01-01

    A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.

  20. Affordable and High-heritage SMEX Spacecraft Solutions

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Rickey, J.; Lo, A.; Griffin, K.; Riesco, M.

    2012-05-01

    Given NASA’s Astrophysics budget constraints in the next several years, the Small Explorers (SMEX) Program is becoming an even more crucial aspect of space-borne scientific investigations as it provides frequent mission opportunities at modest mission cost cap. As such, SMEX missions require inexpensive yet reliable spacecraft to achieve the science objectives. To meet the mission needs of low-cost, reliable spacecraft, Northrop Grumman (NG) Corporation and Sierra Nevada Corporation (SNC) have teamed to provide ideal SMEX bus solutions, combining SNC’s low cost, small bus from the current ORBCOMM 2 (OG-2) production line and NG’s world-class expertise and over half a century of experience in space science mission architecture, systems engineering and space vehicle integration. The OG-2 spacecraft bus is 3-axis stabilized, capable of providing modest pointing capabilities and able to accommodate a wide range of SMEX-class instruments; with slight modifications, the performance is greatly enhanced in pointing and payload accommodation capabilities. Our combination of NG’s expertise and SNC’s low cost, OG-2 based spacecraft provides our science partners with the depth and skill set needed during all phases of SMEX investigation development from mission inception to flight element development, successful launch, and high-performance science operations.

  1. Contingency Operations during Failure of Inertial Attitude Acquisition Due to Star Tracker Blinding for Three-Axes-Stabilized Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Keil, Joachim; Herfort, Ulrich

    2007-01-01

    The three interplanetary ESA missions Mars-Express, Rosetta and Venus-Express (launched 2003, 2004 and 2005 resp.) are three-axes stabilized spacecraft (s/c) that estimate their inertial attitude (i.e. the attitude of the s/c w.r.t. the inertial frame) using measurements from a redundant set of star trackers (STR). Each s/c is equipped with four reaction wheels, a reaction control system based on thrusters and a redundant set of ring laser gyroscopes (gyros). The STR h/w layout of the three s/c is identical whereas there is a difference in the star pattern recognition algorithm of Rosetta which uses five neighbouring stars around a central star instead of star triads. The Rosetta algorithm has been implemented to cope with the presence of false stars which are expected to be seen during operations around the comet. The attitude acquisition capability from lost in space is different also in terms of AOCMS: The survival mode of Rosetta which is entered upon STR failure is presented. The AOCMS of Mars- and Venus-Express manages temporary STR outages during sky occultation by the planet not even by using redundancy. Though, a blinding of both STR during cruise lasting for the order of days confronts the ground operators with the limits of the AOCMS design. The operations and analyses that have been planned and partially been performed to compensate for the outage of the STR are demonstrated for Mars-Express. The caution measures taken before Venus orbit insertion of Venus-Express are detailed.

  2. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.

  3. Study of 1980 Comet Encke-asteroid missions using a spin-stabilized spacecraft. Volume 2: Technical Report

    NASA Technical Reports Server (NTRS)

    Bursnall, W. J.; Howard, E. G.; Mcminimy, W. R.; Shaffer, R. G.; Vanpelt, J. M.

    1973-01-01

    The data and analyses that support the conclusions and recommendations of a space mission to intercept comets and asteroids are presented. The scientific basis for the Encke missions is discussed and includes a summary of the physical characteristics of Encke, a statement of scientific objectives and priorities, a definition of the spacecraft payload, and a rationale for utilization and instrumentation of coma probes. Data are included for the reference mission selected as the baseline for science analysis and design studies. Alternate spacecraft configurations are compared in terms of their capability in meeting the science and mission requirements.

  4. Assessment of the clouds and the Earth's Radiant Energy System (CERES) instrument performance and stability on the Aqua, Terra, and S-NPP spacecraft

    NASA Astrophysics Data System (ADS)

    Smith, Nathaniel P.; Thomas, Susan; Shankar, Mohan; Hess, Phillip C.; Smith, Natividad M.; Walikainen, Dale R.; Wilson, Robert S.; Priestley, Kory J.

    2015-09-01

    The Clouds and the Earth's Radiant Energy System (CERES) scanning radiometer is designed to measure reflected solar radiation and thermal radiation emitted by the Earth. Five CERES instruments are currently taking active measurements in-orbit with two aboard the Terra spacecraft (FM1 and FM2), two aboard the Aqua spacecraft (FM3 and FM4), and one aboard the S-NPP spacecraft (FM5). The CERES instrument uses three scanning thermistor bolometers to make broadband radiance measurements in the shortwave (0.3 - 5.0 micrometers), total (0.3 - >100 micrometers) and water vapor window (8 - 12 micrometer) regions. An internal calibration module (ICM) used for in-flight calibration is built into the CERES instrument package consisting of an anodized aluminum blackbody source for calibrating the total and window sensors, and a shortwave internal calibration source (SWICS) for the shortwave sensor. The ICM sources, along with a solar diffusor called the Mirror Attenuator Mosaic (MAM), are used to define shifts or drifts in the sensor response over the life of the mission. In addition, validation studies are conducted to understand any spectral changes that may occur with the sensors and assess the pointing accuracy of the instrument, allowing for corrections to be made to the radiance calculations in CERES data products. This paper covers the observed trends in the internal and solar calibration data, discusses the latest techniques used to correct for sensor response, and explains the validation studies used to assess the performance and stability of the instrument.

  5. Simulating Flexible-Spacecraft Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  6. Spacecraft 2000

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.

  7. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  8. A 3-axis force balanced accelerometer using a single proof-mass

    SciTech Connect

    Lemkin, M.A.; Boser, B.E.; Auslander, D.; Smith, J.

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  9. Spacecraft detumbling through energy dissipation

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Chatterjee, Anindya

    1993-01-01

    The attitude motion of a tumbling, rigid, axisymmetric spacecraft is considered. A methodology for detumbling the spacecraft through energy dissipation is presented. The differential equations governing this motion are stiff, and therefore an approximate solution, based on the variation of constants method, is developed and utilized in the analysis of the detumbling strategy. Stability of the detumbling process is also addressed.

  10. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  11. Expression and function of the TL1A/DR3 axis in chronic lymphocytic leukemia

    PubMed Central

    Cavallini, Chiara; Lovato, Ornella; Bertolaso, Anna; Zoratti, Elisa; Malpeli, Giorgio; Mimiola, Elda; Tinelli, Martina; Aprili, Fiorenza; Tecchio, Cristina; Perbellini, Omar; Scarpa, Aldo; Zamò, Alberto; Cassatella, Marco Antonio; Pizzolo, Giovanni; Scupoli, Maria Teresa

    2015-01-01

    TNF-like ligand 1A (TL1A) and its unique receptor death receptor 3 (DR3) acts as broad T-cell costimulator involved in regulatory mechanisms of adaptive immune response under physiological and pathological settings. Moreover, we have recently shown that TL1A negatively regulates B-cell proliferation. Despite increasing interest on the TL1A/DR3-axis functions, very little is known on its expression and role in leukemia. In this study, we investigated the expression and function of TL1A/DR3 axis in chronic lymphocytic leukemia (CLL). DR3 was differentially expressed in activated CLL cells and predominantly detected in patients with early clinical stage disease. Soluble TL1A has been revealed in the sera of CLL patients where higher TL1A levels were associated with early stage disease. T cells, monocytes and leukemic B cells have been identified as major sources of TL1A in CLL. The relevance of these findings has been sustained by functional data showing that exogenous TL1A reduces CLL proliferation induced by stimulation of the B cell receptor. Overall, these data document the expression of the TL1A/DR3 axis in early-stage CLL. They also identify a novel function for TL1A as a negative regulator of leukemic cell proliferation that may influence the CLL physiopathology and clinical outcome at an early-stage disease. PMID:26393680

  12. Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Research Lab (JPL) workers use a borescope to verify the pressure relief device bellow's integrity on a radioisotope thermoelectric generator (RTG) that has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. The activity is part of the mechanical and electrical verification testing of RTGs during prelaunch processing. RTGs use heat from the natural decay of plutonium to generate electrical power. The three RTGs on Cassini will enable the spacecraft to operate far from the Sun where solar power systems are not feasible. They will provide electrical power to Cassini on it seven year trip to the Saturnian system and during its four year mission at Saturn.

  13. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  14. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  15. Spacecraft architecture

    NASA Technical Reports Server (NTRS)

    Zefeld, V. V.

    1986-01-01

    Three requirements for a spacecraft interior are considered. Adequate motor activity in the anatomical-physiological sense results from attention to the anthropometric characteristics of humans. Analysis of work requirements is a prerequisite for the planning of adequate performance space. The requirements for cognitive activity are also elucidated. The importance of a well-designed interior during a long space flight is discussed.

  16. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  17. Gaia Spacecraft Mechanical Development

    NASA Astrophysics Data System (ADS)

    Lebranchu, C.; Blender, F.; Touzeau, S.; Escolar, D.

    2012-07-01

    Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the spacecraft. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design; which incurs a high degree of stability. This is achieved through decoupling between payload and service module, and the use of high-performance engineering tools and of Silicon Carbide (Boostec® SiC) for the Payload. Compliance of spacecraft mass and volume with launcher capability is another key challenge, as well as the development of the 10.3 meter diameter deployable sunshield. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without dedicated structural model. Gaia mechanical development is the fruit of a successful international cooperation.

  18. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  19. Electrostatic disturbance forces on a 3-axis drag-free sensor. [for earth satellite accelerometry

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Sonnabend, D.; Vijayaraghavan, A.

    1982-01-01

    The electrostatic analysis of a multiple-capacitance 3-axis drag-free sensor is presented in this paper. The instrument consists of a proof-mass (a dense metallic ball) floating freely inside a spherical cavity enclosed by the sensor plates and the shield. Since the ball and the cavity are not necessarily concentric, the problem in three-dimensional potential theory for electrostatics is solved by the method of boundary perturbations and specifically in terms of spherical harmonics. The capacitance outputs of the instrument and the electrostatic forces acting on the system are derived as non-linear functions of the ball position, ball charge and the sensor plate potentials. The instrument sensitivity and cross-coupling effects are discussed. The analysis may also be useful for electrostatic gyros and suspensions.

  20. MiR-134-Mbd3 axis regulates the induction of pluripotency.

    PubMed

    Zhang, Lei; Zheng, Yongchao; Sun, Yuanqing; Zhang, Ying; Yan, Jia; Chen, Zhifeng; Jiang, Hong

    2016-06-01

    MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression and play an important role in reprogramming process; however, relatively little is known about the underlying regulatory mechanism of miRNAs on how they epigenetically modulate reprogramming and pluripotency. Here, we report that the expression level of microRNA-134 (miR-134) was low in mouse embryonic stem cells (mESCs) but significantly up-regulated during neural differentiation, while down-regulated during the induction of induced pluripotent stem cells (iPSCs) from neural progenitor cells (NPCs). Inhibition of miR-134 by miR-134 sponge promoted the efficiency of reprogramming which also was highly similar to mESCs. On the contrary, up-regulation of miR-134 repressed iPSCs induction. We also found that inhibition of miR-134 promoted the maturation of pre-iPSCs and increased its pluripotency. We also showed that miR-134 can directly target to the pluripotency related factor Methyl-CpG-binding domain protein 3 (Mdb3) 3' untranslated regions (3' UTR) to down-regulate its expression. And Mbd3 was found to promote the induction of iPSCs and could block the repression of reprogramming caused by overexpression of miR-134. This work revealed the critical function of miR-134-Mbd3 axis on regulating reprogramming and pluripotency of iPSCs derived from the NPCs, and might provide an insight into the miR-134-Mbd3 axis on regulating the iPSCs quality for further clinical treatment. PMID:26929159

  1. Communications spacecraft

    NASA Astrophysics Data System (ADS)

    Fordyce, Samuel W.

    Progress in the designs and performance capabilities of communications satellites is traced from the Echo 1 Al-coated mylar balloon in 1960 to systems planned for the 1990s and beyond. The services allowed with the passive balloon concept were too limited and led to Telstar spacecraft, with 600 voice channels, being placed in elliptical orbits. Geosynchronous communications began in 1963 with the Syncom satellite, which also carried television signals. The evolution of subsequent Intelsat and ANIK satellites is described, as are features of the Marisat, Marecs, and the DBS systems. The near-term capabilities for DBS, advanced communications satellites using TDMA techniques, and mobile communications systems are summarized, along with the NASA ACTS and MSAT-X satellites for exploring the necessary technologies. The roles the Space Station and unmanned GEO platforms will play in future satellite communications are discussed.

  2. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  3. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  4. Xenia Spacecraft Study Addendum: Spacecraft Cost Estimate

    NASA Technical Reports Server (NTRS)

    Hill, Spencer; Hopkins, Randall

    2009-01-01

    This slide presentation reviews the Xenia spacecraft cost estimates as an addendum for the Xenia Spacecraft study. The NASA/Air Force Cost model (NAFCPOM) was used to derive the cost estimates that are expressed in 2009 dollars.

  5. CMOS Compatible 3-Axis Magnetic Field Sensor using Hall Effect Sensing

    NASA Astrophysics Data System (ADS)

    Locke, Joshua R.

    The purpose of this study is to design, fabricate and test a CMOS compatible 3-axis Hall effect sensor capable of detecting the earth's magnetic field, with strength's of ˜50 muT. Preliminary testing of N-well Van Der Pauw structures using strong neodymium magnets showed proof of concept for hall voltage sensing, however, poor geometry of the structures led to a high offset voltage. A 1-axis Hall effect sensor was designed, fabricated and tested with a sensitivity of 1.12x10-3 mV/Gauss using the RIT metal gate PMOS process. Poor geometry and insufficient design produced an offset voltage of 0.1238 volts in the 1-axis design; prevented sensing of the earth's magnetic field. The new design features improved geometry for sensing application, improved sensitivity and use the RIT sub-CMOS process. The completed 2-axis device showed an average sensitivity to large magnetic fields of 0.0258 muV/Gauss at 10 mA supply current.

  6. Design and manufacturing of cranioplasty implants by 3-axis cnc milling.

    PubMed

    Hieu, L C; Bohez, E; Vander Sloten, J; Oris, P; Phien, H N; Vatcharaporn, E; Binh, P H

    2002-01-01

    Although various techniques and materials have been used for making cranioplasty implants, personalized cranioplasty implants are high in cost because of expensive materials and production technology, long design and manufacturing time, and intensive labor use. This research was a part of our research project in ASEAN countries to investigate feasible technical solutions of minimizing the implant cost based on available production technologies in the region. The use of 3-axis CNC (Computer Numerical Control) milling techniques for making molds to fabricate PMMA implants was successfully investigated. With the development of a design support program bridging between Computer Aided Design (CAD) and Medical Image Processing (MIP) system, the time for geometrical modeling of implants and molds was reduced to half a day. The machining time to complete a mold was about 5 to 6 hours; and it took maximal 2 hours to fabricate an implant with self-curing PMMA and 3 and half hours for fabricating an implant with heat-curing PMMA. The cost of implants is acceptable for the ASEAN region. PMID:12368561

  7. Garment-based detection of falls and activities of daily living using 3-axis MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Nyan, M. N.; Tay, Francis E. H.; Manimaran, M.; Seah, K. H. W.

    2006-04-01

    This paper studied the detection of falls and activities of daily living (ADL) with two objectives: (1) minimum number of sensors for a broad range of activities and (2) maximize the comfort of the wearer for long term use. We used a garment to provide long term comfort for the wearer, with a 3-axis MEMS accelerometer on the shoulder position, as a wearable platform. ADL were detected in time-frequency domain and summation of absolute peak values of 3-D acceleration signals was used as feature in fall detection. 6 male and female subjects performed approximately five-hour long experiment. Sensitivity of 94.98% and specificity of 98.83% for altogether 1495 activities were achieved. Our garment-based detection system fulfilled the objective of providing the comfort of the wearer in long term monitoring of falls and ADL with high sensitivity. In fall detection, our device can summon medical assistances via SMS (Short Message Service). This detection system can raise fall alarm (fall SMS) automatically to individuals to get a shortened interval of the arrival of assistance.

  8. Nonlinear spacecraft`s gyromoment attitude control

    SciTech Connect

    Somov, Y.I.

    1994-12-31

    Nonlinear methods of attitude control for spacecraft`s spatial rotation maneuvers through the use of gyrodynes - single gimbal control moment gyroscopes - are developed. We present new results on optimizing and dynamic synthesis of the nonlinear gyromoment attitude control system for a fast-manoeuvring spacecraft with a minimum-excessive scheme of gyrodynes.

  9. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death.

    PubMed

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  10. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death

    PubMed Central

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  11. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  12. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.

  13. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  14. Variable structure controller design for spacecraft nutation damping

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt; Dwyer, Thomas A. W., III

    1987-01-01

    Variable structure systems theory is used to design an automatic controller for active nutation damping in momentum biased stabilized spacecraft. Robust feedback stabilization of roll and yaw angular dynamics is achieved with prescribed qualitative characteristics which are totally independent of the spacecraft defining parameters.

  15. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  16. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  17. A Jupiter Orbiter mother/daughter spacecraft concept

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1975-01-01

    The feasibility of a tandem launch of a mother/daughter spacecraft pair with a single launch vehicle for a 1981 Mariner Jupiter Orbiter mission is described. The mother is a close derivative of the three-axis stabilized Mariner Jupiter Saturn 1977 spacecraft with the addition of a Viking-type propulsion module for orbit capture; it concentrates on the planetology and satellite science objectives. The daughter is a small, simple spin-stabilized spacecraft taking advantage of the mother's transit and delivery capabilities; it obtains in-situ measurements of the surrounding planetary environment. A conceptual design of the daughter spacecraft is presented.

  18. Implicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    This paper presents an implicit algorithm for spacecraft onboard instrument calibration, particularly to onboard gyro calibration. This work is an extension of previous work that was done where an explicit gyro calibration algorithm was applied to the AQUA spacecraft gyros. The algorithm presented in this paper was tested using simulated data and real data that were downloaded from the Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very good results. A comparison between the use of the implicit calibration algorithm used here with the explicit algorithm used for AQUA spacecraft indicates that both provide an excellent estimation of the gyro calibration parameters with similar accuracies.

  19. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  20. Discussion meeting on Gossamer spacecraft (ultralightweight spacecraft)

    NASA Technical Reports Server (NTRS)

    Brereton, R. G. (Editor)

    1980-01-01

    Concepts, technology, and application of ultralightweight structures in space are examined. Gossamer spacecraft represented a generic class of space vehicles or structures characterized by a low mass per unit area (approximately 50g/m2). Gossamer concepts include the solar sail, the space tether, and various two and three dimensional large lightweight structures that were deployed or assembled in space. The Gossamer Spacecraft had a high potential for use as a transportation device (solar sail), as a science instrument (reflecting or occulting antenna), or as a large structural component for an enclosure, manned platform, or other human habitats. Inflatable structures were one possible building element for large ultralightweight structures in space.

  1. Small Spacecraft Technology

    NASA Technical Reports Server (NTRS)

    Shope, R.

    1995-01-01

    Aerospace designers are aggressively pursuing new ideas in advanced technology for smaller spacecraft. NASA's 'faster, better, cheaper' philosophy is the driving force to accomplish higher level scientific exploration more efficiently. More memory and higher performance is packed into computer hardware that takes up a fraction of the space of earlier generation spacecraft. Current technology is described.

  2. Toxicology of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Harris, E. S.

    1971-01-01

    The procedures for determining the toxicity of products outgassed from spacecraft structures are discussed. The test equipment involved in the tests and the criteria for acceptability are described. The use of animals as the final step in determining toxicity of a spacecraft environment is explained.

  3. Docking system for spacecraft

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1988-01-01

    A mechanism is disclosed for the docking of a spacecraft to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a spacecraft and a passive docking structure on the station. The passive structure includes a docking ring mounted on a tunnel structure fixed to the space station. The active structure includes a docking ring carried by an actuator-attenuator devices, each attached at one end to the ring and at its other end in the spacecraft payload bay. The devices respond to command signals for moving the docking ring between a stowed position in the spacecraft to a deployed position suitable for engagement with the docking ring. The devices comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled spacecraft and station into final docked configuration and moving the tunnel structure to a berthed position in the spacecraft. Latches couple the spacecraft and space station upon contact of the docking rings and latches establish a structural tie between the spacecraft when retracted.

  4. Spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Guidance for the assessment and control of spacecraft temperatures is provided with emphasis on unmanned spacecraft in the space environment. The heat balance, elements of thermal design, and thermal control are discussed along with thermal testing, design criteria, and recommended practices.

  5. The electrification of spacecraft

    NASA Technical Reports Server (NTRS)

    Akishin, A. I.; Novikov, L. S.

    1985-01-01

    Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology.

  6. Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,

  7. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; Lemke, Matthew; Wade, Randall; Wheeler, Scott; Baggerman, Clinton

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  8. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  9. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  10. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2008-01-01

    The Laser Interferometer Space Antenna (LISA) mission, a space based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that three spacecraft and their associated operations form one distributed science instrument, unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LiSA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." A detailed discussion will be presented that describes the current spacecraft design and mission architecture needed to meet the LISA science requirements.

  11. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Castellucci, K. E.; Depalo, S. V.; Generie, J. A.; Maghami, P. G.; Peabody, H. L.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  12. Design and Testing of Three-Axis Satellite Attitude Determination and Stabilization Systems That Are Based on Magnetic Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Psiaki, Mark L.; Guelman, Moshe

    2002-11-01

    Three-axis satellite attitude determination and active stabilization systems have been designed and tested using both flight experiments and simulation studies. These are being developed for use on low-Earth-orbiting name- satellites. Such satellites can be used as elements of constellations that implement synthetic aperture radar or that serve as nudes in a communications network. The research has addressed the problems of under-sensing and under-actuation that are present in magnetic-based systems. Magnetometer outputs are insensitive to rotation about the local Earth magnetic field, and magnetic torque coils cannot produce torque slump the field direction. A new attitude representation and a special globally-convergent extended Kalman filter have been used to solve the 3-axis attitude estimation problem. The efficacy of this system has been demonstrated using data from the missions, the Hubble Space Telescope and the Far-Ultraviolet Spectroscopic Explorer. Semi-active global 3-axis stabilization has been demonstrated using a simplified magnetometer output feedback control law in combination with weak passive stabilization of the axes. The passive stabilization can come from a very small momentum wheel or from a new aerodynamic system. The momentum-wheel-based concept has been successfully tested on the TechSat Gurwin II spacecraft.

  13. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    NASA Astrophysics Data System (ADS)

    Du, Z. C.; Lv, C. F.; Hong, M. S.

    2006-10-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'.

  14. Analytical Investigation of Pumped Fluid Loop Radiators for Orion Spacecraft

    NASA Technical Reports Server (NTRS)

    Reavis, Gretchen

    2007-01-01

    This viewgraph presentation reviews the history of pumped fluid loop radiators used in Apollo spacecraft, and the problems and challenges for using them in the Orion Spacecraft. Included in this presentation are the issues of Flow stagnation, flow stability, for single panels and multi-panels.

  15. Spacecraft Docking System

    NASA Technical Reports Server (NTRS)

    Ghofranian, Siamak (Inventor); Chuang, Li-Ping Christopher (Inventor); Motaghedi, Pejmun (Inventor)

    2016-01-01

    A method and apparatus for docking a spacecraft. The apparatus comprises elongate members, movement systems, and force management systems. The elongate members are associated with a docking structure for a spacecraft. The movement systems are configured to move the elongate members axially such that the docking structure for the spacecraft moves. Each of the elongate members is configured to move independently. The force management systems connect the movement systems to the elongate members and are configured to limit a force applied by the each of the elongate members to a desired threshold during movement of the elongate members.

  16. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  17. Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Sudermann, James E.; Schlee, Keith L.

    2008-01-01

    Predicting the effect of fuel slosh on the attitude control system of a spacecraft or launch vehicle is a very important and challenging task. Whether the spacecraft is spinning or moving laterally, the dynamic effect of the fuel slosh helps determine whether the spacecraft will remain on its intended trajectory. Three categories of slosh can be caused by launch vehicle or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These are bulk-fluid motion, subsurface wave motion (currents), and free-surface slosh. Each of these slosh types has a periodic component defined by either a spinning or a lateral motion. For spinning spacecraft, all three types of slosh can greatly affect stability. Bulk-fluid motion and free-surface slosh can affect the lateral-slosh characteristics. For either condition, an unpredicted coupled resonance between the spacecraft and its onboard fuel could threaten a mission. This ongoing research effort seeks to improve the accuracy and efficiency of modeling techniques used to predict these types of fluid motions for lateral motion. Particular efforts focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  18. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  19. Unusual spacecraft materials

    NASA Technical Reports Server (NTRS)

    Post, Jonathan V.

    1990-01-01

    For particularly innovative space exploration missions, unusual requirements are levied on the structural components of the spacecraft. In many cases, the preferred solution is the utilization of unusual materials. This trend is forecast to continue. Several hypothetic examples are discussed.

  20. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  1. Quick spacecraft charging primer

    SciTech Connect

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  2. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  3. Internet Access to Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  4. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  5. NASA spacecraft propulsion activities

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Tyburski, Timothy E.; Sankovic, John M.; Jankovsky, Robert S.; Reed, Brian D.; Schneider, Steven J.; Hamley, John A.; Patterson, Michael J.; Sovey, James S.

    1997-01-01

    The NASA's activities in the development of spacecraft propulsion systems are reviewed, with emphasis on program directions and recent progress made in this domain. The recent trends towards the use of smaller spacecraft and launch vehicles call for new onboard propulsion systems. The NASA's efforts are conducted within the framework of the onboard propulsion program. The research and development work carried out in relation to the different propulsion system technologies are considered: electromagnetic systems; electrostatic systems; electrothermal systems; bipropellant systems; and monopropellant systems.

  6. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  7. Nonlinear Fuzzy Hybrid Control of Spacecraft

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Crassidis, John L.; Markley, F. Landis

    1999-01-01

    This paper describes a new approach for intelligent control of a spacecraft with large angle maneuvers. This new approach, based on fuzzy logic, determines the required torque to achieve a robust, high performance attitude response. This scheme extends the robustness, performance and portability of the existing linear or nonlinear attitude controllers. Formulations are presented for attitude-control but can be extended to other applications. A simulation study, which uses the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft in the presence of disturbances and saturations, demonstrates the merits of the proposed scheme.

  8. A study of structural concepts for ultralightweight spacecraft

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Knapp, K.; Hedgepeth, J. M.

    1984-01-01

    Structural concepts for ultralightweight spacecraft were studied. Concepts for ultralightweight space structures were identified and the validity of heir potential application in advanced spacecraft was assessed. The following topics were investigated: (1) membrane wrinkling under pretensioning; (2) load-carrying capability of pressurized tubes; (3) equilibrium of a precompressed rim; (4) design of an inflated reflector spacecraft; (5) general instability of a rim; and (6) structural analysis of a pressurized isotensoid column. The design approaches for a paraboloidal reflector spacecraft included a spin-stiffened design, both inflated and truss central columns, and to include both deep truss and rim-stiffened geodesic designs. The spinning spacecraft analysis is included, and the two truss designs are covered. The performances of four different approaches to the structural design of a paraboloidal reflector spacecraft are compared. The spinning and inflated configurations result in very low total masses and some concerns about their performance due to unresolved questions about dynamic stability and lifetimes, respectively.

  9. Maneuver analysis for spinning thrusting spacecraft and spinning tethered spacecraft

    NASA Astrophysics Data System (ADS)

    Martin, Kaela M.

    During axial thrusting of a spin-stabilized spacecraft undergoing orbital injections or control maneuvers, misalignments and center-of-mass offset create undesired body-fixed torques. The effects of the body-fixed torques, which in turn cause velocity pointing errors, can be reduced by ramping up (and then ramping down) the thruster. The first topic discussed in this thesis derives closed-form solutions for the angular velocity, Euler angles, inertial velocity, and inertial displacement solutions with nonzero initial conditions. Using the closed-form solutions, the effect of variations in the spin-axis moment of inertia and spin-rate on the spacecraft velocity pointing error are shown. The analytical solutions closely match numerical simulations. The next topic considers various ramp-up profiles (including parabolic, cosine, logarithmic, exponential, and cubic) to heuristically find a suboptimal solution to reduce the velocity pointing error. Some of the considered cosine, logarithmic, exponential, parabolic, and cubic profiles drive the velocity pointing error to nearly zero and hence qualify as effective solutions. The third topic examines a large tethered spacecraft that produces artificial gravity with the propulsion system on one end of the tether. Instead of thrusting through the center of mass, the offset thrust occurs at an angle to the tether which is held in the desired direction by changing the spin rate to compensate for decreasing propellant mass. The dynamics and control laws of the system are derived for constant, time-varying, planar, and non-planar thrust as well as spin-up maneuvers. The final topic discusses how the Bodewadt solution of a self-excited rigid body is unable to accurately predict the motion compared to a numerical integration of the equations of motion.

  10. The New Horizons Spacecraft

    NASA Astrophysics Data System (ADS)

    Fountain, Glen H.; Kusnierkiewicz, David Y.; Hersman, Christopher B.; Herder, Timothy S.; Coughlin, Thomas B.; Gibson, William C.; Clancy, Deborah A.; Deboy, Christopher C.; Hill, T. Adrian; Kinnison, James D.; Mehoke, Douglas S.; Ottman, Geffrey K.; Rogers, Gabe D.; Stern, S. Alan; Stratton, James M.; Vernon, Steven R.; Williams, Stephen P.

    2008-10-01

    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.

  11. Activation of the GP130-STAT3 axis and its potential implications in nonalcoholic fatty liver disease.

    PubMed

    Min, Hae-Ki; Mirshahi, Faridoddin; Verdianelli, Aurora; Pacana, Tommy; Patel, Vaishali; Park, Chun-Geon; Choi, Aejin; Lee, Jeong-Hoon; Park, Chung-Berm; Ren, Shunlin; Sanyal, Arun J

    2015-05-01

    The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis. PMID:25747354

  12. Robust nonlinear attitude control of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, Sahjendra N.

    1987-01-01

    This paper presents an approach to large-angle rotational maneuvers of a spacecraft-beam-tip body configuration based on nonlinear invertibility and linear feedback stabilization. A control law u sub d is derived for the decoupled control of attitude angles, lateral elastic deflections, slopes due to bending and angular deflection due to torsion at the tip of the beam using torquers and force actuators. For the stabilization of the elastic modes, a linear feedback control law u sub s is obtained based on a linearized model augmented with a servocompensator. Simulation results are presented to show that large slewing and elastic mode stabilization can be accomplished.

  13. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  14. Spacecraft Environment Interactions

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Jun, Insoo

    2011-01-01

    As electronic components have grown smaller in size and power and have increased in complexity, their enhanced sensitivity to the space radiation environment and its effects has become a major source of concern for the spacecraft engineer. As a result, the description of the sources of space radiation, the determination of how that radiation propagates through material, and, ultimately, how radiation affects specific circuit components are primary considerations in the design of modern spacecraft. The objective of this paper will be to address the first 2 aspects of the radiation problem. This will be accomplished by first reviewing the natural and man-made space radiation environments. These environments include both the particulate and, where applicable, the electromagnetic (i.e., photon) environment. As the "ambient" environment is typically only relevant to the outer surface of a space vehicle, it will be necessary to treat the propagation of the external environment through the complex surrounding structures to the point inside the spacecraft where knowledge of the internal radiation environment is required. While it will not be possible to treat in detail all aspects of the problem of the radiation environment within a spacecraft, by dividing the problem into these parts-external environment, propagation, and internal environment-a basis for understanding the practical process of protecting a spacecraft from radiation will be established. The consequences of this environment will be discussed by the other presenters at this seminar.

  15. Docking mechanism for spacecraft

    NASA Technical Reports Server (NTRS)

    Lange, Gregory A. (Inventor); Mcmanamen, John P. (Inventor); Schliesing, John A. (Inventor)

    1989-01-01

    A system is presented for docking a space vehicle to a space station where a connecting tunnel for in-flight transfer of personnel is required. Cooperable coupling mechanisms include docking rings on the space vehicle and space station. The space station is provided with a tunnel structure, a retraction mechanism, and a docking ring. The vehicle coupling mechanism is designed to capture the station coupling mechanism, arrest relative spacecraft motions while limiting loads to acceptable levels, and then realign the spacecraft for final docking and tunnel interconnection. The docking ring of the space vehicle coupling mechanism is supported by linear attentuator actuator devices, each of which is controlled by a control system which receives loading information signals and attenuator stroke information signals from each device and supplies output signals for controlling its linear actuation to attenuate impact loading or to realign the spacecraft for final docking and tunnel interconnection. The retraction mechanism is used to draw the spacecraft together after initial contact and coupling. Tunnel trunnions, cooperative with the latches on the space vehicle constitute the primary structural tie between the spacecraft in final docked configuration.

  16. Degradation of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Banks, Bruce; deGroh, Kim; Miller, Sharon

    2004-01-01

    This chapter includes descriptions of specific space environmental threats to exterior spacecraft materials. The scope will be confined to effects on exterior spacecraft surfaces, and will not, therefore, address environmental effects on interior spacecraft systems, such as electronics. Space exposure studies and laboratory simulations of individual and combined space environemntal threats will be summarized. A significant emphasis is placed on effects of Earth orbit environments, because the majority of space missions have been flown in Earth orbits which have provided a significant amount of data on materials effects. Issues associated with interpreting materials degradation results will be discussed, and deficiencies of ground testing will be identified. Recommendations are provided on reducing or preventing space environmental degradation through appropriate materials selection.

  17. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  18. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  19. An LDEF follow-on spacecraft concept

    NASA Astrophysics Data System (ADS)

    Keller, Vernon; Breazeale, Larry; Perkinson, Don; Kinard, William H.

    1995-02-01

    The successful flight, retrieval, and analyses of the Long Duration Exposure Facility (LDEF) experiments demonstrated the value of long duration space exposure for a broad spectrum of science and engineering investigations. The original LDEF was an excellent gravity gradient spacecraft, but because of its 9 m length and 9,700 kg mass it was difficult to manifest on the Shuttle, for either launch or retrieval, in conjunction with other payloads. This paper discusses an LDEF follow-on spacecraft concept whose short stowed length (approximately 3 m) greatly improves Shuttle manifesting opportunities while still providing very large surface area exposure for experiments. Deployable 'wings' on each end of the short, 'cylindrical' main body of this new spacecraft provide the means for gravity gradient stabilization while greatly increasing the spacecraft surface area. The center section of the spacecraft is oriented with the end faces of the twelve sided, 4.2 m diameter 'cylinder' perpendicular to the velocity vector thus providing large areas for experiments in both the ram and anti-ram directions as well as additional exposure area around the periphery of the cylinder. When deployed and properly oriented with the Shuttle's Remote Manipulator System (RMS), both wings of the spacecraft are oriented edge on to the direction of motion and lie in the plane which contains the local gravity vector. The relatively thin wings readily accommodate dual side exposure of glass plate stacks for cosmic ray detection. Flat surfaces mounted normal to and on the periphery of the wings provide additional areas in both the ram and anti-ram directions for cosmic dust, micrometeoroid, and orbital debris collection free of contamination from 'splatter' off secondary surfaces. The baseline concept provides enhancements not available on the original LDEF such as solar array generated electrical power and data telemetry. Status of the efforts to promote support for and ultimately space flight

  20. A Novel Spacecraft Charge Monitor for LEO

    NASA Technical Reports Server (NTRS)

    Goembel, Luke

    2004-01-01

    Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.

  1. Spacecraft Attitude Determination Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    This document is presentation in viewgraph form, which outlines the methods of determining spacecraft attitude. The presentation reviews several parameterizations relating to spacecraft attitude, such as Euler's Theorem, Rodriques parameters, and Euler-Rodriques parameters or Quaternion. Onboard attitude determination is the norm, using either single frame or filtering methods. The presentation reviews several mathematical representations of attitude. The mechanisms for determining attitude on board the Hubble Space Telescope, the Tropical Rainfall and Measuring Mission and the Solar Anomalous and Magnetospheric Particle Explorer are reviewed. Wahba's problem, Procrustes Problem, and some solutions are also summarized.

  2. Revamping Spacecraft Operational Intelligence

    NASA Technical Reports Server (NTRS)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  3. Spacecraft Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Harris, D. W.

    1972-01-01

    The radiation interface in spacecrafts using radioisotope thermoelectric generators is studied. A Monte Carlo analysis of the radiation field that includes scattered radiation effects, produced neutron and gamma photon isoflux contours as functions of distance from the RTG center line. It is shown that the photon flux is significantly depressed in the RTG axial direction because of selfshielding. Total flux values are determined by converting the uncollided flux values into an equivalent RTG surface source and then performing a Monte Carlo analysis for each specific dose point. Energy distributions of the particle spectra completely define the radiation interface for a spacecraft model.

  4. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  5. Analysis of spacecraft data

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Support was provided for the maintenance and modifications of software for the production and detailed analysis of data from the DE-A spacecraft and new software developed for this end. Software for the analysis of the data from the Spacelab Experimental Particle Accelerator (SEPAC) was also developed.

  6. Microbial contamination of spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation.

  7. Multifunctional Tanks for Spacecraft

    NASA Technical Reports Server (NTRS)

    Collins, David H.; Lewis, Joseph C.; MacNeal, Paul D.

    2006-01-01

    A document discusses multifunctional tanks as means to integrate additional structural and functional efficiencies into designs of spacecraft. Whereas spacecraft tanks are traditionally designed primarily to store fluids and only secondarily to provide other benefits, multifunctional tanks are designed to simultaneously provide multiple primary benefits. In addition to one or more chamber(s) for storage of fluids, a multifunctional tank could provide any or all of the following: a) Passageways for transferring the fluids; b) Part or all of the primary structure of a spacecraft; c) All or part of an enclosure; d) Mechanical interfaces to components, subsystems, and/or systems; e) Paths and surfaces for transferring heat; f)Shielding against space radiation; j) Shielding against electromagnetic interference; h) Electrically conductive paths and surfaces; and i) Shades and baffles to protect against sunlight and/or other undesired light. Many different multifunctional-tank designs are conceivable. The design of a particular tank can be tailored to the requirements for the spacecraft in which the tank is to be installed. For example, the walls of the tank can be flat or curved or have more complicated shapes, and the tank can include an internal structure for strengthening the tank and/or other uses.

  8. Unmanned spacecraft for research

    NASA Technical Reports Server (NTRS)

    Graves, C. D.

    1972-01-01

    The applications of unmanned spacecraft for research purposes are discussed. Specific applications of the Communication and Navigation satellites and the Earth Observations satellites are described. Diagrams of communications on world-wide basis using synchronous satellites are developed. Photographs of earth resources and geology obtained from space vehicles are included.

  9. Microbial contamination of spacecraft.

    PubMed

    Pierson, D L

    2001-06-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation. PMID:11865864

  10. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  11. Wild2 approach maneuver strategy used for Stardust spacecraft (extended abstract)

    NASA Technical Reports Server (NTRS)

    Bhar, Ramachandra S.; Williams, Kenneth E.; Helfrich, Clifford E.; Kennedy, Brian M.; Carranza, Eric

    2004-01-01

    Stardust, NASA's first dedicated sample return mission to a comet, successfully flew through the comet dust around Wold2 on January 2, 2004. The spacecraft flew within 236 km of the comet, meeting the mission requirement of 250+/- 50 km on flyby distance. Stardust collected dust particles and took several images of the comet while flying close to Wild2. The spacecraft will return to earth with the comet samples on January 15, 2006. To accomplish the above objective, a large Deep Space Maneuver (DSM#) was implemented during June 17 and 18, 2003 and a series of Trajectory Correction Maneuvers (TCMs) were also implemented during the 30 days prior to encounter. Both maneuver design and executions were influenced by number of factors including the small body ephemeris uncertainty, predictability of small forces arising from 3-axis attitude limit cycling and spacecraft slews. Maneuver design processes, including contingency plans, and maneuver performance characteristics, are discussed in this paper.

  12. Thermal balance testing of the MSAT spacecraft

    NASA Technical Reports Server (NTRS)

    Samson, Serge; Choueiry, Elie; Pang, Kenneth

    1994-01-01

    This paper reports on the recently completed thermal balance/thermal vacuum testing of an MSAT satellite, the first satellite to provide mobile communications service for all of continental North America. MSAT is a two-spacecraft program, using a three-axis-stabilized HUGHES HS-601 series bus as the vehicle for the Canadian-designed payload. The thermal tests performed at the Canadian Space Agency's David Florida Laboratory in Ottawa, Canada, lasted approximately 32 days.

  13. Spacecraft Images Comet Target's Jets

    NASA Video Gallery

    The Deep Impact spacecraft's High- and Medium-Resolution Imagers (HRI and MRI) have captured multiple jets turning on and off while the spacecraft is 8 million kilometers (5 million miles) away fro...

  14. NASA Now: EPOXI Flyby Spacecraft

    NASA Video Gallery

    Close Encounters of the Comet Kind: In this installment of NASA Now, you’ll meet spacecraft pilot and engineer Steven Wissler, who talks about the challenges of flying a spacecraft remotely from ...

  15. Method for deploying multiple spacecraft

    NASA Technical Reports Server (NTRS)

    Sharer, Peter J. (Inventor)

    2007-01-01

    A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.

  16. Robust multivariable controller design for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Armstrong, Ernest S.

    1986-01-01

    Large, flexible spacecraft are typically characterized by a large number of significant elastic modes with very small inherent damping, low, closely spaced natural frequencies, and the lack of accurate knowledge of the structural parameters. Summarized here is some recent research on the design of robust controllers for such spacecraft, which will maintain stability, and possible performance, despite these problems. Two types of controllers are considered, the first being the linear-quadratic-Gaussian-(LQG)-type. The second type utilizes output feedback using collocated sensors and actuators. The problem of designing robust LQG-type controllers using the frequency domain loop transfer recovery (LTR) method is considered, and the method is applied to a large antenna model. Analytical results regarding the regions of stability for LQG-type controllers in the presence of actuator nonlinearities are also presented. The results obtained for the large antenna indicate that the LQG/LTR method is a promising approach for control system design for flexible spacecraft. For the second type of controllers (collocated controllers), it is proved that the stability is maintained in the presence of certain commonly encountered nonlinearities and first-order actuator dynamics. These results indicate that collocated controllers are good candidates for robust control in situations where model errors are large.

  17. Evolution of spacecraft attitude control concepts before 1952

    NASA Technical Reports Server (NTRS)

    Roberson, R. E.

    1977-01-01

    The control of rotational motion of a spacecraft during its free flight regime is traced from pioneer space flight to the year 1952. Essentials of attitude control systems are reviewed and spin stabilization is examined. Other topics include passive stabilization and active closed loop control.

  18. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  19. Spacecraft nonlinear multilooped electric motor actuator simulation

    NASA Astrophysics Data System (ADS)

    Mac Lean, David N.

    1989-01-01

    The servomechanism used to raise satellites from the shuttle bay was simulated. The model will be used to study runaway fault scenarios and was used to evaluate system changes for their effects on stability. These analyses were carried out on the electronic circuit analysis computer program MSPICE. Electronic circuits, electromechanical machinery, and mechanical spacecraft loads were simulated by use of analog circuits. The nonlinearities involved included saturation, piece-wise linear transfer gains, backlash, and Coulomb friction. The AC analysis was accomplished by using a series of piece-wise linear models. The system's stability was assessed applying Nyquist's criterion.

  20. Habitability design for spacecraft

    NASA Technical Reports Server (NTRS)

    Franklin, G. C.

    1978-01-01

    Habitability is understood to mean those spacecraft design elements that involve a degree of comfort, quality or necessities to support man in space. These elements are environment, architecture, mobility, clothing, housekeeping, food and drink, personal hygiene, off-duty activities, each of which plays a substantial part in the success of a mission. Habitability design for past space flights is discussed relative to the Mercury, Gemini, Apollo, and Skylab spacecraft, with special emphasis on an examination of the Shuttle Orbiter cabin design from a habitability standpoint. Future projects must consider the duration and mission objectives to meet their habitability requirements. Larger ward rooms, improved sleeping quarters and more complete hygiene facilities must be provided for future prolonged space flights

  1. LEO Spacecraft Charging Guidelines

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, D. C.

    2002-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, has commissioned and funded a design guidelines document intended to capture the current state of understanding. We present here an overview of this document, which is now nearing completion.

  2. Flexible spacecraft simulator

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Verification of control algorithms for flexible spacecraft can be done only through simulation and test; these are necessary to understand control/structure interaction (C/SI) sufficiently to design robust controllers for future spacecraft. The objective persued is to develop a low-cost facility which simulates the fundamental problem of C/SI; and to provide accessibility for designs so that experience can be gained in applying various multivariable control design methods to an actual structure. A test facility is being constructed with test elements that provide 3 rigid body and 6 flexible modes, all in the horizontal plane, with frequencies below 2.5 Hz. The control force actuator are on/off air jets with sensing by optical displacement sensors. Loop closure is provided by a digital computer with control algorithms designed using the IAC and MATRIX-X.

  3. Radiation Environment Inside Spacecraft

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick

    2015-01-01

    Dr. Patrick O'Neill, NASA Johnson Space Center, will present a detailed description of the radiation environment inside spacecraft. The free space (outside) solar and galactic cosmic ray and trapped Van Allen belt proton spectra are significantly modified as these ions propagate through various thicknesses of spacecraft structure and shielding material. In addition to energy loss, secondary ions are created as the ions interact with the structure materials. Nuclear interaction codes (FLUKA, GEANT4, HZTRAN, MCNPX, CEM03, and PHITS) transport free space spectra through different thicknesses of various materials. These "inside" energy spectra are then converted to Linear Energy Transfer (LET) spectra and dose rate - that's what's needed by electronics systems designers. Model predictions are compared to radiation measurements made by instruments such as the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) used inside the Space Station, Orion, and Space Shuttle.

  4. Spacecraft drag modelling

    NASA Astrophysics Data System (ADS)

    Mostaza Prieto, David; Graziano, Benjamin P.; Roberts, Peter C. E.

    2014-01-01

    This paper reviews currently available methods to calculate drag coefficients of spacecraft traveling in low Earth orbits (LEO). Aerodynamic analysis of satellites is necessary to predict the drag force perturbation to their orbital trajectory, which for LEO orbits is the second in magnitude after the gravitational disturbance due to the Earth's oblateness. Historically, accurate determination of the spacecraft drag coefficient (CD) was rarely required. This fact was justified by the low fidelity of upper atmospheric models together with the lack of experimental validation of the theory. Therefore, the calculation effort was a priori not justified. However, advances on the field, such as new atmospheric models of improved precision, have allowed for a better characterization of the drag force. They have also addressed the importance of using physically consistent drag coefficients when performing aerodynamic calculations to improve analysis and validate theories. We review the most common approaches to predict these coefficients.

  5. Spacecraft transmitter reliability

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A workshop on spacecraft transmitter reliability was held at the NASA Lewis Research Center on September 25 and 26, 1979, to discuss present knowledge and to plan future research areas. Since formal papers were not submitted, this synopsis was derived from audio tapes of the workshop. The following subjects were covered: users' experience with space transmitters; cathodes; power supplies and interfaces; and specifications and quality assurance. A panel discussion ended the workshop.

  6. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  7. Very Small Interstellar Spacecraft

    NASA Astrophysics Data System (ADS)

    Peck, Mason A.

    2007-02-01

    This paper considers lower limits of length scale in spacecraft: interstellar vehicles consisting of little more material than found in a typical integrated-circuit chip. Some fundamental scaling principles are introduced to show how the dynamics of the very small can be used to realize interstellar travel with minimal advancements in technology. Our recent study for the NASA Institute for Advanced Concepts provides an example: the use of the Lorentz force that acts on electrically charged spacecraft traveling through planetary and stellar magnetospheres. Schaffer and Burns, among others, have used Cassini and Voyager imagery to show that this interaction is responsible for some of the resonances in the orbital dynamics of dust in Jupiter's and Saturn's rings. The Lorentz force turns out to vary in inverse proportion to the square of this characteristic length scale, making it a more effective means of propelling tiny spacecraft than solar sailing. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. We might envision a large number of such satellites with intermittent, bursty communications set up as a one-dimensional network to relay signals across great distances using only the power likely from such small spacecraft. Conveying imagery in this fashion may require a long time because of limited power, but the prospect of imaging another star system close-up ought to be worth the wait.

  8. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  9. Postflight evaluation of the solar maximum spacecraft magnetometers

    NASA Technical Reports Server (NTRS)

    Dunham, W. D.

    1985-01-01

    The Solar Maximum Mission spacecraft was launched February 14, 1980 from Cape Kennedy. Attached to one side of the spacecraft was the Modular Attitude Control System (MACS). Two Schonstedt magnetometers were located within the MACS module. Although primarily used as a backup attitude determination system during the Solar Maximum Repair Mission, the magnetometers were instrumental in stabilizing the spacecraft. In October of 1984 the Solar Maximum magnetometers were returned to Schonstedt Instrument Company for postflight analysis, where they were subjected to the same electrical performance tests performed prior to use. In both instances the magnetometer performance was exceptional. Postflight test data nearly duplicated preflight test data.

  10. Solar array/spacecraft biasing

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1981-01-01

    Biasing techniques and their application to the control of spacecraft potential is discussed. Normally when a spacecraft is operated with ion thrusters, the spacecraft will be 10-20 volts negative of the surrounding plasma. This will affect scientific measurements and will allow ions from the charge-exchange plasma to bombard the spacecraft surfaces with a few tens of volts of energy. This condition may not be tolerable. A proper bias system is described that can bring the spacecraft to or near the potential of the surrounding plasma.

  11. Upsets related to spacecraft charging

    SciTech Connect

    Frederickson, A.R.

    1996-04-01

    The charging of spacecraft components by high energy radiation can result in spontaneous pulsed discharges. The pulses can interrupt normal operations of spacecraft electronics. The 20-year history of ground studies and spacecraft studies of this phenomenon are reviewed. The data from space are not sufficient to unambiguously point to a few specific solutions. The ground based data continue to find more problem areas the longer one looks. As spacecraft become more complex and carry less radiation shielding, the charging and discharging of insulators is becoming a more critical problem area. Ground experiments indicate that solutions for spacecraft are multiple and diverse, and many technical details are reviewed or introduced here.

  12. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  13. Spacecraft Solar Sails Containing Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2005-01-01

    A report discusses a proposal to use large, lightweight solar sails embedded with electrodynamic tethers (essentially, networks of wires) to (1) propel robotic spacecraft to distant planets, then (2) exploit the planetary magnetic fields to capture the spacecraft into orbits around the planets. The purpose of the proposal is, of course, to make it possible to undertake long interplanetary missions without incurring the large cost and weight penalties of conventional rocket-type propulsion systems. Through transfer of momentum from reflected solar photons, a sail would generate thrust outward from the Sun. Upon arrival in the vicinity of a planet, the electrodynamic tethers would be put to use: Motion of the spacecraft across the planetary magnetic field would induce electric currents in the tether wires, giving rise to an electromagnetic drag force that would be exploited to brake the spacecraft for capture into orbit. The sail with embedded tethers would be made to spin to provide stability during capture. Depending upon the requirements of a particular application, it could be necessary to extend the tether to a diameter greater than that of the sail.

  14. Handling Qualities Implications for Crewed Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Arthur, J. J.

    2012-01-01

    Abstract Handling qualities embody those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role. These same qualities are as critical, if not more so, in the operation of spacecraft. A research, development, test, and evaluation process was put into effect to identify, understand, and interpret the engineering and human factors principles which govern the pilot-vehicle dynamic system as they pertain to space exploration missions and tasks. Toward this objective, piloted simulations were conducted at the NASA Langley Research Center and Ames Research Center for earth-orbit proximity operations and docking and lunar landing. These works provide broad guidelines for the design of spacecraft to exhibit excellent handling characteristics. In particular, this work demonstrates how handling qualities include much more than just stability and control characteristics of a spacecraft or aircraft. Handling qualities are affected by all aspects of the pilot-vehicle dynamic system, including the motion, visual and aural cues of the vehicle response as the pilot performs the required operation or task. A holistic approach to spacecraft design, including the use of manual control, automatic control, and pilot intervention/supervision is described. The handling qualities implications of design decisions are demonstrated using these pilot-in-the-loop evaluations of docking operations and lunar landings.

  15. Proceedings of the Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Pike, C. P. (Editor); Lovell, R. R. (Editor)

    1977-01-01

    Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.

  16. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  17. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  18. Interactions between SAS-C spacecraft nutations and spin control system

    NASA Technical Reports Server (NTRS)

    Tossman, B. E.; Thayer, D. L.

    1974-01-01

    The SAS-C spacecraft is stabilized by a momentum biased reaction wheel and passive nutation damper. A closed-loop low-speed spacecraft spin rate control system is included which uses a single-axis gyro and a variable speed range on the reaction wheel. Dynamic instability can result from interactions among the gyro, damper, and spacecraft dynamic unbalance. This instability may be aggravated by gyro angular misalignment, gyro error signals, and spacecraft nutations. Analytic eigenvector, and digital computer analyses of the coupled systems are presented. Mechanisms for instability are described as well as the effects that gyro error signal, tilt, and spacecraft dynamic unbalance produce on control system performance.

  19. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  20. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  1. Xenia Spacecraft Study

    NASA Technical Reports Server (NTRS)

    Hopkins, Randy

    2009-01-01

    This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.

  2. Gimballing Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim; Bossard, John

    2010-01-01

    A gimballing spacecraft reaction-control-system thruster was developed that consists of a small hydrogen/oxygen-burning rocket engine integrated with a Canfield joint. (Named after its inventor, a Canfield joint is a special gimbal mount that is strong and stable yet allows a wide range of motion.) One especially notable aspect of the design of this thruster is integration, into both the stationary legs and the moving arms of the Canfield joint, of the passages through which the hydrogen and oxygen flow to the engine. The thruster was assembled and subjected to tests in which the engine was successfully fired both with and without motion in the Canfield joint.

  3. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  4. Furlable spacecraft antenna development

    NASA Technical Reports Server (NTRS)

    Oliver, R. E.; Wilson, A. H.

    1972-01-01

    The development of large furlable spacecraft antennas using conical main reflectors is described. Two basic antenna configurations which utilize conical main reflectors have been conceived and are under development. In the conical-Gregorian configuration each ray experiences two reflections in traveling from the feed center to the aperture plane. In the Quadreflex (four reflection) configuration, each ray experiences four reflections, one at each of two subreflector surfaces and two at the main conical reflector surface. The RF gain measurements obtained from 6-ft and 30-in. models of the conical-Gregorian and Quadreflex concepts respectively were sufficiently encouraging to warrant further development of the concepts.

  5. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  6. Cluster Inter-Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    2008-01-01

    A document describes a radio communication system being developed for exchanging data and sharing data-processing capabilities among spacecraft flying in formation. The system would establish a high-speed, low-latency, deterministic loop communication path connecting all the spacecraft in a cluster. The system would be a wireless version of a ring bus that complies with the Institute of Electrical and Electronics Engineers (IEEE) standard 1393 (which pertains to a spaceborne fiber-optic data bus enhancement to the IEEE standard developed at NASA's Jet Propulsion Laboratory). Every spacecraft in the cluster would be equipped with a ring-bus radio transceiver. The identity of a spacecraft would be established upon connection into the ring bus, and the spacecraft could be at any location in the ring communication sequence. In the event of failure of a spacecraft, the ring bus would reconfigure itself, bypassing a failed spacecraft. Similarly, the ring bus would reconfigure itself to accommodate a spacecraft newly added to the cluster or newly enabled or re-enabled. Thus, the ring bus would be scalable and robust. Reliability could be increased by launching, into the cluster, spare spacecraft to be activated in the event of failure of other spacecraft.

  7. Nonlinear attitude control of flexible spacecraft under disturbance torque

    NASA Technical Reports Server (NTRS)

    Singh, Sahjendra N.

    1986-01-01

    A control law for large-angle single-axis rotational maneuvers of a spacecraft-beam-tip body (an antenna or a reflector) configuration is presented. It is assumed that an unknown but bounded disturbance torque is acting on the spacecraft. A model reference adaptive torque control law is derived for the slewing of the space vehicle. This controller includes a dynamic system in the feedback path and requires only attitude angle and rate of the space vehicle for feedback. For damping out the elastic motion excited by the slewing maneuver, a stabilizer is designed assuming that a torquer and a force actuator are available at the tip body. The stabilizer uses only the flexible modes for the synthesis of the control law. Simulation results are presented to show that fast, large-angle rotational maneuvers can be performed using the adaptive controller and the stabilizer in spite of the presence of continuously acting unknown torque on the spacecraft.

  8. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  9. Spacecraft potential control on ISEE-1

    NASA Technical Reports Server (NTRS)

    Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.

    1979-01-01

    Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.

  10. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  11. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  12. Spacecraft Compartment Venting

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1998-01-01

    At various time concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  13. NASA's spacecraft data system

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Flanegan, Mark

    1993-01-01

    The NASA Small Explorer Data System (SEDS), a space flight data system developed to support the Small Explorer (SMEX) project, is addressed. The system was flown on the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX) SMEX mission, and with reconfiguration for different requirements will fly on the X-ray Timing Explorer (XTE) and the Tropical Rainfall Measuring Mission (TRMM). SEDS is also foreseen for the Hubble repair mission. Its name was changed to Spacecraft Data System (SDS) in view of expansions. Objectives, SDS hardware, and software are described. Each SDS box contains two computers, data storage memory, uplink (command) reception circuitry, downlink (telemetry) encoding circuitry, Instrument Telemetry Controller (ITC), and spacecraft timing circuitry. The SDS communicates with other subsystems over the MIL-STD-1773 data bus. The SDS software uses a real time Operating System (OS) and the C language. The OS layer, communications and scheduling layer, application task layer, and diagnostic software, are described. Decisions on the use of advanced technologies, such as ASIC's (Application Specific Integrated Circuits) and fiber optics, led to technical improvements, such as lower power and weight, without increasing the risk associated with the data system. The result was a successful SAMPEX development, integration and test, and mission using SEDS, and the upgrading of that system to SDS for TRMM and XTE.

  14. Graphical Planning Of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Jeletic, J. F.; Ruley, L. T.

    1991-01-01

    Mission Planning Graphical Tool (MPGT) computer program provides analysts with graphical representations of spacecraft and environmental data used in planning missions. Designed to be generic software tool configured to analyze any specified Earth-orbiting spacecraft mission. Data presented as series of overlays on top of two-dimensional or three-dimensional projection of Earth. Includes spacecraft-orbit tracks, ground-station-antenna masks, solar and lunar ephemerides, and coverage by Tracking Data and Relay Satellite System (TDRSS). From graphical representations, analyst determines such spacecraft-related constraints as communication coverage, infringement upon zones of interference, availability of sunlight, and visibility of targets to instruments.

  15. Spacecraft telecommunications system mass estimates

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Sakamoto, L. L.

    1988-01-01

    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  16. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    NASA Technical Reports Server (NTRS)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  17. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  18. Spacecraft Attitude Representations

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1999-01-01

    The direction cosine matrix or attitude matrix is the most fundamental representation of the attitude, but it is very inefficient: It has six redundant parameters, it is difficult to enforce the six (orthogonality) constraints. the four-component quaternion representation is very convenient: it has only one redundant parameter, it is easy to enforce the normalization constraint, the attitude matrix is a homogeneous quadratic function of q, quaternion kinematics are bilinear in q and m. Euler angles are extensively used: they often have a physical interpretation, they provide a natural description of some spacecraft motions (COBE, MAP), but kinematics and attitude matrix involve trigonometric functions, "gimbal lock" for certain values of the angles. Other minimum (three-parameter) representations: Gibbs vector is infinite for 180 deg rotations, but useful for analysis, Modified Rodrigues Parameters are nonsingular, no trig functions, Rotation vector phi is nonsingular, but requires trig functions.

  19. The ISO Spacecraft

    NASA Astrophysics Data System (ADS)

    Ximenez de Ferrin, S.

    1995-11-01

    ESA's Infrared Space Observatory (ISO) consists of two modules: the Payload module, which includes the telescope and the scientific instruments, and the Service Module, which houses the instruments electronics, the hydrazine propellant tank and all other classical spacecraft subsystems. To ensure that the telescope is kept near absolute zero and thus is the least disturbed by the effects of the infrared emissions from other elements of the system, the telescope is enclosed in a helium-cooled cryostat. The cryostat in turn is shaded by a Sun-shield to protect it from the heat of the direct Sun. The shield has a covering of solar cells that provide the electrical power needed for the mission.

  20. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  1. Microbiological Contamination of Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Bruce, R. J.; Groves, T. O.; Novikova, N. D.; Viktorov, A. N.

    2000-01-01

    The International Space Station (ISS) Phase1 Program resulted in seven US astronauts residing aboard the Russian Space Station Mir between March 1995 and May 1998. Collaboration between U.S. and Russian scientists consisted of collection and analyses of samples from the crewmembers and the Mir and Shuttle environments before, during, and after missions that lasted from 75 to 209 days in duration. The effects of long-duration space flight on the microbial characteristics of closed life support systems and the interactions of microbes with the spacecraft environment and crewmembers were investigated. Air samples were collected using a Russian or U.S.-supplied sampler (SAS, RCS, or Burkard,) while surface samples were collected using contact slides (Hycon) or swabs. Mir recycled condensate and stored potable water sources were analyzed using the U.S.-supplied Water Experiment Kit. In-flight analysis consisted of enumeration of levels of bacteria and fungi. Amounts of microorganisms seen in the air and on surfaces were mostly within acceptability lin1its; observed temporal fluctuations in levels of microbes probably reflect changes in environmental conditions (e.g., humidity). All Mir galley hot water samples were within the standards set for Mir and the ISS. Microbial isolates were returned to Earth for identification of bacterial and fungal isolates. Crew samples (nose, throat, skin, urine, and feces) were analyzed using methods approved for the medical evaluations of Shuttle flight crews. No significant changes in crew microbiota were found during space flight or upon return relative to preflight results. Dissemination of microbes between the crew and environment was demonstrated by D A fingerprinting. Some biodegradation of spacecraft materials was observed. Accumulation of condensate allowed for the recovery of a wide range of bacteria and fungi as well as some protozoa and dust mites.

  2. Interface between an optical communications system and the host spacecraft

    NASA Astrophysics Data System (ADS)

    Barry, J. D.

    1988-06-01

    The current state of development of optical communications systems for intersatellite data transfer has reached an advanced level, with on-orbit operations planned for the early 1990s. The technology and engineering aspects of the development of the optical system have been evaluated in some detail and are widely known, but the interfaces between the optical system and the host spacecraft are not as well understood. Many aspects of the optical interfaces have been identified, are currently under investigation and are discussed here. These include the interface support needed from the host spacecraft, such as thermal, electrical, mechanical, optical, radiation protection and contamination control; spacecraft attitude and vibrational stability; spacecraft level interface testing, such as EMI/EMC, vibration and thermal vacuum tests; and lifetime and reliability testing.

  3. Attitude ground support system for the solar maximum mission spacecraft

    NASA Technical Reports Server (NTRS)

    Nair, G.

    1980-01-01

    The SMM attitude ground support system (AGSS) supports the acquisition of spacecraft roll attitude reference, performs the in-flight calibration of the attitude sensor complement, supports onboard control autonomy via onboard computer data base updates, and monitors onboard computer (OBC) performance. Initial roll attitude acquisition is accomplished by obtaining a coarse 3 axis attitude estimate from magnetometer and Sun sensor data and subsequently refining it by processing data from the fixed head star trackers. In-flight calibration of the attitude sensor complement is achieved by processing data from a series of slew maneuvers designed to maximize the observability and accuracy of the appropriate alignments and biases. To ensure autonomy of spacecraft operation, the AGSS selects guide stars and computes sensor occultation information for uplink to the OBC. The onboard attitude control performance is monitored on the ground through periodic attitude determination and processing of OBC data in downlink telemetry. In general, the control performance has met mission requirements. However, software and hardware problems have resulted in sporadic attitude reference losses.

  4. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  5. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  6. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    NASA Technical Reports Server (NTRS)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  7. Dynamics of spacecraft with deploying flexible appendages

    NASA Technical Reports Server (NTRS)

    Downer, Janice D.; Park, K. C.

    1992-01-01

    A computational formulation for the dynamic analysis of spacecraft with deploying appendages is presented. The appendage model is based on a geometrically nonlinear beam formulation which accurately accounts for large rotational and large deformation motions. A moving finite element reference grid is incorporated within the nonlinear beam formulation to model the deployment motion. Hamilton's Law is used to formulate the general equations of motion, and a transient integration solution procedure is derived from a space-time finite element discretization of the Hamiltonian variational statement. Computational results of the methodology are presented for a classical gravity gradient stabilized satellite configuration.

  8. Solving a Spacecraft Design Problem

    NASA Technical Reports Server (NTRS)

    Fisher, D. K.

    1998-01-01

    We have probably all been amazed at the ingenuity of spacecraft engineers when we see some of the solutions they invent for such problems as landing a roving vehicle on Mars-as engineers at the Jet Propulsion Laboratory did for NASA's Mars Pathfinder project-without using retro-rockets or even putting a spacecraft in orbit first.

  9. The Galeleo spacecraft magnetometer boom

    NASA Technical Reports Server (NTRS)

    Packard, D. T.; Benton, M. D.

    1985-01-01

    The Galileo spacecraft utilizes a deployable lattice boom to position three science instruments at remote distances from the spacecraft body. An improved structure and mechanism to precisely control deployment of the boom, and the unique deployment of an outer protective cover are described.

  10. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  11. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  12. Effect of the mass center shift for force-free flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Juang, J.-N.

    1975-01-01

    For a spinning flexible spacecraft the mass center generally shifts relative to the nominal undeformed position. It is thought that this shift of center complicates spacecraft stability analysis. It is proved, on the basis of results achieved by Meirovitch and Calico (1972), that for the general class of force-free single-spin flexible spacecraft it is possible to ignore this shift of center without affecting the stability criteria in any significant way. A new theorem on inequalities for quadratic forms is proved to demonstrate the validity of the stability analysis.

  13. A new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory of circle and non-circle

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Du, Zhengchun; Yang, Jiangguo; Hong, Maisheng

    2011-12-01

    Geometric motion error measurement has been considered as an important task for accuracy enhancement and quality assurance of NC machine tools and CMMs. In consideration of the disadvantages of traditional measuring methods,a new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory including circle and non-circle(straight line and/or polygonal line) is proposed. The principles and techniques of the new measuring method are discussed in detail. 8 feasible measuring strategies based on different measuring groupings are summarized and optimized. The experiment of the most preferable strategy is carried out on the 3-axis CNC vertical machining center Cincinnati 750 Arrow by using cross grid encoder. The whole measuring time of 21 error components of the new method is cut down to 1-2 h because of easy installation, adjustment, operation and the characteristics of non-contact measurement. Result shows that the new method is suitable for `on machine" measurement and has good prospects of wide application.

  14. GLAS Spacecraft Pointing Study

    NASA Technical Reports Server (NTRS)

    Born, George H.; Gold, Kenn; Ondrey, Michael; Kubitschek, Dan; Axelrad, Penina; Komjathy, Attila

    1998-01-01

    Science requirements for the GLAS mission demand that the laser altimeter be pointed to within 50 m of the location of the previous repeat ground track. The satellite will be flown in a repeat orbit of 182 days. Operationally, the required pointing information will be determined on the ground using the nominal ground track, to which pointing is desired, and the current propagated orbit of the satellite as inputs to the roll computation algorithm developed by CCAR. The roll profile will be used to generate a set of fit coefficients which can be uploaded on a daily basis and used by the on-board attitude control system. In addition, an algorithm has been developed for computation of the associated command quaternions which will be necessary when pointing at targets of opportunity. It may be desirable in the future to perform the roll calculation in an autonomous real-time mode on-board the spacecraft. GPS can provide near real-time tracking of the satellite, and the nominal ground track can be stored in the on-board computer. It will be necessary to choose the spacing of this nominal ground track to meet storage requirements in the on-board environment. Several methods for generating the roll profile from a sparse reference ground track are presented.

  15. Hydrazine monitoring in spacecraft

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Beck, S. W.; Limero, T. F.; James, J. T.

    1992-01-01

    Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented.

  16. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  17. Spectra and spacecraft

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  18. Analyzing Spacecraft Telecommunication Systems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  19. Docking system for spacecraft

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (Inventor)

    1990-01-01

    A mechanism for the docking of a space vehicle to a space station where a connection for transfer of personnel and equipment is desired. The invention comprises an active docking structure on a space vehicle 10 and a passive docking structure on a station 11. The passive structure includes a docking ring 50 mounted on a tunnel structure 35 fixed to the space station. The active structure including a docking ring 18 carried by actuator-attenuator devices 20, each attached at one end to the ring 18 and at its other end in the vehicle's payload bay 12. The devices 20 respond to command signals for moving the docking ring 18 between a stowed position in the space vehicle to a deployed position suitable for engagement with the docking ring 50. The devices 20 comprise means responsive to signals of sensed loadings to absorb impact energy and retraction means for drawing the coupled space vehicle and station into final docked configuration and moving the tunnel structure to a berthed position in the space vehicle 10. Latches 60 couple the space vehicle and space station upon contact of docking rings 18 and 50 and latches 41-48 establish a structural tie between the spacecraft when retracted.

  20. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  1. Cluster: A fleet of four spacecraft to study plasma structures in three dimensions

    NASA Technical Reports Server (NTRS)

    Schmidt, R.; Goldstein, M. L.

    1988-01-01

    The four Cluster spacecraft are spin stabilized spacecraft which are designed and built under stringent requirements as far as electromagnetic cleanliness is concerned. Conductive surfaces and low electromagnetic background noise are mandatory for accurate electric field and cold plasma measurements. The mission is implemented in collaboration between ESA and NASA. A Russian mission will be closely coordinated with Cluster.

  2. Safety aspects of spacecraft commanding

    NASA Technical Reports Server (NTRS)

    Peccia, N.

    1994-01-01

    The commanding of spacecraft is a potentially hazardous activity for the safety of the spacecraft. Present day control systems contain safety features in their commanding subsystem and in addition, strict procedures are also followed by operations staff. However, problems have occurred on a number of missions as a result of erroneous commanding leading in some cases to spacecraft contingencies and even to near loss of the spacecraft. The problems of checking commands in advance are increased by the tendency in modern spacecraft to use blocked/time-tagged commands and the increased usage of on-board computers, for which commands changing on-board software tables can radically change spacecraft or subsystem behavior. This paper reports on an on-going study. The study aims to improve the approach to safety of spacecraft commanding. It will show how ensuring 'safe' commanding can be carried out more efficiently, and with greater reliability, with the help of knowledge based systems and/or fast simulators. The whole concept will be developed based on the Object-Oriented approach.

  3. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma

    PubMed Central

    Zheng, Qifan; Han, Lei; Dong, Yucui; Tian, Jing; Huang, Wei; Liu, Zhaoyu; Jia, Xiuzhi; Jiang, Tao; Zhang, Jianning; Li, Xia; Kang, Chunsheng; Ren, Huan

    2014-01-01

    Background As a commonly mutated form of the epidermal growth factor receptor, EGFRvIII strongly promotes glioblastoma (GBM) tumor invasion and progression, but the mechanisms underlying this promotion are not fully understood. Methods Through gene manipulation, we established EGFRvIII-, wild-type EGFR-, and vector-expressing GBM cells. We used cDNA microarrays, bioinformatics analysis, target-blocking migration and invasion assays, Western blotting, and an orthotopic U87MG GBM model to examine the phenotypic shifts and treatment effects of EGFRvIII expression in vitro and in vivo. Confocal imaging, co-immunoprecipitation, and siRNA assays detected the focal adhesion-associated complex and their relationships to the EGFRvIII/JAK2/STAT3 axis in GBM cells. Results The activation of JAK2/STAT3 signaling is vital for promoting migration and invasion in EGFRvIII-GBM cells. AG490 or WP1066, the JAK2/STAT3 inhibitors, specifically destroyed EGFRvIII/JAK2/STAT3-related focal adhesions and depleted the activation of EGFR/Akt/FAK and JAK2/STAT3 signaling, thereby abolishing the ability of EGFRvIII-expressing GBM cells to migrate and invade. Furthermore, the RNAi silencing of JAK2 in EGFRvIII-expressing GBM cells significantly attenuated their ability to migrate and invade; however, as a result of a potential EGFRvIII-JAK2-STAT3 activation loop, neither EGFR nor STAT3 knockdown yielded the same effects. Moreover, AG490 or JAK2 gene knockdown greatly suppressed tumor invasion and progression in the U87MG-EGFRvIII orthotopic models. Conclusion Taken together, our data demonstrate that JAK2/STAT3 signaling is essential for EGFRvIII-driven migration and invasion by promoting focal adhesion and stabilizing the EGFRvIII/JAK2/STAT3 axis. Targeting JAK2/STAT3 therapy, such as AG490, may have potential clinical implications for the tailored treatment of GBM patients bearing EGFRvIII-positive tumors. PMID:24861878

  4. Spacecraft power system architecture to mitigate spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Manner, David B. (Inventor)

    1997-01-01

    A power system architecture for a spacecraft and a method of a power supply for a spacecraft are presented which take advantage of the reduced plasma interaction associated with positive ground high voltage photovoltaic arrays and provide a negative ground power supply for electrical loads of the spacecraft. They efficiently convert and regulate power to the load bus and reduce power system mass and complexity. The system and method ground the positive terminal of the solar arrays to the spacecraft hull, and using a power converter to invert the electric sign, permit a negative ground for the electrical distribution bus and electrical components. A number of variations including a load management system and a battery management system having charging and recharging devices are presented.

  5. Automated techniques for spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Segnar, H. R.

    1972-01-01

    The feasibility of implementing automated spacecraft monitoring depends on four factors: sufficient computer resources, suitable monitoring function definitions, adequate spacecraft data, and effective and economical test systems. The advantages of automated monitoring lie in the decision-making speed of the computer and the continuous monitoring coverage provided by an automated monitoring program. Use of these advantages introduces a new concept of spacecraft monitoring in which system specialists, ground based or onboard, freed from routine and tedious monitoring, could devote their expertise to unprogrammed or contingency situations.

  6. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  7. The Hughes HS601HP spacecraft power subsystem

    SciTech Connect

    Krummann, W.; Ayvazian, H.

    1998-07-01

    The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life with minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all electronics

  8. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    NASA Technical Reports Server (NTRS)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  9. Modeling, Simulation, and Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Marsell, Brandon; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James

    2008-01-01

    Predicting the effect of fuel slosh on a spacecraft and/or launch vehicle attitude control system is a very important and a challenging task. Whether the spacecraft is under spinning or lateral moving conditions, the dynamic effect of the fuel slosh will help determine whether the spacecraft will remain on its chosen trajectory. There are three categories of slosh that can be caused by launch vehicle and/or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These include bulk fluid motion, subsurface wave motion, and free surface slosh. Each of these slosh types have a periodic component that is defined by either a spinning or lateral motion. For spinning spacecraft, all three types of slosh can play a major role in determining stability. Bulk fluid motion and free surface slosh can affect the lateral slosh characteristics. For either condition, the possibility for an unpredicted coupled resonance between the spacecraft and its on board fuel can have mission threatening affects. This on-going research effort aims at improving the accuracy and efficiency of modeling techniques used to predict these types of lateral fluid motions. In particular, efforts will focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  10. Gravity Probe B spacecraft description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-11-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

  11. Gemini 9 spacecraft recovery operations

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Gemini 9-A spacecraft, with Astronauts Thomas Stafford and Eugene Cernan still inside, in water as the aircraft carrier U.S.S. Wasp, the recovery ship, comes alongside to recover the astronauts and their spaceship.

  12. ISS Update: Dream Chaser Spacecraft

    NASA Video Gallery

    NASA Public Affairs Officer Michael Curie talks with Cheryl McPhillips, Commercial Crew Program Partner Manager for the Sierra Nevada Corporation, the company developing the Dream Chaser spacecraft...

  13. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  14. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  15. Spacecraft Environmental Interactions Technology, 1983

    NASA Technical Reports Server (NTRS)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  16. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    NASA Technical Reports Server (NTRS)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  17. Artist's drawing of Viking spacecraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The National Aeronautics and Space Administration is developing an unmanned spacecraft called Viking to continue the exploration of Mars in the mid-1970s. Two Viking spacecraft, each including an orbiter and a lander will be launched by TitanIII/Centaur launch vehicles in August and September 1975 from Cape Kennedy to reach Mars in mid-1976. They will perform scientific investigations both from orbit and on the surface of Mars, including a search for life form on the planet.

  18. Spacecraft Thermal Control Coatings References

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny

    2005-01-01

    The successful thermal design of spacecraft depends in part on a knowledge of the solar absorption and hemispherical emittance of the thermal control coatings used in and on the spacecraft. Goddard Space Flight Center has had since its beginning a group whose mission has been to provide thermal/optical properties data of thermal control coatings to thermal engineers. This handbook represents a summary of the data and knowledge accumulated over many years at GSFC.

  19. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  20. The Atmosphere Explorer spacecraft system.

    NASA Technical Reports Server (NTRS)

    Spencer, N. W.; Brace, L. H.; Grimes, D. W.

    1973-01-01

    Brief description of the design goals, spacecraft, data system, and data analysis concept for the Atmosphere Explorer (AE) mission. The AE mission is shown to have been conceived and to be implemented for making possible a variety of studies of the lower thermosphere. The spacecraft support system, including an onboard propulsion system, will enable investigations to be carried out deep in the thermosphere and at all points of aeronomic significance about the earth.

  1. Spacecraft external molecular contamination analysis

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1990-01-01

    Control of contamination on and around spacecraft is required to avoid adverse effects on the performance of instruments and spacecraft systems. Recent work in this area is reviewed and discussed. Specific issues and limitations to be considered as part of the effort to predict contamination effects using modeling techniques are addressed. Significant results of Space Shuttle missions in the field of molecule/surface interactions as well as their implications for space station design and operation are reviewed.

  2. Spacecraft design applications of QUICK

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1992-01-01

    The interactive space mission trajectory design environment software QUICK, which is currently available on 14 different machine architectures, furnishes a programmable FORTRAN-like interface for a wide range of both built-in and user-defined functions. Since its inception at JPL in 1971, QUICK has evolved from a specialized calculator into a general-purpose engineering tool which also facilitates spacecraft conceptual design by treating spacecraft as collections of data records describing individual components of instruments.

  3. Software for Autonomous Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Bristow, John; Folta, Dave; Hawkins, Al; Dell, Greg

    2004-01-01

    The AutoCon computer programs facilitate and accelerate the planning and execution of orbital control maneuvers of spacecraft while analyzing and resolving mission constraints. AutoCon-F is executed aboard spacecraft, enabling the spacecraft to plan and execute maneuvers autonomously; AutoCon-G is designed for use on the ground. The AutoCon programs utilize advanced techniques of artificial intelligence, including those of fuzzy logic and natural-language scripting, to resolve multiple conflicting constraints and automatically plan maneuvers. These programs can be used to satisfy requirements for missions that involve orbits around the Earth, the Moon, or any planet, and are especially useful for missions in which there are requirements for frequent maneuvers and for resolution of complex conflicting constraints. During operations, the software targets new trajectories, places and sizes maneuvers, and controls spacecraft burns. AutoCon-G provides a userfriendly graphical interface, and can be used effectively by an analyst with minimal training. AutoCon-F reduces latency and supports multiple-spacecraft and formation-flying missions. The AutoCon architecture supports distributive processing, which can be critical for formation- control missions. AutoCon is completely object-oriented and can easily be enhanced by adding new objects and events. AutoCon-F was flight demonstrated onboard GSFC's EO-1 spacecraft flying in formation with Landsat-7.

  4. Intelligent spacecraft module

    NASA Astrophysics Data System (ADS)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  5. The glideslope approach. [to orbiting spacecraft at rendezvous

    NASA Technical Reports Server (NTRS)

    Pearson, Don J.

    1989-01-01

    The problems associated with optimum approaches to an orbiting spacecraft at the completion of rendezvous are exacerbated when the maneuvering spacecraft is to dock with such large and extended structures as the NASA Space Station, which also has a torque equilibrium attitude due to which the docking port does not point directly into the orbital track. Attention is presently given to a candidate 'operationally optimum' approach to a local vertical-local horizontal stabilized target; this glideslope approach is derived on the basis of Hill's relative-motion equations, which have been expanded to encompass constant relative accelerations in a closed form solution. The motion is described in polar coordinates.

  6. System design of the Pioneer Venus spacecraft. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Dorfman, S. D.

    1973-01-01

    The NASA Ames Research Center Pioneer Venus Project objective is to conduct scientific investigations of the planet Venus using spin stabilized spacecraft. The defined approach to accomplish this goal is to implement a multiprobe spacecraft mission and an orbiter spacecraft mission. Candidate launch vehicles for the Pioneer Venus missions were the Thor/Delta and Atlas/Centaur. The multiprobe spacecraft consists of a probe bus, one large probe, and three small probes. The probes are designed to survive to the surface of Venus, and to make in situ measurements of the Venusian atmosphere; the probe bus enters the atmosphere and makes scientific measurements until it burns out. The orbiter mission uses a spacecraft designed to orbit Venus for 225 days with an orbit period of about 24 hours (h). The probe bus and orbiter designs are to use a common spacecraft bus.

  7. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  8. Space environmental interactions with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Stevens, J. N.

    1979-01-01

    Environmental interactions are defined as the response of spacecraft surfaces to the charged-particle environment. These interactions are divided into two broad categories: spacecraft passive, in which the environment acts on the surfaces and spacecraft active, in which the spacecraft or a system on the spacecraft causes the interaction. The principal spacecraft passive interaction of concern is the spacecraft charging phenomenon. The spacecraft active category introduces the concept of interactions with the thermal plasma environment and Earth's magnetic fields, which are important at all altitudes and must be considered the designs of proposed large space structures and space power systems. The status of the spacecraft charging investigations is reviewed along with the spacecraft active interactions.

  9. Future trends in spacecraft design and qualification

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.; Hanks, Brantley R.; Pinson, Larry D.

    1986-01-01

    Material and structures issues that must be resolved in order to develop the technology data base needed to design and qualify the next generation of large flexible spacecraft are discussed. This invoves the development of new ground test and analysis methods and the conduct of appropriate instrumented in-space flight experiments for final verification. A review of present understanding of material behavior in the space environment and identification of future needs is presented. The dynamic verification and subsequent qualification of a spacecraft structure currently rely heavily on ground-based tests, coupled with the verified analysis model. Future space structures, such as large antennas, Space Station and other large platforms, will be of sizes difficult to test using current ground test methods. In addition to size, other complex factors, such as low natural frequencies, lightweight construction and many structural joints, will also contribute significant problems to the test and qualification process in an Earth-gravity environment. These large spacecraft will also require new technology for controlling the configuration and dynamic deformations of the structures. Future trend in large flexible structures will also involve long-life design missions (10 to 20 years). In low earth orbit (LEO), materials will be subjected to repeated thermal cycles, ultraviolet radiation, atomic oxygen and vacuum. For high orbits such as geo-synchronous earth orbit (GEO), the materials will also be subjected to large doses of high energy electrons and protons. Understanding degradation and material stability over long-mission time periods will confront the designer with many issues that are unresolved today.

  10. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  11. Magnetic shielding for interplanetary spacecraft

    SciTech Connect

    Herring, J.S.; Merrill, B.J.

    1991-12-01

    The protection of spacecraft crews from the radiation produced by high energy electrons, protons and heavier ions in the space environment is a major health concern on long duration missions. Conventional approaches to radiation shielding in space have relied on thicker spacecraft walls to stop the high energy charged particles and to absorb the resulting gamma and bremsstrahlung photons. The shielding concept described here uses superconducting magnets to deflect charged particles before they collide with the spacecraft, thus avoiding the production of secondary particles. A number of spacecraft configurations and sizes have been analyzed, ranging from a small ``storm cellar`` for use during solar flares to continuous shielding for space stations having a crew of 15--25. The effectiveness of the magnetic shielding has been analyzed using a Monte Carlo program with incident proton energies from 0.5 to 1000 MeV. Typically the shield deflects 35--99 percent of the incident particles, depending, of course on particle energy and magnetic field strength. Further evaluation studies have been performed to assess weight comparisons between magnetic and conventional shielding; to determine magnet current distributions which minimize the magnetic field within the spacecraft itself; and to assess the potential role of ceramic superconductors. 2 figs., 8 tabs.

  12. Magnetic shielding for interplanetary spacecraft

    SciTech Connect

    Herring, J.S.; Merrill, B.J.

    1991-01-01

    The protection of spacecraft crews from the radiation produced by high energy electrons, protons and heavier ions in the space environment is a major health concern on long duration missions. Conventional approaches to radiation shielding in space have relied on thicker spacecraft walls to stop the high energy charged particles and to absorb the resulting gamma and bremsstrahlung photons. The shielding concept described here uses superconducting magnets to deflect charged particles before they collide with the spacecraft, thus avoiding the production of secondary particles. A number of spacecraft configurations and sizes have been analyzed, ranging from a small storm cellar'' for use during solar flares to continuous shielding for space stations having a crew of 15--25. The effectiveness of the magnetic shielding has been analyzed using a Monte Carlo program with incident proton energies from 0.5 to 1000 MeV. Typically the shield deflects 35--99 percent of the incident particles, depending, of course on particle energy and magnetic field strength. Further evaluation studies have been performed to assess weight comparisons between magnetic and conventional shielding; to determine magnet current distributions which minimize the magnetic field within the spacecraft itself; and to assess the potential role of ceramic superconductors. 2 figs., 8 tabs.

  13. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  14. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  15. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  16. Conductive spacecraft materials development program

    NASA Technical Reports Server (NTRS)

    Lehn, W. L.

    1977-01-01

    The objectives of this program are to provide design criteria, techniques, materials, and test methods to ensure control of absolute and differential charging of spacecraft surfaces. The control of absolute and differential charging of spacecraft cannot be effected without the development of new and improved or modified materials or techniques that will provide electrical continuity over the surface of the spacecraft. The materials' photoemission, secondary emission, thermooptical, physical, and electrical properties in the space vacuum environment both in the presence and absence of electrical stress and ultraviolet, electron, and particulate radiation, are important to the achievement of charge control. The materials must be stable or have predictable response to exposure to the space environment for long periods of time. The materials of interest include conductive polymers, paints, transparent films and coatings as well as fabric coating interweaves.

  17. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  18. Recent Advances in Plasma Propulsion for Spacecraft

    NASA Astrophysics Data System (ADS)

    Choueiri, E. Y.

    1998-11-01

    Three decades of research on plasma propulsion for spacecraft have led to a level of maturity that has recently ushered in the era of application. Over the past few years, due to their ability to insure great mass savings over chemical propulsion, plasma propulsion devices (thrusters) have been used (or selected for use) on spacecraft for missions ranging from stationkeeping, drag compensation, attitude control and pointing, orbit raising and repositioning, to primary propulsion for interplanetary missions. Plasma thrusters have also been used as plasma sources in space for active space physics experiments and in the laboratory as plasma sources for reentry simulation, plasma processing and plasma injection in fusion devices. We will review research in the field, focusing on the plasma physics problems related to three classes of plasma thrusters: the Hall thruster (HT), the pulsed plasma thruster (PPT) and the magnetoplasmadynamic thruster (MPDT). The basic plasma acceleration and power loss mechanisms in each of these devices will be described along with the major plasma physics problems that control the thrust efficiency, stability and lifetime of these devices. We will review the recent advances and remaining questions relevant to the following important problems: macro and micro instabilities and turbulence, anomalous transport, ionization physics, plume divergence (HT and MPDT), current sheet dynamics and permeability (PPT).

  19. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  20. Multi-Spacecraft Turbulence Analysis Methods

    NASA Astrophysics Data System (ADS)

    Horbury, Tim S.; Osman, Kareem T.

    Turbulence is ubiquitous in space plasmas, from the solar wind to supernova remnants, and on scales from the electron gyroradius to interstellar separations. Turbulence is responsible for transporting energy across space and between scales and plays a key role in plasma heating, particle acceleration and thermalisation downstream of shocks. Just as with other plasma processes such as shocks or reconnection, turbulence results in complex, structured and time-varying behaviour which is hard to measure with a single spacecraft. However, turbulence is a particularly hard phenomenon to study because it is usually broadband in nature: it covers many scales simultaneously. One must therefore use techniques to extract information on multiple scales in order to quantify plasma turbulence and its effects. The Cluster orbit takes the spacecraft through turbulent regions with a range of characteristics: the solar wind, magnetosheath, cusp and magnetosphere. In each, the nature of the turbulence (strongly driven or fully evolved; dominated by kinetic effects or largely on fluid scales), as well as characteristics of the medium (thermalised or not; high or low plasma sub- or super-Alfvenic) mean that particular techniques are better suited to the analysis of Cluster data in different locations. In this chapter, we consider a range of methods and how they are best applied to these different regions. Perhaps the most studied turbulent space plasma environment is the solar wind, see Bruno and Carbone [2005]; Goldstein et al. [2005] for recent reviews. This is the case for a number of reasons: it is scientifically important for cosmic ray and solar energetic particle scattering and propagation, for example. However, perhaps the most significant motivations for studying solar wind turbulence are pragmatic: large volumes of high quality measurements are available; the stability of the solar wind on the scales of hours makes it possible to identify statistically stationary intervals to

  1. Universal Controller for Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Levanas, Greg; McCarthy, Thomas; Hunter, Don; Buchanan, Christine; Johnson, Michael; Cozy, Raymond; Morgan, Albert; Tran, Hung

    2006-01-01

    An electronic control unit has been fabricated and tested that can be replicated as a universal interface between the electronic infrastructure of a spacecraft and a brushless-motor (or other electromechanical actuator) driven mechanism that performs a specific mechanical function within the overall spacecraft system. The unit includes interfaces to a variety of spacecraft sensors, power outputs, and has selectable actuator control parameters making the assembly a mechanism controller. Several control topologies are selectable and reconfigurable at any time. This allows the same actuator to perform different functions during the mission life of the spacecraft. The unit includes complementary metal oxide/semiconductor electronic components on a circuit board of a type called rigid flex (signifying flexible printed wiring along with a rigid substrate). The rigid flex board is folded to make the unit fit into a housing on the back of a motor. The assembly has redundant critical interfaces, allowing the controller to perform time-critical operations when no human interface with the hardware is possible. The controller is designed to function over a wide temperature range without the need for thermal control, including withstanding significant thermal cycling, making it usable in nearly all environments that spacecraft or landers will endure. A prototype has withstood 1,500 thermal cycles between 120 and +85 C without significant deterioration of its packaging or electronic function. Because there is no need for thermal control and the unit is addressed through a serial bus interface, the cabling and other system hardware are substantially reduced in quantity and complexity, with corresponding reductions in overall spacecraft mass and cost.

  2. Application of a magnetohydrodynamic element in the control loop of a rotating spacecraft with cavities partially filled with liquid

    NASA Astrophysics Data System (ADS)

    Nazirov, R. R.; Rabinovich, B. I.; Mytarev, A. I.

    2008-06-01

    This paper is a continuation of [1 3] and a generalization of the results for a rotating spacecraft with cavities partially filled with liquid and equipped with an operational magnetohydrodynamic (MHD) element in the loop of its attitude control. This element makes possible the creation of hingeless systems of stabilization and orientation that do not require rocket propellant consumption. The application of an MHD element is considered for stabilization in the mode of spin-up of a spacecraft not having gyroscopic stability.

  3. Human factors in spacecraft design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Connors, Mary M.

    1990-01-01

    This paper describes some of the salient implications of evolving mission parameters for spacecraft design. Among the requirements for future spacecraft are new, higher standards of living, increased support of human productivity, and greater accommodation of physical and cultural variability. Design issues include volumetric allowances, architecture and layouts, closed life support systems, health maintenance systems, recreational facilities, automation, privacy, and decor. An understanding of behavioral responses to design elements is a precondition for critical design decisions. Human factors research results must be taken into account early in the course of the design process.

  4. Tools Automate Spacecraft Testing, Operation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."

  5. Human factors in spacecraft design.

    PubMed

    Harrison, A A; Connors, M M

    1990-01-01

    This paper describes some of the salient implications of evolving mission parameters for spacecraft design. Among the requirements for future spacecraft are new, higher standards of living, increased support of human productivity, and greater accommodation of physical and cultural variability. Design issues include volumetric allowances, architecture and layouts, closed life support systems, health maintenance systems, recreational facilities, automation, privacy, and decor. An understanding of behavioral responses to design elements is a precondition for critical design decisions. Human factors research results must be taken into account early in the course of the design process. PMID:11537619

  6. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  7. Software Architecture for Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    Shih, Jimmy S.

    1997-01-01

    The thesis objective is to design an autonomous spacecraft architecture to perform both deliberative and reactive behaviors. The Autonomous Small Planet In-Situ Reaction to Events (ASPIRE) project uses the architecture to integrate several autonomous technologies for a comet orbiter mission.

  8. Spacecraft materials HCl susceptibility assessments

    NASA Astrophysics Data System (ADS)

    Chu, C.-T.; Liu, De-Ling; Kim, Hyun; Alaan, Diana R.

    2014-09-01

    The susceptibility of spacecraft materials to HCl exposure was investigated in light of concerns to potential contamination during evolved expendable launch vehicle (EELV) overflight scenarios. Overflight refers to the circumstance where one spacecraft, resident on a launch pad, may be exposed to HCl generated from an earlier solid rocket launch at an adjacent pad. One aspect of the overflight risk assessments involves spacecraft materials susceptibility to HCl exposure. This study examined a wide range of spacecraft materials after being exposed to HCl vapor in a well-characterized facility. Sample thermal/optical and electrostatic dissipation properties, as well as surface chemical and morphological features, were characterized before and after the HCl exposure. All materials tested, except for indium tin oxide (ITO) coated Kapton film, showed no significant degradation after HCl exposure of up to 4800 ppb-hr. The ITO coated Kapton sample showed slight signs of degradation after being exposed to 500 ppb-hr HCl, as the surface resistance was increased by a factor of 5. However, the potential HCl dose inside the payload fairing (PLF) was estimated to be far below 500 ppb-hr in an EELV overflight event. These results, along with other relevant laboratory test data on the HCl removal efficiency of the filtration media used on the launch sites, provide the technical rationale that properly filtered air as the PLF purge should pose little risk in terms of HCl contamination under EELV overflight scenarios.

  9. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  10. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  11. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  12. Voyager Spacecraft During Vibration Testing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two Voyager spacecraft were launched in 1977 to explore the outer planets and some of their satellites. A prototype Voyager spacecraft is shown at NASA's Jet Propulsion Laboratory in Pasadena, California, as it successfully passed vibration tests which simulated the expected launch environment. The large parabolic antenna at the top is 3.7 meters in diameter and was used at both S-band and X-band radio frequencies for communicating with Earth over the great distances from the outer planets. The spacecraft received electrical power from three nuclear power sources (lower left). The shiny cylinder on the left side under the antenna contained a folded boom, which extended after launch to hold a magnetometer instrument thirteen meters away from the body of the spacecraft. The truss-like structure on the right side is the stowed instrument boom which supported three science instruments and a scan platform. The scan platform allowed the accurate pointing of two cameras and three other science instruments at Jupiter, Saturn, the rings of Saturn, Jupiter's moons, Saturn's moons, Uranus, moons of Uranus, and Neptune.

  13. Next Vital Step: Spacecraft Delivery

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Mars Reconnaissance Orbiter was delivered in two large containers from Lockheed Martin to Cape Canaveral on an Air Force C-17 cargo plane. Over the next several months, engineers and technicians will prepare the spacecraft for its scheduled launch in August.

  14. Spacecraft communications terminal breadboard components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The C-band translator, transmitter, and attenuator are described for the spacecraft communication terminal breadboard components. The block diagram is also included for the C-band receiver. The system performance data and the mechanical properties of the system are briefly considered.

  15. An Autonomous Spacecraft Agent Prototype

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve A.; Gat, Erann; Muscettola, Nicola; Nayak, P. Pandurang; Wagner, Michael D.; Williams, Brian C.

    1997-01-01

    This paper describes the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration.

  16. Qingchang Wenzhong Decoction Ameliorates Dextran Sulphate Sodium-Induced Ulcerative Colitis in Rats by Downregulating the IP10/CXCR3 Axis-Mediated Inflammatory Response

    PubMed Central

    Mao, Tang-you; Shi, Rui; Zhao, Wei-han; Guo, Yi; Gao, Kang-li; Chen, Chen; Xie, Tian-hong; Li, Jun-xiang

    2016-01-01

    Qingchang Wenzhong Decoction (QCWZD) is an effective traditional Chinese medicine prescription. Our previous studies have shown that QCWZD has significant efficacy in patients with mild-to-moderate ulcerative colitis (UC) and in colonic mucosa repair in UC rat models. However, the exact underlying mechanism remains unknown. Thus, this study was conducted to determine QCWZD's efficacy and mechanism in dextran sulphate sodium- (DSS-) induced UC rat models, which were established by 7-day administration of 4.5% DSS solution. QCWZD was administered daily for 7 days, after which the rats were euthanized. Disease activity index (DAI), histological score (HS), and myeloperoxidase (MPO) level were determined to evaluate UC severity. Serum interferon gamma-induced protein 10 (IP10) levels were determined using ELISA kits. Western blotting and real-time polymerase chain reaction were, respectively, used to determine colonic protein and gene expression of IP10, chemokine (cys-x-cys motif) receptor (CXCR)3, and nuclear factor- (NF-) κB p65. Intragastric QCWZD administration ameliorated DSS-induced UC, as evidenced by decreased DAI, HS, and MPO levels. Furthermore, QCWZD decreased the protein and gene expression of IP10, CXCR3, and NF-κB p65. Overall, these results suggest that QCWZD ameliorates DSS-induced UC in rats by downregulating the IP10/CXCR3 axis-mediated inflammatory response and may be a novel UC therapy. PMID:27413386

  17. Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis

    1999-01-01

    An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

  18. Annular Arrays Of Solar Cells For Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1995-01-01

    Report proposes annular arrays of solar photovoltaic cells installed on spin-stabilized spacecraft. Annular array faces Sun. Typical array consists of two stacked annuli of solar cells: one annulus fixed about spin axis, while other divided into deployable sectors mounted on dual swing arms and stowed by folding them atop fixed annulus. Once released, deployable sectors swing outward under spring or centrifugal force and expose fixed array so it generates additional power.

  19. Risk-based Spacecraft Fire Safety Experiments

    NASA Technical Reports Server (NTRS)

    Apostolakis, G.; Catton, I.; Issacci, F.; Paulos, T.; Jones, S.; Paxton, K.; Paul, M.

    1992-01-01

    Viewgraphs on risk-based spacecraft fire safety experiments are presented. Spacecraft fire risk can never be reduced to a zero probability. Probabilistic risk assessment is a tool to reduce risk to an acceptable level.

  20. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  1. Second Venus spacecraft set for launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.

  2. Control analysis of an underactuated spacecraft under disturbance

    NASA Astrophysics Data System (ADS)

    Wang, Dongxia; Jia, Yinghong; Jin, Lei; Xu, Shijie

    2013-02-01

    Based on the nonlinear controllability theory, this paper analyzes the attitude controllability for an underactuated spacecraft using two or one thrusters in sequence. In order to provide a preconditional guide on designing the control law for the underactuated attitude control system in the actual case, the underactuated spacecraft with respect to the orbit frame is investigated in the presence of periodical oscillation disturbance. First, attitude dynamic model was established for an underactuated spacecraft actuated by three thrusters, one or two of which has failed separately, and the special orthogonal group (SO(3)) is deployed to describe the attitude motions. Second, Liouville theorem and Poincaré's recurrence theorem were used to confirm that the drift field is Weakly Positively Poisson Stable (WPPS). Furthermore, the sufficient and necessary condition of controllability was obtained on the basis of Lie Algebra Rank Condition (LARC). Finally, according to the case of two available thrusters, angular velocity stabilization and three-axis attitude stabilization control laws are designed, and proved by Lyapunov stability theory and LaSalle invariant theorem. The analysis and simulation results illustrate the feasibility of the proposed control law.

  3. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    This paper describes three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals of command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment-making feasible the operation of tens of even a hundred spacecraft (such as for interferometer or magnetospheric constellation missions).

  4. SAS-A spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Boyle, J. C.

    1970-01-01

    Magnetic tests were conducted on the spacecraft for: (1) alignment, compensation, calibration, and bias determination for the spacecraft three-axis vector magnetometer; (2) determination of permanent, induced, and stray magnetic moments of the spacecraft and compensation of permanent magnetic moments by permanent magnets; and (3) evaluation of the spin and attitude control system.

  5. Spacecraft and their Boosters. Aerospace Education I.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  6. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  7. Spacecraft Tests of General Relativity

    NASA Technical Reports Server (NTRS)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  8. Laser Diagnostics for Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    MacDonald-Tenenbaum, Natalia

    2015-09-01

    Over the past several decades, a variety of laser diagnostic techniques have been developed and applied to diagnose spacecraft propulsion devices. Laser diagnostics are inherently non-intrusive, and provide the opportunity to probe properties such as temperature, concentration or number density of plume species, and plume velocities in the harsh environments of combustion and plasma discharges. This presentation provides an overview of laser diagnostic capabilities for spacecraft propulsion devices such as small monopropellant thrusters, arcjets, ion engines and Hall thrusters. Particular emphasis is placed on recent developments for time-resolved ion velocity measurements in Hall thruster plumes. Results are presented for one such diagnostic method, a time-synchronized CW-laser induced fluorescence (LIF) technique based on a sample hold scheme. This method is capable of correlating measured fluorescence excitation lineshapes with high frequency current fluctuations in the plasma discharge of a Hall thruster and is tolerant of natural drifting in the current oscillation frequency.

  9. Solar power supply for spacecraft

    SciTech Connect

    Henesian, A.

    1981-12-15

    A solar power supply for a spacecraft comprises an array of semiconductor devices for photovoltaic conversion of sunlight into electrical energy. Each semiconductor device is secured by a substantially stress-free electrically conductive joint to a flexible dielectric substrate that can be folded into a compact stowage configuration or opened into an elongate operational configuration. The stress-free joint is formed by securing an electrical terminal of the semiconductor device to a stress-relieving electrical conductor that is affixed to the substrate. Preferably, the stress-relieving conductor is a metallic wire mesh, a peripheral portion of which is adhesively bonded to the substrate circumjacent an aperture in the substrate. A pattern of metallic traces formed on the substrate provides a circuit for connecting the wire mesh to connectors for coupling electrical power generated by the array of semiconductor devices to an electrical load on the spacecraft.

  10. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  11. Contingent plan structures for spacecraft

    NASA Technical Reports Server (NTRS)

    Drummond, M.; Currie, K.; Tate, A.

    1987-01-01

    Most current AI planners build partially ordered plan structures which delay decisions on action ordering. Such structures cannot easily represent contingent actions. A representation which can is presented. The representation has some other useful features: it provides a good account of the causal structure of a plan, can be used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully disjunctive representation, since communication delays often prohibit extensive ground-based accounting for remotely sensed information and replanning on execution failure.

  12. Spacecraft environmental anomalies expert system

    NASA Technical Reports Server (NTRS)

    Koons, H. C.; Gorney, D. J.

    1988-01-01

    A microcomputer-based expert system is being developed at the Aerospace Corporation Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to address anomalies caused by surface charging, bulk charging, single event effects and total radiation dose. These effects depend on the orbit of the satellite, the local environment (which is highly variable), the satellite exposure time and the hardness of the circuits and components of the satellite. The expert system is a rule-based system that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed expert system knowledge base will include 150 to 200 rules, as well as a spacecraft attributes database, an historical spacecraft anomalies database, and a space environment database which is updated in near real-time. Currently, the expert system is undergoing development and testing within the Aerospace Corporation Space Sciences Laboratory.

  13. Foam Core Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Adams, Marc

    2007-01-01

    A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.

  14. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  15. Fire extinguishers for manned spacecraft

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Smirnov, N. V.; Tanklevsky, L. T.

    2015-04-01

    Based on an analysis of fires in the oxygen-enriched atmosphere conditions in spacecraft and other sealed chambers of various purposes, the most dangerous groups of fires are identified. For this purpose, groups were compiled to analyze dependences that describe the increase of fire hazard to a critical value. A criterion for determining timely and effective fire extinguishing was offered. Fire experiments in oxygen-enriched atmosphere conditions were conducted, and an array of experimental data on the mass burning rate of materials and their extinguishing by water mist was obtained. Relationships colligating an array of experimental data were offered. Experimental and analytical studies were taken as a basis for hand fire extinguisher implementation for manned spacecraft.

  16. Teaching old spacecraft new tricks

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Dunham, David

    1988-01-01

    The technique of sending existing space probes on extended mission by altering their orbital paths with gravity-assist maneuvers and relatively brief rocket firings is examined. The use of the technique to convert the International Sun-Earth Explorer 3 mission into the International Cometary Explorer mission is discussed. Other examples are considered, including the extension of the Giotto mission and the retargeting of the Sakigake spacecraft. The original and altered trajectories of these three missions are illustrated.

  17. Radiation effects in spacecraft electronics

    NASA Technical Reports Server (NTRS)

    Raymond, James P.

    1989-01-01

    Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.

  18. Outgassing data for spacecraft materials

    NASA Technical Reports Server (NTRS)

    Campbell, W. A., Jr.; Marriott, R. S.; Park, J. J.

    1980-01-01

    A system for determining the mass loss in vacuum and for collecting the outgassed compounds was developed. Outgassing data, derived from tests at 398 K (125 degrees C) for 24 hours in vacuum as per ASTM E 59577, are compiled for numerous materials for spacecraft use. The data presented are the total mass loss (TML) and the collected volatile condensable materials (CVCM). The various materials are compiled by likely usage and alphabetically.

  19. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  20. Plasma sources for spacecraft neutralization

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.

    1990-01-01

    The principles of the operation of plasma sources for the neutralization of the surface of a spacecraft traveling in the presence of hot plasma are discussed with special attention given to the hollow-cathode-based plasma contactors. Techiques are developed that allow the calculation of the potentials and particle densities in the near environment of a hollow cathode plasma contactor in both the test tank and the LEO environment. The techniques and codes were validated by comparison of calculated and measured results.

  1. Effectiveness of spacecraft testing programs

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1980-01-01

    The need for testing under simulated mission operational conditions is discussed and the results of such tests are reviewed from the point of view of the user. A brief overview of the usal test sequences for high reliability long life spacecraft is presented and the effectiveness of the testing program is analyzed in terms of the defects which are discovered by such tests. The need for automation, innovative mechanical test procedures, and design for testability is discussed.

  2. Small Spacecraft Technology Initiative (SSTI)

    NASA Technical Reports Server (NTRS)

    Reppucci, George

    1995-01-01

    This is the second in a series of semi-annual reports that describe the technology areas being advanced under this contract and the progress achieved to date. The last technology report concentrated on the spacecraft. This report places greater emphasis on the payloads. White papers by several of the payload providers are attached. These are HSI, UCB, PRKE, and CAFE. This report covers the period from January 1995 through June 1995.

  3. Dissipative compensators for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Maghami, P. G.

    1990-01-01

    The problem of controller design for flexible spacecraft is addressed. Model-based compensators, which rely on the knowledge of the system parameters to tune the state estimator, are considered. The instability mechanisms resulting from high sensitivity to parameter uncertainties are investigated. Dissipative controllers, which use collocated actuators and sensors, are also considered, and the robustness properties of constant-gain dissipative controllers in the presence of unmodeled elastic-mode dynamics, sensor/actuator nonlinearities, and actuator dynamics are summarized. In order to improve the performance without sacrificing robustness, a class of dissipative dynamic compensators is proposed and is shown to retain robust stability in the presence of second-order actuator dynamics if acceleration feedback is employed. A class of dissipative dynamic controllers is proposed which consists of a low-authority, constant-gain controller and a high-authority dynamic compensator. A procedure for designing an optimal dissipative dynamic compensator is given which minimizes a quadratic performance criterion. Such compensators offer the promise of better performance while still retaining robust stability.

  4. Analysis of spacecraft battery charger systems

    NASA Astrophysics Data System (ADS)

    Kim, Seong J.; Cho, Bo H.

    In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.

  5. Energy Storage Flywheels on Spacecraft

    NASA Technical Reports Server (NTRS)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  6. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  7. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space. PMID:10631334

  8. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.

  9. Prospects for detection of gravitational radiation by simultaneous Doppler tracking of several spacecraft

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1978-01-01

    This paper reports a calculation of the effect of gravitational radiation on the observed Doppler shift of a sinusoidal electromagnetic signal transmitted to, and coherently transponded from, distant spacecraft. It is found that the effect of plane gravitational waves on such observations is not intuitively immediate, and in fact depends sensitively on the spacecraft direction, which suggests the possibility of detecting such plane waves by simultaneous Doppler tracking of several spacecraft. The need for broad band gravitational wave observations, the required stabilities of time keeping standards, and astrophysical sources expected in the Very Low Frequency band are briefly discussed.

  10. The NASA Spacecraft Transponding Modem

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

    2000-01-01

    A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the

  11. Spacecraft

    NASA Technical Reports Server (NTRS)

    Clark, John F.; Haggerty, James J.; Woodburn, John H.

    1961-01-01

    In this twentieth century, we are privileged to witness the first steps toward realization of an age-old dream: the exploration of space. Already, in the first few years of the Space Age, man has been able to penetrate the layer of atmosphere which surrounds his planet and to venture briefly into space. Scores of man-made objects have been thrust into space, some of them to roam the solar system forever. Behind each space mission are years of patient research, thousands of man-hours of labor, and large sums of money. Because the sums involved are so enormous, the question is frequently asked, "Is it worth it?" Many people want to know what return this huge investment will bring to mankind. The return on the investment is knowledge. The accumulation of knowledge over the centuries has made possible our advanced way of life. As we unlock more and more of the secrets of the universe through space exploration, we add new volumes to the encyclopedia of man's knowledge. This will be applied to the benefit of mankind. For the practical-minded, there are concrete benefits to our way of life. Although we are still in the Stone Age of space exploration, a number of immediate applications of space technology are already apparent. For instance, imagine the benefits of an absolutely perfect system of predicting the weather. Or, going a step further, even changing the weather. And wouldn't it be fascinating to watch the next Olympic games, telecast from Tokyo, on your TV set? These are just a few of the practical benefits made possible by space technology.

  12. Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas

    2003-01-01

    A report proposes a method of utilizing solar-radiation pressure to keep the axis of rotation of a small spin-stabilized spacecraft pointed approximately (typically, within an angle of 10 deg to 20 deg) toward the Sun. Axisymmetry is not required. Simple tilted planar vanes would be attached to the outer surface of the body, so that the resulting spacecraft would vaguely resemble a rotary fan, windmill, or propeller. The vanes would be painted black for absorption of Solar radiation. A theoretical analysis based on principles of geometric optics and mechanics has shown that torques produced by Solar-radiation pressure would cause the axis of rotation to precess toward Sun-pointing. The required vane size would be a function of the angular momentum of the spacecraft and the maximum acceptable angular deviation from Sun-pointing. The analysis also shows that the torques produced by the vanes would slowly despin the spacecraft -- an effect that could be counteracted by adding specularly reflecting "spin-up" vanes.

  13. Preventing Spacecraft Failures Due to Tribological Problems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2001-01-01

    Many mechanical failures that occur on spacecraft are caused by tribological problems. This publication presents a study that was conducted by the author on various preventatives, analyses, controls and tests (PACTs) that could be used to prevent spacecraft mechanical system failure. A matrix is presented in the paper that plots tribology failure modes versus various PACTs that should be performed before a spacecraft is launched in order to insure success. A strawman matrix was constructed by the author and then was sent out to industry and government spacecraft designers, scientists and builders of spacecraft for their input. The final matrix is the result of their input. In addition to the matrix, this publication describes the various PACTs that can be performed and some fundamental knowledge on the correct usage of lubricants for spacecraft applications. Even though the work was done specifically to prevent spacecraft failures the basic methodology can be applied to other mechanical system areas.

  14. Control and dynamics of a flexible spacecraft during stationkeeping maneuvers

    NASA Technical Reports Server (NTRS)

    Liu, D.; Yocum, J.; Kang, D. S.

    1991-01-01

    A case study of a spacecraft having flexible solar arrays is presented. A stationkeeping attitude control mode using both earth and rate gyro reference signals and a flexible vehicle dynamics modeling and implementation is discussed. The control system is designed to achieve both pointing accuracy and structural mode stability during stationkeeping maneuvers. Reduction of structural mode interactions over the entire mode duration is presented. The control mode using a discrete time observer structure is described to show the convergence of the spacecraft attitude transients during Delta-V thrusting maneuvers without preloading thrusting bias to the onboard control processor. The simulation performance using the three axis, body stabilized nonlinear dynamics is provided. The details of a five body dynamics model are discussed. The spacecraft is modeled as a central rigid body having cantilevered flexible antennas, a pair of flexible articulated solar arrays, and to gimballed momentum wheels. The vehicle is free to undergo unrestricted rotations and translations relative to inertial space. A direct implementation of the equations of motion is compared to an indirect implementation that uses a symbolic manipulation software to generate rigid body equations.

  15. A New Tool for Earth-Ionosphere Interactions: [SQUID]2 Ultra Low Noise 3 Axis SQUID Magnetometer, 2009 status and perspectives

    NASA Astrophysics Data System (ADS)

    Waysand, G.; Marfaing, J.; Bois, J.; Pozzo di Borgo, E.; Blancon, R.; Gaffet, S.; Auguste, M.; Boyer, D.; Cavaillou, A.; Barroy, P.

    2009-12-01

    : Each ground movement on Earth shakes the air column above it. When the acoustic wave reaches the ionosphere floor, charges are temporarily displaced, parallel to the acoustic excitation. An electric current is created giving birth to a magnetic signal. The density difference between ground and air makes the coupling very poor but this is compensated by very large amplification of displacement with respect to the ground one. To detect these signals we used [SQUID]2 . [SQUID]2 is a low Tc Superconducting QUantum Interferometer Device in a 3 axis magnetometer configuration inside a Shielding QUalified for Ionosphere Detection (noise level : 2fT/√ Hz above 40Hz without µ metal). This set-up is buried below 518m of karst in the Low Noise Underground Laboratory of Rustrel-Pays d’Apt (France),it allows the detection of these magnetic signals. For ionosphere responses to P waves, either above the epicenter or above our lab, the response for quakes M>3 is non linear: a resonance mode of the ionosphere floor is excited whose period is around 60 to 80 seconds. The same type of signal has been observed one hour before the Sichuan quake of May 2008, in time coincidence with observation of rainbow colored clouds in the surrounding area. S and T Earth breathing modes of the Earth interaction with the ionosphere were observed above the 1/f noise background during a magnetically quiet 72 hours time window with no quake M>5.2 . Since the frequencies of these modes are in the millihertz range, wherever such an instrument is on Earth, it is always electromagnetically near the signal source . In addition the ionosphere response is linear: each detected mode is obtained with a 1% precision with respect to the PREM model. If one consider that instruments of this type allows also the observation at mid latitude of magnetic storms with a sensitivity at least equivalent to conventional polar magnetometer, it is worthwhile to discuss the feasibility of a world wide network of SQUID

  16. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: TDRS spacecraft design, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A dual spin stabilized TDR spacecraft design is presented for low data rate (LDR) and medium data rate (MDR) user spacecraft telecommunication relay service. The relay satellite provides command and data return channels for unmanned users together with duplex voice and data communication channels for manned user spacecraft. TDRS/ground links are in the Ku band. Command links are provided at UHF for LDR users and S band for MDR users. Voice communication channels are provided at UHF/VHF for LDR users and at S band for MDR users. The spacecraft is designed for launch on the Delta 2914 with system deployment planned for 1978. This volume contains a description of the overall TDR spacecraft configuration, a detailed description of the spacecraft subsystems, a reliability analysis, and a product effectiveness plan.

  17. Comet explorer spacecraft design project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The small, chemically primitive objects of the solar system, comets and asteroids, are one of the most important frontiers remaining for future planetary exploration. So stated the Solar System Exploration Committee of the NASA Advisory Council in its 1986 report 'Planetary Exploration Through the Year 2000.' The Halley's comet flyby missions completed last spring raised more questions than were answered about the nature of comets. The next mission to a comet must be able to explore some of these questions. In the late 1990's, a spacecraft might be built to explore the hazardous area surrounding a comet nucleus. Rigorous pointing requirements for remote sensing instruments will place a considerable burden on their attendant control systems. To meet these requirements we have pursued the initial design and analysis of a multi-bodied comet explorer spacecraft. Sized so as to be built on-orbit after the space station is operational, the spacecraft is comprised of Orbit Replaceable Unit (ORU) subsystems, packaged into two major components: a three-axis controlled instrument platform and a spinning, detached comet dust shield. Such a configuration decouples the dynamics of dust impaction from the stringent pointing out requirements of the imaging experiments. At the same time, it offers an abundance of simple analysis problems that may be carried out by undergraduates. These problems include the following: Selection of subsystem components, sizing trade studies, investigation of three-axis and simple spin dynamics, design of simple control systems, orbit determination, and intercept trajectory generation. Additionally, such topics as proposal writing project management, human interfacing, and costing have been covered. A new approach to design teaching has been taken, whereby students will 'learn by teaching.' They are asked to decompose trade options into a set of 'if-then' rules, which then 'instruct' the Mechanically Intelligent Designer (MIND) expert design system

  18. Coffee-can-sized spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    1988-01-01

    The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.

  19. Spacecraft transformer and inductor design

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.

  20. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  1. Spacecraft platform cost estimating relationships

    NASA Technical Reports Server (NTRS)

    Gruhl, W. M.

    1972-01-01

    The three main cost areas of unmanned satellite development are discussed. The areas are identified as: (1) the spacecraft platform (SCP), (2) the payload or experiments, and (3) the postlaunch ground equipment and operations. The SCP normally accounts for over half of the total project cost and accurate estimates of SCP costs are required early in project planning as a basis for determining total project budget requirements. The development of single formula SCP cost estimating relationships (CER) from readily available data by statistical linear regression analysis is described. The advantages of single formula CER are presented.

  2. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  3. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  4. Periodic attitude control of a slowly spinning spacecraft.

    NASA Technical Reports Server (NTRS)

    Todosiev, E. P.

    1973-01-01

    A periodic attitude control system is presented which permits control of secular errors of a slowly spinning spacecraft operating in a high disturbance environment. Attitude errors of the spin-axis are detected by sun sensors (or rate gyros) and are controlled by a periodic control law which modulates external control torques generated by mass expulsion torquers. Attitude stability during the uncontrolled periods is obtained passively via the vehicle spin momentum. Equations of motion, a system block diagram, and design parameters are presented for a typical spacecraft application. Simulation results are included which demonstrate the feasibility of the novel control concept. Salient features of the periodic control approach are implementation simplicity, excellent response, and a propellant utilization efficiency greater than 75 percent.

  5. Pulse modulated control synthesis for a flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Anthony, Tobin C.; Wie, Bong; Carroll, Stanley

    1989-01-01

    The describing function method is employed for the nonlinear control analysis and design of a flexible spacecraft equipped with pulse modulated reaction jets. The method provides a means of characterizing the pulse modulator in terms of its gain and phase for structural mode limit cycle analysis. Although the describing function method is inherently inexact and is not widely used in practice, a new way of utilizing it for practical control design problems is presented. It is shown that the approximations inherent in the method can be accounted as a modeling uncertainty for the nonlinear control robustness analysis. The pulse modulated control system of the Intelsat 5 spacecraft is used as an example to illustrate the concept and methodology developed in the paper. The nonlinear stability margins predicted by the describing function analysis are verified from nonlinear simulations.

  6. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  7. Spacecraft nitrogen generation. [liquid hydrazine

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Powell, J. D.; Kacholia, K. K.

    1974-01-01

    Two spacecraft nitrogen (N2) generation systems based on the catalytic dissociation of hydrazine (N2H4) were evaluated. In the first system, liquid N2H4 is catalytically dissociated to yield an N2 and hydrogen (H2) gas mixture. Separation of the N2/H2 gas mixture to yield N2 and a supply of H2 is accomplished using a polymer-electrochemical N2/H2 separator. In the second system, the N2/H2 gas mixture is separated in a two-stage palladium/silver (Pd/Ag) N2/H2 separator. The program culminated in the successful design, fabrication, and testing of a N2H4 catalytic dissociator, a polymer-electrochemical N2/H2 separator, and a two-stage Pd/Ag N2/H2 separator. The hardware developed was sized for an N2 delivery rate of 6.81 kg/d (15lb/day). Experimental results demonstrated that both spacecraft N2 generation systems are capable of producing 6.81 kg/d (15lb/day) of 99.9% pure N2 at a pressure greater than or equal to 1035 kN/m(2) (150 psia).

  8. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  9. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language. PMID:11542669

  10. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  11. Pointing compensation system for spacecraft instruments

    NASA Technical Reports Server (NTRS)

    Plescia, Carl T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.

  12. Estimating Torque Imparted on Spacecraft Using Telemetry

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  13. A CFD Approach to Modeling Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.

    2009-01-01

    Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally

  14. Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization

    PubMed Central

    Farrahi, Assal; Sanz-Andrés, Ángel

    2013-01-01

    A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579

  15. Vacuum stability requirements of polymeric material for spacecraft application

    NASA Technical Reports Server (NTRS)

    Craig, J. W.

    1984-01-01

    The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.

  16. EMI from Spacecraft Docking Systems Spacecraft Charging - Plasma Contact Potentials

    NASA Technical Reports Server (NTRS)

    Norgard, John D.; Scully, Robert; Musselman, Randall

    2012-01-01

    The plasma contact potential of a visiting vehicle (VV), such as the Orion Service Module (SM), is determined while docking at the Orion Crew Exploration Vehicle (CEV). Due to spacecraft charging effects on-orbit, the potential difference between the CEV and the VV can be large at docking, and an electrostatic discharge (ESD) could occur at capture, which could degrade, disrupt, damage, or destroy sensitive electronic equipment on the CEV and/or VV. Analytical and numerical models of the CEV are simulated to predict the worst-case potential difference between the CEV and the VV when the CEV is unbiased (solar panels unlit: eclipsed in the dark and inactive) or biased (solar panels sunlit: in the light and active).

  17. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  18. Timeline as Unifying Concept for Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Reinholtz, Kirk

    2012-01-01

    The notion of Timeline has been used informally in spacecraft operations software for some time, but it has not heretofore been formalized and unified either syntactically or semantically. We have formalized and unified the Timeline so that the commonality can be exploited to reduce the cost of developing and using spacecraft operations software. The Timeline can then be used as the common data structure for storage and communications between spacecraft planning and operations software elements.

  19. Spacecraft electronics design for radiation tolerance

    SciTech Connect

    Rasmussen, R.D.

    1988-11-01

    Spacecraft electronics design for radiation tolerance is a complex subject, involving a detailed understanding of environment, component hardening, and design susceptibility. This paper describes current design practices and discusses future trends in spacecraft electronics which are likely to alter traditional approaches. A summary of radiation effects and radiation tolerance requirements typically levied on spacecraft designs is provided. Methods of dealing with radiation are then described, followed with testability issues.

  20. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  1. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  2. 1997 Spacecraft Contamination and Coatings Workshop

    NASA Technical Reports Server (NTRS)

    Chen, Philip T. (Compiler); Benner, Steve M. (Compiler)

    1997-01-01

    This volume contains the presentation charts of talks given at the "1997 Spacecraft Contamination and Coatings Workshop," held July 9-10, 1997, in Annapolis, Maryland. The workshop was attended by representatives from NASA, Jet Propulsion Laboratory, Department of Defense, industry, and universities concerned with the the spacecraft contamination engineering and thermal control coatings. The workshop provided a forum for exchanging new developments in spacecraft contamination and coatings.

  3. ISIS-B spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Boyle, J. C.

    1972-01-01

    Magnetic tests of the ISIS B spacecraft were conducted to determine the various magnetic moments of the spacecraft, evalute its spin and attitude control systems, and calibrate the six onboard magnetometer probes. Test procedures and equipment are described. Techniques for evaluting the data are discussed, and test results are presented. The spacecraft's magnetic characteristics were found to be satisfactory. Proper threshold values for gating the torquing coils were obtained. The onboard magnetometers were satisfactorily calibrated.

  4. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  5. A spacecraft for the Earth observing system

    NASA Astrophysics Data System (ADS)

    Taylor, Raynor L.; Bordi, Francesco

    1995-04-01

    The space segment of NASA's Earth observing system (EOS) includes three series of intermediate-sized spacecraft, plus two smaller spacecraft. The EOS-AM spacecraft is the first of the intermediate-sized spacecraft. EOS-AM accommodates sensors that measure cloud and aerosol radiative properties, and that provide data to study the water and energy cycles. Scheduled for launch in the late 1990s, the EOS-AM spacecraft is designed for a 5-year mission. The spacecraft will be launched from the Western Space and Missile Center (California) into a polar, Sun-synchronous, low-Earth orbit with a 16-day repeat cycle. In its flight configuration, the spacecraft is almost 20 ft long (including instruments mounted at the fore end of the spacecraft) and 6 ft wide (in its widest dimension), has a mass of about 13,000 Ibs and uses about 3000 W of electrical power. The spacecraft is compatible with the Atlas IIAS launch vehicle. EOS-AM has on-board storage for at least two orbits of science data. These data will be transmitted to the ground via the tracking and data relay satellite system (using data structures and protocols in compliance with the recommendations of the Consultative Committee for Space Data Systems). A direct downlink system to support distributed users will also be available.

  6. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  7. Whole-spacecraft shock isolation system

    NASA Astrophysics Data System (ADS)

    Johnson, Conor D.; Wilke, Paul S.

    2002-06-01

    Spacecraft are subjected to shock loads in the several thousands of g's level during their trip to orbit. These high shock loads usually result from some separation event, such as staging, spacecraft separation, and fairing separation. Shock loads are very detrimental to spacecraft components, instruments and electronics. A new type of shock isolation system is discussed. This shock system, referred to as the SoftRide ShockRing, is a whole-spacecraft isolation system, i.e., it shock isolates the complete spacecraft from the launch vehicle. Seven whole-spacecraft vibration isolation systems (SoftRide) have flown to date and flight data confirms large reductions of the dynamic loads on the spacecraft. The standard SoftRide system is a lower frequency isolation system than the ShockRing, vibration isolating the spacecraft starting in the approximately 25 Hz range. The ShockRing is targeted at shock loads and is set to isolate above approximately 75 Hz. Component tests have been performed on the ShockRing using a specially built pneumatic gun that can generate 10,000 g's on the test article. Results from these tests demonstrate substantial reductions of the shock being transmitted to the payload. Results from a system test consisting of a spacecraft simulator, payload attachment fittings, avionics section, and shock plate are discussed. In the system tests, pyrotechnic devices were used to obtain the high levels of shock for the tests.

  8. Outer planet spacecraft temperature testing and analysis

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Avila, A.

    2002-01-01

    Unmanned spacecraft flown on missions to the outer planets of the solar system have included flybys, planetary orbiters, and atmospheric probes during the last three decades. The thermal design, test, and analysis approach applied to these spacecraft evolved from the passive thermal designs applied to the earlier lunar and interplanetary spacecraft. The inflight temperature data from representative sets of engineering subsystems and science instruments from a subset of these spacecraft are compared to those obtained during the ground test programs and from the prelaunch predictions. Several lessons are presented with specific recommendations for considerations for new projects to aid in the planning of cost effective temperature design, test, and analysis programs.

  9. Ion thruster plume effects on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Kuo, Y. S.

    1981-01-01

    A charge-exchange plasma, generated by an ion thruster, is capable of flowing upstream from the ion thruster and therefore represents a source of contamination to a spacecraft. An analytical model of the charge-exchange plasma density around a spacecraft was used to estimate the contamination which various spacecraft materials may be exposed to. Measurements of plasma density around an ion thruster were compared to this model. Results of experimental studied regarding the effects on various spacecraft materials' properties due to exposure to expected mercury contamination levels are presented.

  10. General Methodology for Designing Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.

    2012-01-01

    A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.

  11. Ulysses spacecraft control and monitoring system

    NASA Technical Reports Server (NTRS)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  12. Galileo spacecraft system level environmental test results

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Schlue, J. W.

    1986-01-01

    Project Galileo, the United States' next planetary mission, will be launched by the Shuttle/Centaur in May 1986. The Galileo spacecraft consists of both a planetary Orbiter and an atmospheric Probe. The spacecraft was environmentally tested as a system in the fall and winter of 1984/1985 at the Jet Propulsion Laboratory. The protoflight qualification program consisted of vibration, acoustics, pyrotechnic shock, Electromagnetic Compatibility (EMC) and Solar Thermal Vacuum (STV) tests. This test program was accomplished on a large, complex, dual-spin spacecraft without the benefit of precursor spacecraft prototype tests. This paper discusses the objectives of these tests and the implementation, and summarizes the results.

  13. Formation Flying Spacecraft Concept for Heliophysics Applications

    NASA Astrophysics Data System (ADS)

    Novo-Gradac, Anne-Marie; Davila, Joseph; Yang, Guangning; Lu, Wei; Shah, Neerav; Li, Steven X.

    2016-05-01

    A number of space-based heliophysics instruments would benefit from formation flying spacecraft. An occulter or a focusing optic such as a photon sieve could be mounted on a separate spacecraft rather than at the end of a boom. This would enable science measurements to be made on smaller, less expensive spacecraft. To accomplish this goal, the relative position of the spacecraft must be monitored and controlled to high precision. We describe two separate optical sensing systems that monitor relative position of the spacecraft to the level required for a photon sieve mission concept wherein the photon sieve is mounted on one spacecraft while the imaging detector is mounted on another. The first system employs a novel time of flight measurement of a laser beam that includes imbedded optical data packets. The contents of the returning data packet can be compared to the departing data packet to provide an extremely high resolution distance measurement. Employing three such systems allows measurement of pitch and yaw in addition to longitudinal separation. The second optical system monitors lateral motion. A mildy divergent laser beam is transmitted from one spacecraft to a sensor array on the second spacecraft. Monitoring the position of the brightest portion of the beam on the sensor array provides a direct measurement of lateral relative motion. Employing at least two such systems enables monitoring roll of the spacecraft as well as centration. We will also discuss low force thruster systems required for high precision station keeping.

  14. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 1: Experimental description and performance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; Jenkins, Jon M.; Austin, Richard S.; Asmar, Sami W.; Lyons, Daniel T.; Seale, Eric H.; Tyler, G. Leonard

    1994-01-01

    While primarily designed for radar studies of the Venus surface, the high effective isotropic radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for use in radio occultation measurements of the refractivity and absorptivity of the Venus atmosphere. Such experiments have been conducted involving transmissions at 2.3 GHz and 8.4 GHz (13 cm and 3.6 cm, respectively), during spacecraft ingress. Since the stability of the spacecraft transmitter is critical for accurately determining the Doppler shift and amplitude attenuation created as the ray penetrates the atmosphere, the spacecraft transmitter was locked to a 2.1 GHz uplink from a 70-meter DSN station which also received the signals. Because of the high directivity of the spacecraft antenna, and the significant ray bending in the deep Venus atmosphere, a spacecraft tracking maneuver was designed to keep the spacecraft antenna pointed in the direction of the refracted ray path back to Earth. This tracking maneuver, plus the high EIRP of the Magellan transmitter has yielded 3.6 cm refractivity and absorptivity profiles down to the 35 km altitude and 13 cm profiles down to the altitude of critical refraction (approximately 33 km). The statistical uncertainties in the derived profiles are significantly lower than those previously obtained, resulting in extremely accurate profiles of H2SO4 (g) abundance as discussed in an accompanying paper.

  15. Spacecraft Water Exposure Guidelines (SWEGs)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  16. Rosetta spacecraft meets asteroid Steins

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Steins is Rosetta’s first nominal scientific target. The spacecraft will rendezvous with the asteroid in the course of its first incursion into the asteroid belt located between the orbits of Mars and Jupiter, while on its way to comet 67/P Churyumov-Gerasimenko. The study of asteroids is extremely important as they represent a sample of Solar System material at different stages of evolution - key to understanding the origin of our own planet and of our planetary neighbourhood. The closest approach to Steins is due to take place on 5 September at 20:58 CEST (Central European Summer Time), from a distance of 800 km, during which the spacecraft will not be communicating with Earth. First ground contact with the spacecraft and announcement of successful fly-by will take place at 22:23 CEST. The first data and images collected by Rosetta will be sent to Earth throughout the night of 5 to 6 September and will undergo preliminary processing in the morning of 6 September. The first images will be made available for broadcasters via a special satellite feed on Saturday 6 September (details will be given on http://television.esa.int). To register for the events, please use the attached form. The press conference on 6 September will also be streamed on the ESA web: at http://www.esa.int/rosetta. Rosetta Steins Fly-By Doors open to the media 5 September 2008, 18:00, Building K ESA-ESOC Robert-Bosch Strasse 5, 64293 Darmstadt, Germany 18:00 - Doors open 18:00 - 19:00 Interview opportunities 19:00 - 20:15 Buffet dinner 20:15 - 20:30 The Steins Fly-By, Introduction by Paolo Ferri, Head of Solar and Planetary Missions Division (Mission Operations Dept.), ESA The crucial role of Flight Dynamics, by Trevor Morley, Rosetta Flight Dynamics Team, ESA 20:30 - 21:00 Live from Rosetta’s control room (loss of telemetry signal at 20:47) 22:23 - First telemetry on ground: signal of successful fly-by 23:00 - End of event Rosetta Steins Fly-By Press Conference 6 September 2008, 12

  17. Redundancy approaches in spacecraft computers

    NASA Astrophysics Data System (ADS)

    Schonfeld, Chaim

    Twelve redundancy techniques for spacecraft computers are analyzed. The redundancy schemes include: a single unit; two active units; triple modular redundancy; NMR; a single unit with one and two spares; two units with one, two, and three spares; triple units with one and two spares; and a single unit with a spare per module; the basic properties of these schemes are described. The reliability of each scheme is evaluated as a function of the reliability of a single unit. The redundancy schemes are compared in terms of reliability, the number of failures the system can tolerate, coverage, recovery time, and mean time between failure improvement. The error detection and recovery systems and the random access memory redundancy of the schemes are examined. The data reveal that the single unit with a spare per module is the most effective redundancy approach; a description of the scheme is provided.

  18. Thermal insulating coating for spacecrafts

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor)

    2005-01-01

    To protect spacecraft and their contents from excessive heat thermal protection systems are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100? F. The coating composition includes a phase change material.

  19. Thermal Insulating Coating for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor)

    2005-01-01

    To protect spacecraft and their contents from excessive heat thermal protection system are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100 F. The coating composition includes a phase change material.

  20. Investigation of crew motion disturbances on Skylab-Experiment T-013. [for future manned spacecraft design

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1974-01-01

    Astronaut crew motions can produce some of the largest disturbances acting on a manned spacecraft which can affect vehicle attitude and pointing. Skylab Experiment T-013 was developed to investigate the magnitude and effects of some of these disturbances on the Skylab spacecraft. The methods and techniques used to carry out this experiment are discussed, and preliminary results of data analysis presented. Initial findings indicate that forces on the order of 300 N were exerted during vigorous soaring activities, and that certain experiment activities produced spacecraft angular rate excursions 0.03 to 0.07 deg/sec. Results of Experiment T-013 will be incorporated into mathematical models of crew-motion disturbances, and are expected to be of significant aid in the sizing, design, and analysis of stabilization and control systems for future manned spacecraft.

  1. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  2. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  3. Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Huo, Wei

    2015-11-01

    This paper provides a solution for the position tracking and attitude synchronization problem of the close proximity phase in spacecraft rendezvous and docking. The chaser spacecraft must be driven to a certain fixed position along the docking port direction of the target spacecraft, while the attitude of the two spacecraft must be synchronized for subsequent docking operations. The kinematics and dynamics for relative position and relative attitude are modeled considering dynamic coupling, parametric uncertainties and external disturbances. The relative motion model has a new form with a novel definition of the unknown parameters. An original robust adaptive control method is developed for the concerned problem, and a proof of the asymptotic stability is given for the six degrees of freedom closed-loop system. A numerical example is displayed in simulation to verify the theoretical results.

  4. Dynamic analysis of a flexible spacecraft with rotating components. Volume 1: Analytical developments

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, A. D.; Park, A. C.

    1975-01-01

    Analytical procedures and digital computer code are presented for the dynamic analysis of a flexible spacecraft with rotating components. Topics, considered include: (1) nonlinear response in the time domain, and (2) linear response in the frequency domain. The spacecraft is assumed to consist of an assembly of connected rigid or flexible subassemblies. The total system is not restricted to a topological connection arrangement and may be acting under the influence of passive or active control systems and external environments. The analytics and associated digital code provide the user with the capability to establish spacecraft system nonlinear total response for specified initial conditions, linear perturbation response about a calculated or specified nominal motion, general frequency response and graphical display, and spacecraft system stability analysis.

  5. Design and testing of magnetic controllers for Satellite stabilization

    NASA Astrophysics Data System (ADS)

    Guelman, M.; Waller, R.; Shiryaev, A.; Psiaki, M.

    2005-01-01

    A study was carried out of attitude control algorithms that are able to provide 3-axis stabilization of a satellite equipped with a magnetometer as the only sensor, and magnetic torquers as the only actuators. Two different solutions to the problem were developed, namely Linear Quadratic Regulator and No Wheel controllers. Their aptitude to achieve the required performance was confirmed by multiple numerical simulations under different initial conditions and various scenarios. The new algorithms were tested onboard the Israeli Gurwin-TechSAT micro-satellite, nominally momentum-biased, stabilized within 2- 2.5∘ precision by the proportion-plus-derivative magnetic controller. In the flight tests of the new controllers, some valuable results were obtained, such as revealing the possibility to effectively maintain the satellite 3-axis stabilization even with a very small momentum bias, and the implementation and efficient performance of the properly modified extended and linear Kalman filters in the onboard computer.

  6. Differential-drag-based roto-translational control for propellant-less spacecraft

    NASA Astrophysics Data System (ADS)

    Pastorelli, Mirko; Bevilacqua, Riccardo; Pastorelli, Stefano

    2015-09-01

    This paper proposes a novel technique to perform propellant-free chaser-target spacecraft relative maneuvers while simultaneously stabilizing the chaser's attitude with respect to the local vertical local horizontal coordinate system centered at its body center of mass. The control forces required for relative maneuvers at low Earth orbits can be generated by varying the relative aerodynamic drag via maneuverable sails placed in the back-end of the spacecraft. At the same time, aerodynamic torques resulting from the displacement of the centers of pressure of the sails can stabilize the orientation of the spacecraft. In this work, the target vehicle is assumed to maneuver an identical sail in a cooperative fashion and will be centered and attitude-stabilized in its local vertical local horizontal coordinate system. The proposed approach is based on the idea of virtual thrusters, emulating the sail's center of pressure offset in the controller. Several test cases are presented for various existing spacecraft, demonstrating successful propellant-less roto-translational control of the chaser spacecraft.

  7. Stable adaptive neurocontrollers for spacecraft and space robots

    NASA Technical Reports Server (NTRS)

    Sanner, Robert M.

    1995-01-01

    This paper reviews recently developed techniques of adaptive nonlinear control using neural networks, and demonstrates their application to two important practical problems in orbital operations. An adaptive neurocontroller is first developed for spacecraft attitude control applications, and then the same design, slightly modified, is shown to be effective in the control of free-floating orbital manipulators. The algorithms discussed have guaranteed stability and convergence properties, and thus constitute viable alternatives to existing control methodologies. Simulation results are presented demonstrating the performance of each algorithm with representative dynamic models.

  8. Theoretical analysis of infrared radiation shields of spacecraft

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.

    1984-01-01

    For a system of N diffuse, gray body radiation shields which view only adjacent surfaces and space, the net radiation method for enclosures has been used to formulate a system of linear, nonhomogeneous equations in terms of the temperatures to the fourth power of each surface in the coupled system of enclosures. The coefficients of the unknown temperatures in the system of equations are expressed in terms of configuration factors between adjacent surfaces and the emissivities. As an application, a system of four conical radiation shields for a spin stabilized STARPROBE spacecraft has been designed and analyzed with respect to variations of the cone half angles, the intershield spacings, and emissivities.

  9. Microbiological profiles of four Apollo spacecraft

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Oxborrow, G. S.; Fields, N. D.; Herring, C. M.; Smith, L. S.

    1973-01-01

    The levels and types of microorganisms on various components of four Apollo spacecraft were determined and compared. Although the results showed that the majority of microorganisms isolated were those considered to be indigenous to humans, an increase in organisms associated with soil and dust was noted with each successive Apollo spacecraft.

  10. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  11. Wet oxidation of a spacecraft model waste

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T.

    1985-01-01

    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  12. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  13. Predicting Roll Angle Of A Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Dyer, J. W.

    1988-01-01

    Data for corrections of attitude derived on Earth from secondary measurements. Paper describes how attitude of Pioneer 10 spacecraft controlled since spacecraft lost signal from Sun-sensor signal. Roll calculations in paper yields insight into environment of solar system at great distances.

  14. Acquisition Tracking and Pointing Control of the Bifocal Relay Mirror Spacecraft

    NASA Astrophysics Data System (ADS)

    Romano, Marcello; Agrawal, Brij N.

    been carried out and are presented in this paper. The first experiment consisted on the stabilization of the spacecraft simulator around a certain attitude while the laser beam connection was maintained between the source and a moving point. The second experiment consisted in the slewing of the spacecraft simulator along a reference trajectory. The experiments demonstrated the feasibility of some of the control laws for the system.

  15. Attitude stability analyses for small artificial satellites

    NASA Astrophysics Data System (ADS)

    Silva, W. R.; Zanardi, M. C.; Formiga, J. K. S.; Cabette, R. E. S.; Stuchi, T. J.

    2013-10-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude.

  16. Analytical solutions to optimal underactuated spacecraft formation reconfiguration

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-11-01

    Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.

  17. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  18. Optimization and Testing of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, Richard J.

    2001-01-01

    This is the final report discussing work done for the Space Environmental Effects (SEE) program in the Materials and Processes Laboratory, on electrically conductive thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude lower electrical resistivity than most available thermal control coatings. Extensive research has taken place over the last few years to develop a variety of spacecraft coatings with the unique property of being able to conduct surface charge to a substrate or grounding system. The ability to conduct surface charge to a safe point, while maintaining optical properties and performance, is highly advantageous in maintaining operational space based systems. Without this mechanism the surface of a spacecraft can accumulate charge to the point that a catastrophic electrical breakdown can occur, resulting in damage to or failure of the spacecraft. Ultimately, use of this type of coating will help mitigate many of the concerns that NASA and the space industry still have for their space based systems. The unique coatings studied here fall into two specific categories: 1) broadband absorber and 2) selective absorber. These coatings have controllable solar absorptance and electrical surface resistivity values over the designated ranges. These coatings were developed under an SBIR program which focused on the development of such constituents and coatings. This project focused on simulated space environmental effects testing with the intent of using this data to help optimize the stability and initial properties of these coatings.

  19. Spacecraft Power Source Installation at Launch Complex

    NASA Technical Reports Server (NTRS)

    Lytal, Paul; Hoffman, Pamela

    2010-01-01

    For certain space missions, an assembly must be integrated onto the spacecraft as late as possible in the launch vehicle processing flow. 12This late integration can be driven for a variety of reasons including thermal or hazardous materials constraints. This paper discusses the process of integrating an assembly onto a spacecraft as late as one week prior to the opening of the launch window. Consideration is given to achieving sufficient access for hardware integration, methods of remotely securing hardware to the spacecraft, maintaining spacecraft cleanliness throughout the integration process, and electrically integrating the component to the spacecraft. Specific examples are taken from the remote mechanical, electrical, and fluid cooling system integration of the power source onto the Mars Science Laboratory (MSL) Rover at the Atlas V Vertical Integration Facility (VIF) at Cape Canaveral Air Force Station, Florida.

  20. Spacecraft command and control using expert systems

    NASA Technical Reports Server (NTRS)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  1. Interactions between spacecraft and their environments

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1993-01-01

    Spacecraft inevitably interact with their environments. Besides the interactions one immediately thinks of in space (zero-g, solar heating, atmospheric drag, expansion into vacuum conditions, etc.) other interactions are also important. Those of interest to spacecraft designers so far may be grouped under several headings; plasma interactions and spacecraft charging, impact of debris and micrometeoroids, chemical reactions with neutral species, radiation degradation, etc. Researchers have made great progress in defining and evaluating the interactions of spacecraft with their expected ambient environments near Earth and in interplanetary space. Some of these interactions are discussed with an eye toward expanding our knowledge into new environments, such as may be found at the moon and Mars, that will interact in new and different ways with exploring spacecraft and spacefarers.

  2. Spacecraft Dynamics and Control Program at AFRPL

    NASA Technical Reports Server (NTRS)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  3. Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.

    1981-01-01

    Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.

  4. Improving Spacecraft Data Visualization Using Splunk

    NASA Technical Reports Server (NTRS)

    Conte, Matthew

    2012-01-01

    EPOXI, like all spacecraft missions, receives large volumes of telemetry data from its spacecraft, DIF. It is extremely important for this data to be updated quickly and presented in a readable manner so that the flight team can monitor the status of the spacecraft. Existing DMD pages for monitoring spacecraft telemetry, while functional, are limited and do not take advantage of modern search technology. For instance, they only display current data points from instruments on the spacecraft and have limited graphing capabilities, making it difficult to see historical data. The DMD pages have fixed refresh rates so the team must often wait several minutes to see the most recent data, even after it is received on the ground. The pages are also rigid and require an investment of time and money to update. To more easily organize and visualize spacecraft telemetry, the EPOXI team has begun experimenting with Splunk, a commercially-available data mining system. Splunk can take data received from the spacecraft's different data channels, often in different formats, and index all the data into a common format. Splunk allows flight team members to search through the different data formats from a single interface and to filter results by time range and data field to make finding specific spacecraft events quick and easy. Furthermore, Splunk provides functions to create custom interfaces which help team members visualize the data in charts and graphs to show how the health of the spacecraft has changed over time.One of the goals of my internship with my mentor, Victor Hwang, was to develop new Splunk interfaces to replace the DMD pages and give the spacecraft team access to historical data and visualizations that were previously unavailable. The specific requirements of these pages are discussed in the next section.

  5. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  6. A Computational Investigation for Determining the Natural Frequencies and Damping Effects of Diaphragm-Implemented Spacecraft Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Lenahen, Brian; Bernier, Adrien; Gangadharan, Sathya; Sudermann, James; Marsell, Brandon

    2012-01-01

    Spin-stabilization maneuvers are typically performed by spacecraft entering low-earth orbit to maintain attitude stability. These maneuvers induce periodic fluid movement inside the spacecraft's propellant tank known as fuel slosh, which is responsible for creating forces and moments on the sidewalls of the propellant tank. These forces and moments adversely affect spin-stabilization and risk jeopardizing the mission of the spacecraft. Therefore, propellant tanks are designed with propellant management devices (PMD's) such as barnes or diaphragms which work to counteract the forces and moments associated with fuel slosh. However, despite the presence of PMD's, the threat of spin-stabilization interference still exists should the propellant tank be excited at its natural frequency. When the fluid is excited at its natural frequency, the forces and moments acting on the propellant tank are amplified and may result in destabilizing the spacecraft. Thus, a computational analysis is conducted concerning diaphragm-implemented propellant tanks excited at their natural frequencies. Using multi-disciplinary computational fluid dynamics (CFD) software, computational models are developed to reflect potential scenarios that spacecraft propellant tanks could experience. By simulating the propellant tank under a wide array of parameters and variables including fill-level, gravity and diaphragm material and shape, a better understanding is gained as to how these parameters individually and collectively affect liquid propellant tanks and ultimately, spacecraft attitude dynamics.

  7. Spacecraft capture and docking system

    NASA Technical Reports Server (NTRS)

    Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)

    2001-01-01

    A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.

  8. Inertial energy storage for spacecraft

    SciTech Connect

    Rodriguez, G.E.

    1984-09-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  9. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  10. Micro Sun Sensor for Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl; Bae, Youngsam; Schroeder, Jeffrey; Wrigley, Chris

    2004-01-01

    A report describes the development of a compact micro Sun sensor for use as a part of the attitude determination subsystem aboard future miniature spacecraft and planetary robotic vehicles. The prototype unit has a mass of only 9 g, a volume of only 4.2 cm(sup 3), a power consumption of only 30 mW, and a 120 degree field of view. The unit has demonstrated an accuracy of 1 arcminute. The unit consists of a multiple pinhole camera: A micromachined mask containing a rectangular array of microscopic pinholes, machined utilizing the microectromechanical systems (MEMS), is mounted in front of an active-pixel sensor (APS) image detector. The APS consists of a 512 x 512-pixel array, on-chip 10-bit analog to digital converter (ADC), on-chip bias generation, and on-chip timing control for self-sequencing and easy programmability. The digitized output of the APS is processed to compute the centroids of the pinhole Sun images on the APS. The Sun angle, relative to a coordinate system fixed to the sensor unit, is then computed from the positions of the centroids.

  11. Novel Material for Future Spacecrafts

    NASA Technical Reports Server (NTRS)

    Sen, Subbayu; Cothran, Ernestine

    2005-01-01

    Outside earth's protective magnetosphere crew members and sensitive equipment need to be protected against two primary radiation sources, namely Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP). For planetary missions, this combination of radiation particles could result in doses that are higher than the allowable level currently permitted for low-earth orbit manned missions. This SBIR project aims to develop a multifunctional and lightweight composite material that not only provides sufficient radiation shielding but also provides sufficient structural integrity to be considered as a spacecraft material. This presentation will discuss the deep space radiation problem and the material based solutions being proposed by BAE SYS scientists to overcome this problem. The presentation will focus on the initiative taken by BAE SYS scientists to proactively engage and team with experts at NASA, small business, and other federal laboratories to develop and test a dual phase composite material. The presentation will also highlight the potential benefits to our customer, NASA and also to BAE SYS.

  12. Adaptive Deadband Synchronization for a Spacecraft Formation

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Hadaegh, Fred; Kang, Bryan

    2007-01-01

    A paper discusses general problems in estimation and control of the states (positions, attitudes, and velocities) of spacecraft flying in formation, then addresses the particular formation-flying-control problem of synchronization of deadbands. The paper presents a deadband synchronization algorithm for the case in which the spacecraft are equipped with pulse-width-modulated thrusters for maintaining their required states. The algorithm synchronizes thruster-firing times across all six degrees of freedom of all the spacecraft. The algorithm is scalable, inherently adapts to disturbances, and does not require knowledge of spacecraft masses and disturbance forces. In this algorithm, one degree of freedom of one spacecraft is designated the leader, and all other degrees of freedom of all spacecraft as followers. The Cassini adaptive optimum deadband drift controller is the subalgorithm for control in each degree of freedom, and the adaptation is run until each spacecraft achieves a specified drift period. The adaptation is critical because a different disturbance affects each different degree of freedom. Then the leader communicates its thruster-firing starting times to the followers. Then, for each follower, a deadband-synchronization subalgorithm determines the shift needed to synchronize its drift period with that of the leader.

  13. Protecting Against Faults in JPL Spacecraft

    NASA Technical Reports Server (NTRS)

    Morgan, Paula

    2007-01-01

    A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

  14. Low power arcjet system spacecraft impacts

    NASA Astrophysics Data System (ADS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-06-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  15. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  16. Remote agent prototype for spacecraft autonomy

    NASA Astrophysics Data System (ADS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve; Gat, Erann; Muscettola, Nicola; Nayak, P. P.; Wagner, Michael D.; Williams, Brian C.

    1996-10-01

    NASA has recently announced the New Millennium Program (NMP) to develop 'faster, better, cheaper' spacecraft in order to establish a 'virtual presence' in space. A crucial element in achieving this vision is onboard spacecraft autonomy, requiring us to automate functions which have traditionally been achieved on ground by humans. These include planning activities, sequencing spacecraft actions, tracking spacecraft state, ensuring correct functioning, recovering in cases of failure and reconfiguring hardware. In response to these challenging requirements, we analyzed the spacecraft domain to determine its unique properties and developed an architecture which provided the required functionality. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration. In a five month effort we successfully demonstrated this implemented architecture in the context of an autonomous insertion of a simulated spacecraft into orbit around Saturn, trading off science and engineering goals, and achieving the mission goals in the face of any single point of hardware failure. This scenario turned out to be among the most complex handled by each of the component technologies. As a result of this success, the integrated architecture has been selected to control the first NMP flight, Deep Space One, in 1998. It will be the first AI system to autonomously control an actual spacecraft.

  17. Adaptive neural control of spacecraft using control moment gyros

    NASA Astrophysics Data System (ADS)

    Leeghim, Henzeh; Kim, Donghoon

    2015-03-01

    An adaptive control technique is applied to reorient spacecraft with uncertainty using control moment gyros. A nonlinear quaternion feedback law is chosen as a baseline controller. An additional adaptive control input supported by neural networks can estimate and eliminate unknown terms adaptively. The normalized input neural networks are considered for reliable computation of the adaptive input. To prove the stability of the closed-loop dynamics with the control law, the Lyapunov stability theory is considered. Accordingly, the proposed approach results in the uniform ultimate boundedness in tracking error. For reorientation maneuvers, control moment gyros are utilized with a well-known singularity problem described in this work investigated by predicting one-step ahead singularity index. A momentum vector recovery approach using magnetic torquers is also introduced to evaluate the avoidance strategies indirectly. Finally, the suggested methods are demonstrated by numerical simulation studies.

  18. Meteoroid-Induced Anomalies on Spacecraft

    NASA Technical Reports Server (NTRS)

    Cooke, Bill

    2015-01-01

    Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).

  19. Reactor power system/spacecraft integration

    NASA Technical Reports Server (NTRS)

    Elms, R. V.

    1985-01-01

    The new national initiative in space reactor technology evaluation and development is strongly tied to mission applications and to spacecraft and space transportation system (STS) compatibility. This paper discusses the power system integration interfaces with potential using spacecraft and the STS, and the impact of these requirements on the design. The integration areas of interest are mechanical, thermal, electrical, attitude control, and mission environments. The mission environments include space vacuum, solar input, heat sink, space radiation, weapons effects, and reactor power system radiation environments. The natural, reactor, and weapons effects radiation must be evaluated and combined to define the design requirements for spacecraft electronic equipment.

  20. The natural space environment: Effects on spacecraft

    NASA Technical Reports Server (NTRS)

    James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)

    1994-01-01

    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.

  1. Embedded spacecraft thermal control using ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Clements, Jared W.

    Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.

  2. Foot Pedals for Spacecraft Manual Control

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  3. Galileo spacecraft modeling for orbital operations

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Bruce A.; Nilsen, Erik N.

    1994-01-01

    The Galileo Jupiter orbital mission using the Low Gain Antenna (LGA) requires a higher degree of spacecraft state knowledge than was originally anticipated. Key elements of the revised design include onboard buffering of science and engineering data and extensive processing of data prior to downlink. In order to prevent loss of data resulting from overflow of the buffers and to allow efficient use of the spacecraft resources, ground based models of the spacecraft processes will be implemented. These models will be integral tools in the development of satellite encounter sequences and the cruise/playback sequences where recorded data is retrieved.

  4. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  5. Optimal spacecraft formation establishment and reconfiguration propelled by the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2014-12-01

    The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.

  6. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  7. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  8. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  9. Reply to a paper on the use of two magnetometers for magnetic field measurements on a spacecraft

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Neubauer, F. M.; Schatten, K. H.

    1972-01-01

    The use of two magnetometers for measuring the ambient magnetic field of spacecraft is compared with the single magnetometer variance method. It is shown that the dual magnetometer concept was developed for missions which are conducted with attitude stabilized spacecraft which have been constructed without an adequate magnetics control program. Specific methods for applying the dual magnetometer technique are described and an error analysis is conducted to determine the accuracy of the results.

  10. Maneuver Design and Calibration for the Genesis Spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, Kenneth E.; Hong, Philip E.; Zietz, Richard P.; Han, Don

    2000-01-01

    Genesis is the fifth mission selected as part of NASA's Discovery Program. The objective of Genesis is to collect solar wind samples for a period of approximately two years while in a halo orbit about the Earth-Sun L I point. At the end of this period, the samples are to be returned to a specific recovery point on the Earth for subsequent analysis. This goal has never been attempted before and presents a formidable challenge in terms of mission design and operations, particularly planning and execution of propulsive maneuvers. To achieve a level of cost-effectiveness consistent with a Discovery-class mission, the Genesis spacecraft design was adapted to the maximum extent possible from designs used on earlier missions, such as Mars Global Surveyor (MGS) and Stardust, another sample collection mission. The spacecraft design for Genesis is shown. Spin stabilization was chosen for attitude control, in lieu of three-axis stabilization, with neither reaction wheels nor accelerometers included. This precludes closed-loop control of propulsive maneuvers and implies that any attitude changes, including spin changes and precessions, will behave like translational propulsive maneuvers and affect the spacecraft trajectory. Moreover, to minimize contamination risk to the samples collected, all thrusters were placed on the side opposite the sample collection canister. The orientation and characteristics of thrusters are indicated. For large maneuvers (>2.5 m/s), two 5 lbf thrusters will be used for delta v, with precession to the burn attitude, followed by spin-up from 1.6 to 10 rpm before the burn and spin down to 1.6 rpm afterwards, then precession back to the original spin attitude. For small maneuvers (<2.5 m/s), no spin change is needed and four 0.2 lbf thrusters are used for Av. Single or double 360 deg. precession changes are required whenever the desired delta v falls inside the two-way turn circle (about 0.4 m/s) based on the mass properties, spin rate and lever arm

  11. NASA's Orion Spacecraft Undergoes Water Landing Test

    NASA Video Gallery

    On August 25, 2016, the Orion spacecraft underwent a water drop test at the Hydro Impact Basin at NASA's Langley Research Center in Hampton, Virginia. Join host Eric Gillard, of NASA Langley, and g...

  12. Aerothermodynamics of the Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    Shane, Russell W.; Tolson, Robert H.

    1998-01-01

    The aerothermodynamics characteristics of the Mars Global Surveyor spacecraft are investigated and reported. These results have been used by the Mars Global Surveyor mission planners to design the aerobraking phase of the mission. Analytical and Direct Simulation Monte Carlo computer codes were used with a detailed, three dimensional model of the spacecraft to evaluate spacecraft aerobraking characteristics for flight in free molecular and transitional flow regimes. The spacecraft is found to be aerodynamically stable in aerobraking and planned contingency configurations. Aerodynamic forces, moments, and heating are found to be highly dependent on atmospheric density. Accommodation coefficient. is seen to strongly influence drag coefficient. Transitional flow effects are found to reduce overall solar panel heating. Attitude control thruster plumes are shown to interact with the freestream, diminishing the effectiveness of the attitude control system and even leading to thrust reversal. These plume-freestream interaction effects are found to be highly dependent on freestream density.

  13. Launch of the MR-2 spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Launching of the Mercury-Redstone 2 (MR-3) spacecraft from Cape Canaveral on a suborbital mission. Onboard the craft was Ham, a 37-pound chimpanzee. Despite an over-acceleration factor, the flight was considered to be successful.

  14. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  15. Scattered Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.

  16. Spacecraft Multiple Array Communication System Performance Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. NASA Team Captures Hayabusa Spacecraft Reentry

    NASA Video Gallery

    A group of astronomers from NASA, the Japan Aerospace Exploration Agency (JAXA) and other organizations had a front row seat to observe the Hayabusa spacecraft's fiery plunge into Earth's atmospher...

  18. Low gravity liquid motions in spacecraft

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.

    1987-01-01

    Low gravity liquid motions in a spacecraft are discussed in outline form and on viewgraphs. Free-surface sloshing, liquid draining, liquid reorientation, and sloshing in a bladdered tank are covered. Conclusions and recommendations are given.

  19. A stochastic bioburden model for spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Roark, A. L.

    1972-01-01

    Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.

  20. A DSN optimal spacecraft scheduling model

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1982-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.

  1. Cycle life test. [of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Statistical information concerning cell performance characteristics and limitations of secondary spacecraft cells is presented. Weaknesses in cell design as well as battery weaknesses encountered in various satellite programs are reported. Emphasis is placed on improving the reliability of space batteries.

  2. Spacecraft Magnetic Cleanliness Prediction and Control

    NASA Astrophysics Data System (ADS)

    Weikert, S.; Mehlem, K.; Wiegand, A.

    2012-05-01

    The paper describes a sophisticated and realistic control and prediction method for the magnetic cleanliness of spacecraft, covering all phases of a project till the final system test. From the first establishment of the so-called magnetic moment allocation list the necessary boom length can be determined. The list is then continuously updated by real unit test results with the goal to ensure that the magnetic cleanliness budget is not exceeded at a given probability level. A complete example is described. The synthetic spacecraft modeling which predicts only quite late the final magnetic state of the spacecraft is also described. Finally, the most important cleanliness verification, the spacecraft system test, is described shortly with an example. The emphasis of the paper is put on the magnetic dipole moment allocation method.

  3. Industry perspectives on Plug-& -Play Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  4. New methods of determining spacecraft attitude

    NASA Technical Reports Server (NTRS)

    Pitts, R.; Jackson, T.; Gilmozzi, R.

    1990-01-01

    The IUE spacecraft was launched with prime and redundant mechanical Panoramic Attitude Sensors (PAS) to determine coarse spacecraft pointing. Attitude determination typically took at least 24 hours. After launch both systems failed. A new method was developed which required pointing the spacecraft at the antisolar position. After the failure of the 4th IUE gyro, it was no longer possible to point in the antisolar direction. A second method was developed which utilizes IUE's ability to track the sun with a solid state two-dimensional sun sensor. Attitude determination can now be completed in several hours. An hour is required for coarse position measurement and several more hours are needed, using a small 15 arc minute square finder camera, for final attitude confirmation. These methods should be of use for other spacecraft where weight is critical or there is a desire to avoid mechanical devices.

  5. Electrostatic charging of spacecraft in geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Sims, Andrew J.

    1992-12-01

    This Memorandum is a study of the spacecraft charging phenomenon applicable to satellites in geosynchronous orbit. Differential charging of spacecraft surfaces can induce electrostatic discharges which may manifest themselves as 'operational anomalies' or permanent damage to surface features such as solar cells and thermal control surfaces. Understanding of the problem is achieved via laboratory experiments, analysis of data from spacecraft instrumentation, and by numerical simulation. Long-term statistical studies are presented for the location of plasma boundaries at geostationary altitude and for the occurrence frequency and intensity of geomagnetic substorms which permit the probability of severe charging conditions to be predicted for future missions. Laboratory experiments are used to demonstrate the importance of bulk and surface conductivity of dielectric materials to the charging process and a sensitivity analysis is employed to investigate the detailed interaction between the plasma environment and spacecraft surface materials. Finally, a study and simulation of charging events observed in geosynchronous orbit is presented.

  6. Soyuz TMA-05M Spacecraft Mating

    NASA Video Gallery

    The Soyuz TMA-05M spacecraft and booster are seen at the Integration Facility at the Baikonur Cosmodrome in Kazakhstan July 11, 2012 during the mating of the upper stages of the vehicle to the firs...

  7. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    NASA Technical Reports Server (NTRS)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  8. Fire behavior and risk analysis in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.

    1988-01-01

    Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.

  9. December 2008 CME as Viewed by Spacecraft

    NASA Video Gallery

    Newly reprocessed images from NASA's STEREO-A spacecraft, allow scientists to trace the anatomy of the December 2008 CME as it moves and changes on its journey from the Sun to the Earth, identify t...

  10. Effects Of Environmental Electrical Charges On Spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1993-01-01

    Handbook presents information on three kinds of disruptive effects of environmental electrical charges upon operations of electronic circuits and other sensitive equipment in spacecraft. Addresses surface and internal charging and discharging, single-event upsets, and related design issues.

  11. Spacecraft exploration of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas C.; Zakharov, Alexander V.; Hoffmann, Harald; Guinness, Edward A.

    2014-11-01

    We review the previous exploration of Phobos and Deimos by spacecraft. The first close-up images of Phobos and Deimos were obtained by the Mariner 9 spacecraft in 1971, followed by much image data from the two Viking orbiters at the end of the 70s, which formed the basis for early Phobos and Deimos shape and dynamic models. The Soviet Phobos 2 spacecraft came within 100 km of landing on Phobos in 1988. Mars Global Surveyor (1996-2006) and Mars Reconnaissance Orbiter (since 2005) made close-up observations of Phobos on several occasions. Mars Express (since 2003) in its highly elliptical orbit is currently the only spacecraft to make regular Phobos encounters and has returned large volumes of science data for this satellite. Landers and rovers on the ground (Viking Landers, Mars Pathfinder, MER rovers, MSL rover) frequently made observations of Phobos, Deimos and their transits across the solar disk.

  12. Failure Modes Experienced on Spacecraft Nicd Batteries

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1985-01-01

    A review was made of failures and irregularities experienced on nickel cadmium batteries for 31 spacecraft. Only rarely did batteries fail completely. In many cases, poorly performing batteries were compensated for by a reduction in loads or by continuing to operate in spite of out-of-voltage conditions. Low discharge voltage was the most common problem observed in flight spacecraft (42%). Spacecraft batteries are often designed to protect against cell shorts, but cell shorts accounted for only 16% of the failures. Other causes of problems were high charge voltage (16%), battery problems caused by other elements of the spacecraft (10%), and open circuit failures (6%). Problems of miscellaneous or unknown causes occurred in 10% of the cases.

  13. CCD sensors for spacecraft optical navigation

    NASA Technical Reports Server (NTRS)

    Eisenman, A. R.; Alexander, J. W.; Stanton, R. H.

    1979-01-01

    The optical navigation process uses spaceborne measurements of the apparent direction vector from the spacecraft to a target body, (planet, satellite, star, etc.) to improve estimates of the spacecraft trajectory. Ground-based controllers assimilate the optical measurements, together with spacecraft radio-tracking data and target ephemeris data, to generate a best estimate of the trajectory relative to the target. The present paper deals with a development program supporting the use of (solid state) CCD (Charged Coupled Device) imagers for spacecraft navigation. It is shown that stars can be detected that are two to three magnitudes fainter than with an equivalent vidicon based instrument, that effects of global response nonuniformity and dark current spikes can be essentially eliminated from the data as a result of the reproducibility of both effects, and that charge trailing during readout of star image data can lead to position measurement errors.

  14. Trends in environmentally induced spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Wilkinson, Daniel C.

    1989-01-01

    The Spacecraft Anomaly Data Base was useful in identifying trends in anomaly occurrence. Trends alone do not provide quantitative testimony to a spacecraft's reliability, but they do indicate areas that command closer study. An in-depth analysis of a specific anomaly can be expensive and difficult without access to the spacecraft. Statistically verified anomaly trends can provide a good reference point to begin anomaly analysis. Many spacecraft experience an increase in anomalies during the period of several days centered on the solar equinox, a period that is also correlated with sun eclipse at geostationary altitude and an increase in major geomagnetic storms. Increase anomaly occurrence can also be seen during the local time interval between midnight and dawn. This local time interval represents a region in Earth's near space that experiences an enhancement in electron plasma density due to a migration from the magnetotail during or following a geomagnetic substorm.

  15. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  16. Last Flight for GRAIL's Twin Spacecraft

    NASA Video Gallery

    This animation shows the final flight path for NASA’s twin GravityRecovery and Interior Laboratory (GRAIL) mission spacecraft, which willimpact the moon on Dec. 17, 2012, around 2:28 p.m. PST. ...

  17. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  18. Standard user data services for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Smith, J. F.; Hwang, C.; Fowell, S.; Plummer, C.

    2003-01-01

    The Consultative Committee for Space Data Systems is an international organization of national space agencies that is branching out to provide new standards to enhanced reuse of spacecraft equiptment and software. These Spacecraft Onboard Interface (SOIF) standards will be based on the well-known Internet protocols. this paper will review the SOIF standards by looking at the services that are being proposed for SOIF.

  19. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  20. Spacecraft 2000: The challenge of the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Faymon, Karl A.; Bercaw, Robert W.

    1987-01-01

    Considerable opportunity exists to improve the systems, subsystems, components, etc., included in the space station bus, the non-payload portion of the spacecraft. The steps followed to date, the challenges being faced by industry, and the progress toward establishing a new NASA initiative which will identify the technologies required to build spacecraft of the 21st century and which will implement the technology development/validation programs necessary are described.

  1. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    NASA Technical Reports Server (NTRS)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  2. Evaluation program for secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Christy, D. E.; Harkness, J. D.

    1973-01-01

    A life cycle test of secondary electric batteries for spacecraft applications was conducted. A sample number of nickel cadmium batteries were subjected to general performance tests to determine the limit of their actual capabilities. Weaknesses discovered in cell design are reported and aid in research and development efforts toward improving the reliability of spacecraft batteries. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is provided.

  3. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Astrophysics Data System (ADS)

    Bosset, M.

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  4. Lunar Scout Two spacecraft gravity experiment

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1993-01-01

    Measurement of the gravity field of the Moon has a high science priority because of its implications for the internal structure and thermal history of the Moon, and it has a high priority for future exploration activities because of the influence of lunar gravity on spacecraft navigation and orbit maintenance. The current state of knowledge in the lunar gravity field (and the uncertainty in the knowledge) is based primarily on data accumulated from the Lunar Orbiter and Apollo programs. Data are sparse and emphasize the equatorial band (+/- 30 deg) on the near side of the Moon. There are no tracking data on the far side and only the Lunar Orbiter 5 provides a small amount of high inclination data. A host of gravity models developed from different combinations of tracking data have large discrepancies in their predictions of spacecraft motion and orbit lifetimes. There are also large disagreements in the Mercator projections of the gravity acceleration from each model, especially on the far side, where the contours tend to have no obvious relationship with the local topography. The science and engineering requirements for global gravity field mapping will be satisfied with continuous radio metric tracking of Lunar Scout 1 in a low polar orbit using the Deep Space Network and Lunar Scout 2 in a high elliptical orbit. The gravity field of the Moon will be mapped during the Scout Program using a two spacecraft concept. In the two spacecraft concept, one spacecraft is placed in a high altitude eccentric orbit while the second spacecraft is in a low altitude polar orbit. The gravity experiment requires a radio frequency that will permit two-way Doppler tracking between the spacecraft and the Deep Space Network (DSN). Both spacecraft carry NASA standard transponder systems for data transmission to Earth as well as for tracking and orbit determination. Data sufficient to produce a gravity field map could be acquired within one month with this system.

  5. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  6. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  7. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  8. Radiation design considerations for advanced Jupiter spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Koprowski, E. F.

    1979-01-01

    This paper considers one aspect of the complex radiation design considerations for planetary spacecraft, namely the approach used for solving the effects of radiation on materials problems. An overview of the approach developed at JPL for Voyager, and currently being used on Galileo, is treated briefly. Examples of the postulated Jovian charged particle levels are given. The types of computer analyses codes used, the mass shielding techniques that evolved and the recommended shielding techniques for future planetary spacecraft are treated.

  9. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  10. An Evolutionary Optimization System for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fukunaga, A.; Stechert, A.

    1997-01-01

    Spacecraft design optimization is a domian that can benefit from the application of optimization algorithms such as genetic algorithms. In this paper, we describe DEVO, an evolutionary optimization system that addresses these issues and provides a tool that can be applied to a number of real-world spacecraft design applications. We describe two current applications of DEVO: physical design if a Mars Microprobe Soil Penetrator, and system configuration optimization for a Neptune Orbiter.

  11. Neutralization tests on the SERT 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Neutralization test data obtained on the SERT 2 spacecraft are presented. Tests included ion beam neutralization of a thruster by a close (normal design) neutralizer as well as by a distant (1 meter) neutralizer. Parameters affecting neutralization, such as neutralizer bias voltage, neutralizer anode voltage, local spacecraft plasma density, and solar array voltage configuration were varied and changes in plasma potentials were measured. A plasma model is presented as an approximation of observed results.

  12. Micro-Inspector Spacecraft: An Overview

    NASA Technical Reports Server (NTRS)

    Goldberg, Hannah; Mueller, Juergen; Alkalai, Leon

    2006-01-01

    JPL has developed a small(<5 kg) spacecraft capable of visual inspection of a host vehicle with support from NASA's Exploration Systems Mission Directorate (ESMD). This paper describes the multi-mission utility of the Micro-Inspector and presents an overview of the spacecraft system and subsystem designs, description of a typical inspection mission scenario, and initial hardware demonstrations of key subsystems, partially integrated with each other in a Micro-Inspector testbed at JPL.

  13. Formation of disintegration particles in spacecraft recorders

    SciTech Connect

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-11-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors.

  14. Planning the Voyager spacecraft's mission to Uranus

    NASA Technical Reports Server (NTRS)

    Plagemann, Stephen H.

    1987-01-01

    The application of the systems engineering process to the planning of the Voyager spacecraft mission is described. The Mission Planning Office prepared guidelines that controlled the use of the project and multimission resources and spacecraft consumables in order to obtain valuable scientific data at an acceptable risk level. Examples of mission planning which are concerned with the design of the Deep Space Network antenna, the uplink window for transmitting computer command subsystem loads, and the contingency and risk assessment functions are presented.

  15. Reentry analysis for low Earth orbiting spacecraft

    NASA Astrophysics Data System (ADS)

    Newman, Lauri Kraft; Folta, David C.; Ross, Brian P.; Bouslog, Stanley A.

    As a result of recent National Aeronautics and Space Administration (NASA) Management Instruction (NMI), NASA spacecraft programs must limit orbital debris by design and/or by operational procedures. To fulfill this requirement, spacecraft may be required to be removed from their operational orbit after mission completion. Spacecraft disposal by atmospheric reentry is a means to accomplish this task. To assess the risk to man, an analysis must be done to determine which parts of the spacecraft are likely to survive a reentry of the Earth's atmosphere and where those parts will land. These issues are currently being examined for the Earth Observing System (EOS-AM1). The Johnson Space Center (JSC) Aeroscience Branch, supported by the Lockheed Engineering and Sciences Co., has developed a tool which permits the analysis of the thermal effects of reentry on individual spacecraft components to determine which components are expected to survive reentry. This paper presents an examination of the burnup and reentry of EOS-AM1 and describes a method for other spacecraft to use in analyzing similar reentry issues.

  16. DMSP Spacecraft Charging in Auroral Environments

    NASA Technical Reports Server (NTRS)

    Colson, Andrew; Minow, Joseph

    2011-01-01

    The Defense Meteorological Satellite Program (DMSP) spacecraft are a series of low-earth orbit (LEO) satellites whose mission is to observe the space environment using the precipitating energetic particle spectrometer (SSJ/4-5). DMSP satellites fly in a geosynchronous orbit at approx.840 km altitude which passes through Earth s ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. For satellites in LEO, such as DMSP, the plasma density is usually high and the main contributors to the currents to the spacecraft are the precipitating auroral electrons and ions from the magnetosphere as well as the cold plasma that constitutes the ionosphere. It is important to understand how the ionosphere and auroral electrons can accumulate surface charges on satellites because spacecraft charging has been the cause of a number of significant anomalies for on-board instrumentation on high altitude spacecraft. These range from limiting the sensitivity of measurements to instrument malfunction depending on the magnitude of the potential difference over the spacecraft surface. Interactive Data Language (IDL) software was developed to process SSJ/4-5 electron and ion data and to create a spectrogram of the particles number and energy fluxes. The purpose of this study is to identify DMSP spacecraft charging events and to present a preliminary statistical analysis. Nomenclature

  17. Standardizing the information architecture for spacecraft operations

    NASA Technical Reports Server (NTRS)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  18. Compact, Precise Inertial Rotation Sensors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rosing, David; Oseas, Jeffrey; Korechoff, Robert

    2006-01-01

    A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarcseconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

  19. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  20. Radiation Effects on Spacecraft Structural Materials

    SciTech Connect

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-07-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  1. Real-Time EDL Navigation Performance Using Spacecraft to Spacecraft Radiometric Data

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Ely, Todd; Duncan, Courtney; Lightsey, Glenn; Campbell, Todd; Mogensen, Andy

    2006-01-01

    A two-year task sponsored by NASA's Mars Technology Program's Advanced Entry, Descent and Landing (EDL) work area includes investigation of improvements to EDL navigation by processing spacecraft-to-spacecraft radiometric data. Spacecraft-to-spacecraft navigation will take advantage of the UHF link between two spacecraft (i.e. to an orbiter from an approaching lander for EDL telemetry relay) to build radiometric data, specifically the velocity between the two spacecraft along the radio beam, that are processed to determine position and velocity in real time. The improved onboard state knowledge provided by spacecraft-to-spacecraft navigation will improve the performance of entry guidance by providing a more accurate state estimate and ultimately reduce the landed position error. A previous paper documented the progress of the first year of this task, including the spacecraft definitions, selection and documentation of the required algorithms and analysis results used to define the algorithm set. The final year of this task is reported here. Topics include modifications to the previously selected algorithm set for implementation, and performance of the implemented algorithms in a stand-alone filter, on an emulator of the target processor and finally on a breadboard processing unit.

  2. Unique Features of Dynamic Isotope Power Systems for High-Requirements Spacecraft

    SciTech Connect

    Raab, Bernard

    1980-08-01

    The Dynamic Isotope Power System, designed for spacecraft requiring prime power in the 500-to-2000 watt range, has been successfully built and ground tested. A number of studies, summarized herein, have demonstrated the advantages of using such a power system instead of the conventional solar system, for a variety of earth-orbit missions. These advantages stem from the unique nature of the dynamic isotope system, different in kind from solar power systems. As a result, in many cases, the spacecraft design can be significantly simplified and more closely harmonized with mission requirements. This overall advantage can be crucial in missions which have stringent pointing, stability, viewing and/or positioning requirements.

  3. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  4. Interior view of KSC's Manned Spacecraft Operations Building

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Interior view of the Kennedy Space Center's Manned Spacecraft Operations Building showing Apollo Spacecraft 106 Command/Service Module being moved to integrated workstand number one for mating to Spacecraft Lunar Module Adapter (SLA) 13. Spacecraft 106 will be flown on the Apollo 10 (Lunar Module 4/Saturn 505) space mission.

  5. Modeling the fundamental characteristics and processes of the spacecraft functioning

    NASA Technical Reports Server (NTRS)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  6. Spacecraft to Spacecraft Coherent Laser Tracking as a Xylophone Interferometer Detector of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, M.

    1998-01-01

    Searches for gravitational radiation can be performed in space with two spacecraft tracking each other with coherent laser light. This experimental technique could be implemented with two spacecraft carrying an appropriate optical payload, or with the proposed broad-band, space-based laser interferometer detectors of gravitational waves operated in this non-interferometric mode.

  7. Spacecraft-spacecraft very long baseline interferometry. Part 1: Error modeling and observable accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Border, J. S.

    1992-01-01

    In Part 1 of this two-part article, an error budget is presented for Earth-based delta differential one-way range (delta DOR) measurements between two spacecraft. Such observations, made between a planetary orbiter (or lander) and another spacecraft approaching that planet, would provide a powerful target-relative angular tracking data type for approach navigation. Accuracies of better than 5 nrad should be possible for a pair of spacecraft with 8.4-GHz downlinks, incorporating 40-MHz DOR tone spacings, while accuracies approaching 1 nrad will be possible if the spacecraft incorporate 32-GHz downlinks with DOR tone spacing on the order of 250 MHz; these accuracies will be available for the last few weeks or months of planetary approach for typical Earth-Mars trajectories. Operational advantages of this data type are discussed, and ground system requirements needed to enable spacecraft-spacecraft delta DOR observations are outlined. This tracking technique could be demonstrated during the final approach phase of the Mars '94 mission, using Mars Observer as the in-orbit reference spacecraft, if the Russian spacecraft includes an 8.4-GHz downlink incorporating DOR tones. Part 2 of this article will present an analysis of predicted targeting accuracy for this scenario.

  8. Automating Trend Analysis for Spacecraft Constellations

    NASA Technical Reports Server (NTRS)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  9. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    NASA Technical Reports Server (NTRS)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  10. Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Ayoubi, Mohammad A.; Sendi, Chokri

    2015-06-01

    This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.

  11. Sheath ionization model of beam emissions from large spacecraft

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Cohen, H. A.; Bhavnani, K. H.; Tautz, M. E.

    1985-01-01

    An analytical model of the charging of a spacecraft emitting electron and ion beams has been applied to the case of large spacecraft. In this model, ionization occurs in the sheath due to the return current. Charge neutralization of spherical space charge flow is examined by solving analytical equations numerically. Parametric studies of potential large spacecraft are performed. As in the case of small spacecraft, the ions created in the sheath by the returning current play a large role in determining spacecraft potential.

  12. Cassini/Huygens Science Instruments, Spacecraft, and Mission

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.; Herrell, Linda M.

    1997-01-01

    The Cassini spacecraft will take 18 scientific instruments to Saturn. After launch and a seven-year cruise, Cassini will arrive at Saturn and separate into a Saturn orbiter and an atmospheric probe, called Huygens, which will descend to the surface of Titan. The orbiter will orbit the planet for four years, making close flybys of five satellites, including multiple flybys of Titan. Communication with Earth is at X-band; the maximum downlink rate from Saturn is 166 x 10(exp 3) bps. Orbiter instruments are body mounted; the spacecraft must be turned to point some of them toward objects of interest. The orbiter carries 12 instruments. Optical instruments provide imagery and spectrometry. Radar supplies imaging, altimetry, and radiometry. Radio links contribute information about intervening material and gravity fields. Other instruments measure electromagnetic fields and the properties of plasma, energetic particles, and dust particles. The probe is spin stabilized. It returns data via an S-band link to the orbiter. The probe's six instruments include sensors to determine atmospheric physical properties and composition. Radiometric and optical sensors will produce data on thermal balance and obtain images of Titan's atmosphere and surface. Doppler measurements between probe and orbiter will provide wind profiles. Surface sensors will measure impact acceleration, thermal and electrical properties, and, if the surface is liquid, density and refractive index. This design will enable Cassini to determine the composition; the physical, morphological, and geological nature; and the physical and chemical processes of the atmospheres, surfaces, and magnetosphere of the Saturnian system. This paper briefly describes the Cassini mission and spacecraft and, in somewhat more detail, the scientific instruments.

  13. Spacecraft automated operations. [for interplanetary missions

    NASA Technical Reports Server (NTRS)

    Bird, T. H.; Sharpe, B. L.

    1979-01-01

    Trends in automation of planetary spacecraft are examined using data from missions as far back as Mariner '67 and up to the highly sophisticated Galileo. Nine design considerations which influence the degree of automation such as protection against catastrophic failures, highly repetitive functions, loss of spacecraft communications, and the need for near-real-time adaptivity are discussed. Rapid growth of automation is shown in terms of on-board hardware by plots of number of processors on board, the average speed of processors, and total core memory. The number of commands transmitted from the ground has grown to 5 million bits in Voyager, so that increases in mission complexity have increased both in spacecraft automation and ground operations. Achieving greater automation by transferring ground operations to the spacecraft with the current means of controlling missions, are considered noting proposed changes. For the future, improved computer technology, more microprocessors and increased core storage will be used, and the number of automated functions and their complexity will grow. It is concluded that using the growing computational capability of spacecraft will achieve more autonomy thus reversing the trend of increased mission complexity and cost.

  14. Simulator for Testing Spacecraft Separation Devices

    NASA Technical Reports Server (NTRS)

    Johnston, Nick; Gaines, Joe; Bryan, Tom

    2006-01-01

    A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a bolt-retraction system (BRS) intended for separation of the lifting-body and deorbit-propulsion stages of the X- 38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.

  15. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Burford, Janessa Lynne; Trout, Dawn H.; Minow, Joseph I.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle and/or payload design and controlling the risk through operational launch constraints to avoid significant charging environments

  16. Program Analyzes Spacecraft/Ground Radio Links

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza; Kantak, Anil

    2007-01-01

    A versatile computer program analyzes the link-design control table necessary for designing the telecommunication subsystem of a spacecraft in orbit around the Earth or on a deep-space mission. The program helps to calculate all the important parameter values for spacecraft-to-ground telemetry links and ground-to-spacecraft command links. The program also enables the design of turn-around ranging and one-way ranging links, which are very useful for determining the positions of spacecraft and for satisfying various other operational needs. The user can specify several aspects of spacecraft telecommunication-subsystem design, including the nature of the antenna (paraboloidal reflector, patch, dipole, etc.), the power-amplifier rating, and the link data rate. The program enables the use of comparative design procedures and includes an extensive database on the capabilities, attributes, and costs of commercially available telecommunications equipment. Hence, the program can also perform cost analyses. The software includes an extensive ground-station database, so that link design can be carried out using different ground stations in a comparative process in an effort to select the best design. The output of the program is in the form of graphs as well as numbers.

  17. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  18. Spacecraft design project multipurpose satellite bus MPS

    NASA Technical Reports Server (NTRS)

    Kellman, Lyle; Riley, John; Szostak, Michael; Watkins, Joseph; Willhelm, Joseph; Yale, Gary

    1990-01-01

    The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, and along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

  19. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Buhler, Janessa L.; Minow, Joseph I.; Trout, Dawn H.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle andor payload design and controlling the risk through operational launch constraints to avoid significant charging environments.

  20. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  1. Glow phenomenon surrounding the vertical stabilizer and OMS pods

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a 'night' pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.

  2. Guidance and control of swarms of spacecraft

    NASA Astrophysics Data System (ADS)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  3. Spacecraft Fire Safety and Microgravity Combustion Research

    NASA Technical Reports Server (NTRS)

    Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    Fire safety is an important concern in our daily lives and it plays a special role in the human presence in space. In a spacecraft, the outside environment is hostile and the opportunity to escape is small. Rescue missions are difficult and time consuming. As a result, we should avoid the occurrence of fires in spacecraft as much as possible. If a fire occurs, we need to keep it small and under control. This implies that the materials used on board the spacecraft should be screened carefully, all the machines and devices need to be operated without accident, and fire detectors have to function properly. Once a fire is detected, it can be extinguished quickly and the cabin can be cleaned up to restore operation and sustain life.

  4. Spacecraft factory-to-pad testing concept

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1975-01-01

    It is noted that the concept of factory-to-pad testing is based on the shipment of a flight-ready spacecraft to the launch base and can be achieved by thorough and comprehensive factory testing of the spacecraft. The principal objectives and results of this approach are shown to be significant cost reductions, increased test effectiveness, and fewer flight problems. Key elements for this concept's success are discussed, including factory-to-pad commonality of support equipment, test requirements and procedures, test teams, and computer programs. Applications of this approach in the space-shuttle era are considered, and a preliminary factory-to-pad concept for the Large Space Telescope spacecraft is presented.

  5. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  6. Pseudo Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.; Bar-Itzhack, Itzhack Y.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler's equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate.

  7. Infrared characterized spacecraft contaminants and related compounds

    NASA Technical Reports Server (NTRS)

    Gross, F. C.

    1977-01-01

    The limits of the infrared region of the electromagnetic spectrum are discussed, together with an explanation of some of the shortcomings of obtaining data in this range. Similarities and differences in the interest taken by the chemist/spectroscopist and the space/spectroscopist in the IR spectrum are discussed. The chemist uses IR spectra to identify materials and contaminants associated with spacecraft fabrication and testing. The space scientist, using IR spectrometry, can determine atmospheric conditions around planets, stars, and galaxies. He could also determine the temperature profile of the Earth's atmosphere at different altitudes, or even the temperature profile of the Sun. The importance of detecting contamination of spacecraft and the possible results of not taking corrective action are explored. All space experiments contain some contaminants, to a lesser or greater degree; the responsible personnel involved must determine the level of toleration. A collection of IR spectra of known spacecraft contaminants is presented as a guide for cognizant scientists and engineers.

  8. Controllability and observability for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, P. C.; Skelton, R. E.

    1979-01-01

    Current interest in extended sensing and actuation for the control of flexible spacecraft has led to the use of modern multivariable control theory and the associated concepts of controllability and observability. This paper shows how to evaluate these properties on a mode-by-mode basis for flexible spacecraft control analysis. Relatively simple criteria are derived which indicate the degree of controllability (observability) of each mode in simple literal terms. These criteria provide physical insight and practical guidance on the type, number, and positioning of sensors and actuators. The results are interpreted for force and torque actuators, and for attitude and deformation measurements. To illustrate these ideas, sample controllability and observability 'surfaces' are presented for the Purdue generic flexible spacecraft model.

  9. Artist concept of Magellan spacecraft orbiting Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft orbits Venus in this artist concept. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  10. Dawn Spacecraft Reaction Control System Flight Experience

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Nakazono, Barry

    2014-01-01

    The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.

  11. Plasma source for spacecraft potential control

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.

  12. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  13. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  14. Developing Sustainable Spacecraft Water Management Systems

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  15. Adaptive spacecraft attitude control utilizing eigenaxis rotations

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.; Colburn, B. K.; Speakman, N. O.

    1975-01-01

    Conventional and adaptive attitude control of spacecraft which use control moment gyros (CMG's) as torque sources are discussed. Control laws predicated on the assumption of a linear system are used since the spacecraft equations of motion are formulated in an 'eigenaxis system' so that they are essentially linear during 'slow' maneuvers even if large angles are involved. The overall control schemes are 'optimal' in several senses. Eigenaxis rotations and a weighted pseudo-inverse CMG steering law are used and, in the adaptive case, a Model Reference Adaptive System (MRAS) controller based on Liapunov's Second Method is adopted. To substantiate the theory, digital simulation results obtained using physical parameters of a Large Space Telescope type spacecraft are presented. These results indicate that an adaptive control law is often desirable.

  16. Numerical Analysis of Magnetic Sail Spacecraft

    SciTech Connect

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-12-31

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  17. LDEF Materials Results for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F. (Compiler); Gregory, John (Compiler)

    1993-01-01

    These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.

  18. Attitude control compensator for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.

  19. Spacecraft-produced neutron fluxes on Skylab

    NASA Technical Reports Server (NTRS)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  20. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.