Science.gov

Sample records for 3-body distorted wave

  1. Wave front distortion based fluid flow imaging

    NASA Astrophysics Data System (ADS)

    Iffa, Emishaw; Heidrich, Wolfgang

    2013-03-01

    In this paper, a transparent flow surface reconstruction based on wave front distortion is investigated. A camera lens is used to focus the image formed by the micro-lens array to the camera imaging plane. The irradiance of the captured image is transformed to frequency spectrum and then the x and y spatial components are separated. A rigid spatial translation followed by low pass filtering yields a single frequency component of the image intensity. Index of refraction is estimated from the inverse Fourier transform of the spatial frequency spectrum of the irradiance. The proposed method is evaluated with synthetic data of a randomly generated index of refraction value and used to visualize a fuel injection volumetric data.

  2. Distorted Plane Waves on Manifolds of Nonpositive Curvature

    NASA Astrophysics Data System (ADS)

    Ingremeau, Maxime

    2017-03-01

    We will consider the high frequency behaviour of distorted plane waves on manifolds of nonpositive curvature which are Euclidean or hyperbolic near infinity, under the assumption that the curvature is negative close to the trapped set of the geodesic flow and that the topological pressure associated to half the unstable Jacobian is negative. We obtain a precise expression for distorted plane waves in the high frequency limit, similar to the one in Guillarmou and Naud (Am J Math 136:445-479, 2014) in the case of convex co-compact manifolds. In particular, we will show {L_{loc}^∞} bounds on distorted plane waves that are uniform with frequency. We will also show a small-scale equidistribution result for the real part of distorted plane waves, which implies sharp bounds for the volume of their nodal sets.

  3. Aberrations of diffracted wave fields: distortion.

    PubMed

    Harvey, James E; Bogunovic, Dijana; Krywonos, Andrey

    2003-03-01

    Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.

  4. Optical distortion in the field of a lithotripter shock wave

    NASA Astrophysics Data System (ADS)

    Carnell, M. T.; Emmony, D. C.

    1995-10-01

    The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.

  5. Effect of distorted illumination waves on coherent diffraction microscopy

    SciTech Connect

    Kohmura, Yoshiki; Nishino, Yoshinori; Ishikawa, Tetsuya; Miao Jianwei

    2005-12-15

    Coherent diffraction microscopy requires a well-defined illumination wave such as a plane wave on a specimen. Experimentally, a small pinhole or a focused beam is often used to reduce the illumination area but they unavoidably distort the waves. The distortion of the illumination wave causes artifacts in the phase retrieval of oversampled diffraction patterns. Using computer simulations, we searched for the conditions where strong artifacts arise by changing the Fresnel number, pinhole size, alignment error and photon statistics. The experimental setup with Fresnel number of around 1 and smaller than 1 realized a small reconstruction error when the pinhole radius is larger than a few times the specimen size. These conditions are suitable for the rotation of specimens for the three-dimensional (3D) observations. Such investigation will have an impact in the design of coherent diffraction microscopes for the 3D characterization of nanoscale materials and biological systems using the third generation synchrotron radiation and future x-ray free-electron lasers.

  6. Detailed study of nonlinear wave front distortion of focused sound in superfluid4He

    NASA Astrophysics Data System (ADS)

    Sasaki, Yasuo; Kishi, Hidenobu; Karaki, Koichi; Okuda, Yuichi

    1995-02-01

    We have investigated a nonlinear phenomenon which appears in a focused sound in superfluid4He under pressure higher than 18 atm. Wave front distortion of the focused ultrasound by nonlinear effect was obtained by the Fourier transform of the transducer output as a function of the defocusing length. The wave was found to suffer discontinuous wave front distortion for the input power above a certain value. This distortion is well represented by the picture that a second wave whose phase is shifted by approx. π develops, and interferes with the original wave. The amplitude of this second wave decreases suddenly as the pressure is lowered below 18 atm and the nonlinear wave front distortion also disappears. The possible mechanism of this second wave generation are discussed.

  7. Choreography and Gravitational Waves for 2-BODY and 3-BODY Gravitating Systems

    NASA Astrophysics Data System (ADS)

    Asada, Hideki

    In the framework of general relativity, we discuss choreographic solutions for the three-body problem, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. In general relativity, the periastron shift prohibits a binary system from orbiting in a single closed curve. Remarkably, a "figure-eight" solution is shown to be choreographic even at the PN approximation by carefully examining initial conditions. Next, gravitational waves for two- and three-body gravitating systems are discussed as an inverse problem. It is shown that quadrupole waveforms cannot distinguish these sources at particular configurations, especially through extending the definition of the chirp mass to such a three-body system. Finally, we present a conjecture on N particles for classification of sources with multipolar waveforms.

  8. Digital Distortion Caused by Traveling- Wave-Tube Amplifiers Simulated

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty

    2002-01-01

    Future NASA missions demand increased data rates in satellite communications for near real-time transmission of large volumes of remote data. Increased data rates necessitate higher order digital modulation schemes and larger system bandwidth, which place stricter requirements on the allowable distortion caused by the high-power amplifier, or the traveling-wave-tube amplifier (TWTA). In particular, intersymbol interference caused by the TWTA becomes a major consideration for accurate data detection at the receiver. Experimentally investigating the effects of the physical TWTA on intersymbol interference would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to acquiring the required digital hardware. Thus, an accurate computational model is essential to predict the effects of the TWTA on system-level performance when a communication system is being designed with adequate digital integrity for high data rates. A fully three-dimensional, time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell code MAFIA (Solution of Maxwell's equations by the Finite-Integration-Algorithm). It comprehensively takes into account the effects of frequency-dependent AM (amplitude modulation)/AM and AM/PM (phase modulation) conversion, gain and phase ripple due to reflections, drive-induced oscillations, harmonic generation, intermodulation products, and backward waves. This physics-based TWT model can be used to give a direct description of the effects of the nonlinear TWT on the operational signal as a function of the physical device. Users can define arbitrary excitation functions so that higher order modulated digital signals can be used as input and that computations can directly correlate intersymbol interference with TWT parameters. Standard practice involves using communication-system-level software packages, such as SPW, to predict if adequate signal detection will be achieved. These models

  9. A light-curve distortion-wave analysis of eight RS Canum Venaticorum systems

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    1986-01-01

    A program of differential U,B,V photometry of 14 RS CVn systems carried out at Rosemary Hill Observatory in 1978 - 1981 is described, and an analysis of the light curves for the characteristic distortion wave for eight of the systems is presented. The V light curves of the systems are shown. Significant waves were observed in RS CVn, RZ Eri, and RW UMa. No significant waves were found in UX Com, GK Hya, AR Lac, LX Per, or TY Pyx. Unusual light curve distortions were observed in UX Com and AR Lac.

  10. Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA

    DTIC Science & Technology

    2013-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY , CALIFORNIA THESIS Approved for public release; distribution is unlimited TIDAL WAVE...AUTHOR(S) Casey J. Gon 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey , CA 93943–5000 8. PERFORMING...determined using four co-located pressure and velocity sensors longitudinally deployed in Elkhorn Slough, Monterey Bay, CA, to describe tidal wave evolution

  11. Correction of walk-off-induced wavefront distortion for continuous-wave laser

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Chen, Guozhu; Wu, Yue; Shen, Yong; Liu, Qu

    2016-09-01

    We theoretically and experimentally investigate the wave front distortion in critically phase-matched continuous-wave (CW) second harmonic generation (SHG). Due to the walk-off effect in the nonlinear crystal, the generated second harmonic is extremely elliptical and quite non-Gaussian, which causes a very low matching and coupling efficiency in experiment. Cylindrical lenses and walk-off compensating crystals are adopted to correct distorted wave fronts, and obtain a good TEM00 mode efficiently. Theoretically, we simulate the correction effect of 266-nm laser generated with SHG. The experiment results accord well with the theoretical simulation and an above 80% TEM00 component is obtained for 266-nm continuous-wave laser with a 4.8°-walk-off angle in beta barium borate (BBO) crystal. Project supported by the National Natural Science Foundation of China (Grant No. 91436103) and Research Programme of National University of Defense Technology, China (Grant No. JC15-02-03).

  12. Transmission of cochlear distortion products as slow waves: a comparison of experimental and model data.

    PubMed

    Vetešník, Aleš; Gummer, Anthony W

    2012-05-01

    There is a long-lasting question of how distortion products (DPs) arising from nonlinear amplification processes in the cochlea are transmitted from their generation sites to the stapes. Two hypotheses have been proposed: (1) the slow-wave hypothesis whereby transmission is via the transverse pressure difference across the cochlear partition and (2) the fast-wave hypothesis proposing transmission via longitudinal compression waves. Ren with co-workers have addressed this topic experimentally by measuring the spatial vibration pattern of the basilar membrane (BM) in response to two tones of frequency f(1) and f(2). They interpreted the observed negative phase slopes of the stationary BM vibrations at the cubic distortion frequency f(DP) = 2f(1) - f(2) as evidence for the fast-wave hypothesis. Here, using a physically based model, it is shown that their phase data is actually in accordance with the slow-wave hypothesis. The analysis is based on a frequency-domain formulation of the two-dimensional motion equation of a nonlinear hydrodynamic cochlea model. Application of the analysis to their experimental data suggests that the measurement sites of negative phase slope were located at or apical to the DP generation sites. Therefore, current experimental and theoretical evidence supports the slow-wave hypothesis. Nevertheless, the analysis does not allow rejection of the fast-wave hypothesis.

  13. Amplification of Reynolds number dependent processes by wave distortion. [liquid fuel combustor stability

    NASA Technical Reports Server (NTRS)

    Ventrice, M.

    1979-01-01

    The amplification of a Reynolds number dependent process by wave distortion and the possibility of applying the results to other similar Reynolds number dependent processes were investigated. The process investigated was that associated with the operation of a constant-temperature hot-wire anemometer. The application of vaporization limited combustion, the type of combustion typically associated with liquid propellant rocket engines, was studied. A series of experiments were carried out to determine the effect of wave distortion on a Reynolds number dependent process and to establish the analogy between the anemometer process and the combustion process. Parametric trends, behavior common to different chamber geometries, and stability boundaries were identified. The results indicate a high degree of similarity between the two processes and the possibility of using the anemometer system to investigate combustion instability. The nonlinear aspects of a Reynolds number dependent process appear to be the dominant mechanisms controlling instability.

  14. Distortion products and backward-traveling waves in nonlinear active models of the cochlea

    PubMed Central

    Sisto, Renata; Moleti, Arturo; Botti, Teresa; Bertaccini, Daniele; Shera, Christopher A.

    2011-01-01

    This study explores the phenomenology of distortion products in nonlinear cochlear models, predicting their amplitude and phase along the basilar membrane. The existence of a backward-traveling wave at the distortion-product frequency, which has been recently questioned by experiments measuring the phase of basilar-membrane vibration, is discussed. The effect of different modeling choices is analyzed, including feed-forward asymmetry, micromechanical roughness, and breaking of scaling symmetry. The experimentally observed negative slope of basilar-membrane phase is predicted by numerical simulations of nonlinear cochlear models under a wide range of parameters and modeling choices. In active models, positive phase slopes are predicted by the quasi-linear analytical computations and by the fully nonlinear numerical simulations only if the distortion-product sources are localized apical to the observation point and if the stapes reflectivity is unrealistically small. The results of this study predict a negative phase slope whenever the source is distributed over a reasonably wide cochlear region and/or a reasonably high stapes reflectivity is assumed. Therefore, the above-mentioned experiments do not contradict “classical” models of cochlear mechanics and of distortion-product generation. PMID:21568417

  15. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    SciTech Connect

    Machikhin, A S; Pozhar, V E

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  16. Combined approach to the Hubble Space Telescope wave-front distortion analysis.

    PubMed

    Roddier, C; Roddier, F

    1993-06-01

    Stellar images taken by the Hubble Space Telescope at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-µm rms with a maximum deviation of 0.005 µm. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.

  17. Three-wave X-ray diffraction in distorted epitaxial structures.

    PubMed

    Kyutt, Reginald; Scheglov, Mikhail

    2013-08-01

    Three-wave diffraction has been measured for a set of GaN, AlN, AlGaN and ZnO epitaxial layers grown on c-sapphire. A Renninger scan for the primary forbidden 0001 reflection was used. For each of the three-wave combinations, θ-scan curves were measured. The intensity and angular width of both ϕ- and θ-scan three-wave peaks were analyzed. The experimental data were used to determine properties of the multiple diffraction pattern in highly distorted layers. It is shown that the FWHM of θ scans is highly sensitive to the structural perfection and strongly depends on the type of three-wave combination. The narrowest peaks are observed for multiple combinations with the largest l index of the secondary hkl reflection. An influence of the type of the dislocation structure on the θ-scan broadening was revealed. These experimental facts are interpreted by considering the scanning geometry in the reciprocal space and taking into account the disc-shaped reciprocal-lattice points. The total integrated intensities of all the three-wave combinations were determined and their ratios were found to be in only a qualitative agreement with the theory. For AlGaN layers, the presence of the nonzero 0001 reflection was revealed, in contrast to AlN and GaN films.

  18. Phase Inversion: Inferring Solar Subphotospheric Flow and Other Asphericity from the Distortion of Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gough, Douglas; Merryfield, William J.; Toomre, Juri

    1998-01-01

    A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.

  19. Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory

    NASA Astrophysics Data System (ADS)

    Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.

    2016-10-01

    Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.

  20. Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves

    PubMed Central

    2016-01-01

    The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate–substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule–substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect. PMID:27014920

  1. Multiple scattering effects in quasifree scattering from halo nuclei: A test of the distorted-wave impulse approximation

    SciTech Connect

    Crespo, R.; Deltuva, A.; Cravo, E.; Rodriguez-Gallardo, M.; Fonseca, A. C.

    2008-02-15

    Full Faddeev-type calculations are performed for {sup 11}Be breakup on a proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like distorted-wave impulse approximation that are based on an incomplete and truncated multiple scattering expansion.

  2. Distorted-wave born approximation calculations for turbulence scattering in an upward-refracting atmosphere

    NASA Technical Reports Server (NTRS)

    Gilbert, Kenneth E.; Di, Xiao; Wang, Lintao

    1990-01-01

    Weiner and Keast observed that in an upward-refracting atmosphere, the relative sound pressure level versus range follows a characteristic 'step' function. The observed step function has recently been predicted qualitatively and quantitatively by including the effects of small-scale turbulence in a parabolic equation (PE) calculation. (Gilbert et al., J. Acoust. Soc. Am. 87, 2428-2437 (1990)). The PE results to single-scattering calculations based on the distorted-wave Born approximation (DWBA) are compared. The purpose is to obtain a better understanding of the physical mechanisms that produce the step-function. The PE calculations and DWBA calculations are compared to each other and to the data of Weiner and Keast for upwind propagation (strong upward refraction) and crosswind propagation (weak upward refraction) at frequencies of 424 Hz and 848 Hz. The DWBA calculations, which include only single scattering from turbulence, agree with the PE calculations and with the data in all cases except for upwind propagation at 848 Hz. Consequently, it appears that in all cases except one, the observed step function can be understood in terms of single scattering from an upward-refracted 'skywave' into the refractive shadow zone. For upwind propagation at 848 Hz, the DWBA calculation gives levels in the shadow zone that are much below both the PE and the data.

  3. Wave propagation and phase retrieval in Fresnel diffraction by a distorted-object approach

    SciTech Connect

    Xiao Xianghui; Shen Qun

    2005-07-15

    An extension of the far-field x-ray diffraction theory is presented by the introduction of a distorted object for calculation of coherent diffraction patterns in the near-field Fresnel regime. It embeds a Fresnel-zone construction on an original object to form a phase-chirped distorted object, which is then Fourier transformed to form a diffraction image. This approach extends the applicability of Fourier-based iterative phasing algorithms into the near-field holographic regime where phase retrieval had been difficult. Simulated numerical examples of this near-field phase retrieval approach indicate its potential applications in high-resolution structural investigations of noncrystalline materials.

  4. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms

    SciTech Connect

    Dietrich, F S

    2006-09-25

    This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).

  5. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr(2)RuO(4)

    PubMed

    Matzdorf; Fang; Ismail; Zhang; Kimura; Tokura; Terakura; Plummer

    2000-08-04

    Ferromagnetic (FM) spin fluctuations are believed to mediate the spin-triplet pairing for the p-wave superconductivity in Sr(2)RuO(4). Our experiments show that, at the surface, a bulk soft-phonon mode freezes into a static lattice distortion associated with an in-plane rotation of the RuO(6) octahedron. First-principle calculations confirm this structure and predict a FM ground state at the surface. This coupling between structure and magnetism in the environment of broken symmetry at the surface allows a reconsideration of the coupling mechanism in the bulk.

  6. Search for saddle-point electrons using the continuum-distorted-wave eikonal initial-state model

    SciTech Connect

    McCartney, M.

    1995-08-01

    The continuum-distorted-wave eikonal initial-state (CDWEIS) model is used to study the ionization of hydrogen by protons of energy 10--500 keV. Ejected electron spectra are presented and discussed in the context of the saddle-point mechanism. The behavior of the ejected electron spectrum as the charge of the incident projectile is varied is also considered. It is concluded that within its range of validity, CDWEIS does not provide any evidence of the existence of saddle-point electrons.

  7. An investigation of the open-loop amplification of Reynolds number dependent processes by wave distortion

    NASA Technical Reports Server (NTRS)

    Purdy, K. R.; Ventrice, M. B.; Fang, J.

    1972-01-01

    Analytical and experimental studies were initiated to determine if the response of a constant temperature hot wire anemometer to acoustic oscillations could serve as an analog to the response of the drop vaporization burning rate process to acoustic oscillations, and, perhaps, also as an analog to any Reynolds number dependent process. The motivation behind this study was a recent analytical study which showed that distorted acoustic oscillations could amplify the open-loop response of vaporization limited combustion. This type of amplification may be the cause of unstable combustion in liquid propellant rocket engines. The analytical results obtained for the constant temperature anemometer are similar in nature to those previously obtained for vaporization limited combustion and indicate that the response is dependent on the amount and type of distortion as well as other factors, such as sound pressure level, Mach number and hot wire temperature. Preliminary results indicate qualitative agreement between theory and experiment.

  8. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-09-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source.

  9. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-06-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases. are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source.

  10. Amplification of Reynolds number dependent processes by wave distortion. [acoustic instability of liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Ventrice, M. B.; Fang, J. C.; Purdy, K. R.

    1975-01-01

    A system using a hot-wire transducer as an analog of a liquid droplet of propellant was employed to investigate the ingredients of the acoustic instability of liquid-propellant rocket engines. It was assumed that the combustion process was vaporization-limited and that the combustion chamber was acoustically similar to a closed-closed right-circular cylinder. Before studying the hot-wire closed-loop system (the analog system), a microphone closed-loop system, which used the response of a microphone as the source of a linear feedback exciting signal, was investigated to establish the characteristics of self-sustenance of acoustic fields. Self-sustained acoustic fields were found to occur only at resonant frequencies of the chamber. In the hot-wire closed-loop system, the response of hot-wire anemometer was used as the source of the feedback exciting signal. The self-sustained acoustic fields which developed in the system were always found to be harmonically distorted and to have as their fundamental frquency a resonant frequency for which there also existed a second resonant frequency which was approximately twice the fundamental frequency.

  11. Dirac R-matrix and Breit-Pauli distorted wave calculations of the electron-impact excitation of W44+

    NASA Astrophysics Data System (ADS)

    Bluteau, M. M.; O'Mullane, M. G.; Badnell, N. R.

    2015-10-01

    With construction of ITER progressing and existing tokamaks carrying-out ITER-relevant experiments, accurate fundamental and derived atomic data for numerous ionization stages of tungsten (W) is required to assess the potential effect of this species upon fusion plasmas. The results of fully relativistic, partially radiation damped, Dirac R-matrix electron-impact excitation calculations for the {{{W}}}44+ ion are presented. These calculations use a configuration interaction and close-coupling expansion that opens-up the 3d-subshell; this does not appear to have been considered before in a collision calculation. As a result, it is possible to investigate the arrays, [3d104s2-3d94s24f] and [3d104s2-3d94s4p4d], which are predicted to contain transitions of diagnostic importance for the soft x-ray region. Our R-matrix collision data are compared with previous R-matrix results by Ballance and Griffin as well as our own relativistically corrected, Breit-Pauli distorted wave and plane-wave Born calculations. All relevant data are applied to the collisional-radiative modelling of atomic populations, for further comparison. This reveals the paramount nature of the 3d-subshell transitions from the perspectives of radiated power loss and detailed spectroscopy.

  12. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin

    2016-06-01

    Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.

  13. Determination of B/A of Biological Media by Measuring and Modeling Nonlinear Distortion of Pulsed Acoustic Wave in Two-Layer System of Media

    NASA Astrophysics Data System (ADS)

    Kujawska, T.; Wójcik, J.; Nowicki, A.

    Knowledge of the acoustic nonlinearity parameter, B/A, of biological fluids or soft tissues is necessary whenever high intensity pressure fields are induced. A numerical model recently developed in our lab is capable of fast predicting the nonlinear distortion of pulsed finite-amplitude acoustic waves generated from axisymmetric sources propagating through multilayer attenuating media. Quantitative analysis of the obtained results enabled developing the alternative method for determination of the B/A of biological media. First, the method involves measuring the nonlinear waveform distortion of the tone burst propagating through water. Then, it involves numerical modeling (in frequency domain) using the Time-Averaged Wave Envelope (TAWE) approach. The numerical simulation results are fitted to the experimental data by adjusting the source boundary conditions to determine accurately the source pressure, effective radius and apodization function being the input parameters to the numerical solver. Next, the method involves measuring the nonlinear distortion of idem tone burst passing through the two-layer system of parallel media. Then, we numerically model nonlinear distortion in two-layer system of media in frequency domain under experimental boundary conditions. The numerical simulation results are fitted to the experimental data by adjusting the B/A value of the tested material. Values of the B/A for 1.3-butanediol at both the ambient (25°C) and physiological (36.6°C) temperatures were determined. The obtained result (B/A = 10.5 ± 5% at 25°C) is in a good agreement with that available in literature. The B/A = 11.5 ± 5% at 36.6°C was determined.

  14. An investigation of the open-loop amplification of a Reynolds number dependent process by wave distortion

    NASA Technical Reports Server (NTRS)

    Ventrice, M. B.; Purdy, K. R.

    1974-01-01

    The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.

  15. Calculation of (e , 2 e ) triple-differential cross sections of formic acid: An application of the multicenter distorted-wave method

    NASA Astrophysics Data System (ADS)

    Li, Xingyu; Gong, Maomao; Liu, Ling; Wu, Yong; Wang, Jianguo; Qu, Yizhi; Chen, Xiangjun

    2017-01-01

    The calculation of triple-differential cross sections for the electron-impact ionization of 10 a' and 2 a'' orbitals of the formic acid (HCOOH) molecule has been carried out by the multicenter distorted-wave method. The coplanar asymmetric kinematics is considered at incident energies of 100 and 250 eV , where previous experiments and theories are available for comparison. The present calculations reproduce the experimental measurements satisfactorily and the results suggest that the nuclear distribution has important contributions on the cross sections at large momentum transfers.

  16. The centrifugal sudden distorted wave method for calculating cross sections for chemical reactions: Angular distributions for Cl + HCl --> ClH + Cl

    NASA Astrophysics Data System (ADS)

    Schatz, George C.; Amaee, B.; Connor, J. N. L.

    1987-10-01

    We describe a method for calculating cross sections for atom plus diatom reactive collisions based on the centrifugal sudden distorted wave (CSDW) approximation. This method is nearly exact at low energies where reactive cross sections are small. Representative CPU times are given for applications of the CSDW method to the Cl + HCl → ClH + Cl reaction using CDC 7600, Cyber 176, Cyber 205, Cray X-MP and Cray-2 computers. We also present differential cross sections for the Cl + HCl reaction and apply a simple semiclassical model which relates these cross sections to the partial wave reaction probabilities, and to the energy dependence of the reaction probabilities for zero total angular momentum. This model explains why the differential cross sections are backward peaked, and why the oscillatory cross sections seen in earlier, more approximate infinite order sudden calculations are not found in the present results at low energy.

  17. Single-component single-partial acoustic surface waves in cubic crystals with surface distortion taken into account

    NASA Astrophysics Data System (ADS)

    Klochko, M. S.

    2014-06-01

    The surface waves and bulk acoustic bands were studied taking into account the interaction between the nearest and next-nearest neighbors in a cubic crystal. Expressions for the dispersion relations, the frequencies at which the surface waves split off the bulk spectrum, and the parameters of the amplitude attenuation have been obtained for the crystalline systems in which the surface waves are single-component and single-partial. The calculations were conducted taking into account the discrete nature of crystal lattice for arbitrary values of the two-dimensional wave vector. The analysis has demonstrated that the results obtained in the long-wavelength limit are in full agreement with those calculated in the framework of linear nonlocal elasticity theory. The influence of an adsorbed surface monolayer on the characteristics of the surface waves was studied.

  18. A special method for finding body distortions that reduce the wave drag of wing and body combinations at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A

    1956-01-01

    For a given wing and supersonic Mach number, the problem of shaping an adjoining fuselage so that the combination will have a low wave drag is considered. Only fuselages that can be simulated by singularities (multipoles) distributed along the body axis are studied. However, the optimum variations of such singularities are completely specified in terms of the given wing geometry. An application is made to an elliptic wing having a biconvex section, a thickness-chord ratio equal to 0.05 at the root, and an aspect ratio equal to 3. A comparison of the theoretical results with a wind-tunnel experiment is also presented.

  19. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  20. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.

    PubMed

    Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K

    2008-07-01

    To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.

  1. The antisymmetry of distortions

    PubMed Central

    VanLeeuwen, Brian K.; Gopalan, Venkatraman

    2015-01-01

    Distortions are ubiquitous in nature. Under perturbations such as stresses, fields or other changes, a physical system reconfigures by following a path from one state to another; this path, often a collection of atomic trajectories, describes a distortion. Here we introduce an antisymmetry operation called distortion reversal that reverses a distortion pathway. The symmetry of a distortion pathway is then uniquely defined by a distortion group; it has the same form as a magnetic group that involves time reversal. Given its isomorphism to magnetic groups, distortion groups could have a commensurate impact in the study of distortions, as the magnetic groups have had in the study of magnetic structures. Distortion symmetry has important implications for a range of phenomena such as structural and electronic phase transitions, diffusion, molecular conformational changes, vibrations, reaction pathways and interface dynamics. PMID:26572582

  2. Relativistic distorted-wave collision strengths for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with 26≤Z≤92

    SciTech Connect

    Fontes, Christopher J. Zhang, Hong Lin

    2015-01-15

    Relativistic distorted-wave collision strengths have been calculated for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20,0.42,0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5.83. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357]. In that earlier work, collision strengths were also provided for O-like ions, but for a more comprehensive data set consisting of all possible 45 Δn=0 transitions, six scattered energies, and the 79 ions with Z in the range 14≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357] and are presented here to replace those earlier results.

  3. Relativistic distorted wave collision strengths for excitation to the 88 n = 3 and n = 4 levels in all 71 neon-like ions with 22 less than or equal to Z less than or equal to 92

    SciTech Connect

    Zhang, Hong Lin; Sampson, D. H.

    1989-02-01

    Relativistic distorted wave collision strengths are given for the 88 possible transitions between the ground level and the excited levels with n = 3 and n = 4 in the 71 neon-like ions with nuclear charge number Z in the range 22 less than or equal to Z less than or equal to 92. The calculations are made for the six final, or scattered, electron energies E' = 0.008, 0.04, 0.10, 0.21, 0.41 and 0.75, where E' is in units of Z/sub eff//sup 2/ Rydbergs with Z/sub eff/ = Z /minus/ 7.5. In addition, the transition energies and electric dipole oscillator strengths are given. 10 refs., 4 tabs.

  4. Reducing the Distortion in Upward Distortion Data.

    ERIC Educational Resources Information Center

    Sussman, Lyle; Krivonos, Paul

    Because information flow is considered essential to an organization and because decision makers are dependent upon accurate information, the distortion of messages as they move upward in an organization has become a central concern of many organizational communication researchers. The purposes of this paper are to critically review the various…

  5. Relativistic distorted-wave collision strengths for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with 26≤Z≤92

    SciTech Connect

    Fontes, Christopher J. Zhang, Hong Lin

    2014-05-15

    Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−3.33. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41]. In that earlier work, collision strengths were also provided for B-like ions, but for a more comprehensive data set consisting of all 105 Δn=0 transitions, six scattered energies and the 85 ions with Z in the range 8≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41] and are presented here to replace those earlier results.

  6. Relativistic distorted-wave collision strengths for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with 26≤Z≤92

    SciTech Connect

    Fontes, Christopher J. Zhang, Hong Lin

    2014-09-15

    Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in the previous work by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153]. In that earlier work, collision strengths were also provided for N-like ions, but for a more comprehensive data set consisting of all possible 105 Δn=0 transitions, six scattered energies and the 81 ions with Z in the range 12≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153] and are presented here to replace those earlier results.

  7. Relativistic distorted-wave collision strengths and oscillator strengths for the 185Δn=0 transitions with n=2 in the 67 C-like ions with 26≤Z≤92

    SciTech Connect

    Zhang, Hong Lin; Fontes, Christopher J.

    2015-01-15

    Relativistic distorted-wave collision strengths have been calculated for the 185 Δn=0 transitions with n=2 in the 67 C-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the six final, or scattered, electron energies E{sup ′}=0.03,0.08,0.20,0.42,0.80,  and  1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−4.17. In addition, electric dipole oscillator strengths are provided. In the present collision-strength calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 63 (1996) 275]. In that earlier work, collision strengths were also provided for the same 185 Δn=0 transitions in C-like ions, but for the more limited list of 46 ions with Z in the range 9≤Z≤54. The collision strengths covered in the present work, particularly those for optically allowed transitions, should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 63 (1996) 275] and are presented here to replace those earlier results.

  8. New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with Distorted Wave Born Approximation

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Iwamoto, Y.; Sato, T.; Niita, K.; Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.

    2014-08-01

    A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra.

  9. Distortion in Perspective Projection

    ERIC Educational Resources Information Center

    Kelso, Robert P., Sr.

    2008-01-01

    The paper presents a unique approach in associating perspective projection with the image beheld by the eye and demonstrates that all graphical and photographic perspective projections must contain distortion when compared to the image beheld by the eye. (Contains 8 figures.)

  10. Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.; Zhang, Hong Lin

    2017-01-01

    Relativistic distorted-wave collision strengths have been calculated for all possible Δn = 0 transitions, where n denotes the valence shell of the ground level, in the 67 Li-like, F-like and Na-like ions with Z in the range 26 ≤ Z ≤ 92. This choice produces 3 transitions with n = 2 in the Li-like and F-like ions, and 10 transitions with n = 3 in the Na-like ions. For the Li-like and F-like ions, the calculations were made for the six final, or scattered, electron energies E‧ = 0.008 , 0.04 , 0.10 , 0.21 , 0.41, and 0.75, where E‧ is in units of Zeff2 Ry with Zeff = Z - 1.66 for Li-like ions and Zeff = Z - 6.667 for F-like ions. For the Na-like ions, the calculations were made for the six final electron energies E‧ = 0.0025 , 0.015 , 0.04 , 0.10 , 0.21, and 0.40, with Zeff = Z - 8.34. In the present calculations, an improved "top-up" method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb-Bethe approximation used in previous works by Zhang, Sampson and Fontes [H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 31; H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 48 (1991) 25; D.H. Sampson, H.L. Zhang, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 209]. In those previous works, collision strengths were also provided for Li-, F- and Na-like ions, but for a more comprehensive set of transitions. The collision strengths covered in the present work should be more accurate than the corresponding data given in those previous works and are presented here to replace those earlier results.

  11. Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92

    SciTech Connect

    Fontes, Christopher J.; Zhang, Hong Lin

    2017-01-01

    We calculated relativistic distorted-wave collision strength for all possible Δn=0 transitions, where n denotes the valence shell of the ground level, in the 67 Li-like, F-like and Na-like ions with Z in the range 26 ≤ Z ≤92. This choice produces 3 transitions with n=2 in the Li-like and F-like ions, and 10 transitions with n=3 in the Na-like ions. Moreover, for the Li-like and F-like ions, the calculations were made for the six final, or scattered, electron energies E'=0.008,0.04,0.10,0.21,0.41, and 0.75, where E' is in units of Z$2\\atop{eff}$ Ry with Zeff = Z- 1.66 for Li-like ions and Zeff= Z- 6.667 for F-like ions. For the Na-like ions, the calculations were made for the six final electron energies E'=0.0025,0.015,0.04,0.10,0.21, and 0.40, with Zeff = Z- 8.34. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous works by Zhang, Sampson and Fontes [H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 31; H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 48 (1991) 25; D.H. Sampson, H.L. Zhang, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 209]. In those previous works, collision strengths were also provided for Li-, F- and Na-like ions, but for a more comprehensive set of transitions. Finally, the collision strengths covered in the present work should be more accurate than the corresponding data given in those previous works and are presented here to replace those earlier results.

  12. Relativistic distorted-wave collision strengths for Δn = 0 transitions in the 67 Li-like, F-like and Na-like ions with 26 ≤ Z ≤ 92

    DOE PAGES

    Fontes, Christopher J.; Zhang, Hong Lin

    2017-01-01

    We calculated relativistic distorted-wave collision strength for all possible Δn=0 transitions, where n denotes the valence shell of the ground level, in the 67 Li-like, F-like and Na-like ions with Z in the range 26 ≤ Z ≤92. This choice produces 3 transitions with n=2 in the Li-like and F-like ions, and 10 transitions with n=3 in the Na-like ions. Moreover, for the Li-like and F-like ions, the calculations were made for the six final, or scattered, electron energies E'=0.008,0.04,0.10,0.21,0.41, and 0.75, where E' is in units of Zmore » $$2\\atop{eff}$$ Ry with Zeff = Z- 1.66 for Li-like ions and Zeff= Z- 6.667 for F-like ions. For the Na-like ions, the calculations were made for the six final electron energies E'=0.0025,0.015,0.04,0.10,0.21, and 0.40, with Zeff = Z- 8.34. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous works by Zhang, Sampson and Fontes [H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 31; H.L. Zhang, D.H. Sampson, C.J. Fontes, At. Data Nucl. Data Tables 48 (1991) 25; D.H. Sampson, H.L. Zhang, C.J. Fontes, At. Data Nucl. Data Tables 44 (1990) 209]. In those previous works, collision strengths were also provided for Li-, F- and Na-like ions, but for a more comprehensive set of transitions. Finally, the collision strengths covered in the present work should be more accurate than the corresponding data given in those previous works and are presented here to replace those earlier results.« less

  13. Universal Relations for Identical Bosons from 3-Body Physics

    NASA Astrophysics Data System (ADS)

    Kang, Daekyoung; Platter, Lucas; Braaten, Eric

    2011-05-01

    Systems consisting of identical bosons with a large scattering length satisfy universal relations determined by 2-body physics that are similar to those for fermions with two spin states. They require the momentum distribution to have a large-momentum 1 /k4 tail and the radio-frequency transition rate to have a high-frequency 1 /ω 3 / 2 tail, both of which are proportional to the 2-body contact. Identical bosons also satisfy additional universal relations that are determined by 3-body physics and involve the 3-body contact, which measures the probability of 3 particles being very close together. The coefficients of the 3-body contact in the 1 /k5 tail of the momentum distribution and in the 1 /ω2 tail of the radio-frequency transition rate are log-periodic functions of k and ω that depend on the Efimov parameter. Supported in part by a joint grant from the ARO and the AFOSR and by a grant from the DOE.

  14. Triton's Distorted Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Stansberry, J. A.; Olkin, C. B.; Agner, M. A.; Davies, M. E.

    1998-01-01

    A stellar-occultation light curve for Triton shows asymmetry that can be understood if Triton's middle atmosphere is distorted from spherical symmetry. Although a globally oblate model can explain the data, the inferred atmospheric flattening is so large that it could be caused only by an unrealistic internal mass distribution or highly supersonic zonal winds. Cyclostrophic winds confined to a jet near Triton's northern or southern limbs (or both) could also be responsible for the details of the light curve, but such winds are required to be slightly supersonic. Hazes and clouds in the atmosphere are unlikely to have caused the asymmetry in the light curve.

  15. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.

    PubMed

    Zelle, Dennis; Thiericke, John P; Dalhoff, Ernst; Gummer, Anthony W

    2015-12-01

    Distortion-product otoacoustic emissions (DPOAEs) emerge when presenting two primary tones with different frequencies f1 and f2 to the cochlea and are commonly used in diagnosis and research to evaluate the functional state of the cochlea. Optimal primary-tone stimulus levels accounting for the different level dependencies of the traveling-wave amplitudes of the two primary tones near the f2-tonotopic place on the basilar membrane are often used to maximize DPOAE amplitudes. However, parameters defining the optimal levels can be affected by wave interference between the nonlinear-distortion and coherent-reflection components of the DPOAE. Here, the components were separated in the time domain using a pulsed stimulus paradigm and optimal levels determined. Based on the amplitude dependence of the nonlinear-distortion components on primary-tone stimulus levels, level parameters yielding maximum DPOAE amplitudes were derived for six normal-hearing adults and compared to data recorded with continuous two-tone stimulation. The level parameters resulting from analysis of the nonlinear-distortion components show dependence on stimulus frequency and small standard deviations. DPOAE input/output functions derived for optimal levels exhibit larger slopes, wider dynamic range and less variability across subjects than those derived for conventional stimulus and analysis conditions, potentially increasing their reliability and sensitivity for assessing cochlea function.

  16. Redshift-space distortions.

    PubMed

    Percival, Will J; Samushia, Lado; Ross, Ashley J; Shapiro, Charles; Raccanelli, Alvise

    2011-12-28

    Comparing measurements of redshift-space distortions (RSDs) with geometrical observations of the expansion of the Universe offers tremendous potential for testing general relativity on very large scales. The basic linear theory of RSDs in the distant-observer limit has been known for 25 years and the effect has been conclusively observed in numerous galaxy surveys. The next generation of galaxy survey will observe many millions of galaxies over volumes of many tens of Gpc(3). They will provide RSD measurements of such exquisite precision that we will have to carefully analyse and correct for many systematic deviations from this simple picture in order to fully exploit the statistical precision obtained. We review RSD theory and show how ubiquitous RSDs actually are, and then consider a number of potential systematic effects, shamelessly highlighting recent work in which we have been involved. This review ends by looking ahead to the future surveys that will make the next generation of RSD measurements.

  17. Cognitive Distortions and Suicide Attempts

    PubMed Central

    Jager-Hyman, Shari; Cunningham, Amy; Wenzel, Amy; Mattei, Stephanie; Brown, Gregory K.; Beck, Aaron T.

    2014-01-01

    Although theorists have posited that suicidal individuals are more likely than non-suicidal individuals to experience cognitive distortions, little empirical work has examined whether those who recently attempted suicide are more likely to engage in cognitive distortions than those who have not recently attempted suicide. In the present study, 111 participants who attempted suicide in the 30 days prior to participation and 57 psychiatric control participants completed measures of cognitive distortions, depression, and hopelessness. Findings support the hypothesis that individuals who recently attempted suicide are more likely than psychiatric controls to experience cognitive distortions, even when controlling for depression and hopelessness. Fortune telling was the only cognitive distortion uniquely associated with suicide attempt status. However, fortune telling was no longer significantly associated with suicide attempt status when controlling for hopelessness. Findings underscore the importance of directly targeting cognitive distortions when treating individuals at risk for suicide. PMID:25294949

  18. Cluster Structure and 3-body decay in 14C

    NASA Astrophysics Data System (ADS)

    Carpenter, Lisa; Bazin, D.; Mittig, W.; Ayyad, Y.; Beceiro Novo, S.; Bradt, J.; Ahn, T.; Kolata, J. J.; Becchetti, F. D.; Fritsch, A.

    2016-09-01

    Recent model calculations with most advanced methods for cluster states have shown the need of experimental data to probe the structure of light exotic nuclei, including those with α-clustering, such as 14C. The Prototype Active Target Time Projection Chamber (PAT-TPC) allows us to investigate these types of structures, giving access to the full excitation function with a single beam energy. This type of experiment measures resonances in 14C that can be compared to the models. With an improved Micromegas pad plane with a circular backgammon design we are able to investigate 3-body decays in addition to 2-body scattering. The measurements were carried out by resonant alpha-scattering on 10Be beam delivered by the TwinSol facility at the University of Notre Dame. This work is supported by the National Science Foundation.

  19. Analysis Of Overlay Distortion Patterns

    NASA Astrophysics Data System (ADS)

    Armitage, John D.; Kirk, Joseph P.

    1988-01-01

    A comprehensive geometrical approach is presented for the least-squares analysis of overlay distortion patterns into useful, physically meaningful systematic distortion subpatterns and an essentially non-systematic residue. A scheme of generally useful distortion sub-patterns is presented in graphic and algorithmic form; some of these sub-patterns are additions to those already in widespread use. A graphic and geometric approach is emphasized rather than an algebraic or statistical approach, and an example illustrates the value in utilizing the pattern-detecting ability of the eye-brain system. The conditions are described under which different distortion sub-patterns may interact, possibly leading to misleading or erroneous conclusions about the types and amounts of different distortions present. Examples of typical interaction situations are given, and recommendations are made for analytic procedures to avoid misinterpretation. It is noted that the lower-order distortion patterns preserve straight-line linearity, but that higher-order distortion may result in straight lines becoming curved. The principle of least-squares analysis is outlined and a simple polynomial data-fitting example is used to illustrate the method. Algorithms are presented for least-squares distortion analysis of overlay patterns, and an APL2 program is given to show how this may easily be implemented on a digital computer. The appendix extends the treatment to cases where small-angle approximation is not permissible.

  20. Quantum rate-distortion coding

    NASA Astrophysics Data System (ADS)

    Barnum, Howard

    2000-10-01

    I introduce rate-distortion theory for the coding of quantum information, and derive a lower bound, involving the coherent information, on the rate at which qubits must be used to store or compress an entangled quantum source with a given maximum level of distortion per source emission.

  1. Memory distortion: an adaptive perspective

    PubMed Central

    Schacter, Daniel L.; Guerin, Scott A.; St. Jacques, Peggy L.

    2011-01-01

    Memory is prone to distortions that can have serious consequences in everyday life. Here we integrate emerging evidence that several types of memory distortions – imagination inflation, gist-based and associative memory errors, and post-event misinformation – reflect adaptive cognitive processes that contribute to the efficient functioning of memory, but produce distortions as a consequence of doing so. We consider recent cognitive and neuroimaging studies that link these distortions with adaptive processes, including simulation of future events, semantic and contextual encoding, creativity, and memory updating. We also discuss new evidence concerning factors that can influence the occurrence of memory distortions, such as sleep and retrieval conditions, as well as conceptual issues related to the development of an adaptive perspective. PMID:21908231

  2. Probing early-universe phase transitions with CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Grin, Daniel

    2014-10-01

    Global, symmetry-breaking phase transitions in the early universe can generate scaling seed networks which lead to metric perturbations. The acoustic waves in the photon-baryon plasma sourced by these metric perturbations, when Silk damped, generate spectral distortions of the cosmic microwave background (CMB). In this work, the chemical potential distortion (μ ) due to scaling seed networks is computed and the accompanying Compton y -type distortion is estimated. The specific model of choice is the O (N ) nonlinear σ -model for N ≫1 , but the results remain the same order of magnitude for other scaling seeds. If CMB anisotropy constraints to the O (N ) model are saturated, the resulting chemical potential distortion μ ≲2 ×1 0-9 .

  3. Triangulation in Random Refractive Distortions.

    PubMed

    Alterman, Marina; Schechner, Yoav Y; Swirski, Yohay

    2017-03-01

    Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.

  4. Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs

    PubMed Central

    Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.

    2010-01-01

    Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158

  5. Optical scattering analysis of the diffraction distortion of a two-dimensional reflection grating.

    PubMed

    Teng, Shuyun; Zhang, Junchao; Cheng, Chuanfu

    2009-08-10

    Theoretical and experimental studies of the diffraction of a two-dimensional reflection grating are performed in this paper. Based on the theory of optical scattering, the light field in the Fraunhofer diffraction region is deduced, and the general expression of the diffraction field is given in the form of the wave vectors of the diffracted wave and the incident wave. Then the coordinate of the diffraction order is obtained. The calculation results show that the diffraction distortion of the grating appears when the grating is illuminated by the oblique incident light wave and the distortion is restricted on the diffraction of the grids varying along the direction perpendicular to the plane of incidence. The orbit equation satisfied by the distortion diffraction orders is presented. The experimental results verify adequately this diffraction distortion rule of the grating, and they agree very well with the theoretical results.

  6. Stereo depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Vonsydow, Marika

    1988-01-01

    In teleoperation, a typical application of stereo vision is to view a work space located short distances (1 to 3m) in front of the cameras. The work presented here treats converged camera placement and studies the effects of intercamera distance, camera-to-object viewing distance, and focal length of the camera lenses on both stereo depth resolution and stereo depth distortion. While viewing the fronto-parallel plane 1.4 m in front of the cameras, depth errors are measured on the order of 2cm. A geometric analysis was made of the distortion of the fronto-parallel plane of divergence for stereo TV viewing. The results of the analysis were then verified experimentally. The objective was to determine the optimal camera configuration which gave high stereo depth resolution while minimizing stereo depth distortion. It is found that for converged cameras at a fixed camera-to-object viewing distance, larger intercamera distances allow higher depth resolutions, but cause greater depth distortions. Thus with larger intercamera distances, operators will make greater depth errors (because of the greater distortions), but will be more certain that they are not errors (because of the higher resolution).

  7. JWST ISIM Distortion Analysis Challenge

    NASA Technical Reports Server (NTRS)

    Cifie, Emmanuel; Matzinger, Liz; Kuhn, Jonathan; Fan, Terry

    2004-01-01

    Very tight distortion requirements are imposed on the JWST's ISM structure due to the sensitivity of the telescope's mirror segment and science instrument positioning. The ISIM structure is a three dimensional truss with asymmetric gusseting and metal fittings. One of the primary challenges for ISIM's analysis team is predicting the thermal distortion of the structure both from the bulk cooldown from ambient to cryo, and the smaller temperature changes within the cryogenic operating environment. As a first cut to estimate thermal distortions, a finite element model of bar elements was created. Elements representing joint areas and metal fittings use effective properties that match the behavior of the stack-up of the composite tube, gusset and adhesive under mechanical and thermal loads. These properties were derived by matching tip deflections of a solid model simplified T-joint. Because of the structure s asymmetric gusseting, this effective property model is a first attempt at predicting rotations that cannot be captured with a smeared CTE approach. In addition to the finite element analysis, several first order calculations have been performed to gauge the feasibility of the material design. Because of the stringent thermal distortion requirements at cryogenic temperatures, a composite tube material with near zero or negative CTE is required. A preliminary hand analysis of the contribution of the various components along the distortion path between FGS and the other instruments, neglecting second order effects were examined. A plot of bounding tube longitudinal and transverse CTEs for thermal stability requirements was generated to help determine the feasibility of meeting these requirements. This analysis is a work in progress en route to a large degree of freedom hi-fidelity FEA model for distortion analysis. Methods of model reduction, such as superelements, are currently being investigated.

  8. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  9. USA/USSR Textbook Distortions.

    ERIC Educational Resources Information Center

    Parker, Franklin

    This review of a 1981 interim report on the United States' and the Soviet Union's distortion of events in history and geography textbooks is intended to encourage educators in both countries to depict the other side more honestly, less aggressively, and more appreciative of each other's virtues and flaws. Organized into two major sections,…

  10. Distorted turbulence in axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1981-01-01

    A solution to the rapid-distortion theory for small-scale turbulence in flow round an axisymmetric obstacle is derived. General formulae for velocity covariances and Eulerian time scales are obtained and are evaluated for the particular case of flow round a sphere. The large-scale limit for this flow is also discussed.

  11. Optical distortions by compressible turbulence

    NASA Astrophysics Data System (ADS)

    Mani, Ali

    Optical distortions induced by refractive index fluctuations in turbulent flows are a serious concern in airborne communication and imaging systems. This project focuses on aero-optical flows in which compressible turbulence is the dominant source of optical distortions. These flows include boundary layers, free shear layers, cavity flows, and wakes typically associated with flight conditions. The present study consists of two theoretical analyses and an extensive numerical investigation of optical distortions by separated shear layers and turbulent wakes. We present an analysis of far-field optical statistics in a general aero-optical framework. Based on this analysis, measures of far-field distortion, such as tilt, spread, and loss of focus-depth, are linked to key flow statistics. By employing these measures, we quantify distortion effects through a set of norms that have provable scaling properties with key optical parameters. The second analysis presents a theoretical estimate of the range of optically important flow scales in an arbitrary aero-optical flowfield. We show that in the limit of high Reynolds numbers, the smallest optically important scale does not depend on the Kolmogorov scale. For a given geometry this length scale depends only on the flow Mach number, freestream refractive index, and the optical wavelength. The provided formula can be used to estimate grid resolution requirements for numerical simulations of aero-optical phenomena. A rough estimate indicates that resolution requirements for accurate prediction of aero-optics is not much higher than typical LES requirements. As a model problem, compressible turbulent flows over a circular cylinder is considered to study the fundamental physics of aero-optical effects. Large-eddy simulation with a high-resolution numerical scheme is employed to compute variations of the refractive index field in the separated shear layers and turbulent wakes in a range of flow Mach numbers (0.2--0.85) and

  12. Optical compensation for hologram distortion using wavefront interpolation in angle-multiplexed holograms

    NASA Astrophysics Data System (ADS)

    Muroi, Tetsuhiko; Kinoshita, Nobuhiro; Ishii, Norihiko; Kamijo, Koji; Kawata, Yoshimasa; Kikuchi, Hiroshi

    2014-05-01

    Distortion of the hologram may occur when the photopolymer material used in the medium shrinks or expands. We analyzed interference fringe distortion for plane waves and a reference beam with an angular gap between recording and reproducing for the purpose of compensating for the distortion. We found that the wavefronts that could compensate for the distortion could approximately be obtained by linear interpolation of such angle-multiplexed holograms. We recorded 80 data pages with the angle-multiplexing method and obtained an optimized wavefront to compensate for hologram distortion on the first, fortieth, and eightieth data pages using adaptive optics with genetic algorithms and linear interpolated wavefronts at the other data pages. The calculation time for 80 wavefronts to compensate for distortion fell to 3/80th of that of having to calculate optimizations for all pages. The bit error rates were lower than 1.0 × 10-2 on all data pages reproduced using these wavefronts.

  13. Pneumatic distortion compensation for aircraft surface pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1991-01-01

    In this paper a technique of compensating for pneumatic distortion in aircraft surface pressure sensing devices is developed. The compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Typically, most of the distortion occurs within the pneumatic tubing used to transmit pressure impulses from the surface of the aircraft to the measurement transducer. This paper develops a second-order distortion model that accurately describes the behavior of the primary wave harmonic of the pneumatic tubing. The model is expressed in state-variable form and is coupled with standard results from minimum-variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data. Covariance selection and filter-tuning examples are presented. Results presented verify that, given appropriate covariance magnitudes, the algorithms accurately reconstruct surface pressure values from remotely sensed pressure measurements.

  14. Distortions of posterior visual space.

    PubMed

    Phillips, Flip; Voshell, Martin G

    2009-01-01

    The study of spatial vision is a long and well traveled road (which, of course, converges to a vanishing point at the horizon). Its various distortions have been widely investigated empirically, and most concentrate, pragmatically, on the space anterior to the observer. The visual world behind the observer has received relatively less attention and it is this perspective the current experiments address. Our results show systematic perceptual distortions in the posterior visual world when viewed statically. Under static viewing conditions, observer's perceptual representation was consistently 'spread' in a hyperbolic fashion. Directions to distant, peripheral locations were consistently overestimated by about 11 degrees from the ground truth and this variability increased as the target was moved toward the center of the observer's back. The perceptual representation of posterior visual space is, no doubt, secondary to the more immediate needs of the anterior visual world. Still, it is important in some domains including certain sports, such as rowing, and in vehicular navigation.

  15. Analysis of pressure distortion testing

    NASA Technical Reports Server (NTRS)

    Koch, K. E.; Rees, R. L.

    1976-01-01

    The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern.

  16. Detection and Rectification of Distorted Fingerprints.

    PubMed

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  17. Testing inflation and curvaton scenarios with CMB distortions

    SciTech Connect

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi E-mail: garbrecht@tum.de

    2014-10-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.

  18. Dynamic simulation for distortion image with turbulence atmospheric transmission effects

    NASA Astrophysics Data System (ADS)

    Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen

    2013-09-01

    The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering

  19. Analysis of Brown camera distortion model

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  20. On relative distortion in fingerprint comparison.

    PubMed

    Kalka, Nathan D; Hicklin, R Austin

    2014-11-01

    When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons.

  1. Approximate Coulomb distortion effects in (e,e{sup {prime}}p) reactions

    SciTech Connect

    Kim, K.S.; Wright, L.E.

    1997-07-01

    In this paper we apply a well-tested approximation of electron Coulomb distortion effects to the exclusive reaction (e,e{sup {prime}}p) in the quasielastic region. We compare the approximate treatment of Coulomb distortion effects to the exact distorted wave Born approximation evaluated by means of partial wave analysis to gauge the quality of our approximate treatment. We show that the approximate Mo/ller potential has a plane-wave-like structure and hence permits the separation of the cross section into five terms which depend on bilinear products of transforms of the transition four current elements. These transforms reduce to Fourier transforms when Coulomb distortion is not present, but become modified with the inclusion of Coulomb distortion. We investigate the application of the approximate formalism to a model of {sup 208}Pb(e,e{sup {prime}}p) using Dirac-Hartree single particle wave functions for the ground state and relativistic optical model wave functions for the continuum proton. We show that it is still possible to extract, albeit with some approximation, the various structure functions from the experimentally measured data even for heavy nuclei. {copyright} {ital 1997} {ital The American Physical Society}

  2. Biological motion distorts size perception

    NASA Astrophysics Data System (ADS)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-02-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  3. Biological motion distorts size perception

    PubMed Central

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-01-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size. PMID:28205639

  4. Accurate quartic and sextic centrifugal distortion constants of CH3CP

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Cludi, L.; Degli Esposti, C.

    2003-03-01

    1-Phosphapropyne has been produced in the gas phase by pyrolysis of a mixture of ethane and phosphorus trichloride. The ground state rotational spectra of the most abundant isotopomer and of the isotopic variants 13CH3CP and CH313CP have been investigated in the millimeter and submillimeter wave regions obtaining very accurate values of the quartic centrifugal distortion constants DJ and DJK and of the sextic distortion constants HJK and HKJ.

  5. Spectral Distortions of the CMB Dipole

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Kholupenko, E. E.; Chluba, J.; Ivanchik, A. V.; Varshalovich, D. A.

    2015-09-01

    We consider the distortions of the cosmic microwave background (CMB) dipole anisotropy related to primordial recombination radiation (PRR) and primordial y- and μ-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of the CMB dipole does not depend on the particular observation directions and reaches the level of 10-6 for the PRR- and μ-distortions and 10-5 for the y-distortion in the frequency range 1-700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on the observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences due to the PRR- and μ-dipole anisotropy attain values {{Δ }}T≃ 10 {nK} in the considered range. The temperature difference arising from the y-dipole anisotropy may reach values of up to 1 μ {{K}}. The key features of the considered effect are as follow: (i) an observation of the effect does not require absolute calibration; (ii) patches of sky with minimal foreground contamination can be chosen. Future measurements of the CMB dipole distortion thus will provide an alternative method for direct detection of the PRR-, y-, and μ-distortions. The y-distortion dipole may be detectable with PIXIE at a few standard deviations.

  6. a Reevaluation of Distortional Isomerism

    NASA Astrophysics Data System (ADS)

    Desrochers, Patrick John

    The blue and green forms of MoOCl_2 (PMe_2Ph)_3 and (LWOCl_2) PF _6 (L = 1,4,7-trimethyltriazacyclononane) are not examples of distortional isomerism. For both systems, the blue form is pure and the green form is a mixture of the blue complex and other components. Characterizations of the green material of each indicates that green "MoOCl _2(PMe_2Ph) _3" is a mixture of MoOCl _2(PMe_2Ph) _3 and MoCl_3(PMe _2Ph)_3 and that green "(LWOCl_2) PF _6" is a mixture of (LWOCl_2 ) PF_6 and two other species; one is a W(IV) and the other a W(VI) compound. Both solid state (XPS, Raman, infrared, powder X-ray diffraction) and solution phase (^1H NMR, UV -visible, EPR, cyclic voltammetry) measurements were applied to the respective green materials, presenting a consistent description of their composite nature. A single crystal X-ray structure determination of a crystal of green "MoOCl _2(PMe_2Ph) _3" allowed the compositional disorder to be partially resolved in this case, due to the high composition of MoOCl_3(PMe _2Ph)_3 in the sample (ca. 0.30 mole percent by XPS and visible spectroscopies). The single crystal X-ray diffraction data from the original single crystal study of green "(LWOCl_2 ) PF_6" were reinvestigated to ascertain whether compositional disorder could also be implicated in this system. Several composite models were applied to these data, resulting in improved fits to the observed data. This indicated that the original data collected for the crystal of green "(LWOCl _2) PF_6" could not support distortional isomerism in green "(LWOCl _2) PF_6". X-ray structure calculations on models of the compositional disorder in both systems illustrated the pronounced effect of disordering chlorine electron density on the derived metal-oxo bond lengths. A calibration curve of Mo-Cl bond length versus composition calculated from these models resulted in a favorable comparison of this present theoretical work with other experimental X-ray studies of the MoOCl_2 (PMe_2Ph)_3

  7. Dynamic Dazzle Distorts Speed Perception

    PubMed Central

    Hall, Joanna R.; Cuthill, Innes C.; Baddeley, Roland; Attwood, Angela S.; Munafò, Marcus R.; Scott-Samuel, Nicholas E.

    2016-01-01

    Static high contrast (‘dazzle’) patterns, such as zigzags, have been shown to reduce the perceived speed of an object. It has not escaped our notice that this effect has possible military applications and here we report a series of experiments on humans, designed to establish whether dynamic dazzle patterns can cause distortions of perceived speed sufficient to provide effective defence in the field, and the extent to which these effects are robust to a battery of manipulations. Dynamic stripe patterns moving in the same direction as the target are found to increase the perceived speed of that target, whilst dynamic stripes moving in the opposite direction to the target reduce the perceived speed. We establish the optimum position for such dazzle patches; confirm that reduced contrast and the addition of colour do not affect the performance of the dynamic dazzle, and finally, using the CO2 challenge, show that the effect is robust to stressful conditions. PMID:27196098

  8. Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators.

    PubMed

    Mok, Joe; Blows, Justin; Eggleton, Benjamin

    2004-09-20

    We investigate the use of all-optical regenerators to correct pulse distortions introduced by group delay ripple. Group delay ripple creates unwanted satellite pulses and intensity fluctuations. By placing an all-optical regenerator after a device that introduces group delay ripple, we show that the signal distortions can be effectively reduced. This has the benefit of opening the signal eye at the receiver. The performances of both self-phase modulation and four-wave mixing based regenerators in reducing ripple induced system penalties are examined. We find that the regenerator based on four-wave mixing achieves better suppression of group delay ripple distortions than the self-phase modulation based alternative. The eye closure penalty introduced by group delay ripple is reduced by the four-wave mixing based regenerator by 1dB.

  9. Frequency modulation television analysis: Distortion analysis

    NASA Technical Reports Server (NTRS)

    Hodge, W. H.; Wong, W. H.

    1973-01-01

    Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.

  10. Static stereo vision depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, D. B.; Von Sydow, M.

    1988-01-01

    A major problem in high-precision teleoperation is the high-resolution presentation of depth information. Stereo television has so far proved to be only a partial solution, due to an inherent trade-off among depth resolution, depth distortion and the alignment of the stereo image pair. Converged cameras can guarantee image alignment but suffer significant depth distortion when configured for high depth resolution. Moving the stereo camera rig to scan the work space further distorts depth. The 'dynamic' (camera-motion induced) depth distortion problem was solved by Diner and Von Sydow (1987), who have quantified the 'static' (camera-configuration induced) depth distortion. In this paper, a stereo image presentation technique which yields aligned images, high depth resolution and low depth distortion is demonstrated, thus solving the trade-off problem.

  11. Prostate Diffusion Imaging with Distortion Correction

    PubMed Central

    Rakow-Penner, Rebecca A.; White, Nathan S.; Margolis, Daniel J. A.; Parsons, J. Kellogg; Schenker-Ahmed, Natalie; Kuperman, Joshua M.; Bartsch, Hauke; Choi, Hyung W.; Bradley, William G.; Shabaik, Ahmed; Huang, Jiaoti; Liss, Michael A.; Marks, Leonard; Kane, Christopher J.; Reiter, Robert E.; Raman, Steven S.; Karow, David S.; Dale, Anders M.

    2015-01-01

    Purpose Diffusion imaging in the prostate is susceptible to distortion from B0 inhomogeneity. Distortion correction in prostate imaging is not routinely performed, resulting in diffusion images without accurate localization of tumors. We performed and evaluated distortion correction for diffusion imaging in the prostate. Materials and Methods 28 patients underwent pre-operative MRI (T2, Gadolinium perfusion, diffusion at b = 800 s/mm2). The restriction spectrum protocol parameters included b-values of 0, 800, 1500, and 4000 s/mm2 in 30 directions for each nonzero b-value. To correct for distortion, forward and reverse trajectories were collected at b = 0 s/mm2. Distortion maps were generated to reflect the offset of the collected data versus the corrected data. Whole-mount histology, was available for correlation. Results: Across the 27 patients evaluated (excluding one patient due to data collection error), the average root mean square distortion distance of the prostate was 3.1 mm (standard deviation, 2.2 mm; and maximum distortion, 12 mm). Conclusion Improved localization of prostate cancer by MRI will allow better surgical planning, targeted biopsies and image-guided treatment therapies. Distortion distances of up to 12 mm due to standard diffusion imaging may grossly misdirect treatment decisions. Distortion correction for diffusion imaging in the prostate improves tumor localization. PMID:26220859

  12. Cognitive Distortions, Humor Styles, and Depression

    PubMed Central

    Rnic, Katerina; Dozois, David J. A.; Martin, Rod A.

    2016-01-01

    Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual’s ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor) as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria. PMID:27547253

  13. Traversable wormholes in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    2015-07-01

    In this paper, we consider the effects of distorted gravity on the traversability of the wormholes. In particular, we consider configurations which are sustained by their own gravitational quantum fluctuations. The Ultraviolet divergences appearing to one loop are taken under control with the help of a Noncommutative geometry representation and gravity's rainbow. In this context, it will be shown that for every framework, the self-sustained equation will produce a Wheeler wormhole, namely a wormhole of Planckian size. This means that, from the point of view of traversability, the wormhole will be traversable in principle, but not in practice. For this purpose, in the context of gravity's rainbow we have considered different proposals of rainbow's functions to see if the smallness of the wormhole is dependent on the chosen form of the rainbow's function. Unfortunately, we discover that this is not the case and we suggest that the self-sustained equation can be improved to see if the wormhole radius can be enlarged or not. Some consequences on topology change are discussed.

  14. Distortion Of Pressure Signals In Pneumatic Tubes

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Gilyard, Glenn B.; Curry, Robert; Lindsey, William

    1993-01-01

    NASA technical memorandum describes experimental investigation of distorting effects of propagation of pressure signals along narrow pneumatic tubes from pressure-sensing orifices on surfaces of models or aircraft to pressure sensors distant from orifices. Pressure signals distorted principally by frictional damping along walls of tubes and by reflections at orifice and sensor ends.

  15. Self-Compassion and Interpersonal Cognitive Distortions

    ERIC Educational Resources Information Center

    Akin, Ahmet

    2010-01-01

    The purpose of this study is to examine the relationships between self-compassion and interpersonal cognitive distortions. Participants were 338 university students. In this study, the Self-compassion Scale and the Interpersonal Cognitive Distortions Scale were used. The relationships between self-compassion and interpersonal cognitive distortions…

  16. Hybrid distortion function for JPEG steganography

    NASA Astrophysics Data System (ADS)

    Wang, Zichi; Zhang, Xinpeng; Yin, Zhaoxia

    2016-09-01

    A hybrid distortion function for JPEG steganography exploiting block fluctuation and quantization steps is proposed. To resist multidomain steganalysis, both spatial domain and discrete cosine transformation (DCT) domain are involved in the proposed distortion function. In spatial domain, a distortion value is allotted for each 8×8 block according to block fluctuation. In DCT domain, quantization steps are employed to allot distortion values for DCT coefficients in a block. The two elements, block distortion and quantization steps, are combined together to measure the embedding risk. By employing the syndrome trellis coding to embed secret data, the embedding changes are constrained in complex regions, where modifications are hard to be detected. When compared to current state-of-the-art steganographic methods for JPEG images, the proposed method presents less detectable artifacts.

  17. Temperature distortion generator for turboshaft engine testing

    NASA Technical Reports Server (NTRS)

    Klann, G. A.; Barth, R. L.; Biesiadny, T. J.

    1984-01-01

    The procedures and unique hardware used to conduct an experimental investigation into the response of a small-turboshaft-engine compression system to various hot gas ingestion patterns are presented. The temperature distortion generator described herein uses gaseous hydrogen to create both steady-state and time-variant, or transient, temperature distortion at the engine inlet. The range of transient temperature ramps produced by the distortion generator during the engine tests was from less than 111 deg K/sec (200 deg R/sec) to above 611 deg K/sec (1100 deg R/sec); instantaneous temperatures to 422 deg K (760 deg R) above ambient were generated. The distortion generator was used to document the maximum inlet temperatures and temperature rise rates that the compression system could tolerate before the onset of stall for various circumferential distortions as well as the compressor system response during stall.

  18. Electron Ionization Cross Sections in the Distorted-Wave Approximation.

    DTIC Science & Technology

    1980-06-18

    solution T(rl, r2 ) of the Schr ~ dinger equation is not known. Moreover, it is difficult to satisfy condition (9) for effective charges Z and Z’ as... computing time . It is therefore suitable for a production of large number of data needed in the analysis and interpretation of hot plasmas in laboratory...goal was to develop an approximation based on the quantum-mechanical approach to the collision problem, simple enough so that it would be suitable

  19. Tidal Distortion in Shallow Estuaries

    DTIC Science & Technology

    1984-06-01

    Cronin (ed.), Estuarine Research, v. 2, Academic Press, p. 217-234. Butler, H.L., 1980. Evolution of a numerical model for simulating long- period wave...North Carolina. Appendix 2, v. 1, Numerical simulation of hydrodynamics (WRE). GITI Report 6, U.S. Army Coastal Eng. Res. Cent., 123 pp. Mota-Oliveira...of Earth’s rotation relative to the Sun f 1 = i lunar month = period of Moon’s orbital motion f~l = 1 year = period of Sun’s orbital motion 4f =8.85

  20. Combined pressure and temperature distortion effects on internal flow of a turbofan engine

    NASA Technical Reports Server (NTRS)

    Braithwaite, W. M.; Soeder, R. H.

    1979-01-01

    An additional data base for improving and verifying a computer simulation developed by an engine manufacturer was obtained. The multisegment parallel compressor simulation was designed to predict the effects of steady-state circumferential inlet total-pressure and total-temperature distortions on the flows into and through a turbofan compression system. It also predicts the degree of distortion that will result in surge of the compressor. The effect of combined 180 deg square-wave distortion patterns of total pressure and total temperature in various relative positions is reported. The observed effects of the combined distortion on a unitary bypass ratio turbofan engine are presented in terms of total and static pressure profiles and total temperature profiles at stations ahead of the inlet guide vanes as well as through the fan-compressor system. These observed profiles are compared with those predicted by the complex multisegment model. The effects of relative position of the two components comprising the combined distortion on the degree resulting in surge are discussed. Certain relative positions required less combined distortion than either a temperature or pressure distortion by itself.

  1. Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring

    NASA Technical Reports Server (NTRS)

    Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.

    1993-01-01

    A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.

  2. Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem

    NASA Astrophysics Data System (ADS)

    Diacu, Florin

    2016-11-01

    We consider the 3-body problem of celestial mechanics in Euclidean, elliptic, and hyperbolic spaces and study how the Lagrangian (equilateral) relative equilibria bifurcate when the Gaussian curvature varies. We thus prove the existence of new classes of orbits. In particular, we find some families of isosceles triangles, which occur in elliptic space.

  3. Gravitational Effects on Distortion in Sintering

    NASA Technical Reports Server (NTRS)

    German, Randall M.

    2003-01-01

    During sintering a powder compact gains strength through low-temperature interparticle bonding, usually induced by solid-state surface diffusion, followed by further strength contributions from high-temperature densification. In cases where a liquid phase forms, sintering densification is accelerated and shape retention is sustained while open pores remain and contribute capillary forces. Unfortunately, sintering densification requires the compact become thermally softened to a point where creep strain rates reach levels near 10(exp -2)/s when the liquid forms. On the other hand, thermal softening of the powder compact substantially reduces the strength at high temperatures. Therefore, the in situ strength evolution during sintering is a primary focus to separate compact densification (as required for high performance) with minimized distortion (as required for net-shaping). With respect to gravitation effects on distortion during sintering there are two points of substantial weakness - prior to significant interparticle bonding and during final pore closure. This research is focused on understanding the competition among interparticle neck growth, densification, thermal softening, grain boundary wetting, capillary effects associated with liquid wetting and residual porosity, and gravity. Most surprising is the apparent role of gravity, where the deviatoric stress acting on the powder structure induces skeletal formation that reduces distortion. In contrast with theory, microgravity samples exhibit more distortion yet fail to fully densify. Results are presented on the experimental concepts supporting an emerging model of sintering strength evolution that enables understanding of both distortion and densification. The experiments have relied on tungsten heavy alloys, various combinations of dihedral angle, pore size, initial porosity, liquid:solid ratio, and heating rates. On Earth, the dominant factor with respect to distortion is the starting body heterogeneity

  4. Distortions in the visual perception of shape.

    PubMed

    Henriques, Denise Y P; Flanders, Martha; Soechting, John F

    2005-01-01

    It is known that visual illusions lead to a distorted perception of the length and orientation of lines, but it is not clear how these illusions affect the appreciation of the shape of closed forms. In this study two experiments were performed to characterize distortions in the visual perception of the shape of quadrilaterals and the extent to which these distortions were similar to the distortions of haptically sensed shapes. In the first experiment human subjects were presented with two quadrilaterals side by side on a computer monitor. One was a reference shape; the other was rotated and distorted relative to the first. The subjects used the computer mouse to adjust the corners of the distorted quadrilateral to match the shape of the target quadrilateral. They made consistent errors on this task: the adjusted quadrilateral was about 2% wider and about 2% shorter than the veridical shape. Furthermore, subjects adjusted the inner angles of the quadrilateral to make them closer to 90 degrees . The first type of error was also present in a second experiment in which, in a two-alternative forced-choice paradigm, subjects viewed a reference shape and were asked to indicate which of two transiently presented quadrilaterals was closest to the target shape. The width/height errors and the inner angle errors were comparable to those described previously when subjects felt the outline of a quadrilateral and then drew its reproduction in the absence of vision, suggesting that the distortion occurs in the process of remembering the shape.

  5. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.

    PubMed

    Dong, Wei

    2016-12-01

    Sound energy propagates in the cochlea through a forward-traveling or slow wave supported by the cochlear partition and fluid inertia. Additionally, cochlear models support traveling wave propagation in the reverse direction as the expected mechanism for conveying otoacoustic emissions out of the cochlea. Recently, however, this hypothesis has been questioned, casting doubt on the process by which otoacoustic emissions travel back out through the cochlea. The proposed alternative reverse travel path for emissions is directly through the fluids of the cochlea as a compression pressure in the form of a fast wave. In the present study, a custom-made micro-pressure sensor was used in vivo in the gerbil cochlea to map two-tone-evoked pressure responses at distinct longitudinal and vertical locations in both the scala tympani and scala vestibuli. Analyses of the magnitude and phase of intracochlear pressure responses at the primary tone and distortion product frequencies were used to distinguish between fast and slow waves in both the forward- and reverse-propagation directions. Results demonstrated that distortion products may travel in both forward and reverse directions post-generation and the existence of both traveling and compression waves. The forward-traveling component appeared to duplicate the process of any external tone, tuned to the local characteristic-frequency place, as it increased compressively and nonlinearly with primary-tone levels. A compression wave was evidenced at frequencies above the cutoff of the recording site. In the opposite direction, a reverse-traveling wave played the major role in driving the stapes reversely and contributed to the distortion product otoacoustic emission. The compression wave may also play a role in reverse propagation when distortion products are generated at a region close to the stapes.

  6. Shock turbulence interaction in the presence of mean shear - An application of rapid distortion theory

    NASA Technical Reports Server (NTRS)

    Mahesh, Krishnan; Lele, Sanjiva K.; Moin, Parviz

    1993-01-01

    The present examination of the response of anisotropic turbulent flows to a shock wave uses incompressible, homogeneous rapid distortion theory and idealizes the shock-wave as 1D compression. Attention is given to the shock's effect on axisymmetric flow and both the normal and oblique cases for shear flow. The oblique angle between the directions of compression and shear significantly affects turbulence evolution. Compression amplifies all components of turbulence intensity.

  7. Distortion in the frequency demodulator using feedback.

    NASA Technical Reports Server (NTRS)

    Hoffman, E.; Schilling, D. L.

    1972-01-01

    The response of a frequency demodulator using feedback (FMFB) to a frequency modulated signal is analyzed. Canonical equations of operation are obtained. Harmonic distortion is calculated for the case of a sinusoidal modulating signal. Intermodulation distortion is calculated assuming a noise-like modulation. Design curves are presented. The special case of harmonic and intermodulation distortion in a discriminator is also presented. It is shown that the results obtained in this paper by treating the discriminator as a degenerate FMFB compare favorably with those obtained by other authors. However, the results presented here do not require digital computation.

  8. Two-point Spectral Modeling of Anisotropic Rapid Distortion

    NASA Astrophysics Data System (ADS)

    Clark, Timothy; Kurien, Susan; Rubinstein, Robert; Zemach, Charles

    2015-11-01

    We perform simulations of a two-point spectral model for the evolution of the energy tensor as function of wave-vector, for arbitrarily anisotropic turbulence in the limit of rapid distortion. The resulting Reynolds stress tensor for such flow is analysed for the effects of anisotropy during evolution. According to the SO(3) rotation group decomposition of the energy tensor, the leading order isotropic contribution is labelled by rotational mode index j = 0 , while higher order anisotropic contributions in statistically homogeneous flows contain a potentially very large array of rotational modes j = 2 , 3 , 4 , ... . We compare our results to those of the classical Launder, Reece and Rodi class of models in the rapid distortion limit. These models only retain anisotropy in a nominal manner up to j = 2 , due to an a priori angle-averaging procedure on the energy tensor, reducing it to a function of wave-number alone. Although the Reynolds stress itself has maximum j = 2 in the SO(3) representation, the terms that contribute to its evolution generate higher order rotational modes. The contributions from the higher order modes are shown to be responsible for the deviation of the LRR solution from the true solution over time.

  9. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  10. Microwave background distortions from domain walls

    NASA Astrophysics Data System (ADS)

    Goetz, Guenter; Noetzold, Dirk

    1990-08-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  11. Microwave background distortions from domain walls.

    NASA Astrophysics Data System (ADS)

    Goetz, G.; Nötzold, D.

    1991-03-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large-scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. The authors find that the maximal redshift distortion for both spherical and planar walls is of the order πGσH0-1, where σ is the surface energy density and H0 the Hubble parameter. They also find that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e. the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor γ the redshift distortion is enhanced by γ3.

  12. Interior of a charged distorted black hole

    SciTech Connect

    Abdolrahimi, Shohreh; Frolov, Valeri P.; Shoom, Andrey A.

    2009-07-15

    We study the interior of a charged, nonrotating distorted black hole. We consider static and axisymmetric black holes, and focus on a special case when an electrically charged distorted solution is obtained by the Harrison-Ernst transformation from an uncharged one. We demonstrate that the Cauchy horizon of such a black hole remains regular, provided the distortion is regular at the event horizon. The shape and the inner geometry of both the outer and inner (Cauchy) horizons are studied. We demonstrate that there exists a duality between the properties of the horizons. Proper time of a free fall of a test particle moving in the interior of the distorted black hole along the symmetry axis is calculated. We also study the property of the curvature in the inner domain between the horizons. Simple relations between the 4D curvature invariants and the Gaussian curvature of the outer and inner horizon surfaces are found.

  13. Harmonic distortion in microwave photonic filters.

    PubMed

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  14. Vacuum polarization near a distorted black hole

    NASA Astrophysics Data System (ADS)

    Frolov, V. P.; Alberto García, D.

    1983-12-01

    The vacuum polarization near a black hole distorted by the axially symmetric gravitational field of external matter is studied. The explicit expression for <φ2> at the pole of the distorted horizon is obtained. Also at Sección de Graduados, Escuela Superior de Ingeniería Mecánica y Eléctrica del IPN, México DF, México.

  15. Distortion Estimates for Negative Schwarzian Maps.

    DTIC Science & Technology

    1988-02-29

    continuous with respect to Lebesgue measure. If Q(E) > 0. then since ’T generates. Ve > 0. 3n. 3.1 E J, such that e and hence ((f "(E)) > t -,a() < n ecegf...Estimates on Distortion The distortion dis(f) is invariant under changes of scale in the domain and is multi- plied by the inverse of a scaling factor

  16. Reconstructing the distortion function for nonlocal cosmology

    SciTech Connect

    Deffayet, C.; Woodard, R.P. E-mail: woodard@phys.ufl.edu

    2009-08-01

    We consider the cosmology of modified gravity models in which Newton's constant is distorted by a function of the inverse d'Alembertian acting on the Ricci scalar. We derive a technique for choosing the distortion function so as to fit an arbitrary expansion history. This technique is applied numerically to the case of ΛCDM cosmology, and the result agrees well with a simple hyperbolic tangent.

  17. Low distortion laser welding of cylindrical components

    NASA Astrophysics Data System (ADS)

    Kittel, Sonja

    2011-02-01

    Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.

  18. Low distortion laser welding of cylindrical components

    NASA Astrophysics Data System (ADS)

    Kittel, Sonja

    2010-09-01

    Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.

  19. Plasticity and Awareness of Bodily Distortion

    PubMed Central

    Zantedeschi, Marta

    2016-01-01

    Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one's body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorders. PMID:27630779

  20. The Thermal Distortion of a Funnel Mold

    NASA Astrophysics Data System (ADS)

    Hibbeler, Lance C.; Thomas, Brian G.; Schimmel, Ronald C.; Abbel, Gert

    2012-10-01

    This article investigates the thermal distortion of a funnel mold for continuous casting of thin slabs and explores the implications on taper and solidification of the steel shell. The three-dimensional mold temperatures are calculated using shell-mold heat flux and cooling water profiles that were calibrated with plant measurements. The thermal stresses and distorted shape of the mold are calculated with a detailed finite-element model of a symmetric fourth of the entire mold and waterbox assembly, and they are validated with plant thermocouple data and measurements of the wear of the narrow-face copper mold plates. The narrow-face mold distorts into the typical parabolic arc, and the wide face distorts into a "W" shape owing to the large variation in bolt stiffnesses. The thermal expansion of the wide face works against the applied narrow-face taper and funnel effects, so the effect of thermal distortion must be considered to accurately predict the ideal mold taper.

  1. A helically distorted MHD flux rope model

    NASA Technical Reports Server (NTRS)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  2. Core-nucleus distortation in hypernuclei

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.

    1995-08-01

    We are completing a study of the effects of the spherical distortion of the {open_quotes}core{close_quotes} nucleus by the {Lambda} in a hypernucleus. The response of the core was determined by an appropriately chosen energy-density functional which depends, in particular, on the nuclear compressibility. The forcing action of the A is determined by the nuclear density dependence of the {Lambda} binding in nuclear matter which is obtained from our work on the {Lambda} single-particle energies. Because of the strongly repulsive {Lambda}NN forces, this {Lambda} binding {open_quotes}saturates{close_quotes} at a density close to the central density of nuclei, and results in a reduced core-nucleus distortion much less than would otherwise be obtained. The effects of the core distortion then turn out to be very small even for quite light hypernuclei. This result justifies the assumption that spherical core nuclei are effectively undistorted in a hypernucleus.

  3. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  4. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  5. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.

    1994-01-01

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

  6. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

    1994-04-19

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

  7. On Distortion in Digital Microwave Power Amplifiers

    NASA Astrophysics Data System (ADS)

    Al-Mozani, Dhamia; Wentzel, Andreas; Heinrich, Wolfgang

    2017-01-01

    In this paper, a first study of distortion in digital power amplifiers (PA) is presented. The work is based on a voltage mode class-S PA with a GaN MMIC for the 900 MHz frequency band. The investigation focuses on the quasi-static amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. Different digital modulation schemes are applied and studied versus output power back-off. This includes two pulse-width modulation (PWM) versions as well as band-pass delta-sigma (BPDS) modulation. The results are verified by measurement data.

  8. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  9. The topology of the regularized integral surfaces of the 3-body problem.

    NASA Technical Reports Server (NTRS)

    Easton, R.

    1972-01-01

    A method is described by which the integral surface can be modified in such a way that Newton's equations of motion actually give a flow. The process of regularization of vector fields by surgery, as described by the author (1971) is reviewed. The planar 3-body problem and its regularization, and the topology of the integral surfaces are considered. The Lagrange-Jacobi identity is used to show that there exists an isolating block such that any orbit which ends in a triple collision must enter and remain in this block.

  10. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    SciTech Connect

    Andorf, Matthew; Lebedev, Valeri; Piot, Philippe; Ruan, Jinhao

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  11. A hydrodynamical approach to CMB μ-distortion from primordial perturbations

    SciTech Connect

    Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2013-02-01

    Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the μ-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we provide formulae for the spatial dependence of μ-distortions and its transfer function between the end of the μ-era and now.

  12. Properties of the distorted Kerr black hole

    SciTech Connect

    Abdolrahimi, Shohreh; Tzounis, Christos; Kunz, Jutta; Nedkova, Petya E-mail: jutta.kunz@uni-oldenburg.de E-mail: tzounis@ualberta.ca

    2015-12-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J{sup 2}/M{sup 4} > 1 and yet avoid a naked singularity.

  13. Distortion compensation techniques for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2001-01-01

    The high-frequency limit of reflector antennas is usually governed by the magnitude of the surface error. Whereas little can be done for the high-spatial frequency portion of this error, there are various techniques that can be employed to compensate for large-scale surface errors due to gravity induced distortions for spacecraft antennas.

  14. Rate-distortion theory and human perception.

    PubMed

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory.

  15. Magnetotelluric tensors, electromagnetic field scattering and distortion in three-dimensional environments

    NASA Astrophysics Data System (ADS)

    Brown, Colin

    2016-10-01

    This paper describes how subsurface resistivity distributions can be estimated directly from the magnetotelluric (MT) tensor relationship between electric and magnetic fields observed on a three-dimensional (3-D) half-space. It presents an inhomogeneous plane wave analogy where relationships between horizontal electric and magnetic fields, and an apparent current density define an apparent resistivity tensor constructed from a quadratic function of the MT tensor. An extended-Born relationship allows the electric field to be normalized with respect to an apparent background current density. The model is generalized by including the vertical magnetic field in a 3 by 3 MT response tensor. A complex apparent wave number tensor, constructed from this tensor, has eigenvalues which, using the plane wave analogy, are the vertical wave numbers associated with the eigenpolarizations of propagating waves in the model half space. The elements associated with the vertical magnetic field transfer function define the horizontal wave numbers. An extended 3 by 3 phase tensor contains four elements of the conventional 2 by 2 phase tensor and two elements associated with the vertical magnetic transfer function. The extended phase tensor and a single real distortion tensor with six independent elements can be used to quantify static electric and magnetic field distortions. The approach provides a theoretical basis for visualization and migration of MT data, in comparison with results from other electrical and EM techniques, a starting point for constrained 3-D inversions, and an assessment of results with other geophysical and geological data.

  16. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    NASA Astrophysics Data System (ADS)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  17. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  18. Fabric geometry distortion during composites processing

    NASA Technical Reports Server (NTRS)

    Chen, Julie

    1994-01-01

    Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However

  19. Nonlinear wave interaction problems in the three-dimensional case

    NASA Astrophysics Data System (ADS)

    Curró, C.; Manganaro, N.; Pavlov, M. V.

    2017-01-01

    Three-dimensional nonlinear wave interactions have been analytically described. The procedure under interest can be applied to three-dimensional quasilinear systems of first order, whose hydrodynamic reductions are homogeneous semi-Hamiltonian hydrodynamic type systems (i.e. possess diagonal form and infinitely many conservation laws). The interaction of N waves was studied. In particular we prove that they behave like simple waves and they distort after the collision region. The amount of the distortion can be analytically computed.

  20. A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Fernholz, H. H.; Finley, P. J.; Dussauge, J. P.; Smits, A. J.; Reshotko, E. (Editor)

    1989-01-01

    A wide range of recent work on compressible turbulent boundary layers is described. Special attention was paid to flows with rapid changes in pressure including flows with shock waves, curved walls, and expansions. The application of rapid distortion theory to flows transversing expansion and shock waves is reviewed. This is followed by an account of experiments aimed at elucidating the large scale structures present in supersonic boundary layers. The current status of laser-Doppler and hot-wire anemometry in supersonic flow is discussed, and a new interferometric technique for the determination of wall-stress is described. The use of small pressure transducers to deduce information about the structure of zero pressure-gradient and severely perturbed boundary layers is investigated. Finally, there is an extension of the data presentation of AGARDographs 223, 253 and 263 to cover rapidly distorted boundary layers.

  1. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the

  2. Radiotherapy planning of the pelvis using distortion corrected MR images: the removal of system distortions

    NASA Astrophysics Data System (ADS)

    Tanner, S. F.; Finnigan, D. J.; Khoo, V. S.; Mayles, P.; Dearnaley, D. P.; Leach, M. O.

    2000-08-01

    Image distortion is an important consideration in the use of magnetic resonance (MR) images for radiotherapy planning. The distortion is a consequence of system distortion (arising from main magnetic field inhomogeneity and nonlinearities in the applied magnetic field gradients) and of effects arising from the object/patient being imaged. A two-stage protocol has been developed to correct both system- and object-induced distortion in pelvic images which incorporates measures to maintain the quality, accuracy and consistency of the imaging and correction procedures. The first stage of the correction procedure is described here and involves the removal of system distortion. Object- (patient-) induced effects will be described in a subsequent work. Images are acquired with the patient lying on a flat rigid bed, which reproduces treatment conditions. A frame of marker tubes surrounding the patient and attached to the bed provides quality assurance data in each image. System distortions in the three orthogonal planes are mapped using a separate phantom, which fits closely within the quality control frame. Software has been written which automates the measurement and checking of the many marker positions which the test objects generate and which ensures that patient data are acquired using a consistent imaging protocol. Results are presented which show that the scanner and the phantoms used in measuring distortion give highly reproducible results with mean changes of the order of 0.1 mm between repeated measurements of marker positions in the same imaging session. Effective correction for in-plane components of system distortion is demonstrated.

  3. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  4. Maternal transmission, sex ratio distortion, and mitochondria.

    PubMed

    Perlman, Steve J; Hodson, Christina N; Hamilton, Phineas T; Opit, George P; Gowen, Brent E

    2015-08-18

    In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods. We also discuss the consequences of linkage between mitochondria and other maternally transmitted genetic elements, including the role of cytonuclear incompatibilities in maintaining polymorphism. Finally, as a case study, we discuss a recently discovered maternally transmitted sex ratio distortion in an insect that is associated with extraordinarily divergent mitochondria.

  5. Engaging distortions: are we idealizing marriage?

    PubMed

    Bonds-Raacke, J M; Bearden, E S; Carriere, N J; Anderson, E M; Nicks, S D

    2001-03-01

    The present study was an investigation of the premarital status of engagement in terms of relationship satisfaction and marital expectations using the Evaluation and Nurturing Relationship Issues, Communication and Happiness (ENRICH) Marital Satisfaction Scale (EMS) and its two subscales of Idealistic Distortion (ID) and Marital Satisfaction (MS) (D. G. Fournier, D. H. Olson, & J. M. Druckman, 1983). There were 104 students (23 men and 81 women), of which 15 were married, 19 were engaged, and 70 had extended dating relationships. On average, participants had been in the relationship for 3.8 years, and the mean age was 22 years. Results demonstrated that individuals engaged to be married had significantly higher idealistic distortion scores (M = 86.89) than did either married individuals (M = 56.67) or those in extended dating relationships (M = 61.19). Finally, a negative relation was found between length of relationships and marital satisfaction subscores. Results are discussed in light of factors contributing to such idealized thinking.

  6. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  7. Deformations of Annuli with Smallest Mean Distortion

    NASA Astrophysics Data System (ADS)

    Astala, K.; Iwaniec, T.; Martin, G.

    2010-03-01

    We determine the extremal mappings with smallest mean distortion for mappings of annuli. As a corollary, we find that the Nitsche harmonic maps are Dirichlet energy minimizers among all homeomorphisms {h:{{mathbb A}}(r, R) to {{mathbb A}}(r', R')} . However, outside the Nitsche range of the modulus of the annuli, within the class of homeomorphisms, no such energy minimizers exist. In this case we identify the BV-limits of minimizers.

  8. Body image distortions in healthy adults.

    PubMed

    Fuentes, Christina T; Longo, Matthew R; Haggard, Patrick

    2013-10-01

    Distortions of body image have often been investigated in clinical disorders. Much of this literature implicitly assumes healthy adults maintain an accurate body image. We recently developed a novel, implicit, and quantitative measure of body image - the Body Image Task (BIT). Here, we report a large-scale analysis of performance on this task by healthy adults. In both an in-person and an online version of the BIT, participants were presented with an image of a head as an anchoring stimulus on a computer screen, and told to imagine that the head was part of a mirror image of themselves in a standing position. They were then instructed to judge where, relative to the head, each of several parts of their body would be located. The relative positions of each landmark can be used to construct an implicit perceptual map of bodily structure. We could thus measure the internally-stored body image, although we cannot exclude contributions from other representations. Our results show several distortions of body image. First, we found a large and systematic over-estimation of width relative to height. These distortions were similar for both males and females, and did not closely track the idiosyncrasies of individual participant's own bodies. Comparisons of individual body parts showed that participants overestimated the width of their shoulders and the length of their upper arms, relative to their height, while underestimating the lengths of their lower arms and legs. Principal components analysis showed a clear spatial structure to the distortions, suggesting spatial organisation and segmentation of the body image into upper and lower limb components that are bilaterally integrated. These results provide new insight into the body image of healthy adults, and have implications for the study and rehabilitation of clinical populations.

  9. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  10. Nonlinear Hysteretic Torsional Waves.

    PubMed

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  11. Low Distortion Welded Joints for NCSX

    SciTech Connect

    M. Denault, M Viola, W. England

    2009-02-19

    The National Compact Stellarator Experiment (NCSX) required precise positioning of the field coils in order to generate suitable magnetic fields. A set of three modular field coils were assembled to form the Half Field-Period Assemblies (HPA). Final assembly of the HPA required a welded shear plate to join individual coils in the nose region due to the geometric limitations and the strength constraints. Each of the modular coil windings was wound on a stainless steel alloy (Stellalloy) casting. The alloy is similar to austenitic 316 stainless steel. During the initial welding trials, severe distortion, of approximately 1/16", was observed in the joint caused by weld shrinkage. The distortion was well outside the requirements of the design. Solutions were attempted through several simultaneous routes. The joint design was modified, welding processes were changed, and specialized heat reduction techniques were utilized. A final joint design was selected to reduce the amount of weld material needed to be deposited, while maintaining adequate penetration and strength. Several welding processes and techniques using Miller Axcess equipment were utilized that significantly reduced heat input. The final assembly of the HPA was successful. Distortion was controlled to 0.012", well within the acceptable design tolerance range of 0.020" over a 3.5 foot length.

  12. Anisotropic lattice distortions in biogenic aragonite

    NASA Astrophysics Data System (ADS)

    Pokroy, Boaz; Quintana, John P.; Caspi, El'ad N.; Berner, Alex; Zolotoyabko, Emil

    2004-12-01

    Composite biogenic materials produced by organisms have a complicated design on a nanometre scale. An outstanding example of organic-inorganic composites is provided by mollusc seashells, whose superior mechanical properties are due to their multi-level crystalline hierarchy and the presence of a small amount (0.1-5 wt%) of organic molecules. The presence of organic molecules, among other characteristics, can influence the coherence length for X-ray scattering in biogenic crystals. Here we show the results of synchrotron high-resolution X-ray powder diffraction measurements in biogenic and non-biogenic (geological) aragonite crystals. On applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of 10 p.p.m. As a result, we found anisotropic lattice distortions in biogenic aragonite relative to the geological sample, maximum distortion being 0.1% along the c axis of the orthorhombic unit cell. The organic molecules could be a source of these structural distortions in biogenic crystals. This finding may be important to the general understanding of the biomineralization process and the development of bio-inspired 'smart' materials.

  13. Analysis of sonic boom data to quantify distortions of shock profiles

    NASA Astrophysics Data System (ADS)

    Gionfriddo, Thomas A.

    1992-10-01

    Researchers at Penn State have been examining some sonic boom waveforms recorded during overflights by the Air Force which have become available to NASA and its contractors. The quality of the digitized data and the supporting meteorological data was such that one could test the applicability of molecular relaxation theories. In the late sixties, it had been supposed that the finite rise times in the absence of turbulence had neglected the vibrational relaxation of nitrogen molecules. Bass et al. have demonstrated that molecular relaxation definitely gives the correct order of magnitude of the observed rise times. However, the Air Force data in conjunction with the recent steady-state shock profile model theory of Kang and Pierce give the first opportunity to make a detailed quantitative assessment of the molecular relaxation hypothesis. Currently an investigation is ongoing to establish a method of quantifying the distortion of a sonic boom wave from a classic N-wave shape using the Air Force data taken at Edwards AFB in 1987. Using the premise that energy will be conserved approximately for a sonic boom wave both before and after the boom passes through the Earth's turbulent boundary layer, a classic undistorted waveform is constructed from the distorted signature received at the ground. A correlation between the mean-squared deviation of the distorted and undistorted waveforms and the distance the boom travels through the turbulence is sought.

  14. Summary of investigations of engine response to distorted inlet conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Braithwaite, W. M.; Soeder, R. H.; Abdelwahab, M.

    1986-01-01

    A survey is presented of experimental and analytical experience of the NASA Lewis Research Center in engine response to inlet temperature and pressure distortions. This includes a description of the hardware and techniques employed, and a summary of the highlights of experimental investigations and analytical modeling. Distortion devices successfully simulated inlet distortion, and knowledge was gained about compression system response to different types of distortion. A list of NASA research references is included.

  15. The origin of the distortion product otoacoustic emission fine structure

    NASA Astrophysics Data System (ADS)

    Piskorski, Pawel

    Distortion-product otoacoustic emissions (DPOAEs) are sounds detected in the ear canal which are generated by the nonlinear processes in the inner ear (cochlea) in response to the external stimulation of two or more tones (primaries). Their generation region in the cochlea can be systematically changed by varying the primary frequencies, and they are currently being evaluated for possible clinical use in screening for hearing defects. The phase and amplitude of various orders of DPOAEs of frequencies, f/sb [dp]=f1-n(f2-f1),/ (n=1,2,/...), were measured in human subjects for two- tone stimuli of frequencies f1 and f2 (>f1). A number of experimental paradigms (fixed primary ratio f2/f1, fixed f1, fixed f2, and fixed f/sb [dp]) were used to investigate the nature of peaks and valleys (fine structure) of DPOAEs in their phase and amplitude dependence on the primary frequencies. This fine structure must be taken into account in any potential clinical applications of DPOAEs. The experimental results largely support a model in which the fine structure stems from interference at the base of the cochlea between distortion product (DP) components coming from the primary DPOAE source region (around the f2 tonotopic place) and components coming from the DP tonotopic place (via reflection of an apically moving DP wave). The spectral periodicity of the fine structures for several orders of apical DPOAEs corresponds to a tonotopic displacement of about 0.4 mm along the basilar membrane (BM) (0.4 bark). In agreement with the reaction model, this spectral spacing is also characteristic of synchronous evoked and spontaneous otoacoustic emission spectra as well as the microstructure of the hearing threshold. Approximate analytic expressions for the mechanisms which are responsible for the fine structure are used to interpret the data.

  16. Appraisal Distortions and Intimate Partner Violence: Gender, Power, and Interaction

    ERIC Educational Resources Information Center

    Whiting, Jason B.; Oka, Megan; Fife, Stephen T.

    2012-01-01

    In relationships characterized by control, abuse, or violence, many appraisal distortions occur including denial and minimization. However, the nature of the distortion varies depending on the individual's role in the relationship (i.e., abuser or victim). Reducing these distortions is an important component in treatment success and involves…

  17. Cognitive Distortions and Autonomy among Chinese University Students

    ERIC Educational Resources Information Center

    Zhang, Li-fang

    2008-01-01

    The purpose of this study was to examine the roles of university students' cognitive distortions in their sense of autonomy. One hundred and three third-year university students from Shanghai, The People's Republic of China, responded to the Cognitive Distortion Scales [Briere, J. (2000). "Cognitive Distortion Scales: Professional…

  18. The Perceptual Distortion of Height in Intercollegiate Debate.

    ERIC Educational Resources Information Center

    Hensley, Wayne E.; Angoli, Marilyn

    Both balance and reinforcement theories were used in an examination of the perceptual distortion of height among 146 college debaters. Balance theory predicted that losers would distort winners' heights upward; reinforcement theory predicted that winners would distort losers' heights upward. The results confirmed both predictions. The possibility…

  19. Measuring ultracomplex supercontinuum pulses and spatio-temporal distortions

    NASA Astrophysics Data System (ADS)

    Gu, Xun

    This thesis contains two components of research: studies of supercontinuum pulses generated in the novel microstructure fiber, and research on spatio-temporal coupling in ultrafast laser beams. One of the most exciting developments in optics in recent years has been the invention of the microstructure optical fiber. By controlling the structural parameters of these novel fibers in design and manufacturing, their dispersion profile can be freely tailored, opening up a huge application base. One particularly interesting effect in the microstructure fiber is the generation of ultrabroadband supercontinuum with only nJ-level Ti:sapphire oscillator pulse pump. This supercontinuum is arguably the most complicated ultrafast pulse ever generated, with its huge time-bandwidth product (>1000 from a 16-cm-long fiber). Although many applications have been demonstrated or envisioned with this continuum, its generation is a very complicated process that is poorly understood, and the characteristics of the continuum pulses are not clearly known. In this work, we make a full-intensity-and-phase measurement of the continuum pulses using cross-correlation frequency-resolved optical gating (XFROG). The results reveal surprising unstable fine spectral structure in the continuum pulses, which is confirmed by single-shot measurements. Our study on the coherence of the continuum, on the other hand, shows that the spectral phase of the supercontinuum is fairly stable. Numerical simulations are carried out whose results are in good agreement with experiments. The second component of this thesis is the study of spatio-temporal coupling in ultrafast beams. We propose two definitions of spatial chirp, point out their respective physical meanings, and derive their relationship. On the common perception of the equivalence between pulse-front tilt and angular dispersion, we show that the equivalence only holds for plane waves. We establish a generalized theory of ultrafast laser beams with first

  20. Optimum distortion-invariant filter for detecting a noisy distorted target in nonoverlapping background noise

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram; Wang, Jun

    1995-12-01

    An optimal distortion-invariant filter for detecting a distorted target in input noise is designed. The input noise consists of two kinds of noise, overlapping additive noise and nonoverlapping background noise. We obtain the filter function by statistically maximizing the peak-to-output-energy ratio criterion, which is defined as the ratio of the square of the expected value of the output signal at the target location to the expected value of the average output energy. The results in a filter output with a well-defined output peak at the target location and a low output-noise floor. This filter is designed to take into account the effects of both overlapping additive noise and nonoverlapping background noise, the finite size of the input data, and the target distortion. The special cases of detecting a distorted target in nonoverlapping background noise and detecting a distorted target in overlapping additive noise are discussed. Computer simulation results are provided to show the performance of the filter. Copyright (c) 1995 Optical Society of America

  1. The Generation of Harmonic Distortion and Distortion Products in a Computational Model of the Cochlea

    NASA Astrophysics Data System (ADS)

    Meaud, Julien; Li, Yizeng; Grosh, Karl

    2011-11-01

    It is generally agreed that the nonlinear response of the cochlea is due to the forward transduction of the outer hair cell (OHC) hair bundle (HB) and subsequent alteration of the active force applied to the cochlear structures, including the basilar membrane (BM). A mechanical-acoustical-electrical model of the cochlea with three-dimensional fluid representation, and feedback from OHC somatic motility coupled to nonlinear HB mechanotransduction is used to predict nonlinear distortion of the BM response to acoustic stimulus. An efficient alternating frequency time scheme is implemented to solve for the nonlinear stationary dynamics of the cochlea. The model is used to predict the location of maximum generation of nonlinear distortion during pure tone and two-tone stimulation as well as the propagation of the distortion components on the BM.

  2. Filter based phase distortions in extracellular spikes

    PubMed Central

    Yael, Dorin

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results. PMID:28358895

  3. Discovery of two distorted interstellar bubbles

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Sofia, S.

    1978-01-01

    During an extensive program of direct imagery of emission nebulae, arcuate structures were found around two stars. A well-defined shock-like structure was found about the T-Orionis variable LL Orionis, located to the side of the Orion Nebula. A less extensive shock-like structure was also found about the runaway star zeta Ophiuchus. These structures can best be described in terms of distorted interstellar bubbles. A direct consequence of this interpretation is an independent estimate of the rates of mass loss for these stars.

  4. Redshift distortions of galaxy correlation functions

    NASA Astrophysics Data System (ADS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-04-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the two-point correlations, bar-xi0 = (r0/r)gamma, and as the hierarchical amplitudes of the three- and four-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi4/bar-xi32. We find a characteristic distortion for bar-xi2, the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega4/7/b approximately equal to 1. We estimate Omega4/7/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S3 approximately equal to 2 and S4 approximately equal to 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors (up to a factor of 4 in bar-xi2, 8 for bar-xi3, and 12 for bar-xi4). The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.

  5. Redshift distortions of galaxy correlation functions

    NASA Astrophysics Data System (ADS)

    Fry, J. N.; Gaztanaga, E.

    1993-05-01

    To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the 2-point correlation, bar-xi2 = (r0/r)gamma), and as the hierarchical amplitudes of the 3- and 4-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi/bar-xi)23. We find a characteristic distortion for bar-xi2: The slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales, extra power in the redshift distribution is compatible with Omega4/7/b approx. 1; we find 0.53 plus/minus 0.15, 1.10 plus/minus 0.16 and 0.84 plus/minus 0.45 for the CfA, SSRS and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions, but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1-12 h-1 Mpc and have similar values in all samples and catalogues, S3 approx. 2 and S4 approx. 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors. The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities and locations between samples.

  6. Electric current generation in distorted graphene

    NASA Astrophysics Data System (ADS)

    Mizher, Ana Julia; Raya, Alfredo; Villavicencio, Cristián

    2016-12-01

    Graphene-like materials can be effectively described by quantum electrodynamics in (2+1) dimensions, QED3. In a pristine state, these systems exhibit a symmetry between the nonequivalent Dirac points in the honeycomb lattice. Realistic samples which include distortions and crystalline anisotropies are considered through mass gaps of topological and dynamical nature. In this work, we show that the incorporation of an in-plane uniform external magnetic field on this pseudochiral asymmetric configuration generates a nondissipative electric current aligned with the magnetic field: The pseudochiral magnetic effect (PCME). This scenario resembles the chiral magnetic effect in quantum chromodynamics (QCD).

  7. Dual Cauchy rate-distortion model for video coding

    NASA Astrophysics Data System (ADS)

    Zeng, Huanqiang; Chen, Jing; Cai, Canhui

    2014-07-01

    A dual Cauchy rate-distortion model is proposed for video coding. In our approach, the coefficient distribution of the integer transform is first studied. Then, based on the observation that the rate-distortion model of the luminance and that of the chrominance can be well expressed by separate Cauchy functions, a dual Cauchy rate-distortion model is presented. Furthermore, the simplified rate-distortion formulas are deduced to reduce the computational complexity of the proposed model without losing the accuracy. Experimental results have shown that the proposed model is better able to approximate the actual rate-distortion curve for various sequences with different motion activities.

  8. Geometric and rediametric distortion in spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.

    1982-01-01

    Distortions inherent on synthetic aperture radio (SAR) imagery and the development to date of unsupervised postprocessing rectification techniques are described. The geometric distortion can be divided into two categories: (1) distortion derived from the radar viewing geometry, this includes such effects as ground range nonlinearities, radar foreshortening and radar layover; (2) distortion introduced during the data processing, these distortions result from approximations made during the correlation such as in estimation of the target phase history, or compensation for the earth rotation. The processor induced distortions depends on the specific correlation algorithm used for image formation. The effects are addressed on the image product resulting from assumptions during the processing and it specifically considers distortions inherent in digital imagery produced by the digital image processor.

  9. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  10. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  11. Diborane release and structure distortion in borohydrides.

    PubMed

    Callini, Elsa; Borgschulte, Andreas; Ramirez-Cuesta, Anibal Javier; Züttel, Andreas

    2013-01-21

    Hydrogen desorption from borohydrides is often accompanied by the release of diborane. The amount of diborane released as a byproduct during the decomposition of borohydrides scales inversely with the borohydride stability, which in turn depends on the electronegativity of the corresponding cation. We present a model based on the difference between the symmetric and asymmetric assembly of B(2)H(6) units at the surface. The origin of this reaction is the degree of distortion of the BH(4)(-) anions in the bulk, hitherto depending on the degree of ionization of the cation. A practical measure of the distortion is the range in which the stretching vibration modes appear, which is the difference in the energy of the stretching vibrations of hydrogen atoms with maximum different bonding lengths (Badger's rule). We propose from this relation that the diborane released from the surface of the relatively unstable LiZn(2)(BH(4))(5) is formed from a recombination of BH(2)(δ+) and BH(4)(δ-) units. Ultra high vacuum mass spectroscopy measurements support the presented model and clarify the decomposition of stable borohydrides, such as LiBH(4). The sublimation of borohydrides in UHV competes with their decomposition.

  12. Rate-distortion optimized adaptive transform coding

    NASA Astrophysics Data System (ADS)

    Lim, Sung-Chang; Kim, Dae-Yeon; Jeong, Seyoon; Choi, Jin Soo; Choi, Haechul; Lee, Yung-Lyul

    2009-08-01

    We propose a rate-distortion optimized transform coding method that adaptively employs either integer cosine transform that is an integer-approximated version of discrete cosine transform (DCT) or integer sine transform (IST) in a rate-distortion sense. The DCT that has been adopted in most video-coding standards is known as a suboptimal substitute for the Karhunen-Loève transform. However, according to the correlation of a signal, an alternative transform can achieve higher coding efficiency. We introduce a discrete sine transform (DST) that achieves the high-energy compactness in a correlation coefficient range of -0.5 to 0.5 and is applied to the current design of H.264/AVC (advanced video coding). Moreover, to avoid the encoder and decoder mismatch and make the implementation simple, an IST that is an integer-approximated version of the DST is developed. The experimental results show that the proposed method achieves a Bjøntegaard Delta-RATE gain up to 5.49% compared to Joint model 11.0.

  13. The Independent Distorting Ability of the Enhancer of Segregation Distortion, E(sd), in Drosophila Melanogaster

    PubMed Central

    Temin, R. G.

    1991-01-01

    Segregation distortion is a meiotic drive system, discovered in wild populations, in which males heterozygous for an SD chromosome and a sensitive SD(+) homolog transmit the SD chromosome almost exclusively. SD represents a complex of three closely linked loci in the centromeric region of chromosome 2: Sd, the Segregation distorter gene; E(SD), the Enhancer of Segregation Distortion, required for full expression of drive; and Rsp, the target for the action of Sd, existing in a continuum of states classifiable into sensitive (Rsp(s)) and insensitive (Rsp(i)). In an SD/SD(+) male which is Sd E(SD) Rsp(i)/Sd(+) E(SD)(+) Rsp(s), the Sd and E(SD) elements act jointly to induce the dysfunction of those spermatids receiving the Rsp(s) chromosome. By manipulating the number of copies and the position of the Enhancer region, I demonstrated that: (1) E(SD), whether in its normal position or translocated to the Y chromosome, is able to enhance the degree of Sd-caused distortion in a dosage-dependent manner; (2) even in the absence of Sd, the E(SD) allele in two doses can cause significant distortion, in Sd(+) or Df(Sd)-bearing genotypes; (3) quantitative differences among Enhancers of different sources suggest allelic variation at E(SD), which could account at least in part for differences among wild SD chromosomes in strength of distortion; (4) E(SD)/E(SD)-mediated distortion, like that of Sd, is directed at the Rsp target, whether Rsp is on the second or the Y chromosome; (5) E(SD), like Sd, is suppressed by an unlinked dominant suppressor of SD action. These results show that E(SD) is independently capable of acting on Rsp and is not a simple modifier of the action of Sd. E(SD) provides an example of a trans-acting gene embedded in heterochromatin that can interact with another heterochromatic gene, Rsp, as well as parallel the effect of a euchromatic gene, Sd. PMID:1906417

  14. Design of the new rigid endoscope distortion measurement system

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaohao; Liu, Xiaohua; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin; Wang, Yakun; Li, Yonghui; Zhou, Peng

    2015-08-01

    Endoscopic imaging quality affects industrial safety and medical security. Rigid endoscope distortion is of great signification as one of optical parameters to evaluate the imaging quality. This paper introduces a new method of rigid endoscope distortion measurement, which is different from the common methods with low accuracy and fussy operation. It contains a Liquid Crystal Display (LCD) to display the target, a CCD to obtain the images with distortion, and a computer to process the images. The LCD is employed instead of common white screen. The autonomous control system of LCD makes it showing the test target designed for distortion, and its parameter is known. LCD control system can change the test target to satisfy the different demand for accuracy, which avoids replacing target frequently. The test system also contains a CCD to acquire images in the exit pupil position of rigid endoscope. Rigid endoscope distortion is regarded as centrosymmetric, and the MATLAB software automatically measures it by processing the images from CCD. The MATLAB software compares target images with that without distortion on LCD and calculates the results. Relative distortion is obtained at different field of view (FOV) radius. The computer plots the curve of relative distortion, abscissa means radius of FOV, ordinate means relative distortion. The industry standard shows that, the distortion at 70% field of view is pointed on the curve, which can be taken as an evaluation standard. This new measuring method achieves advantages of high precision, high degree of intelligence, excellent repeatability and gets calculation results quickly.

  15. Appraisal distortions and intimate partner violence: gender, power, and interaction.

    PubMed

    Whiting, Jason B; Oka, Megan; Fife, Stephen T

    2012-06-01

    In relationships characterized by control, abuse, or violence, many appraisal distortions occur including denial and minimization. However, the nature of the distortion varies depending on the individual's role in the relationship (i.e., abuser or victim). Reducing these distortions is an important component in treatment success and involves accepting responsibility for actions and attributions. This study used constructivist grounded theory methods to explore the following questions: (1) What are the types of distortions that are used by individuals who have been in violent or abusive relationships? (2) What are the gender and power differences in the appraisal distortions used? (3) What are the functions and interactions of the distortions in the relationship dynamics? Qualitative analysis of interviews with 29 individuals who had been in abusive relationships found that there were several types of distortions used by participants, but there were differences in the function of the distortion, depending on the individual's role in the abuse. These generally corresponded to power and gender, where the male as perpetrator used different distortions (or used similar distortions for different reasons) than did the female as victim. Suggestions for research as well as treatment implications for both offenders and survivors of abuse are given.

  16. Visualization of Merging Black Holes and Gravitational Waves

    NASA Video Gallery

    This visualization shows gravitational waves emitted by two black holes of nearly equal mass as they spiral together and merge. Orange ripples represent distortions of space-time caused by the rapi...

  17. Theoretical Study of Orthorhombic Distortions in High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas; Manske, Dirk; Mudry, Christopher; Sigrist, Manfred

    2006-03-01

    Using a Fermi-liquid-based theory we calculate the response function for various spectroscopic probes in hole-doped high-TC superconductors, and determine the effects of orthorhombic distortions in the crystal lattice and asymmetry in the superconducting gap function. Employing the two-dimensional one-band Hubbard model and a generalized RPA-type theory we consider anisotropic hopping parameters (txty) and a mixing of d- and s-wave symmetry of the superconducting order parameter. Within this model, both the electronic Raman spectra and the dynamical magnetic susceptibility [1] are studied in detail. The relevance of these calculations to electronic Raman scattering measurements and inelastic neutron scattering experiments [2] on untwinned YBa2Cu3O6+x are discussed. [1] A. P. Schnyder, D. Manske, C. Mudry, and M. Sigrist, cond-mat/0510790. [2] V. Hinkov, S. Pailhes, P. Bourges, Y. Sidis, A. Ivanov, A. Kulakov, C. T. Lin, D. P. Chen, C. Bernhard, and B. Keimer, Nature 430, 650 (2004).

  18. Centrifugal Distortion Causes Anderson Localization in Laser Kicked Molecules

    NASA Astrophysics Data System (ADS)

    Floss, Johannes; Averbukh, Ilya Sh.

    2014-05-01

    The periodically kicked 2D rotor is a textbook model in nonlinear dynamics. The classical kicked rotor can exhibit truly chaotic motion, whilst in the quantum regime this chaotic motion is suppressed by a mechanism similar to Anderson Localization. Up to now, these effects have been mainly observed in an atom optics analogue of a quantum rotor: cold atoms in a standing light wave. We demonstrate that common linear molecules (like N2, O2, CO2, ...), kicked by a train of short linearly polarized laser pulses, can exhibit a new mechanism for dynamical Anderson Localization due to their non-rigidity. When the pulses are separated by the rotational revival time trev = πℏ / B , the angular momentum J grows ballistically (Quantum Resonance). We show that, due to the centrifugal distortion of fast spinning molecules, above some critical value J =Jcr the Quantum Resonance is suppressed via the mechanism of Anderson Localization. This leads to a non-sinusoidal oscillation of the angular momentum distribution, which may be experimentally observed even at ambient conditions by using current techniques for laser molecular alignment.

  19. Reduced pressure quenching oil and distortion

    SciTech Connect

    Asada, S.; Ogino, M.

    1996-12-31

    Cooling process observed in a quenching oil`s cooling curve determination by JIS silver probe method, has been divided into three stages, vapor blanket stage, boiling stage and convection stage. Under reduced pressure vaporization is accelerated and extend the vapor blanket stage which shift the position of boiling stage the fastest of cooling speed among the cooling process toward low temperature side. Taking advantage of this behavior in quenching under reduced pressure, it is possible to improve quench hardenability by controlling reduced pressure. Vapor pressure of quenching oil increases under very high vacuum and accelerates vapor blanket formation and covers the material with more vapor blanket, resulting in reduction of cooling speed. Excessive vapor blanket covering the material will lead to partially uneven quenching of the treated material caused by uneven conditions by partial decomposition. Making vapor blanket distribution more even and to optimize uniform coating condition enables to prevent heat treatment distortion caused by uneven quenching conditions.

  20. Horizon dynamics of distorted rotating black holes

    SciTech Connect

    Chu, Tony; Cohen, Michael I.; Pfeiffer, Harald P.

    2011-05-15

    We present numerical simulations of a rotating black hole distorted by a pulse of ingoing gravitational radiation. For strong pulses, we find up to five concentric marginally outer trapped surfaces. These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early and late times. We analyze the structure of these marginally trapped tubes in the context of the dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon before and after the highly dynamical regime. No new generators enter the event horizon during the simulation.

  1. Distance distortions in memory for spatial locations.

    PubMed

    Anooshian, L J; Wilson, K L

    1977-12-01

    The present study examined developmental differences in the effect of route extensity on the memory for the locations of objects in a spatial array. Kindergarten and adult subjects were trained to remember the locations of 4 objects. During this training, objects were either connected by a combination of indirect, looped train tracks and direct train tracks (experimental subjects) or connected by entirely direct train-track routes (control subjects). Analyses of actual interobject distances, from subjects' reproductions of object locations on a response board (without train tracks), revealed that children, but not adults, distort distance in terms of the nature of travel observed between objects. Further testing revealed that differences in the amount of time taken for travel could not account for the results obtained with children.

  2. Power Factor Correction to Mitigate Harmonic Distortion

    NASA Astrophysics Data System (ADS)

    Kochetkov, Gary

    Many direct current (DC) devices must receive their power from the alternating current (AC) grid. Rectifiers use diodes to create DC for these devices. Due to diodes' non-linear nature however, harmonics are created and these travel back into the grid. A significant presence of harmonics causes component heating and possible malfunction. A harmonic mitigation procedure is needed. With the correct usage of transistors, the current drawn by a rectifier can be manipulated to remove almost all harmonics. This process is called power factor correction (PFC), and formally acts to reduce the total harmonic distortion (THD) of the current. To investigate this, a three phase active rectifier was computer simulated and a controller was designed to provide switching signals for the transistors. Finally, the device was constructed in the laboratory to drive a DC motor, verifying its operating principle outside of the idealities of simulation.

  3. Thermal-induced two dimensional beam distortion in planar waveguide amplifiers.

    PubMed

    Wang, Xiao-Jun; Ke, Wei-Wei; Su, Hua

    2013-07-29

    Mode characteristics in the solid-state planar waveguide (PWG) laser amplifiers are investigated theoretically, in consideration of the temperature gradient generated by cooling across the thickness and by pumping inhomogeneity along the width direction. When variation of the refractive index along the width direction is dominated by the lower spatial frequencies, the vector wave equation is solved analytically by means of the perturbation method. It is similar to the zigzag slab amplifier in which the phase aberration depending on the width coordinate plays the most important role to cause degradation of the beam quality. The crossing mode distortions owing to two dimension nature of the index variations are illustrated, and that mode profile is varied by the index variation along both the thickness and the width directions. Modes in the single-mode or the few-mode PWGs are shown to suffer weaker thermal-induced distortion across the thickness than those in the multi-mode PWGs.

  4. Distortions in memory for visual displays

    NASA Technical Reports Server (NTRS)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  5. Pellicle-induced reticle distortion: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Carroll, James A.; Storm, Glenn; Ivancich, Ronald G.; Maloney, John P.; Maurin, Olivier; Souleillet, Eric

    1999-04-01

    As semiconductor design rules decrease in size, total overlay performance requires a higher standard of the stepper and the photomask which affords a smaller error budget to each. Currently, photomask overlay assessment is done prior to pellicle attachment. However, the physical act of attaching a pellicle to a photomask imparts mechanical stress that distorts the reticle plane and changes the actual pattern placement from the design intent. With the advent of metrology tools capable of through-pellicle registration measurement, we are now able to assess and better characterize the effect pellicalization has on reticle distortion. The focus of this experimental investigation has been to quantify the incremental reticle distortion attributed to attaching the pellicle. To assess pellicle-induced distortion, both pattern registration and reticle flatness were evaluated. Two pellicle gasket materials were evaluated and one of the two materials was found to produce less reticle distortion. Relaxation of pellicle-induced reticle distortion after the pellicle is attached is also discussed.

  6. Pellicle-induced reticle distortion: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Carroll, James A.; Storm, Glenn; Ivancich, Ronald G.; Maloney, John P.; Maurin, Olivier; Souleillet, Eric

    1998-12-01

    As semiconductor design rules decrease in size, total overlay performance requires a higher standard of the stepper and the photomask which affords a smaller error budget to each. Currently, photomask overlay assessment is done prior to pellicle attachment. However, the physical act of attaching a pellicle to a photomask imparts mechanical stress that distorts the reticle plane and changes the actual pattern placement from the design intent. With the advent of metrology tools capable of through-pellicle registration measurement, we are now able to assess and better characterize the effect pelliclization has on reticle distortion. The focus of this experimental investigation has been to quantify the incremental reticle distortion attributed to attaching the pellicle. To assess pellicle-induced distortion, both pattern registration and reticle flatness were evaluated. Two pellicle gasket materials were evaluated and one of the two materials was found to produce less reticle distortion. Relaxation of pellicle-induced reticle distortion after the pellicle is attached is also discussed.

  7. Radial line method for rear-view mirror distortion detection

    NASA Astrophysics Data System (ADS)

    Rahmah, Fitri; Kusumawardhani, Apriani; Setijono, Heru; Hatta, Agus M.; Irwansyah, .

    2015-01-01

    An image of the object can be distorted due to a defect in a mirror. A rear-view mirror is an important component for the vehicle safety. One of standard parameters of the rear-view mirror is a distortion factor. This paper presents a radial line method for distortion detection of the rear-view mirror. The rear-view mirror was tested for the distortion detection by using a system consisting of a webcam sensor and an image-processing unit. In the image-processing unit, the captured image from the webcam were pre-processed by using smoothing and sharpening techniques and then a radial line method was used to define the distortion factor. It was demonstrated successfully that the radial line method could be used to define the distortion factor. This detection system is useful to be implemented such as in Indonesian's automotive component industry while the manual inspection still be used.

  8. Numerical and Test Investigation on an Aircraft Inlet Distortion

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Hou, Anping; Chen, Yinxiu; Tuo, Wei; Xia, Aiguo

    2013-09-01

    Subscale wind tunnel test of an aircraft vehicle is performed at different Mach number, mass-flow and angle of attack. CFD model, corrected by test results, is also presented to predict inlet performance and total pressure distortion. The result shows total pressure recovery decreases and distortion level rises when Mach number increases from subsonic to supersonic speed, AOA is negative and mass-flow value is too large or too small. Compared linear interpolation based on test result of discrete probes, numerical simulation has advantages in showing inlet flow field predicting actual surface distortion level in AIP plane. Swirl distortion is induced by vortex near the fuselage and adjustable ramp and can strengthen total pressure distortion in AIP at negative AOA. And appropriate suction mass-flow coefficient (1.7% to 3%) is beneficial for inlet performance and total pressure distortion control.

  9. Global and Local Distortion Inference During Embedded Zerotree Wavelet Decompression

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.

    1996-01-01

    This paper presents algorithms for inferring global and spatially local estimates of the squared-error distortion measures for the Embedded Zerotree Wavelet (EZW) image compression algorithm. All distortion estimates are obtained at the decoder without significantly compromising EZW's rate-distortion performance. Two methods are given for propagating distortion estimates from the wavelet domain to the spatial domain, thus giving individual estimates of distortion for each pixel of the decompressed image. These local distortion estimates seem to provide only slight improvement in the statistical characterization of EZW compression error relative to the global measure, unless actual squared errors are propagated. However, they provide qualitative information about the asymptotic nature of the error that may be helpful in wavelet filter selection for low bit rate applications.

  10. Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David

    2000-01-01

    This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity

  11. Novel array-feed distortion compensation techniques for reflector antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1991-01-01

    Degradation of antenna performance by reflector surface distortion, which lowers gain and increases sidelobe levels, is addressed. Distortion compensation concepts based on the applications of properly matched array feeds are presented. Results of conceptual developments, numerical simulations, and measurement verifications are presented in support of this approach, with particular attention to the measurement technique. It is shown that the concept is most useful for overcoming the deterioration effects of slowly varying surface distortions, which would make the method very useful for future large space and ground antennas. It is further shown that for a typical, slowly varying thermal or gravitational surface distortion, a 19-element array feed can improve the reflector performance considerably.

  12. A Study on the Improvement of Dynamic Loudspeaker Nonlinear Distortion

    NASA Astrophysics Data System (ADS)

    Inuzuka, Takamasa; Kasahara, Misawa; Mori, Yasuchika

    Recently, the distortion caused by signal transduction has been significantly reduced because of development of digital signal processing technology, so that sound quality has improved dramatically. However, speaker system located at the end of the sound reproduction has not changed since the basic principle of the invention, the non-linear distortion occurs mostly have been concerned about the deterioration of sound quality. It is important to eliminate this distortion in high fidelity music playback. In order to reduce the nonlinear distortion, we propose a system using disturbance observer and consider in this method.

  13. Systems and methods for mirror mounting with minimized distortion

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)

    2012-01-01

    A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.

  14. Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)

    NASA Technical Reports Server (NTRS)

    Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.

    1989-01-01

    A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.

  15. Seeing the body distorts tactile size perception.

    PubMed

    Longo, Matthew R; Sadibolova, Renata

    2013-03-01

    Vision of the body modulates somatosensation, even when entirely non-informative about stimulation. For example, seeing the body increases tactile spatial acuity, but reduces acute pain. While previous results demonstrate that vision of the body modulates somatosensory sensitivity, it is unknown whether vision also affects metric properties of touch, and if so how. This study investigated how non-informative vision of the body modulates tactile size perception. We used the mirror box illusion to induce the illusion that participants were directly seeing their stimulated left hand, though they actually saw their reflected right hand. We manipulated whether participants: (a) had the illusion of directly seeing their stimulated left hand, (b) had the illusion of seeing a non-body object at the same location, or (c) looked directly at their non-stimulated right-hand. Participants made verbal estimates of the perceived distance between two tactile stimuli presented simultaneously to the dorsum of the left hand, either 20, 30, or 40mm apart. Vision of the body significantly reduced the perceived size of touch, compared to vision of the object or of the contralateral hand. In contrast, no apparent changes of perceived hand size were found. These results show that seeing the body distorts tactile size perception.

  16. Is space representation distorted in neglect?

    PubMed

    Karnath, H O; Ferber, S

    1999-01-01

    It has been argued that neglect of contralateral stimuli following brain damage might be associated with either a compressed or an anisometric neural representation of space along the earth-horizontal axis. Two different models have been put forward. One model proposes a uniform compression of subjective space, while the other envisages an expansion on one side of space and a compression on the other. We tested these models by determining neglect patients' perception of spatial distances in the horizontal plane. The models differ concerning the expected degree of under- vs overestimation of distances in the left and right hemispace. In the first experiment, patients were asked to position ten red LEDs equidistantly along a semicircle, which was located horizontally in front of them at eye level. A second experiment compared the patients' subjective perception of short, medium and long distances extending into left and right hemispace. We found no evidence for any compression or expansion, nor for anisometry along the earth-horizontal axis. These findings argue against a distortion of subjective space along the horizontal axis in patients with neglect which could account for their failure to orient towards and to explore the contralesional parts of space.

  17. Distorting limb design for dynamically similar locomotion.

    PubMed Central

    Bullimore, Sharon R.; Burn, Jeremy F.

    2004-01-01

    Terrestrial mammals of different sizes tend to move in a dynamically similar manner when travelling at speeds corresponding to equal values of the Froude number. This means that certain dimensionless locomotor parameters, including peak vertical ground reaction force relative to body weight, stride length relative to leg length and duty factor, are independent of animal size. The Froude number is consequently used to define equivalent speeds for mammals of different sizes. However, most musculoskeletal-tissue properties, including tendon elastic modulus, do not scale in a dynamically similar manner. Therefore, mammals could not be completely dynamically similar, even if perfectly geometrically similar. We argue that, for mammals to move in a dynamically similar manner, they must exhibit systematic 'distortions' of limb structure with size that compensate for the size independence of the tendon elastic modulus. An implication of this is that comparing mammals at equal Froude numbers cannot remove all size-dependent effects. We show that the previously published allometry of limb moment arms is sufficient to compensate for size-independent tendon properties. This suggests that it is an important factor in allowing mammals of different sizes to move in a dynamically similar manner. PMID:15058440

  18. Market distortions and technological progress in agriculture

    SciTech Connect

    Alston, J.M.; Pardey, P.G.

    1993-05-01

    It is widely believed that price policies have contributed to low rates of productivity growth in agriculture, but there has been little progress to date in work on the relationship between price distortions and agricultural productivity or agricultural research. Given the importance of technological change in agriculture, it is important to know whether price policies impede investments in R&D and productivity growth. In this article, a theoretical analysis indicates that the effects of commodity price policies on incentives of government and industry to invest in agricultural research are ambiguous. While the results suggest a general tendency of policies that protect producers to encourage greater research investments, the opposite result cannot be ruled out. A statistical model using international, cross-sectional, time-series data shows that agricultural research investments are significantly correlated, but negatively, with rates of producer protection. The implication is that some factor other than price policy is responsible for both the low rates of public-sector investments in agricultural research worldwide, and the low rates of productivity growth in less-developed countries. Research administrators in more- and less-developed countries alike typically consider a multiplicity of goals when setting research priorities and research budgets. Therefore, an alternative explanation of low agricultural productivity and underinvestment in agricultural research may be that public-sector research policy has been misguided. 24 refs., 6 figs., 1 tab.

  19. Distortion product otoacoustic emissions in geriatric dogs.

    PubMed

    Strain, G M; Rosado Martinez, A J; McGee, K A; McMillan, C L

    2016-10-01

    Recordings of distortion product otoacoustic emissions (DPOAE) were taken from 28 geriatric dogs aged 12.2 ± 2.2 years and 15 control dogs aged 5.9 ± 3.0 years (mean ± standard deviation) to demonstrate frequency-specific changes in cochlear responses. Recordings were performed for primary frequencies of 2-12 kHz in 2 kHz increments. Brainstem auditory evoked response (BAER) recordings were also made from geriatric dogs for comparison with DPOAE responses. Significant decreases in DPOAE response amplitudes were observed at frequencies of 6-12 kHz in geriatric dogs compared to control dogs, reflecting loss of cochlear outer hair cells along the length of the cochlea. Significant decreases in response amplitudes were not seen at frequencies of 2 or 4 kHz. Decreases in BAER response amplitudes subjectively paralleled the depressed DPOAE amplitudes. No significant linear regression relationships were found for DPOAE response amplitude vs. age despite the progressive nature of age-related hearing loss. The reductions in response at all frequencies starting at the age where dogs are considered geriatric indicate that age-related hearing loss begins earlier in the life span. DPOAE recordings provide a means to assess cochlear function across different portions of the auditory spectrum for assessing hearing loss associated with aging, and potentially for losses from other causes of decreased auditory function.

  20. Primordial trispectra and CMB spectral distortions

    SciTech Connect

    Bartolo, Nicola; Liguori, Michele; Shiraishi, Maresuke E-mail: michele.liguori@pd.infn.it

    2016-03-01

    We study the TTμ bispectrum, generated by correlations between Cosmic Microwave Background temperature (T) anisotropies and chemical potential (μ) distortions, and we analyze its dependence on primordial local trispectrum parameters g{sub NL} and τ{sub NL}. We cross-check our results by comparing the full bispectrum calculation with the expectations from a general physical argument, based on predicting the shape of μ-T correlations from the couplings between short and long perturbation modes induced by primordial non-Gaussianity. We show that both g{sub NL} and τ{sub NL}-parts of the primordial trispectrum source a non-vanishing TTμ signal, contrary to the μμ auto-correlation function, which is sensitive only to the τ{sub NL}-component. A simple Fisher matrix-based forecast shows that a futuristic, cosmic-variance dominated experiment could in principle detect g{sub NL} ∼ 0.4 and τ{sub NL} ∼ 40 using TTμ.

  1. Cognitive Distortion in Rheumatoid Arthritis: Relation to Depression and Disability.

    ERIC Educational Resources Information Center

    Smith, Timothy W.; And Others

    1988-01-01

    Examined the relation between cognitive distortion, as measured by the Cognitive Error Questionnaire, and both self-reported and interview-rated depression and disability in 92 rheumatoid arthritis (RA) patients. Found cognitive distortion significantly associated with depression, and also related to physical disability. Discusses the results,…

  2. Understanding Pretrial Publicity: Predecisional Distortion of Evidence by Mock Jurors

    ERIC Educational Resources Information Center

    Hope, Lorraine; Memon, Amina; McGeorge, Peter

    2004-01-01

    Prejudicial pretrial publicity (PTP) constitutes a serious source of juror bias. The current study examined differences in predecisional distortion for mock jurors exposed to negative PTP (N-PTP) versus nonexposed control participants. According to work by K. A. Carlson and J. E. Russo (2001), predecisional distortion occurs when jurors bias new…

  3. Audiovisual Cues and Perceptual Learning of Spectrally Distorted Speech

    ERIC Educational Resources Information Center

    Pilling, Michael; Thomas, Sharon

    2011-01-01

    Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties…

  4. Compact fluorescent lamps, LED lamps and harmonic distortion

    NASA Astrophysics Data System (ADS)

    Franco, A. M. R.; Debatin, R. M.; Cotia, F. C. G.; Silva, M. V. M.; Ribeiro, R. S.; Zampilis, R. R. N.

    2015-01-01

    The aim of this paper is to evaluate the harmonic distortion in the current waveform of Compact Fluorescent Lamps (CFL) and Lamps Lighting Emitting Diode (LED). For this, we analysed the power factor, voltage waveform, current waveform, total harmonic distortion (THD) and active power consumed.

  5. Mass spectral peak distortion due to Fourier transform signal processing.

    PubMed

    Rockwood, Alan L; Erve, John C L

    2014-12-01

    Distortions of peaks can occur when one uses the standard method of signal processing of data from the Orbitrap and other FT-based methods of mass spectrometry. These distortions arise because the standard method of signal processing is not a linear process. If one adds two or more functions, such as time-dependent signals from a Fourier transform mass spectrometer and performs a linear operation on the sum, the result is the same as if the operation was performed on separate functions and the results added. If this relationship is not valid, the operation is non-linear and can produce unexpected and/or distorted results. Although the Fourier transform itself is a linear operator, the standard algorithm for processing spectra in Fourier transform-based methods include non-linear mathematical operators such that spectra processed by the standard algorithm may become distorted. The most serious consequence is that apparent abundances of the peaks in the spectrum may be incorrect. In light of these considerations, we performed theoretical modeling studies to illustrate several distortion effects that can be observed, including abundance distortions. In addition, we discuss experimental systems where these effects may manifest, including suggested systems for study that should demonstrate these peak distortions. Finally, we point to several examples in the literature where peak distortions may be rationalized by the phenomena presented here.

  6. Distortion of Probability and Outcome Information in Risky Decisions

    ERIC Educational Resources Information Center

    DeKay, Michael L.; Patino-Echeverri, Dalia; Fischbeck, Paul S.

    2009-01-01

    Substantial evidence indicates that information is distorted during decision making, but very few studies have assessed the distortion of probability and outcome information in risky decisions. In two studies involving six binary decisions (e.g., banning blood donations from people who have visited England, because of "mad cow disease"),…

  7. Cognitive Distortion and Psychological Distress in Chronic Low Back Pain.

    ERIC Educational Resources Information Center

    Smith, Timothy W.; And Others

    1986-01-01

    Indicated that cognitive distortion was associated with high scores on the Minnesota Multiophasic Personality Inventory (MMPH) Depression (D), Psychasthenia (Pt), and Schizophrenia (Sc) scales, but not the Hypochondriasis (Hs) and Hysteria (Hy) scales. Cognitive distortion is likely to be an important factor in general distress but not in…

  8. Predictors of Child Molestation: Adult Attachment, Cognitive Distortions, and Empathy

    ERIC Educational Resources Information Center

    Wood, Eric; Riggs, Shelley

    2008-01-01

    A conceptual model derived from attachment theory was tested by examining adult attachment style, cognitive distortions, and both general and victim empathy in a sample of 61 paroled child molesters and 51 community controls. Results of logistic multiple regression showed that attachment anxiety, cognitive distortions, high general empathy but low…

  9. Perception of Perspective Distortions in Image-Based Rendering

    PubMed Central

    Vangorp, Peter; Richardt, Christian; Cooper, Emily A.; Chaurasia, Gaurav; Banks, Martin S.; Drettakis, George

    2013-01-01

    Image-based rendering (IBR) creates realistic images by enriching simple geometries with photographs, e.g., mapping the photograph of a building façade onto a plane. However, as soon as the viewer moves away from the correct viewpoint, the image in the retina becomes distorted, sometimes leading to gross misperceptions of the original geometry. Two hypotheses from vision science state how viewers perceive such image distortions, one claiming that they can compensate for them (and therefore perceive scene geometry reasonably correctly), and one claiming that they cannot compensate (and therefore can perceive rather significant distortions). We modified the latter hypothesis so that it extends to street-level IBR. We then conducted a rigorous experiment that measured the magnitude of perceptual distortions that occur with IBR for façade viewing. We also conducted a rating experiment that assessed the acceptability of the distortions. The results of the two experiments were consistent with one another. They showed that viewers’ percepts are indeed distorted, but not as severely as predicted by the modified vision science hypothesis. From our experimental results, we develop a predictive model of distortion for street-level IBR, which we use to provide guidelines for acceptability of virtual views and for capture camera density. We perform a confirmatory study to validate our predictions, and illustrate their use with an application that guides users in IBR navigation to stay in regions where virtual views yield acceptable perceptual distortions. PMID:24273376

  10. Quantifying and Reducing Posture-Dependent Distortion in Ballistocardiogram Measurements.

    PubMed

    Javaid, Abdul Qadir; Wiens, Andrew D; Fesmire, Nathaniel Forrest; Weitnauer, Mary Ann; Inan, Omer T

    2015-09-01

    Ballistocardiography is a noninvasive measurement of the mechanical movement of the body caused by cardiac ejection of blood. Recent studies have demonstrated that ballistocardiogram (BCG) signals can be measured using a modified home weighing scale and used to track changes in myocardial contractility and cardiac output. With this approach, the BCG can potentially be used both for preventive screening and for chronic disease management applications. However, for achieving high signal quality, subjects are required to stand still on the scale in an upright position for the measurement; the effects of intentional (for user comfort) or unintentional (due to user error) modifications in the position or posture of the subject during the measurement have not been investigated in the existing literature. In this study, we quantified the effects of different standing and seated postures on the measured BCG signals, and on the most salient BCG-derived features compared to reference standard measurements (e.g., impedance cardiography). We determined that the standing upright posture led to the least distorted signals as hypothesized, and that the correlation between BCG-derived timing interval features (R-J interval) and the preejection period, PEP (measured using ICG), decreased significantly with impaired posture or sitting position. We further implemented two novel approaches to improve the PEP estimates from other standing and sitting postures, using system identification and improved J-wave detection methods. These approaches can improve the usability of standing BCG measurements in unsupervised settings (i.e., the home), by improving the robustness to nonideal posture, as well as enabling high-quality seated BCG measurements.

  11. Microelectrical Mechanical Systems Flow Control Used to Manage Engine Face Distortion in Compact Inlet Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.

    1999-01-01

    Turbofan engine-face flow distortion is one of the most troublesome and least understood problems for designers of modern engine inlet systems. One concern is that there are numerous sources of flow-field distortion that are ingested by the inlet or generated within the inlet duct itself. Among these are: (1) flow separation at the cowl lip during in-flight maneuvering, (2) flow separation on the compression surfaces due to shock-wave/boundary layer interactions, (3) spillage of the fuselage boundary layer into the inlet duct, (4) ingestion of aircraft vortices and wakes emanating from upstream disturbances, and (5) strong secondary flow gradients and flow separation induced by wall curvature within the inlet duct itself. Most developing aircraft (including the B70, F-111, F-14, Mig-25, Tornado, and Airbus A300) have experienced one or more of these types of problems, particularly at high Mach numbers and/or extreme maneuver conditions when flow distortion at the engine face exceeded the allowable limits of the engine.

  12. Joint source-channel distortion modeling for MPEG-4 video.

    PubMed

    Sabir, Muhammad Farooq; Heath, Robert W; Bovik, Alan Conrad

    2009-01-01

    Multimedia communication has become one of the main applications in commercial wireless systems. Multimedia sources, mainly consisting of digital images and videos, have high bandwidth requirements. Since bandwidth is a valuable resource, it is important that its use should be optimized for image and video communication. Therefore, interest in developing new joint source-channel coding (JSCC) methods for image and video communication is increasing. Design of any JSCC scheme requires an estimate of the distortion at different source coding rates and under different channel conditions. The common approach to obtain this estimate is via simulations or operational rate-distortion curves. These approaches, however, are computationally intensive and, hence, not feasible for real-time coding and transmission applications. A more feasible approach to estimate distortion is to develop models that predict distortion at different source coding rates and under different channel conditions. Based on this idea, we present a distortion model for estimating the distortion due to quantization and channel errors in MPEG-4 compressed video streams at different source coding rates and channel bit error rates. This model takes into account important aspects of video compression such as transform coding, motion compensation, and variable length coding. Results show that our model estimates distortion within 1.5 dB of actual simulation values in terms of peak-signal-to-noise ratio.

  13. Bilateral Symmetry of Distortions of Tactile Size Perception.

    PubMed

    Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem

    2015-01-01

    The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception.

  14. High-precision camera distortion measurements with a ``calibration harp''

    NASA Astrophysics Data System (ADS)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2012-10-01

    This paper addresses the high precision measurement of the distortion of a digital camera from photographs. Traditionally, this distortion is measured from photographs of a flat pattern which contains aligned elements. Nevertheless, it is nearly impossible to fabricate a very flat pattern and to validate its flatness. This fact limits the attainable measurable precisions. In contrast, it is much easier to obtain physically very precise straight lines by tightly stretching good quality strings on a frame. Taking literally "plumb-line methods", we built a "calibration harp" instead of the classic flat patterns to obtain a high precision measurement tool, demonstrably reaching 2/100 pixel precisions. The harp is complemented with the algorithms computing automatically from harp photographs two different and complementary lens distortion measurements. The precision of the method is evaluated on images corrected by state-of-the-art distortion correction algorithms, and by popular software. Three applications are shown: first an objective and reliable measurement of the result of any distortion correction. Second, the harp permits to control state-of-the art global camera calibration algorithms: It permits to select the right distortion model, thus avoiding internal compensation errors inherent to these methods. Third, the method replaces manual procedures in other distortion correction methods, makes them fully automatic, and increases their reliability and precision.

  15. A survey of inlet/engine distortion compatibility

    NASA Technical Reports Server (NTRS)

    Bowditch, D. N.; Coltrin, R. E.

    1983-01-01

    The history of distortion analysis is traced back to its origin in parallel compressor theory which was initially proposed in the late fifties. The development of this theory is reviewed up to its inclusion in the complex computer codes of today. It is found to be a very useful tool to guide development but not quantitative enough to predict compatibility. Dynamic or instantaneous distortion methodology is also reviewed from its origins in the sixties, to its current application in the eighties. Many of the requirements for interpreting instantaneous distortion are considered and illustrated. Statistical methods for predicting the peak distortion are described, and their limitations and advantages discussed. Finally, some Reynolds number and scaling considerations for inlet testing are considered. It is concluded that the deterministic instantaneous distortion methodology combined with distortion testing of engines with screens will remain the primary method of predicting compatibility for the near future. However, parallel compressor analysis and statistical peak distortion prediction will be important tools employed during the development of inlet/engine compatibility.

  16. CMB spectral distortions as solutions to the Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Ota, Atsuhisa

    2017-01-01

    We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions to the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.

  17. Compensation of Hologram Distortion by Controlling Defocus Component in Reference Beam Wavefront for Angle Multiplexed Holograms

    NASA Astrophysics Data System (ADS)

    Muroi, T.; Kinoshita, N.; Ishii, N.; Kamijo, K.; Kawata, Y.; Kikuchi, H.

    2013-12-01

    Holographic memory has the potential to function as a recording system with a large capacity and high data-transfer-rate. Photopolymer materials are typically used as a write-once recording medium. When holograms are recorded on this medium, they can distort due to shrinkage or expansion of the materials, which degrades the reconstructed image and causes a higher bit error rate (bER) of the reproduced data. We propose optically compensating for hologram distortion by controlling aberration components in the reference beam wavefront while reproducing data, thereby improving the reproduced data quality. First, we investigated the relation between each aberration component of the reference beam and the signal to noise ratio (SNR) of the reproduced data using numerical simulation and found that horizontal tilt and the defocus component affect the SNR. Next, we experimentally evaluated the reproduced data by controlling the defocus component in the reference beam and found that the bER of the reproduced data could be decreased by controlling the defocus center with respect to the hologram position and phase modulation depth of the defocus component. Then, we investigated a practical control method of the defocus component using an evaluation value similar to the definition of the SNR for actual data reproduction from holograms. Using a defocus controlled wavefront enabled us to decrease the bER from 3.54 x 10^-3 with a plane wave to 3.14 x 10^-4. We also investigated how to reduce the bERs of reproduced data in angle multiplexed holograms. By using a defocus controlled wavefront to compensate for hologram distortion on the 40th data page in 80-page angle multiplexed holograms, the bERs of all pages could be decreased to less than 1x10^-3. We showed that controlling the defocus component is an effective way to compensate for hologram distortion and to decrease the bER of reproduced data in holographic memory.

  18. Distribution function approach to redshift space distortions

    SciTech Connect

    Seljak, Uroš; McDonald, Patrick E-mail: pvmcdonald@lbl.gov

    2011-11-01

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter

  19. Solar shape distortions and Earth climate changes

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Rozelot, J.

    The starting point of this presentation consists of an unexpected result obtained when comparing the temporal solar diameter variations obtained at Santiago de Chile by means of a solar astrolabe, with these of the global Earth's temperature gathered at the University of East Anglia. The plot shows unexpected strong analogous variations that can be only explained, if a causal dependence exits, through variations of the irradiance itself, mainly caused by variations of the global shape. Up to now such a relationship was hint but not put in evidence neither through observations or theoretically. Indeed it has been shown these last few years that the Sun's shape is not a perfect spheroid. The complex shape of the surface is due to gravitational perturbations induced mainly by a non constant velocity rate both at the surface and in depth. At its turn, such a distorted surface provoks changes in the luminosity that can be modelized taking into account the thermal wind. We proposed here for the first time such an approach that permits to understand the observed shape of the Sun from space (SOHO) or from the ground (by means of the scanning heliometer at the Pic du Midi Observatory and by solar astrolabes located at different places). These observations show an equatorial bulge followed by a depressed zone at higher latitudes. If the diameter of the Sun's vary in time as it is observed for instance at Santiago de Chile, it results faint changes in the irradiance that could explain some additional fluctuations that cannot be modelized through the classical flux balance between spots and faculae. In such conditions, a dedicated space satellite which will be capable to measure at a very high level of accuracy the solar shape (i.e. the measurements of the solar diameter at any heliographic latitude, at a better than 1 mas precision) simultaneously with the solar irradiance would render possible the determination of the so-called parameter w, which is known as one of the best

  20. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  1. Recovery of pyroshock data from distorted acceleration records

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1985-01-01

    In the past, distorted pyrotechnic shock time history data was discarded completely or cleaned up by questionable means. Too often the clean up procedures introduced as much error into the data as previously existed. Techniques are presented for data recovery so that true signals are obtained and so that these recovery procedures will be completely reproducible by any scientists in any lab. Most ordnance shock data is distorted by baseline shifts or accelerometer resonances. The methodology of recovering true signals from these two types of distortion is discussed.

  2. Measuring source-pull free nonlinear distortions: a multisine approach

    NASA Astrophysics Data System (ADS)

    Van Moer, Wendy; Pintelon, Rik; Rolain, Yves

    2009-12-01

    This paper presents a method to measure the nonlinear distortions generated by a device-under-test (DUT) out of the frequency band where the device operates. The method compensates for the nonlinear distortions present in the input signal of the DUT and, hence, results in a source-pull free level of the output nonlinear distortions. This is important when determining an accurate adjacent co-channel power ratio (ACPR). The proposed measurement technique is based on a vectorial network analyzer (PNA-X) combined with a broadband multisine excitation of the DUT. Results obtained from a microwave amplifier are reported.

  3. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  4. An Optimal Deconvolution Method for Reconstructing Pneumatically Distorted Near-Field Sonic Boom Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.

    1996-01-01

    In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.

  5. Novel itinerant transverse spin waves

    NASA Astrophysics Data System (ADS)

    Feldmann, John Delaney

    In 1956, Lev Davidovich Landau put forth his theory on systems of interacting fermions, or fermi liquids. A year later, Viktor Pavlovich Silin described spin waves that such a system of fermions would support. The treatment of the contribution of the molecular field to the spin wave dispersion was a novel aspect of these spin waves. Silin predicted that there would exist a hierarchy of spin waves in a fermi liquid, one for each component of the spherical harmonic expansion of the fermi surface. In 1968, Anthony J. Leggett and Michael J. Rice derived from fermi liquid theory how the behavior of the spin diffusion coefficient of a fermi liquid could be directly experimentally observable via the spin echo effect [24]. Their prediction, that the diffusion coefficient of a fermi liquid would not decay exponentially with temperature, but rather would have a maximum at some non-zero temperature, was a direct consequence of the fermi liquid molecular field and spin wave phenomena, and this was corroborated by experiment in 1971 by Corruccini, et al. [13]. A parallel advancement in the theory of fermi liquid spin waves came with the extension of the theory to describe weak ferromagnetic metals. In 1959, Alexei Abrikosov and I. E. Dzyaloshiski put forth a theoretical description of a ferromagnetic fermi liquid [1]. In 2001, Kevin Bedell and Krastan Blagoev showed that a non-trivial contribution to the dispersion of the ferromagnetic current spin wave arises from the necessary consideration of higher harmonic moments in the distortion of the fermi surface from its ground state [8]. In the chapters to follow, the author presents new results for transverse spin waves in a fermi liquid, which arise from a novel ground state of a fermi liquid-one in which an l = 1 harmonic distortion exists in the ground state polarization. It is shown that such an instability can lead to spin waves with dispersions that are characterized by a linear dependence on the wave number at long

  6. Optical phase distortion due to compressible flow over laser turrets

    NASA Technical Reports Server (NTRS)

    Fuhs, A. E.; Fuhs, S. E.

    1980-01-01

    Analytical models for optical phase distortion due to compressible flow over a laser turret are developed. Phase distortion is calculated for both blunt and small perturbation turrets. For the blunt turret, the Janzen-Rayleigh technique is used to determine the flow field. Phase distortions of 2.2 wavelengths at 3.8 microns are calculated for the blunt turret. For small perturbation turrets, a versatile analytical model is developed for a turret on a fuselage with circular cross section. With a two dimensional Fourier series representation of the turret, any shape can be considered. Both subsonic and supersonic flows can be calculated. Phase distortions of 1.2 wavelengths at 3.8 microns are calculated for one turret at high subsonic Mach number. In addition to being of value for laser turrets, the methods are applicable to reconnaissance aircraft using photographic equipment and cruise missiles using celestial navigation.

  7. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  8. A method to correct coordinate distortion in EBSD maps

    SciTech Connect

    Zhang, Y.B. Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. - Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.

  9. Densification and shape distortion in liquid-phase sintering

    SciTech Connect

    Liu, J.; German, R.M.

    1999-12-01

    Densification and dimensional control are important aspects of liquid-phase sintering. The capillary force and the solid bonding affect both densification and shape preservation. Capillarity, which is orientated isotropically, causes uniform shrinkage and holds grains together to preserve the component shape in the early stage of sintering. On the other hand, solid bonding resists viscous flow and inhibits densification and shape distortion. The capillary force decreases with densification and approaches zero as pores are eliminated. Thus, shape retention eventually requires solid-grain bonding. The solid-grain bonding provides compact rigidity, which is represented by compact strength. Shape distortion occurs when the compact loses its strength. For every situation, there is a critical compact strength above which no shape distortion occurs. Distortion in liquid-phase sintering indicates that the compact strength passed below a critical level.

  10. Harmonic distortions measured on board of a maritime vessel

    NASA Astrophysics Data System (ADS)

    Zburlea, Elena; Dordea, Stefan

    2016-12-01

    Measurements where performed on four channels by means of an autonomous equipment (galvanic separated and not supplied from the ship's mains) performed on board of some maritime transport vessels, inside the Port of Constanţa aquatorium. Distorted voltages where state in the distribution panels. The sources of those distortions are the switching power supplies of the electric drives. The novelty of our work states in performing those measurements during the inside port maneuvers, when the operating time of each electric equipment is non definable. Harmonic distortions caused by the switching power converters lower the Power Factor. There is no better manner to find out the main distortions sources on board of a maritime transport vessel than to perform the measurements directly, on each location.

  11. Nanostructure-Induced Distortion in Single-Emitter Microscopy.

    PubMed

    Lim, Kangmook; Ropp, Chad; Barik, Sabyasachi; Fourkas, John; Shapiro, Benjamin; Waks, Edo

    2016-09-14

    Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter's far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the

  12. Predictors of child molestation: adult attachment, cognitive distortions, and empathy.

    PubMed

    Wood, Eric; Riggs, Shelley

    2008-02-01

    A conceptual model derived from attachment theory was tested by examining adult attachment style, cognitive distortions, and both general and victim empathy in a sample of 61 paroled child molesters and 51 community controls. Results of logistic multiple regression showed that attachment anxiety, cognitive distortions, high general empathy but low victim empathy significantly increased the odds of child molester status. Findings supported theoretically based hypotheses, suggesting that attachment theory may be useful in the conceptualization and treatment of child molesters.

  13. Study on distortion correction for image mosaic of surface defects

    NASA Astrophysics Data System (ADS)

    Wang, Shitong; Liu, Dong; Chen, Xiaoyu; Cao, Pin; Yang, Yongying

    2012-10-01

    It is hard to quantitate the micron-scale defects on large aperture (102mm×102mm) optical components by the conventional optical testing methods. This paper proposes a super-smooth surface defects measurement and evaluation system, achieved by using microscopic dark-field scattering imaging device, two-dimensional sub-image scanning mechanism and multi-cycle image mosaic algorithm. The defects detecting system, with a lateral resolution of 0.5μm, applies a large field of view design (largest FOV: 15mm×15mm). In order to test the largest element (430mm×430mm), however, over 1000 sub-pictures are captured. It takes more than 30 minutes to process these sub-pictures by multi-cycle image mosaic algorithm. This paper also presents a distortion correction method to revise the image mosaic mismatch caused by the optical distortion in the defects testing system on the platform of MATLAB. A binary optical grid plate (BOE) is fabricated as standard board to evaluate distortion. The proposed method applies image division multi-steps to build a look-up matrix of distortion parameters. According to the look-up matrix, all pixels on a sub-image are repositioned from the distortion Cartesian coordinates to the ideal Cartesian coordinates. Finally, feasibility of the distortion correction method is demonstrated by comparing the mosaic results of defect images before and after this process. The full field view distortion is reduced from more than 4% to less than 0.1%. After distortion correction, subimages can be directly mosaicked without using multi-cycle image mosaic algorithm, which improves test efficiency significantly. The method mentioned in this paper may also apply to other optical testing systems for image mosaic.

  14. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  15. Quantum Spin Fluctuations for a Distorted Incommensurate Spiral

    SciTech Connect

    Fishman, Randy Scott

    2012-01-01

    Quantum spin fluctuations are investigated for the incommensurate state of a geometrically- frustrated triangular-lattice antiferromagnet. With increasing anisotropy, the average suppression of the spin by quantum fluctuations is reduced but the distorted spiral becomes more elliptical. Quan- tum fluctuations also increase the wavevector of the spin state and enhance the critical anisotropy above which a collinear spin state is stabilized. An experimental technique is proposed to isolate the effect of quantum fluctuations from the classical distortion of the spiral.

  16. Compensating for pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1990-01-01

    A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data.

  17. Beam-shape distortion caused by transverse wake fields

    SciTech Connect

    Chao, A.W.; Kheifets, S.

    1983-02-01

    As a particle bunch in a storage ring passes through a region with a transverse impedance, it generates a transverse wake electromagnetic field that is proportional to the transverse displacement of the bunch in the region. The field acts back on the bunch, causing various effects (such as instabilities) in the motion of the bunch. We study one such effect in which a transverse impedance causes the beam to be distorted in its shape. Observed at a fixed location in the storage ring, this distortion does not change from turn to turn; rather, the distortion is static in time. To describe the distortion, the bunch is considered to be divided longitudinally into many slices and the centers of change of the slices are connected into a curve. In the absence of transverse impedance, this curve is a straight line parallel to the direction of motion of the bunch. Perturbed by the transverse wake field, the curve becomes distorted. What we find in this paper is the shape of such a curve. The results obtained are applied to the PEP storage ring. The impedance is assumed to come solely from the rf cavities. We find that the beam shape is sufficiently distorted and hence that loss of luminosity due to this effect becomes a possibility.

  18. Towards standardized assessment of endoscope optical performance: geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua

    2013-12-01

    Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.

  19. The distortion tensor of magnetotellurics: a tutorial on some properties

    NASA Astrophysics Data System (ADS)

    Lilley, Frederick E. M.

    2016-05-01

    A 2 × 2 matrix is introduced which relates the electric field at an observing site where geological distortion applies to the regional electric field, which is unaffected by the distortion. For the student of linear algebra this matrix provides a practical example with which to demonstrate the basic and important procedures of eigenvalue analysis and singular value decomposition. The significance of the results can be visualised because the eigenvectors of such a telluric distortion matrix have a clear practical meaning, as do their eigenvalues. A Mohr diagram for the distortion matrix displays when real eigenvectors exist, and tells their magnitudes and directions. The results of singular value decomposition (SVD) also have a clear practical meaning. These results too can be displayed on a Mohr diagram. Whereas real eigenvectors may or may not exist, SVD is always possible. The ratio of the two singular values of the matrix gives a condition number, useful to quantify distortion. Strong distortion causes the matrix to approach the condition known as `singularity'. A closely-related anisotropy number may also be useful, as it tells when a 2 × 2 matrix has a negative determinant by then having a value greater than unity.

  20. Visual feedback distortion in a robotic environment for hand rehabilitation.

    PubMed

    Brewer, Bambi Roberts; Klatzky, Roberta; Matsuoka, Yoky

    2008-04-15

    Robotic therapy offers a means of enhancing rehabilitation for individuals with chronic stroke or traumatic brain injury. The present research targets members of this population who demonstrate learned nonuse, a tendency to use affected limbs below the level of the individual's true capability. These individuals may not strive for difficult goals in therapy, which ultimately hampers their progress and the outcome of rehabilitation. Our research uses a paradigm called visual feedback distortion in which the visual feedback corresponding to force or distance is gradually changed by an imperceptible amount to encourage improved performance. Our first set of experiments was designed to assess the limits of imperceptible distortion for visual feedback concerning the force exerted or the distance moved by the index finger. A second set of experiments used these limits to gradually distort visual feedback in order to manipulate a subject's force or distance response. Based on this work, we designed a paradigm applying visual feedback distortion to the rehabilitation of individuals with chronic stroke and traumatic brain injury. Initial tests are reported for two subjects who participated in a six-week rehabilitation protocol. Each patient followed visual feedback distortion to levels of performance above that predicted by her performance during an initial assessment. Both patients showed functional improvements after participating in the study. Visual feedback distortion may provide a way to help a patient move beyond his or her self-assessed "best" performance, improving the outcome of robotic rehabilitation.

  1. Pelvic architectural distortion is associated with pelvic organ prolapse.

    PubMed

    Huebner, Markus; Margulies, Rebecca U; DeLancey, John O L

    2008-06-01

    The aim of this study was to determine whether there is an association between architectural distortion seen on magnetic resonance (MR) scans (lateral "spill" of the vagina and posterior extension of the space of Retzius) and pelvic organ prolapse. Secondary analysis of MR imaging scans from a case-control study of women with prolapse (maximum point > or = + 1 cm; N = 144) and normal controls (maximum point < or = -1 cm; N= 126) was done. Two independent investigators, blinded to prolapse status and previously established levator-defect scores, determined the presence of architectural distortion on axial MR scans. Women were categorized into three groups based on levator defects and architectural distortion. Among the three groups, women with levator defects and architectural distortion have the highest proportion of prolapse (78%; p < 0.001). Among women with levator defects, those with prolapse had an odds ratio of 2.2 for the presence of architectural distortion (95% CI = 1.1-4.6). Pelvic organ prolapse is associated with the presence of visible architectural distortion on MR scans.

  2. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  3. Economic choices reveal probability distortion in macaque monkeys.

    PubMed

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing.

  4. Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams.

    PubMed

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu

    2008-08-10

    Based on the metamaterial cloaking technique, we propose the use of a new photon funnel to compress a plane electromagnetic (EM) wave. The theoretical analysis and numerical simulations indicate that the compression ratio can be designed optionally and the compressed wave beam remains the original wave shape without any distortions. Here we apply the method to EM waves but it can be applied to acoustic waves and other fields as well.

  5. [The morphologic and functional state of the kidneys exposed to focused waves during remote nephro-lithotripsy].

    PubMed

    Gavrilevich, B A; Sergienko, N F; Kudriavtsev, Iu V; Olefir, Iu V

    2006-06-01

    Clinical and experimental research has shown that complications connected with negative influence of focused waves in distant lithotripsy in litotripters with an electrohydravlic system of focused waves generation depend on many factors, including the regime of wave generator work, an electrode interval, defocusing the wave as a result of an electrode interval center displacement, the amplitude of pressure and the length of a wave impulse in positive and negative phases. The wave impulse is distorted, which leads to kidney tissue damage.

  6. Nanostructure-Induced Distortion in Single-Emitter Microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Kangmook; Ropp, Chad; Barik, Sabyasachi; Fourkas, John; Shapiro, Benjamin; Waks, Edo

    2016-09-01

    Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitters far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter towards its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, sub-diffraction spatial imaging. These results provide a better understanding of the complex near-field coupling between emitters and nanostructures, and open up new opportunities to perform super-resolution microscopy with higher accuracy.

  7. The Gaussian Shear Wave in a Dispersive Medium

    PubMed Central

    Parker, Kevin J.; Baddour, Natalie

    2014-01-01

    Within the field of “imaging the biomechanical properties of tissues,” a number of approaches analyze shear wave propagation initiated by a short radiation force push. Unfortunately, it is experimentally observed that the displacement vs. time curves in lossy tissues are rapidly damped and distorted in ways that confound any simple tracking approach. This paper addresses the propagation, decay, and distortion of pulses in lossy and dispersive media, in order to derive closed form analytic expressions for the propagating pulses. The theory identifies key terms that drive the distortion and broadening of the pulse. Furthermore, the approach taken is not dependent on any particular viscoelastic model of tissue, but instead takes a general first order approach to dispersion. Examples with a Gaussian beam pattern and realistic dispersion parameters are given along with general guidelines for identifying the features of the distorting wave that are the most compact. PMID:24412170

  8. Comparing Distortion Product Otoacoustic Emissions to Intracochlear Distortion Products Inferred from a Noninvasive Assay.

    PubMed

    Martin, Glen K; Stagner, Barden B; Dong, Wei; Lonsbury-Martin, Brenda L

    2016-08-01

    The behavior of intracochlear distortion products (iDPs) was inferred by interacting a probe tone (f3) with the iDP of interest to produce a "secondary" distortion product otoacoustic emission termed DPOAE(2ry). Measures of the DPOAE(2ry) were then used to deduce the properties of the iDP. This approach was used in alert rabbits and anesthetized gerbils to compare ear-canal 2f1-f2 and 2f2-f1 DPOAE f2/f1 ratio functions, level/phase (L/P) maps, and interference-response areas (IRAs) to their simultaneously collected DPOAE(2ry) counterparts. These same measures were also collected in a human volunteer to demonstrate similarities with their laboratory animal counterparts and their potential applicability to humans. Results showed that DPOAEs and inferred iDPs evidenced distinct behaviors and properties. That is, DPOAE ratio functions elicited by low-level primaries peaked around an f2/f1 = 1.21 or 1.25, depending on species, while the corresponding inferred iDP ratio functions peaked at f2/f1 ratios of ~1. Additionally, L/P maps showed rapid phase variation with DPOAE frequency (fdp) for the narrow-ratio 2f1-f2 and all 2f2-f1 DPOAEs, while the corresponding DPOAE(2ry) measures evidenced relatively constant phases. Common features of narrow-ratio DPOAE IRAs, such as large enhancements for interference tones (ITs) presented above f2, were not present in DPOAE(2ry) IRAs. Finally, based on prior experiments in gerbils, the behavior of the iDP directly measured in intracochlear pressure was compared to the iDP inferred from the DPOAE(2ry) and found to be similar. Together, these findings are consistent with the notion that under certain conditions, ear-canal DPOAEs provide poor representations of iDPs and thus support a "beamforming" hypothesis. According to this concept, distributed emission components directed toward the ear canal from the f2 and basal to f2 regions can be of differing phases and thus cancel, while these same components directed toward fdp add in

  9. Sideband growth in nonlinear Landau wave-particle interaction.

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    The distortion of the electron velocity distribution caused by a large amplitude Landau wave is determined analytically for the initial-value problem. The resulting stability of electrostatic perturbations impressed on the evolving plasma is studied. Narrow sidebands of the applied frequency experience consecutive growths of large magnitude during the early stages of the nonlinear wave-particle interaction. The significance of the derived results to both wave propagation experiments and triggered VLF emissions in the magnetosphere is discussed.

  10. An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials

    NASA Astrophysics Data System (ADS)

    Rushchitsky, J. J.; Yurchuk, V. N.

    2016-05-01

    Two types of solitary elastic waves are considered: a longitudinal plane displacement wave (longitudinal displacements along the abscissa axis of a Cartesian coordinate system) and a radial cylindrical displacement wave (displacements in the radial direction of a cylindrical coordinate system). The basic innovation is the use of nonlinear wave equations similar in form to describe these waves and the use of the same approximate method to analyze these equations. The distortion of the wave profile described by Whittaker (plane wave) or Macdonald (cylindrical wave) functions is described theoretically

  11. Noise Shaping Filter Compensating PWM Distortion for Fully Digital Amplifier

    NASA Astrophysics Data System (ADS)

    Yoneya, Akihiko

    The full-digital audio amplifiers have several merits such as a high power enabling a small size of the amplifier and digital implementation of the signal processing which allows desired precision of the processing except for the final stage switching amplifiers. Unfortunately, the pulse width modulation (PWM) causes signal distortions because of the non-linearity of the modulation from the viewpoint of the transient response. This paper proposes a compensation method of the PWM distortion with feedback approach. In the noise-shaping filter of the delta-sigma modulator to calculate the pulse codes for the PWM, the distortion caused by the PWM is evaluated and fed it back to compensate the distortion. Eventually the filter is implemented as a state-variable filter with non-linear feedback from the quantizer. The calculation of the filter elements is also described. By using proposed filters, PWM signals with small distortions and small floor noise can be obtained to realize high-fidelity audio amplifiers.

  12. Recovery of motion parameters from distortions in scanned images

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1997-01-01

    Scanned images, such as those produced by the scanning-laser ophthalmoscope (SLO), show distortions when there is target motion. This is because pixels corresponding to different image regions are acquired sequentially, and so, in essence, are slices of different snapshots. While these distortions create problems for image registration algorithms, they are potentially useful for recovering target motion parameters at temporal frequencies above the frame rate. Stetter, Sendtner and Timberlake measured large distortions in SLO images to recover the time course of rapid horizontal saccadic eye movements. Here, this work is extended with the goal of automatically recovering small eye movements in two dimensions. Eye position during the frame interval is modeled using a low dimensional parametric description, which in turn is used to generate predicted distortions of a reference template. The input image is then registered to the distorted template using normalized cross correlation. The motion parameters are then varied, and the correlation recomputed, to find the motion which maximizes the peak value of the correlation. The location and value of the correlation maximum are determined with sub-pixel precision using biquadratic interpolation, yielding eye position resolution better than 1 arc minute. This method of motion parameter estimation is tested using actual SLO images as well as simulated images. Motion parameter estimation might also be applied to individual video lines in order to reduce pipeline delays for a near real-time system.

  13. Satellite measurement of ionospheric-induced vhf distortion

    SciTech Connect

    Armstrong, W.T.; Murphy, T.; Roussel-Dupre, R.; Carter, M.J.; Blevins, B.

    1992-01-01

    BLACKBEARD is a satellite RF experiment designed to study distortion and interference effects on transient transionospheric VHF signals. RF distortion will be characterized by a frequency-coherence bandwidth for different ionospheric conditions. Limitations of broad-band measurements from the frequency-coherence bandwidth of the ionosphere and broadcast interference signals will be established through these studies. Distinction between multi-path distortion resulting from large scale, coherent perturbations and small scale, random perturbations to the ionosphere will be emphasized. Ionospheric transfer function models, trans-ionospheric signal predictions, and coherence bandwidth predictions will be tested and optimized with these measurements. A global data base for both broadcast and lightning interference will also derive from these studies. This database will form the basis for interference feature extraction, signal typing, and possible neural network cataloging. The specific missions of the BLACKBEARD experiment include: perform broad-band VHF measurements of transient signals originating from a controlled pulsed ground beacon, to characterize broad-band ionospheric distortion, perform narrow-band VHF measurements of cw signals from a multi-chord interferometry ground beacon array, to characterize ionospheric structure contributing to transmission distortion, and survey power envelopes of lightning and man-made interference in selectable VHF bands, for background rejection purposes. BLACKBEARD is part of the ALEMS soft x-ray measurement satellite, a small satellite system designed for a PEGASUS launch into a 70{degrees} inclination, low earth orbit in late 1992.

  14. Satellite measurement of ionospheric-induced vhf distortion

    SciTech Connect

    Armstrong, W.T.; Murphy, T.; Roussel-Dupre, R.; Carter, M.J.; Blevins, B.

    1992-09-01

    BLACKBEARD is a satellite RF experiment designed to study distortion and interference effects on transient transionospheric VHF signals. RF distortion will be characterized by a frequency-coherence bandwidth for different ionospheric conditions. Limitations of broad-band measurements from the frequency-coherence bandwidth of the ionosphere and broadcast interference signals will be established through these studies. Distinction between multi-path distortion resulting from large scale, coherent perturbations and small scale, random perturbations to the ionosphere will be emphasized. Ionospheric transfer function models, trans-ionospheric signal predictions, and coherence bandwidth predictions will be tested and optimized with these measurements. A global data base for both broadcast and lightning interference will also derive from these studies. This database will form the basis for interference feature extraction, signal typing, and possible neural network cataloging. The specific missions of the BLACKBEARD experiment include: perform broad-band VHF measurements of transient signals originating from a controlled pulsed ground beacon, to characterize broad-band ionospheric distortion, perform narrow-band VHF measurements of cw signals from a multi-chord interferometry ground beacon array, to characterize ionospheric structure contributing to transmission distortion, and survey power envelopes of lightning and man-made interference in selectable VHF bands, for background rejection purposes. BLACKBEARD is part of the ALEMS soft x-ray measurement satellite, a small satellite system designed for a PEGASUS launch into a 70{degrees} inclination, low earth orbit in late 1992.

  15. Distortion and flow of nematics simulated by dissipative particle dynamics.

    PubMed

    Zhao, Tongyang; Wang, Xiaogong

    2014-05-14

    In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics.

  16. Short-Term Changes in Light Distortion in Orthokeratology Subjects

    PubMed Central

    Santolaria Sanz, Elena; Villa-Collar, Cesar; González-Méijome, Jose Manuel

    2015-01-01

    Purpose. Quantifying adaptation to light distortion of subjects undergoing orthokeratology (OK) for myopia during the first month of treatment. Methods. Twenty-nine healthy volunteers (age: 22.34 ± 8.08 years) with mean spherical equivalent refractive error −2.10 ± 0.93D were evaluated at baseline and days 1, 7, 15, and 30 of OK treatment. Light distortion was determined using an experimental prototype. Corneal aberrations were derived from corneal topography for different pupil sizes. Contrast sensitivity function (CSF) was analyzed for frequencies of 1.50, 2.12, 3.00, 4.24, 6.00, 8.49, 12.00, 16.97, and 24.00 cpd under photopic conditions. Results. Average monocular values of all light distortion parameters measured increased significantly on day 1, returning to baseline after 1 week (P < 0.05 in all cases). Spherical-like aberration stabilized on day 7 for all pupil diameters, while coma-like for smaller pupils only. CSF was significantly reduced on day 1 for all spatial frequencies except for 1.5 cpd, returning to baseline afterwards. Significant correlation was found between light distortion and contrast sensitivity for middle and high frequencies (P < 0.05) after 15 days. Conclusion. Despite consistently increased levels of corneal aberrations, light distortion tends to return to baseline after one week of treatment, suggesting that neural adaptation is capable of overcoming optical quality degradation. PMID:25699265

  17. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  18. Satellite measurement of ionospheric-induced VHF distortion

    NASA Astrophysics Data System (ADS)

    Armstrong, W. T.; Murphy, T.; Roussel-Dupre, R.; Carter, M. J.; Blevins, B.

    BLACKBEARD is a satellite RF experiment designed to study distortion and interference effects on transient transionospheric VHF signals. RF distortion will be characterized by a frequency-coherence bandwidth for different ionospheric conditions. Limitations of broad-band measurements from the frequency-coherence bandwidth of the ionosphere and broadcast interference signals will be established through these studies. Distinction between multi-path distortion resulting from large scale, coherent perturbations and small scale, random perturbations to the ionosphere will be emphasized. Ionospheric transfer function models, trans-ionospheric signal predictions, and coherence bandwidth predictions will be tested and optimized with these measurements. A global data base for both broadcast and lightning interference will also derive from these studies. This database will form the basis for interference feature extraction, signal typing, and possible neural network cataloging. The specific missions of the BLACKBEARD experiment include: perform broad-band VHF measurements of transient signals originating from a controlled pulsed ground beacon, to characterize broad-band ionospheric distortion, perform narrow-band VHF measurements of cw signals from a multi-chord interferometry ground beacon array, to characterize ionospheric structure contributing to transmission distortion, and survey power envelopes of lightning and man-made interference in selectable VHF bands, for background rejection purposes. BLACKBEARD is part of the ALEMS soft x-ray measurement satellite, a small satellite system designed for a PEGASUS launch into a 70 deg inclination, low earth orbit in late 1992.

  19. Geometric distortion of area in medical ultrasound images

    NASA Astrophysics Data System (ADS)

    Bland, T.; Tong, J.; Ward, B.; Parker, N. G.

    2017-01-01

    Medical ultrasound scanners are typically calibrated to a speed of sound corresponding to the soft tissue average of 1540 m s-1. In regions of different sound speed, for example, organs and tumours, the B-mode image becomes geometrically distorted from the true tissue cross-section, due to refraction and the misrepresentation of length. A ray model is developed to predict this distortion for a generalized two-dimensional object with atypical speed of sound, and verified against ultrasound images of a test object. We quantify the areal image distortion as a function of the key dependencies, including the speed of sound mismatch, the scanning format, the object size and its elongation. Our findings show that the distortion of area can be significant, even for relatively small speed of sound mismatches. For example, a 5% speed mismatch typically leads to a 10 - 20% distortion in area. These findings have implications for the accuracy of ultrasound-based evaluation of area and volume.

  20. Distortion of digital panoramic radiographs used for implant site assessment

    PubMed Central

    Kayal, Rayyan Abdulhamid

    2016-01-01

    Aims: This study is conducted to determine the amount of distortion of digital panoramic radiographs. Materials and Methods: Panoramic radiographs of all patients who received dental implants in the years 2012 and 2013 were selected from the records at the faculty of dentistry, King Abdulaziz University. Radiographs were analyzed using the R4 Kodak Software for linear measurements of implants length and width. The measurements were compared to the actual size of the implant, and the amount of distortion was calculated. Results: A total of 169 implants were analyzed. Horizontally, there was a statistically significant increase of 0.4 mm in width in the radiographic measurement compared to the actual size in the incisor region. Vertically, the sample overall exhibited a decrease by 0.4 mm compared to the actual size. Incisors had the highest difference with a decrease of 1.7 mm in the radiographic measurements compared to actual size. The highest distortion was found in the incisor region for both diameter and length (1.1 and 0.86), respectively. Conclusion: Digital panoramic radiographs show minimal to no distortion. The highest distortion is found in the anterior area. PMID:27843885

  1. Distortion-Based Link Adaptation for Wireless Video Transmission

    NASA Astrophysics Data System (ADS)

    Ferré, Pierre; Chung-How, James; Bull, David; Nix, Andrew

    2008-12-01

    Wireless local area networks (WLANs) such as IEEE 802.11a/g utilise numerous transmission modes, each providing different throughputs and reliability levels. Most link adaptation algorithms proposed in the literature (i) maximise the error-free data throughput, (ii) do not take into account the content of the data stream, and (iii) rely strongly on the use of ARQ. Low-latency applications, such as real-time video transmission, do not permit large numbers of retransmission. In this paper, a novel link adaptation scheme is presented that improves the quality of service (QoS) for video transmission. Rather than maximising the error-free throughput, our scheme minimises the video distortion of the received sequence. With the use of simple and local rate distortion measures and end-to-end distortion models at the video encoder, the proposed scheme estimates the received video distortion at the current transmission rate, as well as on the adjacent lower and higher rates. This allows the system to select the link-speed which offers the lowest distortion and to adapt to the channel conditions. Simulation results are presented using the MPEG-4/AVC H.264 video compression standard over IEEE 802.11g. The results show that the proposed system closely follows the optimum theoretic solution.

  2. Scalable complexity-distortion model for fast motion estimation

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoquan; Ling, Nam

    2005-07-01

    Recently established international video coding standard H.264/AVC and the upcoming standard on scalable video coding (SVC) bring part of the solution to high compression ratio requirement and heterogeneity requirement. However, these algorithms have unbearable complexities for real-time encoding. Therefore, there is an important challenge to reduce encoding complexity, preferably in a scalable manner. Motion estimation and motion compensation techniques provide significant coding gain but are the most time-intensive parts in an encoder system. They present tremendous research challenges to design a flexible, rate-distortion optimized, yet computationally efficient encoder, especially for various applications. In this paper, we present a scalable motion estimation framework for complexitydistortion consideration. We propose a new progressive initial search (PIS) method to generate an accurate initial search point, followed by a fast search method, which can greatly benefit from the tighter bounds of the PIS. Such approach offers not only significant speedup but also an optimal distortion performance for a given complexity constrain. We analyze the relationship between computational complexity and distortion (C-D) through probabilistic distance measure extending from the complexity and distortion theory. A configurable complexity quantization parameter (Q) is introduced. Simulation results demonstrate that the proposed scalable complexity-distortion framework enables video encoder to conveniently adjust its complexity while providing best possible services.

  3. Otoacoustic emission through waves on Reissner's membrane

    NASA Astrophysics Data System (ADS)

    Reichenbach, Tobias; Stefanovic, Aleksandra; Nin, Fumiaki; Hudspeth, A. J.

    2015-12-01

    Otoacoustic emissions are a striking manifestation of mechanical activity within the cochlea. Recent experimental work has stirred a controversy concerning how these mechanical signals propagate outward to the middle ear, from which they are emitted as airborne sounds. Here we show that Reissner's membrane, an elastic structure inside the inner ear, can sustain wave propagation and can therefore transmit otoacoustic emissions from inside the cochlea to the middle ear. We first develop a theoretical description for wave propagation on the parallel basilar and Reissner's membranes. We then describe experimental measurement of the predicted Reissner's membrane wave and its role in distortion-product otoacoustic emissions.

  4. An Exact Formula for Calculating Inverse Radial Lens Distortions

    PubMed Central

    Drap, Pierre; Lefèvre, Julien

    2016-01-01

    This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288

  5. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; Paris, Mark W.

    2017-03-01

    We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.

  6. Cosmic Microwave Background spectral distortions from cosmic string loops

    SciTech Connect

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi E-mail: rhb@physics.mcgill.ca E-mail: imorrison@physics.mcgill.ca

    2016-02-01

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.

  7. Rise-Time Distortion of Signal without Carrying Signal

    NASA Astrophysics Data System (ADS)

    Bukhman, N. S.

    2016-08-01

    The article deals with one-dimensional problem of rise-time distortion signal without carrying signal, that appears in the starting point intermittently, that is signal distortion at front edge or one of its derivative. The authors show that front edge of signal isn't distorted in case of propagation in unrestricted (including absorbing) area (amplitude of starting signal step or of one of its derivatives doesn't change) and move with the accuracy of vacuum light speed. The paper proves that it is the time interval shortage that causes signal loss with the route extension, but not the reduction of its starting amplitude, during which front edge of signal retains its starting value. The research presents new values for this time interval.

  8. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  9. Characterizing imaging distortion for the Intermediate Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ; Masci, Frank J.; Surace, Jason A.; Bellm, Eric Christopher; Miller, Adam; Ofek, Eran; Intermediate Palomar Transient Factory Collaboration

    2016-01-01

    The advent of time-domain surveys has put a premium on accurate astrometry determined in near-real-time. The Intermediate Palomar Transient Factory (iPTF) employs astrometric solvers from SCAMP in the Astromatic suite and from Astrometry.net. Distortion is computed by these solvers for each individual image and exposure. We present an analysis of the distortion solutions in iPTF data, and some approaches for improving astrometry for iPTF and the upcoming Zwicky Transient Facility. Additionally, Astrometry.net currently uses the SIP convention to represent distortion in FITS image headers, while the Astromatic suite uses the TPV convention. We describe a conversion between between these two conventions which has now been extended to 7th-order polynomials.

  10. Self-induced thermal distortion effects on target image quality.

    PubMed

    Gebhardt, F G

    1972-06-01

    Experimental results are reported that show the effects of the self-induced thermal lens due to a high power laser beam on imaging or tracking systems viewing along the same propagation path. The thermal distortion effects of a wind are simulated with a low power ( less, similar 3-W) CO(2) laser beam propagating through a cell of liquid CS(2) moving across the beam. The resulting image distortion includes a warping effect analogous to the deflection of the CO(2) beam, together with a pronounced demagnification of the central portion of the object. An active optical tracker is simulated with a He-Ne laser beam propagating collinearly with the CO(2) beam. The He-Ne beam pattern returned from a specular target is distorted and sharply confined to the outline of the crescent shaped CO(2) beam. Simple ray optics models are used to provide qualitative explanations for the experimental results.

  11. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  12. Time distortion for expert and novice online game players.

    PubMed

    Rau, Pei-Luen Patrick; Peng, Shu-Yun; Yang, Chin-Chow

    2006-08-01

    Online game addiction is a new mental disorder. This disorder is difficult to describe because of its comprehensive nature. Many online game players have problems controlling their playing time. They cannot stop playing a game that they enjoy. This research surveyed the past literature on "flow" and time disorder theory. A time distortion experiment was conducted. This research invited 64 children, teenagers, and young adults to investigate player skill and playing time effects on online game break-off. The playing experience and degree of time distortion were measured and analyzed. The results showed that both novice and expert online game players were subject to time distortion. The participants had difficulty breaking off from the game without intrusion by others in the real world. This research also suggests eight questions for self-evaluation for online game addiction.

  13. Control of nanoparticle self-assemblies using distorted liquid crystals

    NASA Astrophysics Data System (ADS)

    Lacaze, Emmanuelle; Coursault, Delphine

    This chapter concerns the structure and the optical properties of nanoparticle (NP)/liquid crystal (LC) composites in the presence of LC distortion. After a first description of the general behaviour of NPs at the proximity of distorted LC areas, the first section of the chapter discusses the stabilization of the LC phases, characterized by the presence of topological defects in presence of NPs. The assemblies of NPs induced by distorted LC films is addressed in the second section. The last section then extensively develops the structure and optical properties of NP assemblies created within topological defects. Specific localisation and orientations of the NPs will be discussed, but also possible control of the size and shape of the NP assemblies, together with control of the distances between NPs in the assemblies, leading to original optical properties of the composites as far as uorescent or gold NPs are concerned.

  14. Critical Assessment of Correction Methods for Fisheye Lens Distortion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, C.; Huang, Y.

    2016-06-01

    A fisheye lens is widely used to create a wide panoramic or hemispherical image. It is an ultra wide-angle lens that produces strong visual distortion. The distortion modeling and estimation of the fisheye lens are the crucial step for fisheye lens calibration and image rectification in computer vision and close-range photography. There are two kinds of distortion: radial and tangential distortion. Radial distortion is large for fisheye imaging and critical for the subsequent image processing. Although many researchers have developed calibration algorithms of radial distortion of fisheye lens, quantitative evaluation of the correction performance has remained a challenge. This is the first paper that intuitively and objectively evaluates the performance of five different calibration algorithms. Upto- date research on fisheye lens calibration is comprehensively reviewed to identify the research need. To differentiate their performance in terms of precision and ease-using, five methods are then tested using a diverse set of actual images of the checkerboard that are taken at Wuhan University, China under varying lighting conditions, shadows, and shooting angles. The method of rational function model, which was generally used for wide-angle lens correction, outperforms the other methods. However, the one parameter division model is easy for practical use without compromising too much the precision. The reason is that it depends on the linear structure in the image and requires no preceding calibration. It is a tradeoff between correction precision and ease-using. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for future practice and algorithm development that are important for fisheye lens calibration. It is promising for the optimal design of lens correction models that are suitable for the millions of portable imaging devices.

  15. Evidence for distorted mental representation of the hand in osteoarthritis

    PubMed Central

    Gilpin, Helen R.; Moseley, G. Lorimer; Stanton, Tasha R.

    2015-01-01

    Objectives. Some chronic pain states are associated with a distortion of the perceived size or shape of the painful area, and multisensory illusions that disrupt these dimensions can modulate pain in healthy controls and people with painful disorders. Illusory hand resizing has recently been found to relieve pain in hand OA, raising the possibility that the illusion corrects some underlying perceptual disturbance. We evaluated this possibility by measuring perceived hand size in healthy controls and those with painful hand OA before and after illusory hand resizing. The aim was to investigate whether people with painful hand OA have distorted representations of hand size and whether these representations are malleable. We hypothesized that hand OA is associated with a distorted mental representation of the painful hand and that perceived hand size can be modulated via multisensory illusion. Methods. Twelve volunteers with painful hand OA and 12 healthy age-matched controls performed three tasks (hand stretch, hand shrink and no illusion) in a randomized order then estimated the size of their hand using an adjustable photographic image. Results. Our hypotheses were supported: under normal conditions, perceived hand size was smaller for the OA group than for healthy controls, consistent with a distorted mental representation of the painful hand. Furthermore, illusory stretching increased perceived hand size in both groups, while illusory shrinking decreased perceived hand size in healthy controls but not in the OA group. Conclusion. These results suggest that hand OA is associated with a distorted mental representation of the painful hand and are consistent with the idea that the pain relief offered by multisensory illusions may work via normalization of this distortion. PMID:25246638

  16. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    SciTech Connect

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI; QIU,YAN; SHELNUTT,JOHN A.; WOODY,ROBERT W.

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decomposition and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.

  17. Effect of visual distortion on postural balance in a full immersion stereoscopic environment

    NASA Astrophysics Data System (ADS)

    Faubert, Jocelyn; Allard, Remy

    2004-05-01

    This study attempted to determine the influence of non-linear visual movements on our capacity to maintain postural control. An 8x8x8 foot CAVE immersive virtual environment was used. Body sway recordings were obtained for both head and lower back (lumbar 2-3) positions. The subjects were presented with visual stimuli for periods of 62.5 seconds. Subjects were asked to stand still on one foot while viewing stimuli consisting of multiplied sine waves generating movement undulation of a textured surface (waves moving in checkerboard pattern). Three wave amplitudes were tested: 4 feet, 2 feet, and 1 foot. Two viewing conditions were also used; observers looking at 36 inches in front of their feet; observers looking at a distance near the horizon. The results were compiled using an instability index and the data showed a profound and consistent effect of visual disturbances on postural balance in particular for the x (side-to-side) movement. We have demonstrated that non-linear visual distortions similar to those generated by progressive ophthalmic lenses of the kind used for presbyopia corrections, can generate significant postural instability. This instability is particularly evident for the side-to-side body movement and is most evident for the near viewing condition.

  18. Low thermal distortion extreme-UV lithography reticle

    DOEpatents

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2001-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  19. Low thermal distortion extreme-UV lithography reticle

    DOEpatents

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  20. Low thermal distortion Extreme-UV lithography reticle and method

    DOEpatents

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  1. Compensating for pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1990-01-01

    A general numerical technique for obtaining unsteady pressure measurements using conventional pressure sensing technology has been developed. A pneumatic distortion model, based on the Navier-Stokes equations of momentum and continuity, was reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate the effects of pneumatic distortion. Both postflight and real-time algorithms were developed and evaluated using simulated and flight data.

  2. Distortion of body image among elite female dancers.

    PubMed

    Pierce, E F; Daleng, M L

    1998-12-01

    To examine body image and possible distortion of body image among elite female dancers 10 members of a professional ballet company rated both current and ideal body shape. In addition, an objective measure of body composition was obtained via skinfold techniques. t tests indicated that the mean rating for current body image was significantly higher than the rating for ideal, despite the fact that body-composition measures for all subjects were in an "ideal" range according to normative standards. Analysis indicated a high distortion of body image among these dancers and support psychophysiological concerns previously raised.

  3. Distortion-rotor interaction noise produced by a drooped inlet

    NASA Technical Reports Server (NTRS)

    Smith, E. B.; Moore, M. T.; Gliebe, P. R.

    1980-01-01

    The 'drooped' inlet used on most wing mounted engines produces a wall static pressure distortion at the fan face of about plus or minus 2%. The interaction of the fan rotor with this fixed distortion pattern produces blade passing frequency and harmonic tone levels in flight which contribute to forward radiated engine noise spectra. Data from a wind tunnel test, using both a drooped inlet and an inlet with no droop, show large changes in forward radiated noise levels over a limited fan speed range. An analytical model of this fan noise mechanism is developed and is used to account for the major features of the measured results.

  4. Overlapping Plate Field Distortion Calibration AST-SV-02

    NASA Astrophysics Data System (ADS)

    Jefferys, William

    1991-07-01

    The goal of these activities is to determine the optical field angle distortions of FGS units #3 to within an arbitrary scale factor, with a level of accuracy sufficient to support an overall astrometry error budget of +/- 0.0027 arcseconds rms. The actual solutions will provide the Project Data Base with the significant terms, their values, and their covariances including errors, which may then be applied to general FGS observations to reduce them for field angle distortions, except scale, alignment, and color corrections. THIS PROPOSAL ASSUMES THAT FGS#3 IS THE PRIME UNIT.

  5. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  6. Estimation of lens distortion correction from single images

    NASA Astrophysics Data System (ADS)

    Goljan, Miroslav; Fridrich, Jessica

    2014-02-01

    In this paper, we propose a method for estimation of camera lens distortion correction from a single image. Without relying on image EXIF, the method estimates the parameters of the correction by searching for a maximum energy of the so-called linear pattern introduced into the image during image acquisition prior to lens distortion correction. Potential applications of this technology include camera identification using sensor fingerprint, narrowing down the camera model, estimating the distance between the photographer and the subject, forgery detection, and improving the reliability of image steganalysis (detection of hidden data).

  7. Distortion of Crabbed Bunch Due to the Electron Cloud

    SciTech Connect

    Wang, L; Raubenheimer, T.; /SLAC

    2008-05-28

    In order to improve the luminosity, two crab cavities have been installed in KEKB HER and LER [1]. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch along the whole ring. The achieved specific luminosity with crabbed bunch is higher, but it is not as high as that from beam-beam simulation [2]. One of the suspicions is the electron cloud. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This note briefly estimates the bunch shape distortion due to the electron cloud in KEKB LER.

  8. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  9. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  10. Magnetic soft modes in the distorted triangular antiferromagnet -CaCr2O4

    SciTech Connect

    Toth, Sandor; Lake, Bella; Hradil, Klaudia; Rule, K; Stone, Matthew B; Islam, A. T. M. N.

    2012-01-01

    -CaCr2O4 is a spin-3/2, distorted triangular lattice antiferromagnet with a simple 120 spin structure that masks the complex pattern of exchange interactions. The magnetic excitation spectrum has been measured using inelastic neutron scattering on powder and single crystal samples. It reveals unusual low energy modes which can be explained by linear spin-wave theory assuming nearest and next-nearest neighbor interactions. The mode softening is due to the next-nearest neighbor interactions and indicates a new magnetic phase nearby as revealed by the phase diagram constructed for this system. The extracted direct exchange interactions correlate well with the Cr3+{Cr3+ distances and are in agreement with other chromium oxide delafossite compounds.

  11. Shadow extraction for urban area based on hyperspherical color sharpening information distortion

    NASA Astrophysics Data System (ADS)

    Guo, Qing; Wang, Qu; Zhang, Hongqun

    2016-10-01

    A shadow extraction method for urban area is presented based on the hyperspherical color transform (HCT) fusion information distortion. We use the near-infrared band of WorldView-2 data to detect the shadow, because the near-infrared band as the long-wave band is more sensitive to shadow comparing to the short-wave band. In the hyperspherical color sharpening (HCS), n input bands are transformed from an n-dimensional Cartesian space to an n-dimensional hyperspherical color space to generate a single intensity component and n-1 angles, and then the intensity component is replaced with the adjusted panchromatic (Pan) image. After HCT, the information amount of the intensity is larger than that of the Pan band. When using the Pan to replace the intensity to get the fused multispectral (MS) image, the information amount is lost. To assess the information distortion of the fusion result, it is found that the shadow is sensitive to the difference index. Hence, the relative difference index is constructed to enhance the shadow information. More specifically, the relative difference index values are made high for shadow area while they are made low for non-shadow area. However, for the original MS image, the digital number values are low for the shadow area while they are high for non-shadow area. Then, by thresholding, the possible shadow area is separated from the non-shadow area. The experimental results show that this shadow extraction method is simple and accurate; not only the shadow of high building but also the little shadows of low trees and between buildings are all detected.

  12. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  13. Harmonic distortion analyzer speeds setup of magnetic tape recorders

    NASA Technical Reports Server (NTRS)

    Tinari, D. F.

    1968-01-01

    Harmonic distortion analyzer effects rapid and accurate setup and calibration of magnetic tape instrumentation recorders. The analyzer is portable, requires no warmup period and need not be calibrated for normal usage. Average setup time with this analyzer is approximately 30 seconds per track.

  14. Centration-distortion error: a criterion of perceptual dysfunction.

    PubMed

    Mecke, V

    This was a study to determine whether centration, as a perceptual process, could be a criterion for differentiating between neurologically impaired and emotionally disturbed children. Centration was defined by Piaget as a prolonged involuntary attachment of a sensory modality to one part of a field, causing perceptual errors of exaggerations and distortions. It is hypothesized that centration would affect motor behavior, producing effects on drawing tasks characterized by separation of designs or their parts, coincident with distortions of the figures drawn. The neurologically impaired children were identified as having primary difficulties with perception whereas the emotionally disturbed children would have primary difficulties with intellection. The centration-distortion error would characterize the drawing of the neurologically impaired but not those of the emotionally disturbed children. A sample of 44 children was selected, each with EEG records, psychological tests and psychiatric interviews used as differential criteria for the groups. Eleven children were diagnosed as having minimal brain damage, 33 as emotionally disturbed. Three psychologists scored the Bender Gestalt tests, blind, for indicators of brain injury and emotional disturbance as defined by Koppitz' criteria, and for the centration-distortion error. The hypothesis was upheld at the .001 level of confidence, validating an earlier pilot study.

  15. Age Differences in Dreams. II: Distortion and Other Variables.

    ERIC Educational Resources Information Center

    Zepelin, Harold

    1981-01-01

    Age-related change in manifest dream content was assessed in dreams recalled from REM sleep by (N=58) men aged (27-64), and in dreams recalled from sleep at home. Evidence indicated a small age-related decline in dream distortion and family-related content. (Author)

  16. Computer Software for Displaying Map Projections and Comparing Distortions.

    ERIC Educational Resources Information Center

    Wikle, Thomas

    1991-01-01

    Discusses software that educators can use to teach about distortions associated with alternative map projections. Examines the Projection, MicroCAM, World, and Atlas-GIS software programs. Suggests using the software in either introductory or more advanced courses dealing with map design or thematic cartography. Explains how to obtain the…

  17. Bridge 40, detail, the spans are distorted upgrade from years ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 40, detail, the spans are distorted upgrade from years of loaded westbound traffic traveling downgrade. Located at Milepost 40.31 - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  18. Analysis of tractable distortion metrics for EEG compression applications.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-07-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.

  19. Turkish Version of the Cognitive Distortions Questionnaire: Psychometric Properties

    PubMed Central

    Batmaz, Sedat; Kocbiyik, Sibel; Yuncu, Ozgur Ahmet

    2015-01-01

    Cognitive distortions are interrelated with all layers of cognitions, and they may be part of the treatment once they are accessed, identified, labeled, and changed. From both a research and a clinical perspective, it is of utmost importance to disentangle cognitive distortions from similar constructs. Recently, the Cognitive Distortions Questionnaire (CD-Quest), a brief and comprehensive measure, was developed to assess both the frequency and the intensity of cognitive distortions. The aim of the present study was to assess the psychometric properties of the Turkish version of the CD-Quest in a psychiatric outpatient sample. Demographic and clinical data of the participants were analyzed by descriptive statistics. For group comparisons, Student's t-test was applied. An exploratory principal components factor analysis was performed, followed by an oblique rotation. To assess the internal consistency of the scale Cronbach's α was computed. The correlation coefficient was calculated for test-retest reliability over a 4-week period. For concurrent validity, bivariate Pearson correlation analyses were conducted with the measures of mood severity and negatively biased cognitions. The results revealed that the scale had excellent internal consistency, good test-retest reliability, unidimensional factor structure, and evidence of concurrent and discriminant validity. PMID:26351580

  20. Electromagnetic hammer removes weld distortions from aluminum tanks

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1965-01-01

    Distortions around weld areas on sheet-aluminum tanks and other structures are removed with a portable electromagnetic hammer. The hammer incorporates a coil that generates a controlled high-energy pulsed magnetic field over localized areas on the metal surface.

  1. Threat Perception Distortions and Psychopathological Symptoms in Typically Developing Children

    ERIC Educational Resources Information Center

    Muris, Peter; Meesters, Cor; Smulders, Lianne; Mayer, Birgit

    2005-01-01

    This study examined relationships between symptoms of anxiety, aggression, and depression, on the one hand, and threat perception distortions, on the other hand. A large sample of typically developing children aged 8-12 years (N = 157) were interviewed with an instrument for assessing the main types of childhood psychopathology, and were then…

  2. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    NASA Astrophysics Data System (ADS)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  3. Retinal image mosaicing using the radial distortion correction model

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2008-03-01

    Fundus camera imaging can be used to examine the retina to detect disorders. Similar to looking through a small keyhole into a large room, imaging the fundus with an ophthalmologic camera allows only a limited view at a time. Thus, the generation of a retinal montage using multiple images has the potential to increase diagnostic accuracy by providing larger field of view. A method of mosaicing multiple retinal images using the radial distortion correction (RADIC) model is proposed in this paper. Our method determines the inter-image connectivity by detecting feature correspondences. The connectivity information is converted to a tree structure that describes the spatial relationships between the reference and target images for pairwise registration. The montage is generated by cascading pairwise registration scheme starting from the anchor image downward through the connectivity tree hierarchy. The RADIC model corrects the radial distortion that is due to the spherical-to-planar projection during retinal imaging. Therefore, after radial distortion correction, individual images can be properly mapped onto a montage space by a linear geometric transformation, e.g. affine transform. Compared to the most existing montaging methods, our method is unique in that only a single registration per image is required because of the distortion correction property of RADIC model. As a final step, distance-weighted intensity blending is employed to correct the inter-image differences in illumination encountered when forming the montage. Visual inspection of the experimental results using three mosaicing cases shows our method can produce satisfactory montages.

  4. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  5. 'Distorteidolias' - fantastic perceptive distortion. A new, pure dorsomedial thalamic syndrome.

    PubMed

    Delgado, Montserrat G; Bogousslavsky, Julien

    2013-01-01

    The role of the thalamus in the pathogenesis of the visual and auditory hallucinations has been reported under the name of peduncular hallucinosis, usually with coexisting midbrain involvement. These hallucinations typically take the form of dreamy de novo productions (phanteidolias), less often that of transformations of perceptions into new items (such as seeing faces in clouds) called pareidolias. However, hallucinations taking the form of a complex distortion of perception is a different phenomenon, which to our knowledge has not been reported. We studied 2 patients with complex, 'fantastic', perceptive distortion involving the visual and auditory systems after thalamic stroke limited to the region of the dorsomedial nucleus, sparing the intralaminar nuclei and the midbrain (explaining the lack of disorders of consciousness and confusional state). Our patients reported the modification of usual stimuli (face, body, voices) into unreal, fantastically distorted perceptions (monstrous change of shapes or sounds without appearance of new items). While the exact mechanism leading to such perceptive distortions remains unknown, a release phenomenon due to damage to the dorsomedial thalamus (probably affecting cholinergic system) responsible for a disinhibition of cortical function involved in familiarity of perception seems likely. We suggest that these hallucinations should be called 'distorteidolias'.

  6. Notes on Distortions in the Market for Educational Services.

    ERIC Educational Resources Information Center

    Olson, Lawrence S.

    The document analyzes economic factors that might cause the output of educational services to diverge from the theoretical optimum because of a divergence between marginal social valuation and marginal social cost. Education contains both investment and consumption aspects. The analysis shows that the only distortion resulting from uncertainty…

  7. Epipolar Rectification with Minimum Perspective Distortion for Oblique Images

    PubMed Central

    Liu, Jianchen; Guo, Bingxuan; Jiang, Wanshou; Gong, Weishu; Xiao, Xiongwu

    2016-01-01

    Epipolar rectification is of great importance for 3D modeling by using UAV (Unmanned Aerial Vehicle) images; however, the existing methods seldom consider the perspective distortion relative to surface planes. Therefore, an algorithm for the rectification of oblique images is proposed and implemented in detail. The basic principle is to minimize the rectified images’ perspective distortion relative to the reference planes. First, this minimization problem is formulated as a cost function that is constructed by the tangent value of angle deformation; second, it provides a great deal of flexibility on using different reference planes, such as roofs and the façades of buildings, to generate rectified images. Furthermore, a reasonable scale is acquired according to the dihedral angle between the rectified image plane and the original image plane. The low-quality regions of oblique images are cropped out according to the distortion size. Experimental results revealed that the proposed rectification method can result in improved matching precision (Semi-global dense matching). The matching precision is increased by about 30% for roofs and increased by just 1% for façades, while the façades are not parallel to the baseline. In another designed experiment, the selected façades are parallel to the baseline, the matching precision has a great improvement for façades, by an average of 22%. This fully proves our proposed algorithm that elimination of perspective distortion on rectified images can significantly improve the accuracy of dense matching. PMID:27827991

  8. Child molesters' cognitive distortions. Conceptualizations of the term.

    PubMed

    Szumski, Filip; Zielona-Jenek, Monika

    2016-10-31

    The concept of cognitive distortion was created by A. T. Beck and it is one of the key-concepts of cognitive psychotherapy. In the 80s of the twentieth century, researchers began to use it in studies of sexual offending, but with reference to the social learning theory rather than to the theory of cognitive psychotherapy. Subsequent authors continued the use of this term in the determinants of child molestation and defined them as products emerging from specific implicit theory of the offender, the judgements resulting from his beliefs, values and actions, dysfunctional cognitive schemas, deviant cognitive practices undertaken in the interaction of internal and external components of perpetrator's cognitive system and his social practices. The primary theoretical background in the description of the concept of cognitive distortions of child molesters was the social cognition theory, but it was complemented with the assumptions of the theory of cognitive psychotherapy, extended theory of mind and discursive psychology perspective. Particular concepts describe the cognitive distortions relating them to different classes of cognitive phenomena: products, processes and structures, and the only thing they have in common is their incompatibility of their content to the social norms. Giving this concept a normative nature leads to internal contradictions within the conceptions that concern it. Moreover, using it to explain the various processes oversimplifies the picture of this phenomenon and leads to contradictions between theories. It is, therefore, necessary to consider replacing the term cognitive distortions with alternative and more precise concepts.

  9. System for interferometric distortion measurements that define an optical path

    DOEpatents

    Bokor, Jeffrey; Naulleau, Patrick

    2003-05-06

    An improved phase-shifting point diffraction interferometer can measure both distortion and wavefront aberration. In the preferred embodiment, the interferometer employs an object-plane pinhole array comprising a plurality of object pinholes located between the test optic and the source of electromagnetic radiation and an image-plane mask array that is positioned in the image plane of the test optic. The image-plane mask array comprises a plurality of test windows and corresponding reference pinholes, wherein the positions of the plurality of pinholes in the object-plane pinhole array register with those of the plurality of test windows in image-plane mask array. Electromagnetic radiation that is directed into a first pinhole of object-plane pinhole array thereby creating a first corresponding test beam image on the image-plane mask array. Where distortion is relatively small, it can be directly measured interferometrically by measuring the separation distance between and the orientation of the test beam and reference-beam pinhole and repeating this process for at least one other pinhole of the plurality of pinholes of the object-plane pinhole array. Where the distortion is relative large, it can be measured by using interferometry to direct the stage motion, of a stage supporting the image-plane mask array, and then use the final stage motion as a measure of the distortion.

  10. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  11. Motivational Distortion Scales for the Children's Personality Questionnaire.

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Prichard, Karen K.

    1989-01-01

    Developed and cross-validated motivational distortion scales (fake bad and fake good) for the Children's Personality Questionnaire (CPQ). Findings from 12-year-old seventh- and eighth-grade students (n=58) suggest that children are sophisticated enough to respond to the CPQ in a socially desirable and socially undesirable way when asked to do so.…

  12. Pathophysiological Distortions in Time Perception and Timed Performance

    ERIC Educational Resources Information Center

    Allman, Melissa J.; Meck, Warren H.

    2012-01-01

    Distortions in time perception and timed performance are presented by a number of different neurological and psychiatric conditions (e.g. Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder and autism). As a consequence, the primary focus of this review is on factors that define or produce systematic changes in the…

  13. Epipolar Rectification with Minimum Perspective Distortion for Oblique Images.

    PubMed

    Liu, Jianchen; Guo, Bingxuan; Jiang, Wanshou; Gong, Weishu; Xiao, Xiongwu

    2016-11-07

    Epipolar rectification is of great importance for 3D modeling by using UAV (Unmanned Aerial Vehicle) images; however, the existing methods seldom consider the perspective distortion relative to surface planes. Therefore, an algorithm for the rectification of oblique images is proposed and implemented in detail. The basic principle is to minimize the rectified images' perspective distortion relative to the reference planes. First, this minimization problem is formulated as a cost function that is constructed by the tangent value of angle deformation; second, it provides a great deal of flexibility on using different reference planes, such as roofs and the façades of buildings, to generate rectified images. Furthermore, a reasonable scale is acquired according to the dihedral angle between the rectified image plane and the original image plane. The low-quality regions of oblique images are cropped out according to the distortion size. Experimental results revealed that the proposed rectification method can result in improved matching precision (Semi-global dense matching). The matching precision is increased by about 30% for roofs and increased by just 1% for façades, while the façades are not parallel to the baseline. In another designed experiment, the selected façades are parallel to the baseline, the matching precision has a great improvement for façades, by an average of 22%. This fully proves our proposed algorithm that elimination of perspective distortion on rectified images can significantly improve the accuracy of dense matching.

  14. Distortion of binoculars revisited: does the sweet spot exist?

    PubMed

    Merlitz, Holger

    2010-01-01

    Sixty years ago, August Sonnefeld of Zeiss reported on observations with experimental telescopes. The goal of his investigation was to determine the ideal amount of distortion applied to optical instruments that are used in combination with the human eye. His studies were inconclusive and partially contradictory. We have picked up this problem once again, adopting a modern point of view about the human imaging process, and supported by computer graphics. Based on experiments with Helmholtz checkerboards, we argue that human imaging introduces a certain amount of barrel distortion, which has to be counterbalanced through the implementation of an equally strong pincushion distortion into the binocular design. We discuss in detail how this approach is capable of eliminating the globe effect of the panning binocular and how the residual pincushion distortion affects the image when the eye is pointing off-center. Our results support the binocular designer in optimizing his instrument for its intended mode of application, and may help binocular users and astronomers better understand their tools.

  15. CMB all-scale blackbody distortions induced by linearizing temperature

    NASA Astrophysics Data System (ADS)

    Notari, Alessio; Quartin, Miguel

    2016-08-01

    Cosmic microwave background (CMB) experiments, such as WMAP and Planck, measure intensity anisotropies and build maps using a linearized formula for relating them to the temperature blackbody fluctuations. However, this procedure also generates a signal in the maps in the form of y -type distortions which is degenerate with the thermal Sunyaev Zel'dovich (tSZ) effect. These are small effects that arise at second order in the temperature fluctuations not from primordial physics but from such a limitation of the map-making procedure. They constitute a contaminant for measurements of our peculiar velocity, the tSZ and primordial y -distortions. They can nevertheless be well modeled and accounted for. We show that the distortions arise from a leakage of the CMB dipole into the y -channel which couples to all multipoles, mostly affecting the range ℓ≲400 . This should be visible in Planck's y -maps with an estimated signal-to-noise ratio of about 12. We note however that such frequency-dependent terms carry no new information on the nature of the CMB dipole. This implies that the real significance of Planck's Doppler coupling measurements is actually lower than reported by the collaboration. Finally, we quantify the level of contamination in tSZ and primordial y -type distortions and show that it is above the sensitivity of proposed next-generation CMB experiments.

  16. Generalized linear mixed model for segregation distortion analysis

    PubMed Central

    2011-01-01

    Background Segregation distortion is a phenomenon that the observed genotypic frequencies of a locus fall outside the expected Mendelian segregation ratio. The main cause of segregation distortion is viability selection on linked marker loci. These viability selection loci can be mapped using genome-wide marker information. Results We developed a generalized linear mixed model (GLMM) under the liability model to jointly map all viability selection loci of the genome. Using a hierarchical generalized linear mixed model, we can handle the number of loci several times larger than the sample size. We used a dataset from an F2 mouse family derived from the cross of two inbred lines to test the model and detected a major segregation distortion locus contributing 75% of the variance of the underlying liability. Replicated simulation experiments confirm that the power of viability locus detection is high and the false positive rate is low. Conclusions Not only can the method be used to detect segregation distortion loci, but also used for mapping quantitative trait loci of disease traits using case only data in humans and selected populations in plants and animals. PMID:22078575

  17. Information Distortion in the Evaluation of a Single Option

    ERIC Educational Resources Information Center

    Bond, Samuel D.; Carlson, Kurt A.; Meloy, Margaret G.; Russo, J. Edward; Tanner, Robin J.

    2007-01-01

    Extending previous work on biased predecisional processing, we investigate the distortion of information during the evaluation of a single option. A coherence-based account of the evaluation task suggests that individuals will form an initial assessment of favorability toward the option and then bias their evaluation of subsequent information to…

  18. Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.-I.; Madjarova, G.; Dewhurst, J. K.; Shallcross, S.; Felser, C.; Sharma, S.; Gross, E. K. U.

    2017-03-01

    With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2YZ with Y  =  (Ni, Co, Pt), and Co2YZ with Y  =  (Ni, Fe, Pt) where, in both cases, Z  =  (Al, Ga, Ge, In, Sn). We find that for the Co2NiZ, Co2PtZ, and Fe2PtZ families the cubic phase is always, at T  =  0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2NiZ and Fe2CoZ families this is the case for only 2 compounds—Fe2NiGe and Fe2NiSn. For all compounds in which a tetragonal distortion occurs we calculate the magnetocrystalline anisotropy energy (MAE) finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2NiGa has an MAE of  ‑2.38 MJ m‑3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states (DOS) at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.

  19. Another look at distortions of the Cosmic Microwave Background spectrum

    SciTech Connect

    Zotti, G. De; Negrello, M.; Castex, G.; Lapi, A.; Bonato, M. E-mail: NegrelloM@cardiff.ac.uk E-mail: lapi@sissa.it

    2016-03-01

    We review aspects of Cosmic Microwave Background (CMB) spectral distortions which do not appear to have been fully explored in the literature. In particular, implications of recent evidences of heating of the intergalactic medium (IGM) by feedback from active galactic nuclei are investigated. Taking also into account the IGM heating associated to structure formation, we argue that values of the y parameter of several × 10{sup −6}, i.e. a factor of a few below the COBE/FIRAS upper limit, are to be expected. The Compton scattering by the re-ionized plasma also re-processes primordial distortions, adding a y-type contribution. Hence no pure Bose-Einstein-like distortions are to be expected. An assessment of Galactic and extragalactic foregrounds, taking into account the latest results from the Planck satellite as well as the contributions from the strong CII and CO lines from star-forming galaxies, demonstrates that a foreground subtraction accurate enough to fully exploit the PIXIE sensitivity will be extremely challenging. Motivated by this fact we also discuss methods to detect spectral distortions not requiring absolute measurements and show that accurate determinations of the frequency spectrum of the CMB dipole amplitude may substantially improve over COBE/FIRAS limits on distortion parameters. Such improvements may be at reach of next generation CMB anisotropy experiments. The estimated amplitude of the Cosmic Infrared Background (CIB) dipole might be detectable by careful analyses of Planck maps at the highest frequencies. Thus Planck might provide interesting constraints on the CIB intensity, currently known with a ≅ 30% uncertainty.

  20. Dynamic wake distortion model for helicopter maneuvering flight

    NASA Astrophysics Data System (ADS)

    Zhao, Jinggen

    A new rotor dynamic wake distortion model, which can be used to account for the rotor transient wake distortion effect on inflow across the rotor disk during helicopter maneuvering and transitional flight in both hover and forward flight conditions, is developed. The dynamic growths of the induced inflow perturbation across rotor disk during different transient maneuvers, such as a step pitch or roll rate, a step climb rate and a step change of advance ratio are investigated by using a dynamic vortex tube analysis. Based on the vortex tube results, a rotor dynamic wake distortion model, which is expressed in terms of a set of ordinary differential equations, with rotor longitudinal and lateral wake curvatures, wake skew and wake spacing as states, is developed. Also, both the Pitt-Peters dynamic inflow model and the Peters-He finite state inflow model for axial or forward flight are augmented to account for rotor dynamic wake distortion effect during helicopter maneuvering flight. To model the aerodynamic interaction among main rotor, tail rotor and empennage caused by rotor wake curvature effect during helicopter maneuvering flight, a reduced order model based on a vortex tube analysis is developed. Both the augmented Pitt-Peters dynamic inflow model and the augmented Peters-He finite state inflow model, combined with the developed dynamic wake distortion model, together with the interaction model are implemented in a generic helicopter simulation program of UH-60 Black Hawk helicopter and the simulated vehicle control responses in both time domain and frequency domain are compared with flight test data of a UH-60 Black Hawk helicopter in both hover and low speed forward flight conditions.

  1. Affine Covariant Features for Fisheye Distortion Local Modelling.

    PubMed

    Furnari, Antonino; Farinella, Giovanni; Bruna, Arcangelo; Battiato, Sebastiano

    2016-11-10

    Perspective cameras are the most popular imaging sensors used in Computer Vision. However, many application fields including automotive, surveillance and robotics, require the use of wide angle cameras (e.g., fisheye), which allow to acquire a larger portion of the scene using a single device at the cost of the introduction of noticeable radial distortion in the images. Affine covariant feature detectors have proven successful in a variety of Computer Vision applications including object recognition, image registration and visual search. Moreover, their robustness to a series of variabilities related to both the scene and the image acquisition process has been thoroughly studied in the literature. In this paper, we investigate their effectiveness on fisheye images providing both theoretical and experimental analyses. As theoretical outcome, we show that the inherently non-linear radial distortion can be locally approximated by linear functions with a reasonably small error. The experimental analysis builds on Mikolajczyk's benchmark to assess the robustness of three popular affine region detectors (i.e., Maximally Stable Extremal Regions (MSER), Harris and Hessian affine region detectors), with respect to different variabilities as well as to radial distortion. To support the evaluations, we rely on the Oxford dataset and introduce a novel benchmark dataset comprising 50 images depicting different scene categories. Experiments are carried out on rectilinear images to which radial distortion is artificially added, and on real-world images acquired using fisheye lenses. Our analysis points out that affine region detectors can be effectively employed directly on fisheye images and that the radial distortion is locally modelled as an additional affine variability.

  2. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  3. Spiral waves on a contractile tissue

    NASA Astrophysics Data System (ADS)

    Mesin, L.; Ambrosi, D.

    2011-02-01

    In a healthy cardiac tissue, electric waves propagate in the form of a travelling pulse, from the apex to the base, and activate the contraction of the heart. Defects in the propagation can destabilize travelling fronts and originate possible new periodic solutions, as spiral waves. Spiral waves are quite stable, but the interplay between currents and strain can distort the periodic pattern, provided the coupling is strong enough. In this paper we investigate the stability of spiral waves on a contractile medium in a non-standard framework, in which the electrical potential dictates the active strain (not stress) of the muscle. The role of conducting and contracting fibers is included in the model and periodic boundary conditions are adopted. A correlation analysis allows to evaluate numerically the range of stability of the parameters for the spiral waves, depending on the strain of the contracted fibers and on the magnitude of the stretch activated current.

  4. Cloaking spin-(1/2) matter waves

    SciTech Connect

    Lin, De-Hone

    2010-06-15

    A physical construct for the cloaking of relativistic spin-(1/2) matter waves is proposed. It is shown that when the effective energy and mass of relativistic spin-(1/2) particles moving in an effective vector field in a spherical shell are controlled, their matter waves can be perfectly guided through the shell without any distortion or loss; that is, the construct provides a three-dimensional cloaking shell for relativistic spin-(1/2) matter waves. The proposal serves as the basis for some interesting applications such as providing a method to guide the matter waves of spin particles and an ideal setup to exhibit spin-spin interactions as well as perfect quantum interferences of some global effects in spin-(1/2) matter waves.

  5. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  6. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  7. An experimental investigation of compressor stall using an on-line distortion indicator and signal conditioner

    NASA Technical Reports Server (NTRS)

    Costakis, W. G.; Wenzel, L. M.

    1975-01-01

    The relation of the steady-state and dynamic distortions and the stall margin of a J85-13 turbojet engine was investigated. A distortion indicator capable of computing two distortion indices was used. A special purpose signal conditioner was also used as an interface between transducer signals and distortion indicator. A good correlation of steady-state distortion and stall margin was established. The prediction of stall by using the indices as instantaneous distortion indicators was not successful. A sensitivity factor that related the loss of stall margin to the turbulence level was found.

  8. A mesoscale gravity wave event observed during CCOPE. II - Interactions between mesoscale convective systems and the antecedent waves. [Cooperative Convection Precipitation Experiment

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Golus, Robert E.; Dorian, Paul B.

    1988-01-01

    The interactions between preexisting gravity waves and convective systems were investigated using data obtained by the Cooperative Convection Precipitation Experiment observational network in Montana on July 11-12, 1981. The results indicate that strong convection substantially affects gravity waves locally by augmenting the wave amplitude, reducing its wavelength, distorting the wave shape, altering the wave phase velocity, and greatly weakening the in-phase covariance between the perturbation wind and pressure fields. These convective effects upon gravity waves are explained in terms of hydrostatic and nonhydrostatic pressure forces and gust front processes associated with thunderstorms.

  9. The generation mechanisms and repeatability of 2F1-F2 distortion product otoacoustic emissions: study on normally hearing subjects.

    PubMed

    Parazzini, M; Wilson, H K; Bell, S; Tognola, G; Ravazzani, P; Lutman, M E

    2006-01-01

    The 2F1-F2 distortion product otoacoustic emission (DPOAE) is considered to consist of two generation mechanisms, the so-called place-fixed and wave-fixed mechanisms, depending on the frequency ratio F2/F1. The general assumption is that for a small frequency ratio there is a predominantly place-fixed emission mechanism, while with a larger frequency ratio there is a predominantly wave-fixed mechanism. There is also a lack of published data on the repeatability of the two components when separated. One aim of this study was therefore to identify the wave-fixed and place-fixed components of the 2F1-F2 DPOAE using a time-window separation method. The second aim was to quantify the test-retest repeatability of the separated 2F1-F2 DPOAE components in a group of normally hearing subjects. Results confirmed the presence of wave-fixed and place-fixed components for 2F1-F2 and a predominance of place or wave-fixed DPOAE as a function of frequency ratio. This pattern varied somewhat among subjects. Moreover, regardless of which component was stronger for any F2/F1, both components were highly repeatable across time within individual ears.

  10. Shape-assimilation effect: retrospective distortion of visual shapes.

    PubMed

    Ono, Fuminori; Watanabe, Katsumi

    2014-01-01

    A brief visual stimulus distorts the perceived shape of a subsequent visual stimulus as being dissimilar to the shape of a previous stimulus (shape-contrast effect). In this study, we presented a visual stimulus after a to-be-estimated target stimulus and found that the perceived shape of the target stimulus appeared to be similar to the shape of the following stimulus (shape-assimilation effect). The assimilation effect occurred even when the following stimulus was presented at positions different from that of the target stimulus, indicating that the shape-assimilation effect is a nonretinotopic distortion. The results suggest that the preceding and succeeding stimuli differentially modulate the perceived shape of a briefly presented stimulus.

  11. The effect of modern compact fluorescent lights on voltage distortion

    SciTech Connect

    Pileggi, D.J.; Gulachenski, E.M.; Root, C.E. ); Gentile, T.J. ); Emanuel, A.E. )

    1993-07-01

    This paper presents the results of a computer simulation of three real life 13.8kV feeders supplying consumers with non-linear loads which include CFL (Compact Fluorescent Lights) with electronic ballasts. The computer simulations are supported by laboratory testing and in-the-home installation/monitoring of CFL. The results of the laboratory tests and in-the-home monitoring were combined with load research information regarding residential load profiles to produce load models for use in computer simulation of the behavior of the three distribution feeders. The input current to electronically ballasted CFL has unusually high distortion, THD (total harmonic distortion) > 100%. The man conclusion of this work is that for a 15kV class feeder with a maximum 10 MVA load, the total load of electronically ballasted CFL should not exceed 100kW is the voltage THD is to be kept [<=] 5%.

  12. High thermoelectric performance of the distorted bismuth(110) layer.

    PubMed

    Cheng, L; Liu, H J; Zhang, J; Wei, J; Liang, J H; Jiang, P H; Fan, D D; Sun, L; Shi, J

    2016-07-14

    The thermoelectric properties of the distorted bismuth(110) layer are investigated using first-principles calculations combined with the Boltzmann transport equation for both electrons and phonons. To accurately predict the electronic and transport properties, the quasiparticle corrections with the GW approximation of many-body effects have been explicitly included. It is found that a maximum ZT value of 6.4 can be achieved for n-type systems, which essentially stemmed from the weak scattering of electrons. Moreover, we demonstrate that the distorted Bi layer retains high ZT values in relatively broad regions of both temperature and carrier concentration. Our theoretical work emphasizes that the deformation potential constant characterizing the electron-phonon scattering strength is an important paradigm for searching high thermoelectric performance materials.

  13. Model of intermodulation distortion in non-linear multicarrier systems

    NASA Astrophysics Data System (ADS)

    Frigo, Nicholas J.

    1994-02-01

    A heuristic model is proposed which allows calculation of the individual spectral components of the intermodulation distortion present in a non-linear system with a multicarrier input. Noting that any given intermodulation product (IMP) can only be created by a subset of the input carriers, we partition them into 'signal' carriers (which create the IMP) and 'noise' carriers, modeled as a Gaussian process. The relationship between an input signal and the statistical average of its output (averaged over the Gaussian noise) is considered to be an effective transfer function. By summing all possible combinations of signal carriers which create power at the IMP frequencies, the distortion power can be calculated exactly as a function of frequency. An analysis of clipping in lightwave CATV links for AM-VSB signals is used to introduce the model, and is compared to a series of experiments.

  14. Minimizing distortion in truss structures - A Hopfield network solution

    NASA Technical Reports Server (NTRS)

    Fu, B.; Hajela, P.

    1992-01-01

    Distortions in truss structures can result from random errors in element lengths that are typical of a manufacturing process. These distortions may be minimized by an optimal selection of elements from those available for placement between the prescribed nodes - a combinatorial optimization problem requiring significant investment of computational resource for all but the smallest problems. The present paper describes a formulation in which near-optimal element assignments are obtained as minimum-energy stable states, of an analogous Hopfield neural network. This requires mapping of the optimization problem into an energy function of the appropriate Liapunov form. The computational architecture is ideally suited to a parallel processor implementation and offers significant savings in computational effort. A numerical implementation of the approach is discussed with reference to planar truss problems.

  15. Minimizing distortion in truss structures -- a Hopfield network solution

    NASA Technical Reports Server (NTRS)

    Fu, B.; Hajela, P.

    1993-01-01

    Distortions in truss structures can result from random errors in elemental lengths that are typical of a manufacturing process. These distortions may be minimized by an optimal selection of elements from those available for placement between the prescribed nodes -- a combinatorial optimization problem requiring significant investment of computational resource for all but the smallest problems. The present paper describes a formulation in which near-optimal element assignments are obtained as minimum energy, stable states, of an analogous Hopfield neural network. This requires mapping of the optimization problem into an energy function of the appropriate Lyapunov form. The computational architecture is ideally suited to a parallel processor implementation and offers significant savings in computational effort. A numerical implementation of the approach is discussed with reference to planar truss problems.

  16. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  17. Adaptive EZW coding using a rate-distortion criterion

    NASA Astrophysics Data System (ADS)

    Yin, Che-Yi

    2001-07-01

    This work presents a new method that improves on the EZW image coding algorithm. The standard EZW image coder uses a uniform quantizer with a threshold (deadzone) that is identical in all subbands. The quantization step sizes are not optimized under the rate-distortion sense. We modify the EZW by applying the Lagrange multiplier to search for the best step size for each subband and allocate the bit rate for each subband accordingly. Then we implement the adaptive EZW codec to code the wavelet coefficients. Two coding environments, independent and dependent, are considered for the optimization process. The proposed image coder retains all the good features of the EZW, namely, embedded coding, progressive transmission, order of the important bits, and enhances it through the rate-distortion optimization with respect to the step sizes.

  18. Investigating the variability of memory distortion for an analogue trauma.

    PubMed

    Strange, Deryn; Takarangi, Melanie K T

    2015-01-01

    In this paper, we examine whether source monitoring (SM) errors might be one mechanism that accounts for traumatic memory distortion. Participants watched a traumatic film with some critical (crux) and non-critical (non-crux) scenes removed. Twenty-four hours later, they completed a memory test. To increase the likelihood participants would notice the film's gaps, we inserted visual static for the length of each missing scene. We then added manipulations designed to affect people's SM behaviour. To encourage systematic SM, before watching the film, we warned half the participants that we had removed some scenes. To encourage heuristic SM some participants also saw labels describing the missing scenes. Adding static highlighting, the missing scenes did not affect false recognition of those missing scenes. However, a warning decreased, while labels increased, participants' false recognition rates. We conclude that manipulations designed to affect SM behaviour also affect the degree of memory distortion in our paradigm.

  19. Rate-distortion analysis of SP and SI frames

    NASA Astrophysics Data System (ADS)

    Setton, Eric; Girod, Bernd

    2006-01-01

    SP and SI frames in the H.264 video coding standard can be used for error resilience, bitstream switching or random access. Despite a widespread interest in these new types of frames, no work so far has investigated, in a systematic way, their rate-distortion efficiency. In this paper, we propose a model for the rate-distortion performance of SI and SP frames. A comparison to experimental results, obtained with our implementation of an SP encoder, recently adopted by JVT, confirms its validity. The model predicts how the relative sizes of SP and SI frames can be traded off. We analyze, both theoretically and experimentally, how this can be used to minimize the transmitted bit-rate when SP frames are used for video streaming with packet losses.

  20. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    PubMed

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  1. FPGA Based Compensation Method for Correcting Distortion in Voltage Inverters

    DTIC Science & Technology

    2007-12-01

    inserted to prevent the short circuit that would occur if the two transistors in the same inverter leg are both on at the same time. This delay...occur if the two transistors in the same inverter leg are both on at the same time. This delay produces harmonic distortion and non-linearity when...delay inserted to prevent the short circuit that would occur if the two transistors in a single inverter leg were both on at the same time. This

  2. Cognitive Distortions Among Sexual Offenders Against Women in Japan.

    PubMed

    Hazama, Kyoko; Katsuta, Satoshi

    2016-09-15

    Research in Western countries has indicated that the cognitive distortions of sexual offenders play an etiological and maintenance role in offending. The present study examines whether the cognitive distortions hypothesized by previous Western studies can be found in Japanese sexual offenders against women. This study used the questionnaire administered by probation officers in the special cognitive-behavioral treatment programs for sexual offenders, which have been implemented since 2006 in Japan. Participants in the offender group were 80 Japanese male probationers and parolees (more than 19 years old, M age = 34.6, SD = 8.8) convicted of rape (n = 39) or indecent assault (n = 41). All of them attended special treatment programs at probation offices. The non-offender comparison group consisted of 95 Japanese male probation officers and police officers (M age = 35.5, SD = 11.4). A factor analysis of the questionnaire responses extracted three factors: Blaming the Victim, Minimization, and Avoidance of Responsibility. The data analyses showed that sexual offenders scored significantly higher than non-offender participants on the three subscales. No significant differences were found among four sexual offender groups classified as rapists or indecent assaulters and with or without previous convictions for sexual offenses. In conclusion, the results of this study indicate that rapists and indecent assaulters placed on probation or parole in Japan hold cognitive distortions concerning sexual assaults against women than the control group of probation and police officers. The findings of this study also suggest that cognitive distortions exhibited by sexual offenders against women transcend cultural divides.

  3. Reduction of sextupole distortion by shuffling magnets in small groups

    SciTech Connect

    Gluckstern, R.L.; Ohnuma, S.

    1985-05-01

    A method is given for reducing the most troublesome sextupole harmonics in a ring by measuring the sextupole field in groups of magnets, and ordering them according to a predetermined prescription. The predicted result is a decrease in sextupole related distortions by a factor ..sqrt..2/(J+1)/sup 1/2/ where J magnets, covering one or more betatron periods, are measured at one time. Simulations performed for typical SSC lattices confirm the expected improvements.

  4. Control of Inflow Distortion in a Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  5. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  6. Breast tissue decomposition with spectral distortion correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953

  7. Inversion Phenomenon and Phase Diagram of theS=1/2 Distorted Diamond Chain with theXXZInteraction Anisotropy

    NASA Astrophysics Data System (ADS)

    Tokuno, Akiyuki; Okamoto, Kiyomi

    2005-01-01

    We discuss the anisotropies of the Hamiltonian and the wave-function in an $S=1/2$ distorted diamond chain. The ground-state phase diagram of this model is investigated using the degenerate perturbation theory up to the first order and the level spectroscopy analysis of the numerical diagonalization data. In some regions of the obtained phase diagram, the anisotropy of the Hamiltonian and that of the wave-function are inverted, which we call inversion phenomenon; the N\\'{e}el phase appears for the XY-like anisotropy and the spin-fluid phase appears for the Ising-like anisotropy. Three key words are important for this nature, which are frustration, the trimer nature, and the $XXZ$ anisotropy.

  8. An Experimental Study of Fan Inflow Distortion Tone Noise

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    The tone noise generated when a fan ingests circumferentially distorted flow was studied by an experiment conducted with the Advanced Noise Control Fan at the NASA Glenn Research Center. The inflow was distorted by inserting cylindrical rods radially into the duct. The rods were arranged in circumferentially irregular patterns in three of the five configurations tested. Rods were held in place using a mounting ring with 30 equally spaced holes placed at an axial location one rotor chordlength upstream of the fan. Acoustic pressure was measured in the inlet and exhaust duct of the fan using the Rotating Rake fan tone measurement system. Sound power levels, calculated from the measured data, were plotted as a function of circumferential mode. An analytic description of the unsteady pressure distribution at the interaction plane between the stationary rods and the fan rotor is presented in a form suitable for representing the circumferentially irregularly placed rods. Terms in the analytical description for sound power were proven to be useful in determining the dominant circumferential modes measured in the experiment and the differences in mode power level between the configurations tested. Insight gained through this work will be useful in the development of tools to compute fan inflow distortion tone noise.

  9. Damage to insula abolishes cognitive distortions during simulated gambling.

    PubMed

    Clark, Luke; Studer, Bettina; Bruss, Joel; Tranel, Daniel; Bechara, Antoine

    2014-04-22

    Gambling is a naturalistic example of risky decision-making. During gambling, players typically display an array of cognitive biases that create a distorted expectancy of winning. This study investigated brain regions underpinning gambling-related cognitive distortions, contrasting patients with focal brain lesions to the ventromedial prefrontal cortex (vmPFC), insula, or amygdala ("target patients") against healthy comparison participants and lesion comparison patients (i.e., with lesions that spare the target regions). A slot machine task was used to deliver near-miss outcomes (i.e., nonwins that fall spatially close to a jackpot), and a roulette game was used to examine the gambler's fallacy (color decisions following outcome runs). Comparison groups displayed a heightened motivation to play following near misses (compared with full misses), and manifested a classic gambler's fallacy effect. Both effects were also observed in patients with vmPFC and amygdala damage, but were absent in patients with insula damage. Our findings indicate that the distorted cognitive processing of near-miss outcomes and event sequences may be ordinarily supported by the recruitment of the insula. Interventions to reduce insula reactivity could show promise in the treatment of disordered gambling.

  10. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  11. Cartographic distortions make dielectric spacetime analog models imperfect mimickers

    NASA Astrophysics Data System (ADS)

    Fathi, Mohsen; Thompson, Robert T.

    2016-06-01

    It is commonly assumed that if the optical metric of a dielectric medium is identical to the metric of a vacuum space-time then light propagation through the dielectric mimics light propagation in the vacuum. However, just as the curved surface of the Earth cannot be mapped into a flat plane without distortion of some surface features, so too is it impossible to project the behavior of light from the vacuum into a dielectric analog residing in Minkowski space-time without introducing distortions. We study the covariance properties of dielectric analog space-times and the kinematics of a congruence of light in the analog, and show how certain features can be faithfully emulated in the analog depending on the choice of projection, but that not all features can be simultaneously emulated without distortion. These findings indicate conceptual weaknesses in the idea of using analog space-times as a basis for transformation optics, and we show that a certain formulation of transformation optics closely related to analog space-times resolves these issues.

  12. Gemini planet imager observational calibrations V: astrometry and distortion

    NASA Astrophysics Data System (ADS)

    Konopacky, Quinn M.; Thomas, Sandrine J.; Macintosh, Bruce A.; Dillon, Daren; Sadakuni, Naru; Maire, Jérôme; Fitzgerald, Michael; Hinkley, Sasha; Kalas, Paul; Esposito, Thomas; Marois, Christian; Ingraham, Patrick J.; Marchis, Franck; Perrin, Marshall D.; Graham, James R.; Wang, Jason J.; De Rosa, Robert J.; Morzinski, Katie; Pueyo, Laurent; Chilcote, Jeffrey K.; Larkin, James E.; Fabrycky, Daniel; Goodsell, Stephen J.; Oppenheimer, Ben R.; Patience, Jenny; Saddlemyer, Leslie; Sivaramakrishnan, Anand

    2014-07-01

    We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale* of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 +/- 0.01 millarcseconds/pixel, and the north angle is -1.00 +/- 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.

  13. [An improved low spectral distortion PCA fusion method].

    PubMed

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  14. Influence of Rewetting Behavior on the Distortion of Bearing Races

    NASA Astrophysics Data System (ADS)

    Lübben, Thomas; Frerichs, Friedhelm

    2013-08-01

    Immersion quenching in evaporable fluids like oil, polymer solutions, or water is a widely used technique in heat treatment shops because this technique provides higher heat transfer coefficients than the most alternative gas quenching techniques. The disadvantages of immersion quenching in evaporating fluids are the complex heat transfer mechanisms which consist of the three phases, film boiling, nucleate boiling, and convection. Especially the transition from film to nucleate boiling—the rewetting of the sample surface—is a complex process which leads to a strong position dependence of the heat transfer coefficient of the cooled work pieces. In particular, immersion quenching of thin-walled rings can result in large changes of ovality with comparable high scattering. To understand these results, two series of experiments were performed. Rings were quenched in oil in a special quenching tank and the rewetting behavior was documented. Furthermore, bearing races were quenched in a standard tank. Before and after heat treatment, these rings were measured by a coordinate measuring system and the distortion was determined. The investigations have clearly shown that the vapor film can have an important influence on distortion generation during oil quenching. The resulting distortion can principally be explained by the observed rewetting behavior.

  15. Analysis of internal wave reflection within a magnetostrictive patch transducer for high-frequency guided torsional waves.

    PubMed

    Kim, Hoe Woong; Cho, Seung Hyun; Kim, Yoon Young

    2011-08-01

    Recently, megahertz-range torsional waves have been successfully generated and measured by a magnetostrictive patch transducer employing a meander coil. But the waveform of a high-frequency torsional wave generated by magnetostrictive patch transducers becomes greatly distorted with multiple trailing pulses. The hypothesis explaining the cause of the waveform distortion is that the distortion results mainly from the internal wave reflection within the magnetostrictive patch, which is in turn caused by the impedance mismatch between the bare and patch-bonded parts of the pipe. Based on the hypothesis, we developed an analytic model for internal reflection simulation and conducted several experiments using a patch transducer to verify the hypothesis. The comparison of the analytical and experimental results showed that the internal reflection at the edge of the patch was responsible for the distortion of the measured waveform. The present study also confirmed that the standard acoustic impedance matching to avoid sudden discontinuities at the patch edges can effectively reduce the internal reflection and alleviate the waveform distortion problem.

  16. Tidal distortions in pairs of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Prugniel, Philippe; Davoust, E.

    1990-01-01

    The authors are conducting an imaging survey of pairs of elliptical galaxies which has already produced interesting results. Some pairs present a common pattern of distortion interpreted in terms of tidal effects (Davoust and Prugniel, 1988; Prugniel et al., 1989). Other examples drawn from the literature (Borne and Hoessel, 1988; Colina and Perez-Fournon, 1990) share the same morphology. New cases and lists of the characteristics of 24 such systems. The authors' pairs are drawn from a sample of binary and multiple galaxies which has in turn been extracted from the CGCG, UGC (Nilson, 1973) and VV (Vorontsov-Velyaminov, 1959) catalogues. This sample includes that of Karachentsev (1972). It contains 1800 pairs, among which 700 are S - S or mixed morphology pairs. The authors are working on the remainder to produce a sample of close physical pairs of elliptical galaxies (they also include bulge dominated SO's since the morphological discrimination from ellipticals is often ambiguous, in particular for interacting galaxies). One of the interests of this work is to provide a sample selected on purely optical criteria, at variance with other works (e.g., Valentijn and Casertano, 1988). This will allow statistical studies of non-optical properties of these pairs (in particular radio emission). The authors have so far obtained charge-coupled device (CCD) images of 125 pairs with a 2m telescope and velocities' differences of 78 pairs were obtained using the 1.93 meter telescope of Observatoire de Haute Provence and from the literature. One is an optical pair (VV 190). Eighteen of our pairs present the morphological effect described in Davoust and Prugniel (1988): the external parts of each member are stretched in opposite senses in a direction rougly perpendicular to the pair axis. The proportion of 15 plus or minus 4 percent distorted pairs confirms previous estimates. Except for a few cases involving flattened galaxies with nearly aligned major axes which deserve careful

  17. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE PAGES

    Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...

    2015-11-23

    Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter bF and the redshift-space distortion parameter βF for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination bF(1+βF) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39+0.11 +0.24 +0.38-0.10 -0.19 -0.28 and bF(1+βF)=-0.374+0.007 +0.013 +0.020-0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  18. Broadband distortion modeling in Lyman-α forest BAO fitting

    SciTech Connect

    Blomqvist, Michael; Kirkby, David; Margala, Daniel E-mail: dkirkby@uci.edu; and others

    2015-11-01

    In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of a Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.

  19. Broadband distortion modeling in Lyman-α forest BAO fitting

    SciTech Connect

    Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; Arinyo-i-Prats, Andreu; Busca, Nicolás G.; Miralda-Escudé, Jordi; Slosar, Anže; Font-Ribera, Andreu; Margala, Daniel; Schneider, Donald P.; Vazquez, Jose A.

    2015-11-23

    Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of a Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter bF and the redshift-space distortion parameter βF for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination bF(1+βF) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39+0.11 +0.24 +0.38-0.10 -0.19 -0.28 and bF(1+βF)=-0.374+0.007 +0.013 +0.020-0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.

  20. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes.

    PubMed

    Grant, Timothy; Grigorieff, Nikolaus

    2015-11-01

    We demonstrate a significant anisotropic magnification distortion, found on an FEI Titan Krios microscope and affecting magnifications commonly used for data acquisition on a Gatan K2 Summit detector. We describe a program (mag_distortion_estimate) to automatically estimate anisotropic magnification distortion from a set of images of a standard gold shadowed diffraction grating. We also describe a program (mag_distortion_correct) to correct for the estimated distortion in collected images. We demonstrate that the distortion present on the Titan Krios microscope limits the resolution of a set of rotavirus VP6 images to ∼7 Å, which increases to ∼3 Å following estimation and correction of the distortion. We also use a 70S ribosome sample to demonstrate that in addition to affecting resolution, magnification distortion can also interfere with the classification of heterogeneous data.

  1. Document forgery detection using distortion mutation of geometric parameters in characters

    NASA Astrophysics Data System (ADS)

    Shang, Shize; Kong, Xiangwei; You, Xingang

    2015-03-01

    Tampering related to document forgeries is often accomplished by copy-pasting or add-printing. These tampering methods introduce character distortion mutation in documents. We present a method of exposing document forgeries using distortion mutation of geometric parameters. We estimate distortion parameters, which consist of translation and rotation distortions, through image matching for each character. Detection of tampered characters with distortion mutation occurs based on a distortion probability, which is calculated from character distortion parameters. The introduction of a visualized probability map describes the degree of distortion mutation for a full page. The proposed method exposes the forgeries based on individual characters and applies to English and Chinese document examinations. Experimental results demonstrate the effectiveness of our method on low JPEG compression quality and low resolution.

  2. Spin-wave-induced spin torque in Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  3. Ultrasonic inspection apparatus and method using a focused wave device

    DOEpatents

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  4. Body Image Dissatisfaction and Distortion, Steroid Use, and Sex Differences in College Age Bodybuilders.

    ERIC Educational Resources Information Center

    Peters, Mark Anthony; Phelps, LeAddelle

    2001-01-01

    Compares college age bodybuilders by sex and steroid intake on two variables: body image dissatisfaction and body image distortion. Results reveal only a significant effect for gender on body distortion. No steroid-use differences were apparent for either body image dissatisfaction or body image distortion. Analyses indicate that female…

  5. Measurements of inlet flow distortions in an axial flow fan (6 and 9 blade rotor)

    NASA Technical Reports Server (NTRS)

    Barr, L. C.

    1978-01-01

    A large quantity of experimental data on inlet flow distortions in an axial flow fan were obtained. The purpose of the study was to determine the effects of design and operating variables and the type of distortion on the response of an axial flow turbomachinery rotor. Included are background information and overall trends observed in distortion attenuation and unsteady total pressure losses.

  6. Experimental evaluation of the effect of inlet distortion on compressor blade vibrations

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Compressor rotor strain gage data from an engine test conducted with an inlet screen distortion were reduced and analyzed. These data are compared to data obtained from the same engine without inlet pressure distortion to determine the net effect of the distortion on the vibratory response of the compressor blades. The results obtained are presented.

  7. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  8. Hermite-Gaussian Modes and Mirror Distortions in the Free Electron Laser

    DTIC Science & Technology

    2006-06-01

    Trends for Hyperbolic Distortion for the JLab EM Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 xi 26. Gain and...Extraction Trends for Hyperbolic Distortion for the JLab STI Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 27. Gain and...Extraction Trends for Ellipsoidal Distortion for the JLab EM Wiggler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 28. Gain and

  9. Making waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  10. Signal distortion from microelectrodes in clinical EEG acquisition systems

    NASA Astrophysics Data System (ADS)

    Stacey, William C.; Kellis, Spencer; Patel, Paras R.; Greger, Bradley; Butson, Christopher R.

    2012-10-01

    Many centers are now using high-density microelectrodes during traditional intracranial electroencephalography (iEEG) both for research and clinical purposes. These microelectrodes are FDA-approved and integrate into clinical EEG acquisition systems. However, the electrical characteristics of these electrodes are poorly described and clinical systems were not designed to use them; thus, it is possible that this shift into clinical practice could have unintended consequences. In this study, we characterized the impedance of over 100 commercial macro- and microelectrodes using electrochemical impedance spectroscopy (EIS) to determine how electrode properties could affect signal acquisition and interpretation. The EIS data were combined with the published specifications of several commercial EEG systems to design digital filters that mimic the behavior of the electrodes and amplifiers. These filters were used to analyze simulated brain signals that contain a mixture of characteristic features commonly observed in iEEG. Each output was then processed with several common quantitative EEG measurements. Our results show that traditional macroelectrodes had low impedances and produced negligible distortion of the original signal. Brain tissue and electrical wiring also had negligible filtering effects. However, microelectrode impedances were much higher and more variable than the macroelectrodes. When connected to clinical amplifiers, higher impedance electrodes produced considerable distortion of the signal at low frequencies (<60 Hz), which caused significant changes in amplitude, phase, variance and spectral band power. In contrast, there were only minimal changes to the signal content for frequencies above 100 Hz. In order to minimize distortion with microelectrodes, we determined that an acquisition system should have an input impedance of at least 1 GΩ, which is much higher than most clinical systems. These results show that it is critical to account for variations

  11. MAXAD distortion minimization for wavelet compression of remote sensing data

    NASA Astrophysics Data System (ADS)

    Alecu, Alin; Munteanu, Adrian; Schelkens, Peter; Cornelis, Jan P.; Dewitte, Steven

    2001-12-01

    In the context of compression of high resolution multi-spectral satellite image data consisting of radiances and top-of-the-atmosphere fluxes, it is vital that image calibration characteristics (luminance, radiance) must be preserved within certain limits in lossy image compression. Though existing compression schemes (SPIHT, JPEG2000, SQP) give good results as far as minimization of the global PSNR error is concerned, they fail to guarantee a maximum local error. With respect to this, we introduce a new image compression scheme, which guarantees a MAXAD distortion, defined as the maximum absolute difference between original pixel values and reconstructed pixel values. In terms of defining the Lagrangian optimization problem, this reflects in minimization of the rate given the MAXAD distortion. Our approach thus uses the l-infinite distortion measure, which is applied to the lifting scheme implementation of the 9-7 floating point Cohen-Daubechies-Feauveau (CDF) filter. Scalar quantizers, optimal in the D-R sense, are derived for every subband, by solving a global optimization problem that guarantees a user-defined MAXAD. The optimization problem has been defined and solved for the case of the 9-7 filter, and we show that our approach is valid and may be applied to any finite wavelet filters synthesized via lifting. The experimental assessment of our codec shows that our technique provides excellent results in applications such as those for remote sensing, in which reconstruction of image calibration characteristics within a tolerable local error (MAXAD) is perceived as being of crucial importance compared to obtaining an acceptable global error (PSNR), as is the case of existing quantizer design techniques.

  12. Segregation distortion and linkage analysis in eggplant (Solanum melongena L.).

    PubMed

    Barchi, Lorenzo; Lanteri, Sergio; Portis, Ezio; Stàgel, Anikò; Valè, Giampiero; Toppino, Laura; Rotino, Giuseppe Leonardo

    2010-10-01

    An anther-derived doubled haploid (DH) population and an F2 mapping population were developed from an intraspecific hybrid between the eggplant breeding lines 305E40 and 67/3. The former incorporates an introgressed segment from Solanum aethiopicum Gilo Group carrying the gene Rfo-sa1, which confers resistance to Fusarium oxysporum; the latter is a selection from an intraspecific cross involving two conventional eggplant varieties and lacks Rfo-sa1. Initially, 28 AFLP primer combinations (PCs) were applied to a sample of 93 F2 individuals and 93 DH individuals, from which 170 polymorphic AFLP fragments were identified. In the DH population, the segregation of 117 of these AFLPs as well as markers closely linked to Rfo-sa1 was substantially distorted, while in the F2 population, segregation distortion was restricted to just 10 markers, and thus the latter was chosen for map development. A set of 141 F2 individuals was genotyped with 73 AFLP PCs (generating 406 informative markers), 32 SSRs, 4 tomato RFLPs, and 3 CAPS markers linked to Rfo-sa1. This resulted in the assignment of 348 markers to 12 major linkage groups. The framework map covered 718.7 cM, comprising 238 markers (212 AFLPs, 22 SSRs, 1 RFLP, and the Rfo-sa1 CAPS). Marker order and inter-marker distances in this eggplant map were largely consistent with those reported in a recently published SSR-based map. From an eggplant breeding perspective, DH populations produced by anther culture appear to be subject to massive segregation distortion and thus may not be very efficient in capturing the full range of genetic variation present in the parental lines.

  13. Transmission ratio distortion results in asymmetric introgression in Louisiana Iris

    PubMed Central

    2010-01-01

    Background Linkage maps are useful tools for examining both the genetic architecture of quantitative traits and the evolution of reproductive incompatibilities. We describe the generation of two genetic maps using reciprocal interspecific backcross 1 (BC1) mapping populations from crosses between Iris brevicaulis and Iris fulva. These maps were constructed using expressed sequence tag (EST)- derived codominant microsatellite markers. Such a codominant marker system allowed for the ability to link the two reciprocal maps, and compare patterns of transmission ratio distortion observed between the two. Results Linkage mapping resulted in markers that coalesced into 21 linkage groups for each of the reciprocal backcross maps, presumably corresponding to the 21 haploid chromosomes of I. brevicaulis and I. fulva. The composite map was 1190.0-cM long, spanned 81% of the I. brevicaulis and I. fulva genomes, and had a mean density of 4.5 cM per locus. Transmission ratio distortion (TRD) was observed in 138 (48.5%) loci distributed in 19 of the 21 LGs in BCIB, BCIF, or both BC1 mapping populations. Of the distorted markers identified, I. fulva alleles were detected at consistently higher-than-expected frequencies in both mapping populations. Conclusions The observation that I. fulva alleles are overrepresented in both mapping populations suggests that I. fulva alleles are favored to introgress into I. brevicaulis genetic backgrounds, while I. brevicaulis alleles would tend to be prevented from introgressing into I. fulva. These data are consistent with the previously observed patterns of introgression in natural hybrid zones, where I. fulva alleles have been consistently shown to introgress across species boundaries. PMID:20298609

  14. Novel scanning method for distortion-free BOTDA measurements.

    PubMed

    Dominguez-Lopez, Alejandro; Yang, Zhisheng; Soto, Marcelo A; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thevenaz, Luc; Gonzalez-Herraez, Miguel

    2016-05-16

    Systematic errors induced by distortions in the pump pulse of conventional Brillouin distributed fiber sensors are thoroughly investigated. Experimental results, supported by a theoretical analysis, demonstrate that the two probe sidebands in standard Brillouin optical time-domain analyzers provide a non-zero net gain on the pump pulse, inducing severe distortions of the pump when scanning the pump-probe frequency offset, especially at high probe power levels. Compared to the impact of non-local effects reported in the state-of-the-art, measurements here indicate that for probe powers in the mW range (below the onset of amplified spontaneous Brillouin scattering), the obtained gain and loss spectra show two strong side-lobes that lead to significant strain/temperature errors. This phenomenon is not related to the well-known spectral hole burning resulting from pump depletion, but it is strictly related to the temporal and spectral distortions that the pump pulse experiences when scanning the Brillouin gain/loss spectrum. As a solution to this problem, a novel scanning scheme for Brillouin sensing is proposed. The method relies on a fixed frequency separation between the two probe sidebands, so that a flat zero net gain is achieved on the pump pulse when scanning the pump-probe frequency offset. The proposed technique is experimentally validated, demonstrating its ability to completely cancel out non-local effects up to a probe power ultimately limited by the onset of amplified spontaneous Brillouin scattering. The method allows for one order of magnitude improvement in the figure-of-merit of optimized long-range Brillouin distributed fiber sensors, enabling measurements along a 100 km-long sensing fiber with 2 m spatial resolution and with no need of added features for performance enhancement.

  15. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Jia; Luan, Xi-Wu; Fang, Gang; Liu, Xin-Xin; Pan, Jun; Wang, Xiao-Jie

    2016-09-01

    Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.

  16. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    PubMed

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus.

  17. Perceptual distortions and deceptions: what computers can teach us

    PubMed Central

    Nour, Matthew M.; Nour, Joseph M.

    2017-01-01

    The nature of perception has fascinated philosophers for centuries, and has more recently been the focus of research in psychology and neuroscience. Many psychiatric disorders are characterised by perceptual abnormalities, ranging from sensory distortions to illusions and hallucinations. The distinction between normal and abnormal perception is, however, hard to articulate. In this article we argue that the distinction between normal perception and abnormal perception is best seen as a quantitative one, resting on the degree to which the observer's prior expectations influence perceptual inference. We illustrate this point with an example taken from researchers at Google working on computer vision. PMID:28184316

  18. Probing correlations of early magnetic fields using μ-distortion

    SciTech Connect

    Ganc, Jonathan; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-08-01

    The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called μ-distortion. We can calculate the correlation (μ T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}ζ) between the magnetic field B and the curvature perturbation ζ; knowing the ( B{sup 2}ζ) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the μ-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}ζ), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N≈ 1.0 × b{sub NL} ( B-tilde {sub μ}/10nG){sup 2}, where B-tilde {sub μ} is the magnetic field's strength on μ-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (ζ{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ζ) will dominate, but for B-tilde {sub μ}∼> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}ζ) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.

  19. Total reduction of distorted echelle spectrograms: an automatic procedure.

    PubMed

    Peterson, R C; Title, A M

    1975-10-01

    We describe a semiautomatic procedure for the reduction of high-dispersion echelle spectra recorded with an image tube. The spectra are traced with a computer-controlled microdensitometer that scans along the curved spectral orders. The curvature of each order is calculated approximately by a FORTRAN program from known grating and distortion parameters. A typical spectrum includes 25 orders (covering 1500 A) and is traced with a slit 0.012 A wide. To produce an atlas of intensity vs wavelength and to determine the equivalent widths of 300 lines currently require a day. We discuss the reduction procedures and time requirements in detail.

  20. Reduction of Residual Stresses and Distortion in Girth Welded Pipes.

    DTIC Science & Technology

    1987-06-01

    M7 26 REP-WTION-OF-RESIDUA-L -STRESSES N D 113 II i m IA WELDED PIPES (U) MASSACHUSETTS INST OF TECH CURIDol DEPT OF WOOE ENGINERING P K DAMS JUN 67... WELDED PIPES bv PANIEL KAY BARNES Ocean Engineering - Course XIIIA NAVAL ENG. & SM(M!E) -- 7fSTUl-O,,CON STT"ne 1987 Aar P b’-i ’w REDUCTION OF RESIDUAL...STRESSES AND DISTORTION IN GIRTH WELDED PIPES by PAMELA KAY BARNES B.S., South Dakota School of Mines and Technology (1977) Submitted to the Department

  1. Distortion-invariant kernel correlation filters for general object recognition

    NASA Astrophysics Data System (ADS)

    Patnaik, Rohit

    General object recognition is a specific application of pattern recognition, in which an object in a background must be classified in the presence of several distortions such as aspect-view differences, scale differences, and depression-angle differences. Since the object can be present at different locations in the test input, a classification algorithm must be applied to all possible object locations in the test input. We emphasize one type of classifier, the distortion-invariant filter (DIF), for fast object recognition, since it can be applied to all possible object locations using a fast Fourier transform (FFT) correlation. We refer to distortion-invariant correlation filters simply as DIFs. DIFs all use a combination of training-set images that are representative of the expected distortions in the test set. In this dissertation, we consider a new approach that combines DIFs and the higher-order kernel technique; these form what we refer to as "kernel DIFs." Our objective is to develop higher-order classifiers that can be applied (efficiently and fast) to all possible locations of the object in the test input. All prior kernel DIFs ignored the issue of efficient filter shifts. We detail which kernel DIF formulations are computational realistic to use and why. We discuss the proper way to synthesize DIFs and kernel DIFs for the wide area search case (i.e., when a small filter must be applied to a much larger test input) and the preferable way to perform wide area search with these filters; this is new. We use computer-aided design (CAD) simulated infrared (IR) object imagery and real IR clutter imagery to obtain test results. Our test results on IR data show that a particular kernel DIF, the kernel SDF filter and its new "preprocessed" version, is promising, in terms of both test-set performance and on-line calculations, and is emphasized in this dissertation. We examine the recognition of object variants. We also quantify the effect of different constant

  2. Distorted black hole initial data using the puncture method

    NASA Astrophysics Data System (ADS)

    Brown, J. David; Lowe, Lisa L.

    2004-12-01

    We solve for single distorted black hole initial data using the puncture method, where the Hamiltonian constraint is written as an elliptic equation in R3 for the nonsingular part of the metric conformal factor. With this approach we can generate isometric and nonisometric black hole data. For the isometric case, our data are directly comparable to those obtained by Bernstein et al., who impose isometry boundary conditions at the black hole throat. Our numerical simulations are performed using a parallel multigrid elliptic equation solver with adaptive mesh refinement. Mesh refinement allows us to use high resolution around the black hole while keeping the grid boundaries far away in the asymptotic region.

  3. Observer Compensation for Projective Distortion of Graphic Displays,

    DTIC Science & Technology

    1980-07-15

    replicate and extend our earlier findings In the second s t of studies, observers made magnitude estimationJudgments of the height width and depth of familiar...Accession ror - " , 3 NTIS GRA&I - S DTIC TAB Unannoune-ed y~ Justlfl C ,r~L 1Distribution/j Availebilitv C ,l 5 IDist SpetC. L IL I Effective use of...have been provided elsewhere (Farber and Rosinski, 1978; Rosinski and Farber, 1980). Inspite of the fact that distortion, in principle , is not specified

  4. Wind profile estimation from point to point laser distortion data

    NASA Technical Reports Server (NTRS)

    Leland, Robert

    1989-01-01

    The author's results on the problem of using laser distortion data to estimate the wind profile along the path of the beam are presented. A new model for the dynamics of the index of refraction in a non-constant wind is developed. The model agrees qualitatively with theoretical predictions for the index of refraction statistics in linear wind shear, and is approximated by the predictions of Taylor's hypothesis in constant wind. A framework for a potential in-flight experiment is presented, and the estimation problem is discussed in a maximum likelihood context.

  5. Optical distortions in electron/positron storage rings

    SciTech Connect

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine.

  6. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; /SLAC

    2005-06-15

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to partially cancel the luminosity loss both analytically and with direct simulation.

  7. Pathophysiological distortions in time perception and timed performance

    PubMed Central

    Allman, Melissa J.

    2012-01-01

    Distortions in time perception and timed performance are presented by a number of different neurological and psychiatric conditions (e.g. Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder and autism). As a consequence, the primary focus of this review is on factors that define or produce systematic changes in the attention, clock, memory and decision stages of temporal processing as originally defined by Scalar Expectancy Theory. These findings are used to evaluate the Striatal Beat Frequency Theory, which is a neurobiological model of interval timing based upon the coincidence detection of oscillatory processes in corticostriatal circuits that can be mapped onto the stages of information processing proposed by Scalar Timing Theory. PMID:21921020

  8. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  9. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  10. Spacetimes with vector distortion: Inflation from generalised Weyl geometry

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Koivisto, Tomi S.

    2016-05-01

    Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry and some other interesting special cases. Taking into account the leading nonlinear correction to the Einstein-Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to the canonical vector kinetic term, novel ghost-free vector-tensor interactions.

  11. Adaptive feed array compensation system for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Zaman, A.

    1989-01-01

    The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employs the concept of conjugate field matching to adjust the feed array complex excitation coefficients.

  12. Vowel distortion in traumatic dysarthria: lip rounding versus tongue advancement.

    PubMed

    Ziegler, W; von Cramon, D

    1983-01-01

    Formant analysis of tense, high, German vowels was performed to the end of obtaining information about the role of insufficient lip rounding in distorted vowel production of 8 traumatic dysarthrics. A comparison was made between two allophones of /y/ in different consonantal contexts. Noticeable undershoot in lip rounding or protrusion proved to occur in a context of conflicting labial gestures. Where the articulatory realization of a CVC sequence required gross tongue movements, a lingual undershoot resulted as the prevailing deficit. No evidence for dyscoordinative defects was obtained from the results.

  13. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  14. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  15. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  16. Analysis of distortion data from TF30-P-3 mixed compression inlet test

    NASA Technical Reports Server (NTRS)

    King, R. W.; Schuerman, J. A.; Muller, R. G.

    1976-01-01

    A program was conducted to reduce and analyze inlet and engine data obtained during testing of a TF30-P-3 engine operating behind a mixed compression inlet. Previously developed distortion analysis techniques were applied to the data to assist in the development of a new distortion methodology. Instantaneous distortion techniques were refined as part of the distortion methodology development. A technique for estimating maximum levels of instantaneous distortion from steady state and average turbulence data was also developed as part of the program.

  17. Effect of spatial inlet temperature and pressure distortion on turbofan engine stability

    NASA Technical Reports Server (NTRS)

    Mehalic, Charles M.

    1988-01-01

    The effects of circumferential and radial inlet temperature distortion, circumferential pressure distortion, and combined temperature and pressure distortion on the stability of an advanced turbofan engine were investigated experimentally at simulated altitude conditions. With circumferential and radial inlet temperature distortion, a flow instability generated by the fan operating near stall caused the high-pressure compressor to surge at, or near, the same time as the fan. The effect of combined distortion was dependent on the relative location of the high-temperature and low-pressure regions; high-pressure compressor stalls occurred when the regions coincided, and fan stalls occurred with the regions separated.

  18. Circumferential distortion modeling of the TF30-P-3 compression system

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Banks, G. A.

    1977-01-01

    Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.

  19. Characterization, prediction, and correction of geometric distortion in 3 T MR images

    SciTech Connect

    Baldwin, Lesley N.; Wachowicz, Keith; Thomas, Steven D.; Rivest, Ryan; Gino Fallone, B.

    2007-02-15

    The work presented herein describes our methods and results for predicting, measuring and correcting geometric distortions in a 3 T clinical magnetic resonance (MR) scanner for the purpose of image guidance in radiation treatment planning. Geometric inaccuracies due to both inhomogeneities in the background field and nonlinearities in the applied gradients were easily visualized on the MR images of a regularly structured three-dimensional (3D) grid phantom. From a computed tomography scan, the locations of just under 10 000 control points within the phantom were accurately determined in three dimensions using a MATLAB-based computer program. MR distortion was then determined by measuring the corresponding locations of the control points when the phantom was imaged using the MR scanner. Using a reversed gradient method, distortions due to gradient nonlinearities were separated from distortions due to inhomogeneities in the background B{sub 0} field. Because the various sources of machine-related distortions can be individually characterized, distortions present in other imaging sequences (for which 3D distortion cannot accurately be measured using phantom methods) can be predicted negating the need for individual distortion calculation for a variety of other imaging sequences. Distortions were found to be primarily caused by gradient nonlinearities and maximum image distortions were reported to be less than those previously found by other researchers at 1.5 T. Finally, the image slices were corrected for distortion in order to provide geometrically accurate phantom images.

  20. Systematic errors in two-dimensional digital image correlation due to lens distortion

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang; Tang, Liqun

    2013-02-01

    Lens distortion practically presents in a real optical imaging system causing non-uniform geometric distortion in the recorded images, and gives rise to additional errors in the displacement and strain results measured by two-dimensional digital image correlation (2D-DIC). In this work, the systematic errors in the displacement and strain results measured by 2D-DIC due to lens distortion are investigated theoretically using the radial lens distortion model and experimentally through easy-to-implement rigid body, in-plane translation tests. Theoretical analysis shows that the displacement and strain errors at an interrogated image point are not only in linear proportion to the distortion coefficient of the camera lens used, but also depend on its distance relative to distortion center and its magnitude of displacement. To eliminate the systematic errors caused by lens distortion, a simple linear least-squares algorithm is proposed to estimate the distortion coefficient from the distorted displacement results of rigid body, in-plane translation tests, which can be used to correct the distorted displacement fields to obtain unbiased displacement and strain fields. Experimental results verify the correctness of the theoretical derivation and the effectiveness of the proposed lens distortion correction method.

  1. Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.; Groeneweg, J. F.

    1979-01-01

    Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.

  2. The role of numeracy and approximate number system acuity in predicting value and probability distortion.

    PubMed

    Patalano, Andrea L; Saltiel, Jason R; Machlin, Laura; Barth, Hilary

    2015-12-01

    It is well documented that individuals distort outcome values and probabilities when making choices from descriptions, and there is evidence of systematic individual differences in distortion. In the present study, we investigated the relationship between individual differences in such distortions and two measures of numerical competence, numeracy and approximate number system (ANS) acuity. Participants indicated certainty equivalents for a series of simple monetary gambles, and data were used to estimate individual-level value and probability distortion, using a cumulative prospect theory framework. We found moderately strong negative correlations between numeracy and value and probability distortion, but only weak and non-statistically reliable correlations between ANS acuity and distortions. We conclude that low numeracy contributes to number distortion in decision making, but that approximate number system acuity might not underlie this relationship.

  3. Theoretical investigation of the second-order harmonic distortion in the AM response of 1. 55. mu. m F-P and DFB lasers

    SciTech Connect

    Morthier, G.; Libbrecht, F.; David, K.; Vankwikelberge, P.; Baets, R.G. )

    1991-08-01

    In this paper numerical calculations of the second-order harmonic distortion in the amplitude modulation-response of Fabry-Perot and distributed feedback lasers are presented and the influence of several nonlinearities, such as longitudinal spatial hole burning, gain suppression, and relaxation oscillations is considered in detail. The author's analysis is valid for modulation frequencies ranging from a few megahertz to well beyond the resonance frequency of the relaxation oscillation. The numerical calculation of the distortion is based on the laser model CLADDISS and consists of an extended small signal solution (up to second-order) of the set of coupled wave equations and the local carrier density rate equations. The distortion is investigated for Fabry-Perot lasers for which the effects of spontaneous emission and gain suppression can be clearly illustrated and for DFB lasers where the emphasis is on the influence of spatial hole burning and its combination with other nonlinearities. Various effects are discussed, e.g., the occurrence of a dip in the frequency dependence of the distortion resulting from the combination of spatial hole burning and relaxation oscillation contributions in some cases and the occurrence of a dip in the bias dependence when spatial hole burning and gain suppression contributions cancel each other.

  4. Beam-Beam Diagnostics from Closed-Orbit Distortion

    SciTech Connect

    Furman, M.; Chin, Y.-H.; Eden, J.; Kozanecki, W.; Tennyson, J.; Ziemann, V.

    1992-07-01

    The authors study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, they calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed. Because of their two-ring structure, asymmetric B factories are likely to require more diagnostics and feedback mechanisms than single-ring colliders in order to guarantee head-on collisions. In addition to the traditional techniques, however, the independence of the two beams allows one to envisage other kinds of beam diagnostics. In this article they investigate one such possibility, by looking at the closed orbit distortion produced by the beam-beam interaction when the beams do not collide exactly head-on. They base this investigation on an analytic model and strong-strong multiparticle simulations. Although the discussion uses the PEP-II design as an example, the conclusion is that this technique is quite a promising diagnostics tool for asymmetric colliders in general.

  5. Privacy-preserving outlier detection through random nonlinear data distortion.

    PubMed

    Bhaduri, Kanishka; Stefanski, Mark D; Srivastava, Ashok N

    2011-02-01

    Consider a scenario in which the data owner has some private or sensitive data and wants a data miner to access them for studying important patterns without revealing the sensitive information. Privacy-preserving data mining aims to solve this problem by randomly transforming the data prior to their release to the data miners. Previous works only considered the case of linear data perturbations--additive, multiplicative, or a combination of both--for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy-preserving anomaly detection from sensitive data sets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that, for specific cases, it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. The experiments conducted on real-life data sets demonstrate the effectiveness of the approach.

  6. Periodogram based tests for distortion product otoacoustic emissions.

    PubMed

    Craigmile, Peter F; King, Wayne M

    2004-07-01

    Distortion product otoacoustic emissions (DPOAEs) are an important nonbehavioral measure of cochlear function, which provides a close analogue of the behavioral pure-tone audiogram. DPOAEs are sinusoidal distortion products (DPs) produced by nonlinearities in the healthy cochlea. Detection of DPs is accomplished in the Fourier domain with a periodogram based test. The test compares the power in the DP periodogram bin to a noise estimate derived from a certain number of the surrounding bins. Statistical properties of this test to date have only been examined by constructing receiver operator characteristics curves derived from DPOAE measurements in normal and hearing impaired individuals. In this paper the null distribution of this order-statistic based test is explicitly derived, and via simulations intended to mimic the nonwhite features of real-ear noise measurements, the power of the test is demonstrated. These simulations demonstrate that a local F test is more powerful than this DPOAE test, with critical values that are easier to calculate. Although the power of both tests increase with an increasing number of bins, the improvement is negligible at around four bins. Since the power of both tests decrease at lower DP frequencies, it is not recommended to use a large number of bins.

  7. Distortion outage minimization in Nakagami fading using limited feedback

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hong; Dey, Subhrakanti

    2011-12-01

    We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.

  8. [Distorted cognition of bodily sensations in subtypes of social anxiety].

    PubMed

    Kanai, Yoshihiro; Sasaki, Shoko; Iwanaga, Makoto; Seiwa, Hidetoshi

    2010-02-01

    The purpose of this study was to investigate the relationship between subtypes of social anxiety and distorted cognition of bodily sensations. The package of questionnaires including the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) was administered to 582 undergraduate students. To identify subtypes of social anxiety, cluster analysis was conducted using scores of the SPS and SIAS. Five clusters were identified and labeled as follows: Generalized type characterized by intense anxiety in most social situations, Non-anxious type characterized by low anxiety levels in social situations, Averaged type whose anxiety levels are averaged, Interaction anxiety type who feels anxiety mainly in social interaction situations, and Performance anxiety type who feels anxiety mainly in performance situations. Results of an ANOVA indicated that individuals with interaction type fear the negative evaluation from others regarding their bodily sensations whereas individuals with performance type overestimate the visibility of their bodily sensations to others. Differences in salient aspects of cognitive distortion among social anxiety subtypes may show necessity to select intervention techniques in consideration of subtypes.

  9. Local spatial distortion caused by simple geometrical figures.

    PubMed

    Aksentijevic, Aleksandar; Elliott, Mark A

    2017-08-01

    Dynamic distortion of the visual field has been shown to affect perceptual judgment of visual dimensions such as size, length, and distance. Here, we report four experiments demonstrating that the different aspects of a triangle differently influence judgments of distance. Specifically, when the base of the triangle faces the centre of the display, participants consistently underestimate and overestimate the distance of a small dot from the unmarked centre of the display relative to conditions in which the vertex of the triangle faces the centre. When the dot is close to the figure, the distance of the dot to the centre is underestimated. Conversely, when the dot is close to the figure, the distance to the centre is overestimated. The effect is replicated when the internal distances are equalized and when ellipses are used instead of triangles. These results support a ripple model of spatial distortion in which local curvature acts to attract or repel objects. In conclusion, we suggest some implications of our findings for theories of perceptual organization.

  10. Task 7: Endwall treatment inlet flow distortion analysis

    NASA Technical Reports Server (NTRS)

    Hall, E. J.; Topp, D. A.; Heidegger, N. J.; McNulty, G. S.; Weber, K. F.; Delaney, R. A.

    1996-01-01

    The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields, and to perform a series of detailed numerical predictions to assess the effectiveness of various endwall treatments for enhancing the efficiency and stall margin of modern high speed fan rotors. Particular attention was given to examining the effectiveness of endwall treatments to counter the undesirable effects of inflow distortion. Calculations were performed using three different gridding techniques based on the type of casing treatment being tested and the level of complexity desired in the analysis. In each case, the casing treatment itself is modeled as a discrete object in the overall analysis, and the flow through the casing treatment is determined as part of the solution. A series of calculations were performed for both treated and untreated modern fan rotors both with and without inflow distortion. The effectiveness of the various treatments were quantified, and several physical mechanisms by which the effectiveness of endwall treatments is achieved are discussed.

  11. Sources of variability in distortion product otoacoustic emissions

    PubMed Central

    Garner, Cassie A.; Neely, Stephen T.; Gorga, Michael P.

    2008-01-01

    The goal of this study was to determine the extent to which the variability seen in distortion product otoacoustic emissions (DPOAEs), among ears with normal hearing, could be accounted for. Several factors were selected for investigation, including behavioral threshold, differences in middle-ear transmission characteristics either in the forward or the reverse direction, and differences in contributions from the distortion and reflection sources. These variables were assessed after optimizing stimulus parameters for individual ears at each frequency. A multiple-linear regression was performed to identify whether the selected variables, either individually or in combination, explained significant portions of variability in DPOAE responses. Behavioral threshold at the f2 frequency and behavioral threshold squared at that same frequency explained the largest amount of variability in DPOAE level, compared to the other variables. The combined model explained a small, but significant, amount of variance in DPOAE level at five frequencies. A large amount of residual variability remained, even at frequencies where the model accounted for significant amounts of variance. PMID:18681596

  12. An improved solution to geometric distortion using an orthogonal method

    NASA Astrophysics Data System (ADS)

    Peng, Huan-Wen; Peng, Qing-Yu; Wang, Na

    2017-02-01

    The geometric distortion of a CCD field of view has a direct influence on the positional measurements of CCD observations. In order to obtain high precision astrometric results, the geometric distortion should be derived and corrected precisely. As presented in our previous work, a convenient solution has been carried out and has also been applied to observations of Phoebe. In order to further improve the solution, an orthogonal method based on Zernike polynomials is used in this work. Four nights of CCD observations including Himalia, the sixth satellite of Jupiter, and open clusters (NGC 1664 or NGC 2324) on each night have been processed as an application. The observations were obtained from the 2.4 m telescope administered by Yunnan Observatories. The catalog UCAC4 was used to match reference stars in all of the CCD frames. The ephemeris of Himalia is retrieved from the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE). Our results show that the means of observed minus calculated (O-C) positional residuals are -0.034 and -0.026 arcsec in right ascension and declination, respectively. The corresponding standard deviations are {0.031}^{\\prime\\prime } and {0.028}^{\\prime\\prime }. The measurement dispersion is significantly improved compared to that by using our previous solution.

  13. Distortion and regulation characterization of a Mapham inverter

    NASA Technical Reports Server (NTRS)

    Sundberg, Richard C.; Brush, Andrew S.; Button, Robert M.; Patterson, Alexander G.

    1989-01-01

    Output voltage Total Harmonic Distortion (THD) of a 20kHz, 6kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f sub s/f sub r, using the EASY5 engineering analysis system. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f sub s/f sub r ratio is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different than the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped.

  14. Distortion and regulation characterization of a Mapham inverter

    NASA Technical Reports Server (NTRS)

    Sundberg, Richard C.; Brush, Andrew S.; Button, Robert M.; Patterson, Alexander G.

    1989-01-01

    Output-voltage total harmonic distortion (THD) of a 20-kHz, 6-kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f(s)/f(r), using the EASY5 Engineering Analysis System. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f(s)/f(r) is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output-voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different from the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped.

  15. Study on macroblock level distortion-quantization models

    NASA Astrophysics Data System (ADS)

    Guo, Longsheng; Yin, Haibing; Wang, Jia; Xu, Ning; Tan, Jingjing

    2012-04-01

    In H.264/AVC, rate distortion (R-D) model plays an important role in rate control and mode decision for efficient video compression. In general, R-D model includes rate quantization (R-Q) model and distortion quantization (D-Q) model. We have already had a study on frame-level D-Q model in the past, it is meaningful for frame level rate control optimization. However, basic unit level R-D model is crucial for precise rate control and efficient mode decision. Therefore, it is necessary to make in-depth analysis on D-Q model at MB level. In this paper, we test several existing D-Q models and give fair comparison on these models, and have an in-depth study on D-Q modeling from accuracy, complexity and applications. Finally, we have shown advantages and disadvantages of these models. This work is meaningful for efficient video coding algorithm optimization in the future.

  16. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis Shane

    1999-11-01

    Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as

  17. Imaging Ocean Waves with SAR, a SAR Ocean Wave Algorithm Development Program.

    DTIC Science & Technology

    1979-12-01

    document is Remote sensing D lital progessing unlimited. Data processing S ,ctral analysis SAR imagery Sei-causal Multi-frequency synthetic aperture ra...111 39. Speckle Pattern Decorrelation vs. Change in Processed Center Frequency for a Processed Bandwidth of 2 MHz .. ...... 114 40. Speckle...defining or processing the true ocean-wave frequency. A cubic expression for the slant-to-ground distortion was derived. This expression was then

  18. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  19. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  20. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  1. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  2. The reduction of the linear stability of elliptic Euler-Moulton solutions of the n-body problem to those of 3-body problems

    NASA Astrophysics Data System (ADS)

    Zhou, Qinglong; Long, Yiming

    2017-04-01

    In this paper, we consider the elliptic collinear solutions of the classical n-body problem, where the n bodies always stay on a straight line, and each of them moves on its own elliptic orbit with the same eccentricity. Such a motion is called an elliptic Euler-Moulton collinear solution. Here we prove that the corresponding linearized Hamiltonian system at such an elliptic Euler-Moulton collinear solution of n-bodies splits into (n-1) independent linear Hamiltonian systems, the first one is the linearized Hamiltonian system of the Kepler 2-body problem at Kepler elliptic orbit, and each of the other (n-2) systems is the essential part of the linearized Hamiltonian system at an elliptic Euler collinear solution of a 3-body problem whose mass parameter is modified. Then the linear stability of such a solution in the n-body problem is reduced to those of the corresponding elliptic Euler collinear solutions of the 3-body problems, which for example then can be further understood using numerical results of Martínez et al. on 3-body Euler solutions in 2004-2006. As an example, we carry out the detailed derivation of the linear stability for an elliptic Euler-Moulton solution of the 4-body problem with two small masses in the middle.

  3. Automatic Multimode Guided Wave Feature Extraction Using Wavelet Fingerprints

    NASA Astrophysics Data System (ADS)

    Bingham, J. P.; Hinders, M. K.

    2010-02-01

    The development of automatic guided wave interpretation for detecting corrosion in aluminum aircraft structural stringers is described. The dynamic wavelet fingerprint technique (DWFP) is used to render the guided wave mode information in two-dimensional binary images. Automatic algorithms then extract DWFP features that correspond to the distorted arrival times of the guided wave modes of interest, which give insight into changes of the structure in the propagation path. To better understand how the guided wave modes propagate through real structures, parallel-processing elastic wave simulations using the elastodynamic finite integration technique (EFIT) has been performed. 3D simulations are used to examine models too complex for analytical solutions. They produce informative visualizations of the guided wave modes in the structures, and mimic the output from sensors placed in the simulation space. Using the previously developed mode extraction algorithms, the 3D EFIT results are compared directly to their experimental counterparts.

  4. Linear fitting interpolation based on FOV division for correcting wide angle fish-eye lens distortion

    NASA Astrophysics Data System (ADS)

    Li, An; Wu, Yi-si; Chen, Chi; Zheng, Zhen-rong

    2015-09-01

    The wide angle lens, like fish eye lens, suffers great optical distortion that causes severe deformation of the real world. A method to correct the strong distortion was presented in this work. Due to the nonlinear distribution of the distortion, linear algorithms are generally not under consideration to establish the math model of distorted-to-ideal images. However, this method employed the calibration pattern that comprised of regular array of dots to divides the full field of view (FOV) to subsections, each subsection is a small FOV, the mapping parameters between the distorted image and ideal image in each small FOV can be calculated by employing the very simple linear polynomial. Thus, applying the determined parameters to their corresponding sub-FOVs, respectively, all the ideal pixel coordinates of the distorted image can be obtained. The method employed linear polynomial characterizes the geometric deformation between the distorted and ideal images directly. Therefore, it contains both of radial distortion and tangential distortion and there is no need of concerning any intrinsic or extrinsic parameters of the optical systems. So, this algorithm reliefs the computational work that employed by conventional radial models and other mathematical models. Experiments performed on off-axis optical systems which exist complicated distortion, such as the head mounted displays (HMDs), had already yielded accurate correcting results. Likewise, in this paper, the experiments refer to the fish-eye lens also verify the effectiveness and flexibility of this method, as well, high correcting accuracy is achieved.

  5. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  6. Anomalous Centrifugal Distortion in HDO and Spectroscopic Data Bases

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2015-06-01

    The HDO molecule is important from the atmospheric point of view as it can be used to study the water cycle in the earth atmosphere. It is also interesting from the spectroscopic point of view as it displays an anomalous centrifugal distortion similar to that of the normal species H_2O. A model developed to treat the anomalous distortion in HDO should account for the fact that it lacks a two-fold axis of symmetry. A new treatment aimed at the calculation of the rovibrational energy of the HDO molecule and allowing for anomalous centrifugal distortion effects has been developed. It is based on an effective Hamiltonian in which the large amplitude bending ν_2 mode and the overall rotation of the molecule are treated simultaneously. Due to the lack of a two-fold axis of symmetry, this effective Hamiltonian contains terms arising from the non-diagonal component of the inertia tensor and from the Coriolis-coupling between the large amplitude bending ν_2 mode and the overall rotation of the molecule. This new treatment has been used to perform a line position analysis of a large body of infrared, microwave, and hot water vapor data involving the ground and (010) states up to J=22. For these 4413 data, a unitless standard deviation of 1.1 was achieved. A line intensity analysis was also carried out and allowed us to reproduce the strength of 1316 transitions^c with a unitless standard deviation of 1.1. In the talk, the new theoretical approach will be presented. The results of both analyses will be discussed and compared with those of a previous investigation. The new spectroscopic data base built will be compared with HITRAN 2012. Herbin et al., Atmos. Chem. Phys.~9 (2009) 9433; and Schneider and Hase, Atmos. Chem. Phys.~ 11 (2011) 11207. Coudert, Wagner, Birk, Baranov, Lafferty, and Flaud, J. Molec. Spectrosc.~251 (2008) 339. Johns, J. Opt. Soc. Am. B~2 (1985) 1340 Toth, J. Molec. Spectrosc.~162 (1993) 20 Paso and Horneman, J. Opt. Soc. Am. B~12 (1995) 1813 Toth, J

  7. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    SciTech Connect

    Huang, H. M. Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range of c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.

  8. Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides.

    PubMed

    Martinelli, A; Manfrinetti, P; Provino, A; Genovese, A; Caglieris, F; Lamura, G; Ritter, C; Putti, M

    2017-02-03

    In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.

  9. Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides

    NASA Astrophysics Data System (ADS)

    Martinelli, A.; Manfrinetti, P.; Provino, A.; Genovese, A.; Caglieris, F.; Lamura, G.; Ritter, C.; Putti, M.

    2017-02-01

    In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.

  10. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  11. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  12. High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Erofeev, Vasily I.; Erofeev

    2014-04-01

    The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).

  13. Restoration of nonlinear motion-distorted composite frame

    NASA Astrophysics Data System (ADS)

    Yitzhaky, Yitzhak; Stern, Adrian; Kopeika, Norman S.

    2000-12-01

    A composite frame image is an interlaced composition of two sub-image odd and even fields. Such image type is common in many imaging systems that produce video sequences. When relative motion between the camera and the scene occurs during the imaging process, two types of distortion degrade the image: the edge 'staircase effect' due to the shifted appearances of the objects in successive fields, and blur due to the scene motion during each field exposure. This paper deals with restoration of composite frame images degraded by motion. In contrast to other previous works that dealt with only uniform velocity motion, here we consider a more general case of nonlinear motion. Since conventional motion identification techniques used in other works can not be employed in the case of nonlinear motion, a new method for identification of the motion from each field is used. Results of motion identification and image restoration for various motion types are presented.

  14. Converging beams for distortion-free imagery in transfer holograms

    NASA Astrophysics Data System (ADS)

    Waddell, Peter; Saxby, Graham

    1995-02-01

    In order to obtain a distortion-free image when a transfer hologram is replayed by a diverging beam, the original reference beam must be the precise conjugate of the replay beam, i.e., it must converge towards the future location of the replay source. Off-the-shelf collimating mirrors have too long a focal length to achieve this, and suitable custom-built mirrors are heavy and prohibitively expensive. Several methods are suggested for obtaining a suitable beam, including a new type of varifocal pellicular mirror made by stretching a metallized plastic membrane over a circular drumhead and creating a partial vacuum behind it, producing a concave mirror of high optical quality with adjustable focal length.

  15. Increased insulin sensitivity and distorted mitochondrial adaptations during muscle unloading.

    PubMed

    Qi, Zhengtang; Zhang, Yuan; Guo, Wei; Ji, Liu; Ding, Shuzhe

    2012-12-11

    We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics.

  16. Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis S.; Gregory, Don A.

    2002-11-01

    Real-time liquid crystal television-based technique for simulating optical wavefront distortion due to atmospheric turbulence is presented and demonstrated. A liquid crystal television (LCTV) operating in the "phase mostly" mode was used as an array of spatially correlated phase delays. A movie of the arrays in motion was then generated and displayed on the LCTV. The turbulence simulation system was verified by passing a collimated and doubled diode pumped Nd:YVO 4 laser beam (532 nm) through the transparent LCTV screen. The beam was then passed through a lens and the power spectra of the turbulence information carrying beam was detected as a measure of the far-field distribution. The same collimated laser beam, without the LCTV, was also transmitted down an open-air range and the power spectra detected as a measure of a real far-field distribution. Accepted turbulence parameters were measured for both arrangements and then compared.

  17. Conformal Magnifier: A Focus+Context Technique with Minimal Distortion

    PubMed Central

    Zhao, Xin; Zeng, Wei; Gu, Xianfeng; Kaufman, Arie; Xu, Wei; Mueller, Klaus

    2010-01-01

    We present the conformal magnifier, a novel interactive Focus+Context visualization technique to magnify a region of interest (ROI) using conformal mapping. Our framework allows the user to design an arbitrary magnifier to enlarge the features of interest while deforming part of the remaining areas without any cropping. By using conformal mapping, the ROI is magnified with minimal distortion, while the transition region is a smooth and continuous deformation between the focus and context regions. An interactive interface is designed for the user to select important features, design focus models of arbitrary shape and set deformation constraints to satisfy his/her specified requirements. We demonstrate the effectiveness, robustness and efficiency of our method using several applications: texts, maps, geographic images, data structures and multi-media visualization. PMID:26279613

  18. Pressure-induced structural distortions in copper pyrazine dinitrate

    NASA Astrophysics Data System (ADS)

    O'Neal, Kenneth; Cherian, Judy; Landee, Chris; Turnbull, Mark; Liu, Zhenxian; Musfeldt, Janice

    2015-03-01

    The vibrational properties of quasi-one-dimensional Heisenberg antiferromagnet copper pyrazine dinitrate were investigated up to 9 GPa using diamond anvil cell techniques and infrared and Raman spectroscopy. Two structural transitions were discovered, at 0.7 GPa and around 5 GPa. The lower pressure transition involves only the nitrate ligands, revealing enhanced interchain interactions. The higher pressure transition includes modes throughout the spectrum. Importantly, the pyrazine ring-related modes show an overall lowering of symmetry through this transition. Ring buckling under pressure likely reduces the exchange along the chains since the exchange pathway becomes distorted. A smaller J may therefore lower the magnetic field of the quantum critical transition. This tunable exchange interaction could be utilized in other pyrazine bridged molecular systems to bring the quantum critical behavior into experimentally realizable fields. We thank the National Science Foundation and the Petroleum Research Fund for support of this work.

  19. Distortion Product Otoacoustic Emissions Evoked by Tone Complexes

    PubMed Central

    Meenderink, Sebastiaan W. F.

    2010-01-01

    Distortion product otoacoustic emissions (DPOAEs) are traditionally evoked by two-tone stimuli. In this study, emission data from Mongolian gerbils are reported that were obtained with stimuli consisting of six to 10 tones. The stimuli were constructed by replacing one of the tones of a tone pair by a narrowband multitone complex. This produced rich spectra of the ear canal sound pressure in which many of the third-order DPOAEs originated from the interaction of triplets of stimulus components. A careful choice of the stimulus frequencies ensured that none of these DPOAE components coincided. Three groups of DPOAEs are reported, two of which are closely related to DPOAEs evoked by tone pairs. The third group has no two-tone equivalent and only arises when using a multitone stimulus. We analyzed the relation between multitone-evoked DPOAEs and DPOAEs evoked by tone pairs, and explored the new degrees of freedom offered by the multitone paradigm. PMID:20838846

  20. Sub-Nyquist Sampling and Moire-Like Waveform Distortions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2000-01-01

    Investigations of aliasing effects in digital waveform sampling have revealed the existence of a mathematical field and a pseudo-alias domain lying to the left of a "Nyquist line" in a plane defining the boundary between two domains of sampling. To the right of the line lies the classic alias domain. For signals band-limited below the Nyquist limit, displayed output may show a false modulation envelope. The effect occurs whenever the sample rate and the signal frequency are related by ratios of mutually prime integers. Belying the principal of a 10:1 sampling ratio being "good enough", this distortion easily occurs in graphed one-dimensional waveforms and two-dimensional images and occurs daily on television.

  1. Optimal redshift weighting for redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Ruggeri, Rossana; Percival, Will J.; Gil-Marín, Héctor; Zhu, Fangzhou; Zhao, Gong-Bo; Wang, Yuting

    2017-01-01

    The low-statistical errors on cosmological parameters promised by future galaxy surveys will only be realized with the development of new, fast, analysis methods that reduce potential systematic problems to low levels. We present an efficient method for measuring the evolution of the growth of structure using redshift-space distortions (RSDs), that removes the need to make measurements in redshift shells. We provide sets of galaxy-weights that cover a wide range in redshift, but are optimized to provide differential information about cosmological evolution. These are derived to optimally measure the coefficients of a parametrization of the redshift-dependent matter density, which provides a framework to measure deviations from the concordance ΛCDM cosmology, allowing for deviations in both geometric and/or growth. We test the robustness of the weights by comparing with alternative schemes and investigate the impact of galaxy bias. We extend the results to measure the combined anisotropic baryon acoustic oscillation and RSD signals.

  2. Analysis of distorted unbalanced waveforms in inverter drives

    NASA Astrophysics Data System (ADS)

    Andria, Gregorio; dell'Aquila, Antonio; Salvatore, Luigi

    1989-04-01

    A technique for determining the degree of unbalance in a three-phase electrical system is developed and demonstrated. Expressions for the distorted and unbalanced waveforms are derived; the effects of such waveforms on the performance of induction motors are estimated; the analysis of a typical system is outlined; and the errors inherent in FFT harmonic analysis are evaluated. A PC-based experimental digital measurement system is implemented, tested, and applied to a commercial three-phase PWM inverter with continuous output power 11 kVA, output voltage 380 V, and output frequency 5-50 Hz. The results are presented in extensive tables and graphs and characterized in detail, demonstrating the effectiveness of the procedure.

  3. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    SciTech Connect

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  4. Magnetospheric-field distortions observed by OGO 3 and 5.

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Ledley, B. G.; Skillman, T. L.; Heppner, J. P.

    1971-01-01

    The rubidium vapor magnetometer data of the scalar magnetic-field intensity obtained by the OGO 3 and 5 satellites are analyzed to study the magnetospheric-field distortions in terms of the observed field magnitude under quiet and slightly disturbed conditions minus the magnitude of the reference geomagnetic field (delta B). Average contours of equal delta Bs are shown in the geomagnetic noon-midnight and dawn-dusk meridian planes for magnetically quiet and slightly disturbed conditions. The equatorial distribution of observed delta Bs as a function of geocentric distance differs substantially from that expected from the well-known models of the quiet-time ring current. Other findings suggest that there must be a population of low-energy particles with substantial total energy near the equator at distances of 2 to 5 earth radii that has not been recognized as having sufficient energy to inflate the magnetic field.

  5. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure.

    PubMed

    Antonangeli, Daniele; Farber, Daniel L; Bosak, Alexei; Aracne, Chantel M; Ruddle, David G; Krisch, Michael

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.

  6. India’s Distorted Sex Ratio: Dire Consequences for Girls

    PubMed Central

    Roberts, Lisa R.; Montgomery, Susanne B.

    2017-01-01

    Female gender discrimination related to cultural preference for males is a common global problem, especially in Asian countries. Numerous laws intended to prevent discrimination on the basis of gender have been passed in India, yet the distorted female-to-male sex ratio seems to show worsening tendencies. Using detailed, two-year longitudinal chart abstraction data about delivery records of a private mission hospital in rural India, we explored if hospital birth ratio data differed in comparison to regional data, and what demographic and contextual variables may have influenced these outcomes. Using quantitative chart abstraction and qualitative contextual data, study results showed the female-to-male ratio was lower than the reported state ratio at birth. In the context of India’s patriarchal structure, with its strong son preference, women are under tremendous pressure or coerced to access community-based, sex-selective identification and female fetus abortion. Nurses may be key to turning the tide.

  7. Closed orbit distortion and the beam-beam interaction

    SciTech Connect

    Furman, M.; Chin, Y.H.; Eden, J.; Kozanecki, W. |; Tennyson, J.; Ziemann, V.

    1992-06-01

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  8. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    DOE PAGES

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; ...

    2016-08-19

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, ourmore » results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.« less

  9. Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

    PubMed Central

    Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael

    2016-01-01

    In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. PMID:27539662

  10. Biomechanics and functional distortion of the human mandible.

    PubMed

    Choi, Andy H; Conway, Richard C; Taraschi, Valerio; Ben-Nissan, Besim

    2015-11-01

    The reaction to the use of finite element analysis (FEA) in the study of the human body has been particularly enthusiastic. Of equal and challenging complexity is the investigation of load/stress distribution and morphological distortion of the human mandible under functional loads. Furthermore, the mandible also impacts directly on body function and esthetics, playing a vital role, such as mastication and speech. The application of FEA to the biomechanical investigation of the oral systems, such as human teeth and mandibular bone remodeling, began in the early 1970s. The clinical significance of jaw deformation is unknown. The primary concern is that deformation might result in an ill-fitting superstructure or the creation of harmful strains in the patient-implant complex. Although mandibular implant treatment has a high success rate, the possibility of failure caused by these dimensional changes and the related micromotion cannot be ignored.

  11. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  12. Closed Orbit Distortion and the Beam-Beam Interaction

    SciTech Connect

    Furman, M.; Chin, Y.; Eden, J.; Kozanecki, W.; Tennyson, J.L.; Ziemann, V.; /SLAC

    2007-02-23

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  13. Mosquitoes on the Wing ``Tune In'' to Acoustic Distortion

    NASA Astrophysics Data System (ADS)

    Warren, Ben; Russell, Ian

    2011-11-01

    Our current understanding of the mating game for many mosquito species is that males aggregate in noisy mating swarms and listen with their Johnston's organs (JOs) for the deeper flight tones of approaching females, to which they are attracted. As has been demonstrated, at least for the most intensely studied vector species, the mechanical resonance of the flagellum and the frequency range of the female's JO is far below that of the male's flight tones. Therefore, it has been assumed that females do not use hearing to detect the presence of males. Here we reveal that this may not be the case, and that the JOs of female Culex quinquefasciatus are exquisitely tuned to low frequency distortion products in the vibrations of the antenna due to a nonlinear interaction between her own flight tones and those of a nearby male. She can hear male flight tones by virtue of, and not despite, hearing her own flight tones.

  14. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  15. Revisiting La0.5Sr1.5MnO4 lattice distortion and charge ordering with multi-beam resonant diffraction.

    PubMed

    Liu, Wen Chung; Chiu, Yi Hua; Kung, Ying Yu; Liao, Po Yu; Cheng, Chih Hao; Chih, Yu Chieh; Tsai, Yi Wei; Chu, Chia Hung; Lai, Chia Hung; Huang, Di Jing; Soo, Yun Liang; Chang, Shih Lin

    2017-01-01

    Sinusoidal wave type distortions of La0.5Sr1.5MnO4 in the low-temperature orthorhombic phase were observed using multi-beam resonant X-ray diffraction (MRXD) with (7/4 7/4 0) fractional primary diffraction. Two four-beam diffractions with opposite asymmetry were measured at 6.5545 keV and compared with the curves simulated by the dynamical X-ray diffraction theory. This approach provides the possibility of resolving the distortion modes which are perpendicular to the momentum transfer by a single azimuthal scan. The paper also demonstrates the sensitivity of MRXD profiles versus incident X-ray energy in the vicinity of the Mn K edge to the charge disproportion between the two manganese sites, reconfirming the small charge disproportion feature.

  16. μ distortions or running: A guaranteed discovery from CMB spectrometry

    NASA Astrophysics Data System (ADS)

    Cabass, Giovanni; Melchiorri, Alessandro; Pajer, Enrico

    2016-04-01

    We discuss the implications of a PIXIE-like experiment, which would measure μ -type spectral distortions of the cosmic microwave background (CMB) at a level of σμ=(1 /n )×10-8 , with n ≥1 representing an improved sensitivity (e.g. n =10 corresponds to PRISM). Using Planck data and considering the six-parameter Λ CDM model, we compute the posterior for μ8≡μ ×108 and find μ8=1.5 7-0.13+0.11 (68% C.L.). This becomes μ8=1.2 8-0.52+0.30 (68% C.L.) when the running αs of the spectral index is included. We point out that a sensitivity of about 3 ×PIXIE implies a guaranteed discovery: μ distortion is detected or αs≥0 is excluded (both at 95% C.L. or higher). This threshold sensitivity sets a clear benchmark for CMB spectrometry. For a combined analysis of PIXIE and current Planck data, we discuss the improvement on measurements of the tilt ns and the running αs and the dependence on the choice of the pivot. A fiducial running of αs=-0.01 (close to the Planck best fit) leads to a detection of negative running at 2 σ for 5 ×PIXIE . A fiducial running of αs=-0.02 , still compatible with Planck, requires 3 ×PIXIE to rule out αs=0 (at 95% C.L.). We propose a convenient and compact visualization of the improving constraints on the tilt, running and tensor-to-scalar ratio.

  17. Distortions of glacial landform sizes by manual mapping

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Smith, Mike J.

    2016-04-01

    Mapped topographic features are important for understanding processes that sculpt the Earth's surface. Subjective manual techniques are commonly used for mapping, yet how effective they are in quantitative terms is poorly constrained. Here 12,121 outlines drawn by 25 interpreters searching for a total of 21,625 drumlins in 5 synthetic DEMs are interpreted in terms of how the manual mapping process distorts the height (H), width (W) and length (L) of the reported features. Bias in the size-frequency distributions is caused by the sub-set of the forms 'found', even assuming perfect extraction of sizes, and is governed by H driving detectability. Bias is then compounded in sizes that are extracted using the mapped outlines but, remarkably, the size-frequency distribution is not altered further when mappers' incorrect guesses (i.e. outline corresponds to no input synthetic drumlin) are then included; it seems possible that, once mappers have their 'eye in' based on the most clearly defined features, they are very effective at identifying similar morphologies. Of the metrics available to quantify the size of a population, maximum size and λ, the exponent of its tail, are the most robust to these distortions. The drumlins in the study area resemble UK drumlins, permitting extrapolation of the conclusions. These are the first results to give such granular insights into the impacts of the various stages in manually mapping glacial landforms, permitted by the development of the synthetic DEMs. Arguments will always exist about how realistic any synthetic is, but this work demonstrates another use of synthetic DEMs that may be applied more widely in geomorphology.

  18. Selecting Map Projections in Minimizing Area Distortions in GIS Applications.

    PubMed

    Yildirim, Faruk; Kaya, Ahmet

    2008-12-03

    Varioussoftware for Geographical Information Systems (GISs) have been developed and used in many different engineering projects. In GIS applications, map coverage is important in terms of performing reliable and meaningful queries. Map projections can be conformal, equal-area and equidistant. The goal of an application plays an important role in choosing one of those projections. Choosing the equal-area projection for an application in which area information is used (forestry, agriculture, ecosystem etc) reduces the amount of distortion on the area, but many users using GIS ignore this fact and continue to use applications with present map sheets no matter in what map projection it is. For example, extracting area information from data whose country system's map sheet is in conformal projection is relatively more distorted, compared to an equal-area projection one. The goal of this study is to make the best decision in choosing the most proper equal-area projection among the choices provided by ArcGIS 9.0, which is a popular GIS software package, and making a comparison on area errors when conformal projection is used. In this study, the area of parcels chosen in three different regions and geographic coordinates and whose sizes vary between 0.01 to 1,000,000 ha are calculated according to Transversal Mercator (TM, 3°), Universal Transversal Mercator (UTM, 6°) and 14 different equal-area projections existing in the ArcGIS 9.0 GIS software package. The parcel areas calculated with geographical coordinates are accepted as definite. The difference between the sizes calculated according to projection coordinates and real sizes of the parcels are determined. Consequently, the appropriate projections are decided for the areas smaller and equal than 1,000 ha and greater than 1,000 ha in the GIS software package.

  19. Modulation of short waves by long waves. [ocean wave interactions

    NASA Technical Reports Server (NTRS)

    Reece, A. M., Jr.

    1978-01-01

    Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.

  20. Distortion-free single point imaging of multi-layered composite sandwich panel structures.

    PubMed

    Marble, Andrew E; Mastikhin, Igor V; MacGregor, Rod P; Akl, Mohamad; LaPlante, Gabriel; Colpitts, Bruce G; Lee-Sullivan, Pearl; Balcom, Bruce J

    2004-05-01

    The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy 'skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures.

  1. F-15 inlet/engine test techniques and distortion methodologies studies. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Stevens, C. H.; Spong, E. D.; Hammock, M. S.

    1978-01-01

    Peak distortion data taken from a subscale inlet model were studied to determine if the data can be used to predict peak distortion levels for a full scale flight test vehicle, and to provide a better understanding of the time variant total pressure distortion and the attendant effects of Reynolds number/scale and frequency content. The data base used to accomplish this goal covered a range from Mach 0.4 to 2.5 and an angle of attack range from -10 degrees to +12 degrees. Data are presented which show that: (1) increasing the Reynolds number increases total pressure recovery, decreases peak distortion, and decreases turbulence, (2) increasing the filter cutoff frequency increases both peak distortion and turbulence, and (3) the effect of engine presence on total pressure recovery, peak distortion, and turbulence is small but favorable.

  2. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  3. Shock wave structure in heterogeneous reactive media

    SciTech Connect

    Baer, M.R.

    1997-06-01

    Continuum mixture theory and mesoscale modeling are applied to describe the behavior of shock-loaded heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Detailed wave fields are resolved in numerical simulations of impact on a lattice of discrete explosive {open_quotes}crystals{close_quotes}. It is shown that rapid distortion first occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress over several particle pathlengths. Localization of energy causes {open_quotes}hot-spots{close_quotes} due to shock focusing and plastic work as material flows into interstitial regions.

  4. Modeling of millimeter-wave modulation characteristics of semiconductor lasers under strong optical feedback.

    PubMed

    Bakry, Ahmed

    2014-01-01

    This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated.

  5. Linearity and Efficiency Performance of GaN HEMTs with Digital Pre-Distortion Correction (Preprint)

    DTIC Science & Technology

    2006-07-01

    AFRL-ML-WP-TP-2007-414 LINEARITY AND EFFICIENCY PERFORMANCE OF GaN HEMTs WITH DIGITAL PRE-DISTORTION CORRECTION (PREPRINT) M.J. Poulton, W.K...EFFICIENCY PERFORMANCE OF GaN HEMTs WITH DIGITAL PRE-DISTORTION CORRECTION (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER 4348...device performance using Digital Pre-Distortion (DPD) correction. Additionally, both drain voltage and current were optimized to provide high

  6. NARCISSISTIC DEFENSES IN THE DISTORTION OF FREE ASSOCIATION AND THEIR UNDERLYING ANXIETIES.

    PubMed

    Kernberg, Otto F

    2015-07-01

    This paper examines particular distortions in the process of free association characteristics of patients with narcissistic personality disorders. The author proposes that the dominant narcissistic transference developments typical of the early and middle phases of the analytic treatment of these patients are reflected in these distortions of free association. This paper gathers the various patterns that these defensive distortions present, along with technical interventions geared to deal with them.

  7. A study of the effect of group delay distortion on an SMSK satellite communications channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    1987-01-01

    The effects of group delay distortion on an SMSK satellite communications channel have been investigated. Software and hardware simulations have been used to determine the effects of channel group delay variations with frequency on the bit error rate for a 220 Mbps SMSK channel. These simulations indicate that group delay distortions can significantly degrade the bit error rate performance. The severity of the degradation is dependent on the amount, type, and spectral location of the group delay distortion.

  8. Summary of recent investigations of inlet flow distortion effect on engine stability

    NASA Technical Reports Server (NTRS)

    Graber, E. J., Jr.; Braithwaite, W. M.

    1974-01-01

    A review is presented of recent experimental results, analytical procedures and test techniques employed to evaluate the effects of inlet flow distortion on the stability characteristics of representative afterburning turbofan and turbojet compression systems. Circumferential distortions of pressure and temperature, separately and in combination are considered. Resulting engine sensitivity measurements are compared with predictions based on simplified parallel compressor models and with several distortion descriptor parameters.

  9. Simulation of Distortion Generation in a Modern Serpentine Diffuser to Improve Experimental Effectiveness (Preprint)

    DTIC Science & Technology

    2012-05-16

    AFRL-RZ-WP-TP-2012-0194 SIMULATION OF DISTORTION GENERATION IN A MODERN SERPENTINE DIFFUSER TO IMPROVE EXPERIMENTAL EFFECTIVENESS (PREPRINT...Technical Paper Preprint 01 October 2010 – 02 April 2012 4. TITLE AND SUBTITLE SIMULATION OF DISTORTION GENERATION IN A MODERN SERPENTINE DIFFUSER...ABSTRACT Modern serpentine diffusers create distorted flowfields which are ingested by embedded propulsion systems. Fundamental research into the

  10. Effects of amplitude distortions and IF equalization on satellite communication system bit-error rate performance

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene; Svoboda, James S.; Lizanich, Paul J.

    1990-01-01

    Satellite communications links are subject to distortions which result in an amplitude versus frequency response which deviates from the ideal flat response. Such distortions result from propagation effects such as multipath fading and scintillation and from transponder and ground terminal hardware imperfections. Bit-error rate (BER) degradation resulting from several types of amplitude response distortions were measured. Additional tests measured the amount of BER improvement obtained by flattening the amplitude response of a distorted laboratory simulated satellite channel. The results of these experiments are presented.

  11. Comparative Analysis of Regions with Distorted Segregation in Three Diploid Populations of Potato

    PubMed Central

    Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Veilleux, Richard E.; Buell, C. Robin; Douches, David S.

    2016-01-01

    Genes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra- and interspecific diploid segregating populations were used. DRH and D84 are crosses between the sequenced doubled monoploid DM 1-3 516 R44 Solanum tuberosum Group Phureja and either RH89-039-16 S. tuberosum or 84SD22, a S. tuberosum × S. chacoense hybrid. MSX902 is an interspecific cross between 84SD22 and Ber83 S. berthaultii × 2 × species mosaic. At the 0.05 significance level, 21%, 57%, and 51% of the total markers mapped in DRH, D84, and MSX902 exhibited distorted segregation, respectively. Segregation distortion regions for DRH were located on chromosomes 9 and 12; for D84 on chromosomes 2, 3, 4, 6, 7, and 8; and on chromosomes 1, 2, 7, 9, and 12 for MSX902. In general, each population had unique segregation distortion regions and directions of distortion. Interspecific crosses showed greater levels of distorted segregation and lower recombination rates as determined from the male parents. The different genomic regions where the segregation distortion regions occurred in the three populations likely reflect unique genetic combinations producing distorted segregation. PMID:27342736

  12. Characterization of SEM speckle pattern marking and imaging distortion by digital image correlation

    NASA Astrophysics Data System (ADS)

    Guery, Adrien; Latourte, Félix; Hild, François; Roux, Stéphane

    2014-01-01

    Surface patterning by e-beam lithography and scanning electron microscope (SEM) imaging distortions are studied via digital image correlation. The global distortions from the reference pattern, which has been numerically generated, are first quantified from a digital image correlation procedure between the (virtual) reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. These distortions result from both patterning and imaging techniques. These two contributions can be separated (without resorting to an external caliper) based on the images of the same patterned surface acquired at different orientations. Patterning distortions are much smaller than those due to imaging on wide field images.

  13. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  14. Image distortion correction for single-lens stereo vision system employing a biprism

    NASA Astrophysics Data System (ADS)

    Qian, Beibei; Lim, Kah Bin

    2016-07-01

    A single-lens stereo vision system employing a biprism placed in front of the camera will generate unusual distortion in the captured image. Different from the typical image distortions due to lenses, this distortion is mainly induced by the thick biprism and appears to be incompatible with existing lens distortion models. A fully constrained and model-free distortion correction method is proposed. It employs all the projective invariants of a planar checkerboard template as the correction constraints, including straight lines, cross-ratio, and convergence at vanishing point, along with the distortion-free reference point as an additional constraint from the system. The extracted sample points are corrected by minimizing the total cost function formed by all these constraints. With both sets of distorted and corrected points, and the intermediate points interpolated by a local transformation, the correction maps are determined. Thereafter, all the subsequent images could be distortion corrected by the correction maps. This method performs well on the distorted image data captured by the system and shows improvements in accuracy on the camera calibration and depth recovery compared with other correction methods.

  15. Acceptable distortion and magnification of images on reflective surfaces in an augmented reality system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi

    2016-12-01

    In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.

  16. Tomosynthesis-detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation.

    PubMed

    Durand, Melissa A; Wang, Steven; Hooley, Regina J; Raghu, Madhavi; Philpotts, Liane E

    2016-01-01

    As use of digital breast tomosynthesis becomes increasingly widespread, new management challenges are inevitable because tomosynthesis may reveal suspicious lesions not visible at conventional two-dimensional (2D) full-field digital mammography. Architectural distortion is a mammographic finding associated with a high positive predictive value for malignancy. It is detected more frequently at tomosynthesis than at 2D digital mammography and may even be occult at conventional 2D imaging. Few studies have focused on tomosynthesis-detected architectural distortions to date, and optimal management of these distortions has yet to be well defined. Since implementing tomosynthesis at our institution in 2011, we have learned some practical ways to assess architectural distortion. Because distortions may be subtle, tomosynthesis localization tools plus improved visualization of adjacent landmarks are crucial elements in guiding mammographic identification of elusive distortions. These same tools can guide more focused ultrasonography (US) of the breast, which facilitates detection and permits US-guided tissue sampling. Some distortions may be sonographically occult, in which case magnetic resonance imaging may be a reasonable option, both to increase diagnostic confidence and to provide a means for image-guided biopsy. As an alternative, tomosynthesis-guided biopsy, conventional stereotactic biopsy (when possible), or tomosynthesis-guided needle localization may be used to achieve tissue diagnosis. Practical uses for tomosynthesis in evaluation of architectural distortion are highlighted, potential complications are identified, and a working algorithm for management of tomosynthesis-detected architectural distortion is proposed.

  17. Investigations on an axial flow fan stage subjected to circumferential inlet flow distortion and swirl

    NASA Astrophysics Data System (ADS)

    Govardhan, M.; Viswanath, K.

    1997-12-01

    The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design flow conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortion. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl.

  18. Response of a small-turboshaft-engine compression system to inlet temperature distortion

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Klann, G. A.; Little, J. K.

    1984-01-01

    An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.

  19. Numerical simulation of propagation of the MHD waves in sunspots

    NASA Astrophysics Data System (ADS)

    Parchevsky, K.; Kosovichev, A.; Khomenko, E.; Olshevsky, V.; Collados, M.

    2010-11-01

    We present results of numerical 3D simulation of propagation of MHD waves in sunspots. We used two self consistent magnetohydrostatic background models of sunspots. There are two main differences between these models: (i) the topology of the magnetic field and (ii) dependence of the horizontal profile of the sound speed on depth. The model with convex shape of the magnetic field lines near the photosphere has non-zero horizorntal perturbations of the sound speed up to the depth of 7.5 Mm (deep model). In the model with concave shape of the magnetic field lines near the photosphere Δ c/c is close to zero everywhere below 2 Mm (shallow model). Strong Alfven wave is generated at the wave source location in the deep model. This wave is almost unnoticeable in the shallow model. Using filtering technique we separated magnetoacoustic and magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. The sunspot causes anisotropy of the amplitude distribution along the wavefront and changes the shape of the wavefront. The amplitude of the waves is reduced inside the sunspot. This effect is stronger for the magnetogravity waves than for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is distorted stronger as well. The deep model causes bigger anisotropy for both mgnetoacoustic and magneto gravity waves than the shallow model.

  20. On the initiation of surface waves by turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Teixeira, M. A. C.; Belcher, S. E.

    2006-02-01

    An analytical model is developed for the initial stage of surface wave generation at an air-water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417-445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate Γ, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer. For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as ∝ 1/ Γ), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.

  1. Distortion component analysis of outer hair cell motility-related gating charge.

    PubMed

    Takahashi, S; Santos-Sacchi, J

    1999-06-01

    The underlying Boltzmann characteristics of motility-related gating currents of the outer hair cell (OHC) are predicted to generate distortion components in response to sinusoidal transmembrane voltages. We studied this distortion since it reflects the mechanical activity of the cell that may contribute to peripheral auditory system distortion. Distortion components in the OHC electrical response were analyzed using the whole-cell voltage clamp technique, under conditions where ionic conductances were blocked. Single or double-sinusoidal transmembrane voltage stimulation was delivered at various holding voltages, and distortion components of the current responses were detected by Fourier analysis. Current response magnitude and phase of each distortion component as a function of membrane potential were compared with characteristics of the voltage-dependent capacitance, obtained by voltage stair-step transient analysis or dual-frequency admittance analysis. The sum distortion was most prominent among the distortion components at all holding voltages. Notches in the sum (f1+f2), difference (f2-f1) and second harmonic (2f) components occur at the voltage where peak voltage-dependent capacitance resides (VpkCm). Rapid phase reversals also occurred at VpkCm, but phase remained fairly stable at more depolarized and hyperpolarized potentials. Thus, it is possible to extract Boltzmann parameters of the motility-related charge movement from these distortion components. In fact, we have developed a technique to follow changes in the voltage dependence of OHC motility and charge movement by tracking the voltage at phase reversal of the f2-f1 product. When intracellular turgor pressure was changed, VpkCm and distortion notch voltages shifted in the same direction. These data have important implications for understanding cochlear nonlinearity, and more generally, indicate the usefulness of distortion analysis to study displacement currents.

  2. Making WAVES.

    ERIC Educational Resources Information Center

    Hindes, Victoria A.; Hom, Keri; Brookshaw, Keith

    About 46% of high school graduates enrolled in California State Universities need remedial courses in both math and English to prepare them for college level. These students typically earned B averages in their high school math and English classes. In order to address this issue, Shasta College launched Operation WAVES (Win by Achieving Valuable…

  3. Distorted Froude-scaled Flume Analysis of Large Woody Debris

    NASA Astrophysics Data System (ADS)

    Wallerstein, N. P.; Alonso, C. V.; Bennett, S. J.; Thorne, C. R.

    2001-12-01

    This paper presents the results of a movable-boundary, distorted, Froude-scaled hydraulic model based on Abiaca Creek, a sand-bedded channel in northern Mississippi. The model was used to examine the geomorphic and hydraulic impact of simplified Large Woody Debris (LWD) elements. The theory of physical scale models is discussed and the method used to construct the LWD test channel is developed. The channel model had bed and banks molded from 0.8 mm sand, and flow conditions were just below the threshold of motion so that any sediment transport and channel adjustment were the result of the debris element. Dimensions and positions of LWD elements were determined using a Debris Jam Classification Model (Wallerstein et al., 1997). Elements were attached to a dynamometer to measure element drag forces, and channel adjustment was determined through detailed topographic surveys. The fluid drag force on the element decreased asymptotically over time as the channel boundary eroded around the element due to locally increased boundary shear stress. Total time for geomorphic adjustment computed for the prototype channel at the Q2 discharge (discharge occurring once every two years on average) was as short as 45 hours. The size, depth and position of scour holes, bank erosion and bars created by flow acceleration past the elements were found to be related to element length and position within the channel cross-section. Morphologies created by each debris element in the model channel were comparable with similar jams observed in the prototype channel.

  4. Redshift-space distortions with wide angular separations

    SciTech Connect

    Reimberg, Paulo; Bernardeau, Francis; Pitrou, Cyril E-mail: francis.bernardeau@cea.fr

    2016-01-01

    Redshift-space distortions are generally considered in the plane parallel limit, where the angular separation between the two sources can be neglected. Given that galaxy catalogues now cover large fractions of the sky, it becomes necessary to consider them in a formalism which takes into account the wide angle separations. In this article we derive an operational formula for the matter correlators in the Newtonian limit to be used in actual data sets. In order to describe the geometrical nature of the wide angle RSD effect on Fourier space, we extend the formalism developed in configuration space to Fourier space without relying on a plane-parallel approximation, but under the extra assumption of no bias evolution. We then recover the plane-parallel limit not only in configuration space where the geometry is simpler, but also in Fourier space, and we exhibit the first corrections that should be included in large surveys as a perturbative expansion over the plane-parallel results. We finally compare our results to existing literature, and show explicitly how they are related.

  5. Coding of correlated sources with prescribed distortion by separated encoders

    PubMed Central

    Wolfowitz, J.

    1980-01-01

    Let (Xn,Yn) = (X1,Y1),...,(Xn,Yn) be n independent, identically distributed pairs of chance variables. Each of two separated encoders encodes a different sequence of (Xn,Yn) to within given respective distortions z1,z2. Call a region in the plane of the respective rates (R1,R2) M-convex if it is convex, closed, and, to every point (r1,r2), contains all points such that each of their coordinates is larger than or equal to the corresponding coordinate of (r1,r2). This paper determines the (M-convex) region of achievable rates by giving its boundary. For z1 = z2 = 0, the region specializes to that of Slepian and Wolf. For z2 = ∞ and R2 = H(Yi), the minimum R1 is that of Wyner and Ziv; for z2 = ∞ and general given R2, the minimum R1 is that of my generalization of the theorem of Wyner and Ziv. PMID:16592887

  6. Spectral distortions in the cosmic microwave background polarization

    SciTech Connect

    Renaux-Petel, Sébastien; Fidler, Christian; Pitrou, Cyril; Pettinari, Guido W. E-mail: christian.fidler@port.ac.uk E-mail: g.pettinari@sussex.ac.uk

    2014-03-01

    We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and the flow of intergalactic electrons. This signal is of the y-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into E- and B-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that B-modes are of the same order of magnitude as E-modes. Both spectra are relatively flat, peaking around ℓ = 280, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zel'dovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.

  7. Distortion product otoacoustic emissions in young adult and geriatric cats.

    PubMed

    Strain, George M; McGee, Kain A

    2017-03-01

    Recordings of distortion product otoacoustic emissions (DPOAEs) were taken from 15 geriatric cats (mean age ± standard deviation, SD, 13.6 ± 2.7 years; range 10.2-19.4 years) and 12 young adult control cats (mean ± SD 4.6 ± 0.5 years; range 3.4-5 years) to identify frequency-specific age-related changes in cochlear responses. Recordings were performed for primary frequencies from 2 to 12 kHz in 2 kHz increments. Cats were considered to be geriatric > 11.9 ± 1.9 years of age. Brainstem auditory evoked response (BAER) recordings were also made for subjective comparison with DPOAE responses. No differences in DPOAE response amplitudes were observed at any tested frequency in geriatric cats compared to control cats, reflecting an apparent absence of loss of cochlear outer hair cells along the length of the cochlea. No linear regression relationships were found for DPOAE response amplitude versus age in geriatric cats, despite the progressive nature of age-related hearing loss in other species. The absence of reductions in response at any of the tested frequencies in cats within the age span where cats are considered to be geriatric indicates that age-related hearing loss, if it does develop in cats, begins later in the life span of cats than in dogs or human beings.

  8. Genome Scans for Transmission Ratio Distortion Regions in Mice

    PubMed Central

    Casellas, Joaquim; Gularte, Rodrigo J.; Farber, Charles R.; Varona, Luis; Mehrabian, Margarete; Schadt, Eric E.; Lusis, Aldon J.; Attie, Alan D.; Yandell, Brian S.; Medrano, Juan F.

    2012-01-01

    Transmission ratio distortion (TRD) is the departure from the expected genotypic frequencies under Mendelian inheritance. This departure can be due to multiple physiological mechanisms during gametogenesis, fertilization, fetal and embryonic development, and early neonatal life. Although a few TRD loci have been reported in mouse, inheritance patterns have never been evaluated for TRD. In this article, we developed a Bayesian binomial model accounting for additive and dominant deviation TRD mechanisms. Moreover, this model was used to perform genome-wide scans for TRD quantitative trait loci (QTL) on six F2 mouse crosses involving between 296 and 541 mice and between 72 and 1854 genetic markers. Statistical significance of each model was checked at each genetic marker with Bayes factors. Genome scans revealed overdominance TRD QTL located in mouse chromosomes 1, 2, 12, 13, and 14 and additive TRD QTL in mouse chromosomes 2, 3, and 15, although these results did not replicate across mouse crosses. This research contributes new statistical tools for the analysis of specific genetic patterns involved in TRD in F2 populations, our results suggesting a relevant incidence of TRD phenomena in mouse with important implications for both statistical analyses and biological research. PMID:22367040

  9. A Flexible Bayesian Model for Testing for Transmission Ratio Distortion

    PubMed Central

    Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel

    2014-01-01

    Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents’ genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. PMID:25271302

  10. Workload induced spatio-temporal distortions and safety of flight

    SciTech Connect

    Barrett, C.L.; Weisgerber, S.A.; Naval Weapons Center, China Lake, CA )

    1989-01-01

    A theoretical analysis of the relationship between cognitive complexity and the perception of time and distance is presented and experimentally verified. Complex tasks produce high rates of mental representation which affect the subjective sense of duration and, through the subjective time scale, the percept of distance derived from dynamic visual cues (i.e., visual cues requiring rate integration). The analysis of the interrelationship of subjective time and subjective distance yields the prediction that, as a function of cognitive complexity, distance estimates derived from dynamic visual cues will be longer than the actual distance whereas estimates based on perceived temporal duration will be shorter than the actual distance. This prediction was confirmed in an experiment in which subjects (both pilots and non-pilots) estimated distances using either temporal cues or dynamic visual cues. The distance estimation task was also combined with secondary loading tasks in order to vary the overall task complexity. The results indicated that distance estimates based on temporal cues were underestimated while estimates based on visual cues were overestimated. This spatio-temporal distortion effect increased with increases in overall task complexity. 30 refs., 6 figs., 1 tab.

  11. Impacts of satellite galaxies on the redshift-space distortions

    SciTech Connect

    Hikage, Chiaki; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2013-08-01

    We study the impacts of the satellite galaxies on the redshift-space distortions. In our multipole power spectrum analysis of the luminous red galaxies (LRGs) samples of the Sloan digital sky survey (SDSS), we have clearly detected the non-zero signature of the hexadecapole and tetrahexadecapole spectrum, which almost disappears in the power spectrum with the sample of the brightest LRGs only. We thus demonstrate that the satellite LRGs in multiple systems make a significant contribution to the multipole power spectrum though its fraction is small. The behavior can be understood by a simple halo model, in which the one-halo term, describing the Finger of God (FoG) effect from the satellite galaxies, makes the dominant contribution to the higher multipole spectra. We demonstrate that the small-scale information of higher multipole spectrum is useful for calibrating the satellite FoG effect and improves the measurement of the cosmic growth rate dramatically. We further demonstrate that the fiber collision in the galaxy survey influences the one-halo term and the higher multipole spectra, because the number of satellite galaxies in the halo occupation distribution (HOD) is changed. We also discuss about the impact of satellite galaxies on future high-redshift surveys targeting the H-alpha emitters.

  12. Coupling of stripes to lattice distortions in cuprates and nickelates

    NASA Astrophysics Data System (ADS)

    Hücker, M.; Gu, G. D.; Tranquada, J. M.; Zimmermann, M. v.; Klauss, H.-H.; Curro, N. J.; Braden, M.; Büchner, B.

    2007-09-01

    In recent X-ray diffraction experiments on orthorhombic nickelates, we have observed a significant coupling between the stripe correlations and the lattice distortion. In particular, the diagonal charge stripes of this insulating material exhibit a preferred orientation parallel to the orthorhombic a-axis, similar to the diagonal spin stripes in La2-xSrxCuO4 below the metal-insulator transition. In the light of this finding, we draw a comparison between the lightly doped parts of the phase diagrams of La2-xSrxCuO4 with low-temperature orthorhombic (LTO) structure, and La1.8-xEu0.2SrxCuO4 with low-temperature tetragonal (LTT) structure. In La1.8-xEu0.2SrxCuO4, a local minimum in the Sr dependence of the LTO/LTT transition temperature, as well as reduced spin-glass transition temperatures, may be indicators for the presence of diagonal charge correlations. Above the metal-insulator transition the LTT phase is suited to pin parallel stripes, while below that transition the LTT phase seems instead to compete with the formation of diagonal stripes.

  13. Weaving and bonding method to prevent warp and fill distortion

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.

  14. Temperature dependence of anuran distortion product otoacoustic emissions.

    PubMed

    Meenderink, Sebastiaan W F; van Dijk, Pim

    2006-09-01

    To study the possible involvement of energy-dependent mechanisms in the transduction of sound within the anuran ear, distortion product otoacoustic emissions (DPOAEs) were recorded in the northern leopard frog over a range of body temperatures. The effect of body temperature depended on the stimulus levels used and on the hearing organ under investigation. Low-level DPOAEs from the amphibian papilla (AP) were reversibly depressed for decreased body temperatures. Apparently, DPOAE generation in the AP depends on metabolic rate, indicating the involvement of active processes in the transduction of sound. In contrast, in the other hearing organ, the basilar papilla (BP), the effects of body temperature on DPOAEs were less pronounced, irrespective of the stimulus levels used. Apparently, metabolic rate is less influencing DPOAE generation. We interpret these results as evidence that no amplifier is involved in sound transduction in the BP. The passive functioning of the anuran BP would place this hearing organ in a unique position within tetrapod hearing, but may actually be beneficial to ectothermic species because it will provide the animal with a consistent spectral window, regardless of ambient or body temperature.

  15. Distortion of upstream disturbances in a Hiemenz boundary layer

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Lele, Sanjiva K.

    2004-11-01

    A theoretical analysis of the distortion of unsteady three-dimensional disturbances in a Hiemenz boundary layer and its effect on the heat transfer enhancement is presented. It is shown that the disturbance length scale is a critical parameter in determining the amplification ratio of the incoming vorticity. For large disturbance length scales, the amplification ratio increases when the length scale decreases, and a maximum value occurs at a length scale close to five times the boundary-layer thickness. The unsteadiness of the disturbances is found to reduce the vorticity amplification, but the effect is second order when the frequency is low compared to the mean flow strain rate. The impinging disturbances induce large-amplitude vorticity of opposite sign at the wall whose magnitude controls the heat transfer enhancement. As an application of the present analysis, a new scaling correlation is derived for stagnation-point heat transfer in the presence of free-stream turbulence. The theoretical correlation, expressed in terms of turbulence intensity, integral length scale and mean flow Reynolds number, agrees reasonably well with recent experimental data.

  16. Evidence for Extensive Transmission Distortion in the Human Genome

    PubMed Central

    Zöllner, Sebastian; Wen, Xiaoquan; Hanchard, Neil A.; Herbert, Mark A.; Ober, Carole; Pritchard, Jonathan K.

    2004-01-01

    It is a basic principle of genetics that each chromosome is transmitted from parent to offspring with a probability that is given by Mendel’s laws. However, several known biological processes lead to skewed transmission probabilities among surviving offspring and, therefore, to excess genetic sharing among relatives. Examples include in utero selection against deleterious mutations, meiotic drive, and maternal-fetal incompatibility. Although these processes affect our basic understanding of inheritance, little is known about their overall impact in humans or other mammals. In this study, we examined genome screen data from 148 nuclear families, collected without reference to phenotype, to look for departures from Mendelian transmission proportions. Using single-point and multipoint linkage analysis, we detected a modest but significant genomewide shift towards excess genetic sharing among siblings (average sharing of 50.43% for the autosomes; P=.009). Our calculations indicate that many loci with skewed transmission are required to produce a genomewide shift of this magnitude. Since transmission distortion loci are subject to strong selection, this raises interesting questions about the evolutionary forces that keep them polymorphic. Finally, our results also have implications for mapping disease genes and for the genetics of fertility. PMID:14681832

  17. MAPPING GROWTH AND GRAVITY WITH ROBUST REDSHIFT SPACE DISTORTIONS

    SciTech Connect

    Kwan, Juliana; Lewis, Geraint F.; Linder, Eric V.

    2012-04-01

    Redshift space distortions (RSDs) caused by galaxy peculiar velocities provide a window onto the growth rate of large-scale structure and a method for testing general relativity. We investigate through a comparison of N-body simulations to various extensions of perturbation theory beyond the linear regime, the robustness of cosmological parameter extraction, including the gravitational growth index {gamma}. We find that the Kaiser formula and some perturbation theory approaches bias the growth rate by 1{sigma} or more relative to the fiducial at scales as large as k > 0.07 h Mpc{sup -1}. This bias propagates to estimates of the gravitational growth index as well as {Omega}{sub m} and the equation-of-state parameter and presents a significant challenge to modeling RSDs. We also determine an accurate fitting function for a combination of line-of-sight damping and higher order angular dependence that allows robust modeling of the redshift space power spectrum to substantially higher k.

  18. Latencies of extracted distortion-product otoacoustic source components

    NASA Astrophysics Data System (ADS)

    Zelle, Dennis; Thiericke, John P.; Gummer, Anthony W.; Dalhoff, Ernst

    2015-12-01

    Distortion product otoacoustic emissions (DPOAEs) evolve as a byproduct of the nonlinear amplification process of two stimulus tones f2 ≥ f1 in the cochlea. According to a prevailing model, DPOAEs comprise a nonlinear-generation and a coherent-reflection component. Recently, we introduced a new technique using short f2 pulses which enables the extraction of both source components in the time domain by nonlinear least-square curve fitting to decompose the DPOAE response into pulse basis functions (PBFs). The analysis of the extracted DPOAE source components in the time domain enables determination of their latencies which may be used to estimate cochlear frequency tuning. Short-pulse DPOAEs were acquired from 16 subjects for f2 = 1.5, 2, 3, and 4 kHz using six primary-tone levels with L2 = 25 - 65 dB SPL. For the extracted nonlinear-generation and coherent-reflection components, latencies decrease with increasing stimulus frequency and level. The obtained latency values are in accordance with the expected behavior of the cochlear amplifier and may provide an additional diagnostic parameter to assess frequency tuning.

  19. An illusory distortion of moving form driven by motion deblurring.

    PubMed

    Marinovic, Welber; Arnold, Derek H

    2013-08-09

    Many visual processes integrate information over protracted periods, a process known as temporal integration. One consequence of this is that objects that cast images that move across the retinal surfaces can generate blurred form signals, similar to the motion blur that can be captured in photographs taken with slow shutter speeds. Subjectively, retinal motion blur signals are suppressed from awareness, such that moving objects seem sharply defined. One suggestion has been that this subjective impression is due to humans not being able to distinguish between focussed and blurred moving objects. Contrary to this suggestion, here we report a novel illusion, and consequent experiments, that implicate a suppressive mechanism. We find that the apparent shape of circular moving objects can be distorted when their rear edges lag leading edges by ∼60 ms. Moreover, we find that sensitivity for detecting blur, and for discriminating between blur intensities, is uniformly worse for physical blurs added behind moving objects, as opposed to in-front. Also, it was easier to differentiate between slight and slightly greater physical blurs than it was to differentiate between slight blur and the absence of blur, both behind and in-front of moving edges. These 'dipper' functions suggest that blur signals must reach a threshold intensity before they can be detected, and that the relevant threshold is effectively elevated for blur signals trailing behind moving contours. In combination, these data suggest moving objects look sharply defined, at least in part, because of a functional adaptation that actively suppresses motion blur signals from awareness.

  20. Nonlinear propagation of stress waves during high speed cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Yifei; Zhang, Jun; He, Yong; Liu, Hongguang; Zhao, Wanhua

    2016-11-01

    Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece, and the obtained photoelastic images were evaluated semi-quantitatively. The experimental results were quantitatively reproduced via the lattice model, which helped explain our observations by analyzing the superposition of stress waves. According to the further simulation, we find that as the cutting speed increases, the stress intensity of the workpiece near the cutting tool is not in a linear enhancement process, with strong distortion of stress field under the superposition of different stress wave components. These help us have a deep understanding about the HSC mechanism under stress waves' effects.