Science.gov

Sample records for 3-d braided composites

  1. Development of generalized 3-D braiding machines for composite preforms

    NASA Technical Reports Server (NTRS)

    Huey, Cecil O., Jr.; Farley, Gary L.

    1993-01-01

    The operating principles of two prototype braiding machines for the production of generalized braid patterns are described. Both processes afford previously unachievable control of the interlacing of fibers within a textile structure that make them especially amenable to the fabrication of textile preforms for composite materials. They enable independent control of the motion of the individual fibers being woven, thereby enabling the greatest possible freedom in controlling fiber orientation within a structure. This freedom enables the designer to prescribe local fiber orientation to better optimize material performance. The processes have been implemented on a very small scale but at a level that demonstrates their practicality and the soundness of the principles governing their operation.

  2. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-01-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  3. Development of generalized 3-D braiding machines for composite preforms

    NASA Astrophysics Data System (ADS)

    Huey, Cecil O., Jr.; Farley, Gary L.

    1992-10-01

    The development of prototype braiding machines for the production of generalized braid patterns is described. Mechanical operating principles and control strategies are presented for two prototype machines which have been fabricated and evaluated. Both machines represent advances over current fabrication techniques for composite materials by enabling nearly ideal control of fiber orientations within preform structures. They permit optimum design of parts that might be subjected to complex loads or that have complex forms. Further, they overcome both the lack of general control of produced fiber architectures and the complexity of other weaving processes that have been proposed for the same purpose. One prototype, the Farley braider, consists of an array of turntables that can be made to oscillate in 90 degree steps. Yarn ends are transported about the surface formed by the turntables by motorized tractors which are controlled through an optical link with the turntables and powered through electrical contact with the turntables. The necessary relative motions are produced by a series of linear tractor moves combined with a series of turntable rotations. As the tractors move about, they weave the yarn ends into the desired pattern. The second device, the shuttle plate braider, consists of a braiding surface formed by an array of stationary square sections, each separated from its neighbors by a gap. A plate beneath this surface is caused to reciprocate in two perpendicular directions, first in one direction and then in the other. This movement is made possibly by openings in the plate that clear short columns supporting the surface segments. Yarn ends are moved about the surface and interwoven by shuttles which engage the reciprocating plate as needed to yield the desired movements. Power and control signals are transmitted to the shuttles through electrical contact with the braiding surface. The shuttle plate is a passively driven prime mover that supplies the power

  4. Development of generalized 3-D braiding machines for composite preforms

    NASA Technical Reports Server (NTRS)

    Huey, Cecil O., Jr.; Farley, Gary L.

    1992-01-01

    The development of prototype braiding machines for the production of generalized braid patterns is described. Mechanical operating principles and control strategies are presented for two prototype machines which have been fabricated and evaluated. Both machines represent advances over current fabrication techniques for composite materials by enabling nearly ideal control of fiber orientations within preform structures. They permit optimum design of parts that might be subjected to complex loads or that have complex forms. Further, they overcome both the lack of general control of produced fiber architectures and the complexity of other weaving processes that have been proposed for the same purpose. One prototype, the Farley braider, consists of an array of turntables that can be made to oscillate in 90 degree steps. Yarn ends are transported about the surface formed by the turntables by motorized tractors which are controlled through an optical link with the turntables and powered through electrical contact with the turntables. The necessary relative motions are produced by a series of linear tractor moves combined with a series of turntable rotations. As the tractors move about, they weave the yarn ends into the desired pattern. The second device, the shuttle plate braider, consists of a braiding surface formed by an array of stationary square sections, each separated from its neighbors by a gap. A plate beneath this surface is caused to reciprocate in two perpendicular directions, first in one direction and then in the other. This movement is made possibly by openings in the plate that clear short columns supporting the surface segments. Yarn ends are moved about the surface and interwoven by shuttles which engage the reciprocating plate as needed to yield the desired movements. Power and control signals are transmitted to the shuttles through electrical contact with the braiding surface. The shuttle plate is a passively driven prime mover that supplies the power

  5. Spatial Distribution of Yarns and Mechanical Properties in 3D Braided Tubular Composites

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wang, A. S. D.

    1997-03-01

    This paper outlines a method which links the following analytically simulated events in sequence: (1) braiding of a 3D preform of tubular cross-section characterized by a set of braiding parameters defining the braiding setup and braiding steps; (2) geometric description of the yarn topology in the braided preform in explicit terms of a set of topological parameters defined by the preform shape and the braiding parameters; (3) description of the exact yarn distribution after preform consolidation with a binding matrix the values of the topological parameters are related to the exterior dimensions and surface features of the consolidated preform; and (4) forecasting the mechanical properties in the final composite via a suitable micromechanics model that takes into account the spatial yarn distribution in the composite and properties of the constituents.

  6. Failure Locus of 3D Four-Directional Braided Composites Under Biaxial Loading

    NASA Astrophysics Data System (ADS)

    Wang, Baolai; Fang, Guodong; Liang, Jun; Wang, Zhenqing

    2012-06-01

    The failure locus of 3D braided four-directional composites under complex loadings, such as tension-shear, compression-shear and tension-tension, can be obtained by micromechanical computation model. A finite element model of representative volume cell (RVC) of the braided composites, explicitly taking into account the braid yarn and matrix, is chosen to analyze the mechanical response. The failure mechanisms of the braided composites observed in experiment can be reproduced by the numerical computation in which the mesoscopic damage models of the braid yarn and matrix are developed. Several failure points of the braided composites under the biaxial loadings can be obtained when different stress ratios are imposed upon the RVC. In comparison with the Tsai-Wu and Tsai-Hahn criteria, the numerical failure loci of the braided composites except the tension-tension results are in good agreement with those results. It can be pointed out that the failure loci of the braided composites can be obtained by the numerical fitting of a large number of the failure points which are calculated by the numerical model.

  7. Mechanical properties of 2D and 3D braided textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.

    1991-01-01

    The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.

  8. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin

    2017-01-01

    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  9. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  10. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  11. Mechanical Performance and Parameter Sensitivity Analysis of 3D Braided Composites Joints

    PubMed Central

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  12. Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1994-01-01

    The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.

  13. An experimental and numerical study of 3-D braided structural textile composites

    SciTech Connect

    Abusafieh, A.; Kalidindi, S.R.; Franco, E.

    1994-12-31

    It has been reported in literature that isostrain models (also known as Fabric Geometry Models) provide good predictions of the elastic moduli of three-dimensional textile composites. This study reports a critical evaluation of the accuracy of the isostrain models by comparing the predictions against experimental measurements as well as finite element simulations of representative unit cells of the 3-D braided composites, over a range of braid angles and volume fractions. The accuracy of the isostrain model is found to be highly sensitive to the braid angles and the fraction of lay-in axial fibers in the composite system. Good correlations between isostrain model predictions of elastic moduli and measurements were observed when the loading direction is oriented along one of the fiber directions and is significantly away from the other fiber systems in the unit cell. In other situations, however, the isostrain model predictions were in significant errors. This study also reports on the influence of various modeling parameters in the development of finite element models for the simulation of the 3-D textile composite unit cells.

  14. Tension and compression fatigue response of unnotched 3D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1992-01-01

    The unnotched compression and tension fatigue response of a 3-D braided composite was measured. Both gross compressive stress and tensile stress were plotted against cycles to failure to evaluate the fatigue life of these materials. Damage initiation and growth was monitored visually and by tracking compliance change during cycle loading. The intent was to establish by what means the strength of a 3-D architecture will start to degrade, at what point will it degrade beyond an acceptable level, and how this material will typically fail.

  15. 3D flexible NiTi-braided elastomer composites for smart structure applications

    NASA Astrophysics Data System (ADS)

    Heller, L.; Vokoun, D.; Šittner, P.; Finckh, H.

    2012-04-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain.

  16. Low-Velocity Impact Response and Finite Element Analysis of Four-Step 3-D Braided Composites

    NASA Astrophysics Data System (ADS)

    Sun, Baozhong; Zhang, Yan; Gu, Bohong

    2013-08-01

    The low-velocity impact characters of 3-D braided carbon/epoxy composites were investigated from experimental and finite element simulation approaches. The quasi-static tests were carried out at a constant velocity of 2 mm/min on MTS 810.23 material tester system to obtain the indentation load-displacement curves and indentation damages. The low-velocity tests were conducted at the velocities from 1 m/s to 6 m/s (corresponding to the impact energy from 3.22 J to 116 J) on Instron Dynatup 9250 impact tester. The peak force, energy for peak force, time to peak force, and total energy absorption were obtained to determine the impact responses of 3-D braided composites. A unit cell model was established according to the microstructure of 3-D braided composites to derive the constitutive equation. Based on the model, a user-defined material subroutine (VUMAT) has been compiled by FORTRAN and connected with commercial finite element code ABAQUS/Explicit to calculate the impact damage. The unit cell model successfully predicted the impact response of 3-D braided composites. Furthermore, the stress wave propagation and failure mechanisms have been revealed from the finite element simulation results and ultimate damage morphologies of specimens.

  17. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  18. Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites. Final report

    SciTech Connect

    Portanova, M.A.

    1994-01-01

    The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.

  19. Development of a Simulation Tool for 3D Braiding Architectures

    NASA Astrophysics Data System (ADS)

    Tolosana, N.; Lomov, S.; Stüve, J.; Miravete, A.

    2007-04-01

    The usage of textile technologies for composites is widely extended in aeronautic applications. They provide an improvement on mechanical properties in the thickness direction, and offer some other advantages in comparison with prepreg technology regarding production. Nowadays 3D-braiding machines do not only enable the production of solid profiles but enable also the production of complex near-net-shape reinforcement structures with changing cross section geometry. In order to attain a full understanding on structure of 3d braids to be able to predict mechanical properties, simulation tools including machine operation are needed. A simulation tool is being developed as a part of the EU project "Integrated Tool for Simulation of Textile Composites", starting from 3d braiding machinery description and operation. This information is required to reproduce yarn paths in the produced unit cell, based on the interlacing pattern of the braid.

  20. Bending response of 3-D woven and braided preform composite materials

    SciTech Connect

    Pochiraju, K.; Parvizi-Majidi, A.; Chou, T.W.; Shah, B.

    1994-12-31

    Three dimensional textile carbon-epoxy composites exhibit general anisotropy. Further, these materials may possess different modulus in uniaxial tension than that in compression. In an earlier material characterization effort, the tension, compression, and shear properties of these composites were determined. In this paper, theoretical modeling of flexure of the textile composites and experimental correlation are presented. Four point bending tests were conducted according to STM D709 standards to determine the load to mid-span deflection relationships for typical textile composites. The results of experimental analysis are compared with classical beam theory, theory of elasticity solutions considering material orthotropy and shear deflection, and finite element analysis considering material orthotropy and finite deformation/rotations. The derivation of a harmonic function, required for the theory of elasticity solution, is described in the paper. Homogeneous orthotropic elastic properties are assumed for the 3-D textile composites, which is a reasonable approximation for specimens considerably larger than the repeated geometric unit of the fiber preform. The so called ``flex modulus`` is determined from the experimental data.

  1. Mars Mission Research Center: Research in 3-D braiding

    SciTech Connect

    Reid, R.L.; El-Shiekh, A.

    1995-06-01

    Textile reinforcements are a growing area in the field of composite materials. At the Mars Mission Research Center`s 3-D braiding laboratory researchers are investigating methods of machine automation and new structural geometries. Advances in machine automation are leading to increased production rates and higher quality products. The development of the 6-step process creates a fabric that incorporates the x-y-z structure within a 4-step braid. Physical testing of braided composites includes traditional static test methods as well as bearing, thread strength, and damage tolerance. With the recent acquisition of a 288 carrier 2-D braider, researchers are conducting more comparison studies between composites reinforced with 3-D structures and those made of 2-D fabrics (uniaxial, woven, and 2-D braids).

  2. Application of Three Unit-Cells Models on Mechanical Analysis of 3D Five-Directional and Full Five-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Xiwu; Chen, Kang

    2013-10-01

    As new lightweight textile material, 3D five directional and full five directional braided composites (5DBC and F5DBC) have tremendous potential applications in the aerospace industry. Before they are used in primary loading-bearing structures, a rational characterization of their mechanical properties is essential. In this paper, three types of unit-cell models corresponding to the interior, surface and corner regions of 5DBC and F5DBC are proposed. By introducing the reasonable boundary conditions, the effective stiffness properties of these two materials are predicted and compared by the three unit-cells models. The detailed mechanical response characteristic of the three unit-cell models is presented and analyzed in various loading cases. Numerical results show good agreement with experiment data, thus validates the proposed simulation method. Moreover, a parametric study is carried out for analyzing the effects of braiding angle and fiber volume fraction on the elastic properties of 5DBC and F5DBC. The obtained results can help designers to optimize the braided composite structures.

  3. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  4. Development of a computer controlled 3-d braiding machine

    SciTech Connect

    Yan Jianhua; Li Jialu

    1994-12-31

    This paper deals with development of a large size, multiuse, controlled 3-D cartesian grid braiding machine, its function and application. The 180 column and 120 tracks, the flexible and low power consuming driving system, the error detector systems and the computer controlling system are the major parts of the machine. The machine can produce wide variety of size. shape and pattern of fabrics and can also produce several fabrics at a time.

  5. The properties of 5-D braided reinforced organic silicon composites

    SciTech Connect

    Xiao, L.; Li, J.; Dong, F.

    1994-12-31

    A study of the mechanical properties of braided reinforced composites is presented. Three braided structures 1 * 1, 1 * 2, 1 * 3 braids with and without axially layed-in yarns have been adopted. It is found that the different braided structures greatly affect the tensile strength , flexural strength and modulus of braided fabric reinforced composites; 1 * 1 4-D braided composite has the highest tensile and flexural strengths. The fiber fraction volume and surface geometries of braids changed greatly corresponding to the braiding process chosen. By laying in non-braiding yarns in the longitudinal direction, the tensile, and flexural strengths of 5-D braided reinforced composite increase.

  6. Analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.

  7. Microstructure Analysis and Multi-Unit Cell Model of Three Dimensionally Four-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Qian, Xiaomei

    2015-02-01

    In this paper, a new multi-unit cell model of three dimensionally braided composites is presented on the basis of the microstructure analysis of 3D braided preforms produced by four-step 1 × 1 method. According to a new unit cell partition scheme, the multi-unit cell model possesses five kinds of unit cells, namely interior, exterior surface, interior surface, exterior corner and interior corner unit cells. Each type of the representative volume cell has unique microstructure and volume fraction in braided composites. On the basis of these five unit cell models, the structural geometry parameters of the preforms are analyzed and the relationship between the structural parameters and the braiding parameters in different regions are derived in detail, such as the braiding angles, fiber volume fraction, yarn packing factor, braiding pitch and so on. Finally, by using the multi-unit cell model, the main structural parameters of braided composites specimens are calculated to validate the effectiveness of the model. The results are in good agreement with the available experimental data. In addition, the effect of braiding angle on the squeezing condition of braiding yarn is analyzed. The variations of the volume proportion of five unit cells to the whole specimen with rows and columns are discussed, respectively. The presented multi-unit cell model can be adopted to design 3D braided composites and predict their mechanical properties.

  8. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  9. CAD for 4-step braided fabric composites

    SciTech Connect

    Pandey, R.; Hahn, H.T.

    1994-12-31

    A general framework is provided to predict thermoelastic properties of three dimensional 4-step braided fabric composites. Three key steps involved are (1) the development of a CAD model for yarn architecture, (2) the extraction of a unit cell (3) the prediction of the thermoelastic properties based on micromechanics. Main features of each step are summarized and experimental correlations are provided in the paper.

  10. Analysis, design, fabrication, and performance of three-dimensional braided composites

    NASA Astrophysics Data System (ADS)

    Kostar, Timothy D.

    1998-11-01

    Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters

  11. Pack Aluminization Synthesis of Superalloy 3D Woven and 3D Braided Structures

    NASA Astrophysics Data System (ADS)

    Erdeniz, Dinc; Levinson, Amanda J.; Sharp, Keith W.; Rowenhorst, David J.; Fonda, Richard W.; Dunand, David C.

    2015-01-01

    Micro-architectured, precipitation-strengthened structures were created in a new process combining weaving, gas-phase alloying, diffusion, and precipitation. First, high-ductility Ni-20 wt pct Cr wires with 202 μm diameter were braided, or non-crimp orthogonal woven, into three-dimensional structures. Second, these structures were vapor-phase alloyed with Al at 1273 K (1000 °C) by pack cementation, creating uniform NiAl coatings on the wires when using a retort. Also, solid-state bonding was achieved at wire intersections, where two wires were sufficiently close to each other, as determined via optical and X-ray tomographic microscopy. Third, the NiAl-coated wires were fully homogenized and aged to form γ' precipitates distributed in a γ matrix phase, the same microstructure providing strength in nickel-based superalloys. The resulting structures—consisting of wires (i) woven in a controlled three-dimensional architecture, (ii) bonded at contact points and (iii) strengthened by γ' precipitates—are expected to show high strength at ambient and elevated temperatures, low density, and high permeability which is useful for active cooling.

  12. Braided reinforced composite rods for the internal reinforcement of concrete

    NASA Astrophysics Data System (ADS)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  13. Burst Testing of Triaxial Braided Composite Tubes

    NASA Technical Reports Server (NTRS)

    Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.

    2014-01-01

    Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.

  14. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  15. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  16. Mechanical and analytical screening of braided composites for transport fuselage applications

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Gunther, Christian; Ko, Frank K.

    1991-01-01

    The mechanics of materials progress in support of the goal of understanding the application of braided composites in a transport aircraft fuselage are summarized. Composites consisting of both 2-D and 3-D braid patterns are investigated. Both consolidation of commingled graphite/PEEK and resin transfer molding of graphite-epoxy braided composite processes are studied. Mechanical tests were used to examine unnotched tension, open hole tension, compression, compression after impact, in-plane shear, out-of-plane tension, bearing, and crippling. Analytical methods are also developed and applied to predict the stiffness and strengths of test specimens. A preliminary study using the test data and analytical results is performed to assess the applicability of braided composites to a commercial aircraft fuselage.

  17. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2015-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  18. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2014-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  19. CAD/CAM of braided preforms for advanced composites

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Pastore, Christopher; Tsai, Yung Jia; Soebroto, Heru; Ko, Frank

    A CAD/CAM system for braiding to produce preforms for advanced textile structural composites is presented in this paper. The CAD and CAM systems are illustrated in detail. The CAD system identifies the fiber placement and orientation needed to fabricate a braided structure over a mandrel, for subsequent composite formation. The CAM system uses the design parameters generated by the CAD system to control the braiding machine. Experimental evidence demonstrating the success of combining these two technologies to form a unified CAD/CAM system for the manufacture of braided fabric preforms with complex structural shapes is presented.

  20. Approaches for Tensile Testing of Braided Composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

    2011-01-01

    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower

  1. Modeling of Euclidean braided fiber architectures to optimize composite properties

    NASA Technical Reports Server (NTRS)

    Armstrong-Carroll, E.; Pastore, C.; Ko, F. K.

    1992-01-01

    Three-dimensional braided fiber reinforcements are a very effective toughening mechanism for composite materials. The integral yarn path inherent to this fiber architecture allows for effective multidirectional dispersion of strain energy and negates delamination problems. In this paper a geometric model of Euclidean braid fiber architectures is presented. This information is used to determine the degree of geometric isotropy in the braids. This information, when combined with candidate material properties, can be used to quickly generate an estimate of the available load-carrying capacity of Euclidean braids at any arbitrary angle.

  2. Characterising Mechanical Properties of Braided and Woven Textile Composite Beams

    NASA Astrophysics Data System (ADS)

    Dauda, Benjamin; Oyadiji, S. Olutunde; Potluri, Prasad

    2009-02-01

    The focus of this paper is on the manufacture of textile composite beams and on the determination of their mechanical properties. This includes investigating the effects of fibre orientation on the mechanical properties of braided and woven textile composites. Composites were manufactured from nominally identical constituents and identical consolidation processes, leaving as the only variables, variations caused by the different fibre architecture of the preform. The repeatability and, hence, reliability of this approach is demonstrated. Results obtained show that fibre architecture affects composite strength and extensibility. Composites with woven preforms are practically linear up to catastrophic failure while composites with braided preforms exhibit non-linearity prior to failure. Also the mechanical properties of the textile composite beams were determined. Results show that by tailoring the braid angle and pick density of braided and woven composite performs, the mechanical properties of the composite beams can be controlled to suit end-use requirement.

  3. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  4. Design of braided composite tubes by numerical analysis method

    SciTech Connect

    Hamada, Hiroyuki; Fujita, Akihiro; Maekawa, Zenichiro; Nakai, Asami; Yokoyama, Atsushi

    1995-11-01

    Conventional composite laminates have very poor strength through thickness and as a result are limited in their application for structural parts with complex shape. In this paper, the design for braided composite tube was proposed. The concept of analysis model which involved from micro model to macro model was presented. This method was applied to predict bending rigidity and initial fracture stress under bending load of the braided tube. The proposed analytical procedure can be included as a unit in CAE system for braided composites.

  5. Failure analysis of woven and braided fabric reinforced composites

    SciTech Connect

    Naik, R.A.

    1994-09-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  6. Failure analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  7. Strength design with 2-d triaxial braid textile composites

    SciTech Connect

    Smith, L.V.; Swanson, S.R.

    1994-12-31

    Textile preforms are currently being considered as a possible means for reducing the cost of advanced fiber composites. This paper presents a methodology for strength design of carbon/epoxy 2-d braid fiber composites under general conditions of biaxial stress loading. A comprehensive investigation into the in-plane strength properties of 2-d braids has been carried out, using tubular specimens of AS4/1895 carbon fiber/epoxy made with the RTM process. The biaxial loadings involved both compression-compression and tension-tension biaxial tests. The results showed that failure under biaxial loading could be based on procedures similar to those developed for laminates, using critical strain values in the axial and braid direction fibers, but with degraded strength properties because of the undulating nature of -the fiber paths. A significant loss of strength was observed in the braid directions.

  8. BRAID

    SciTech Connect

    2010-11-01

    BRAID is a rewriting system for translating abstract intermediate descriptions into light-weight, "pay only for what you need" middleware wrappers. Initial capabilities will focus on language interoperability, remote method invocation (RMI), and interface contract enforcement wrappers from Scientific Interface Definition Language (SIDL) specifications. Language interoperability will be provided for software written in C, C++, Fortran, Java, and Python, as was done with Babel, but also a subset of PGAS/HPCS languages, such as Chapel, UPC, and X10. Interface contract enforcement wrappers will initially be supported in a subset of those languages.

  9. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  10. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  11. Modeling and characterization of 2-D and 3-D textile structural composites

    SciTech Connect

    Yang, J.M.

    1986-01-01

    This dissertation studies the analytical modeling and experimental characterization of various two-dimensional and three-dimensional textile structure composites. In the analytical approach, various theoretical models were established to predict the stiffness, strength, nonlinear deformation, and failure behavior of triaxial woven-fabric composites, 3-D braided composites, and multilayer multidirectional warp knit fabric composites in polymer and metal matrices. The structure performance maps of various textile structural composites were also established, based upon these analytical methods. In the experimental approach, extensive mechanical testing and microstructural characterization were performed to investigate the thermomechanical properties and failure behavior of 3-D braided FP/Al composites. Results of this research will serve as the basis for assessing the potential of textile composites for structural applications.

  12. Bearing Abilities and Progressive Damage Analysis of Three Dimensional Four-Directional Braided Composites with Cut-Edge

    NASA Astrophysics Data System (ADS)

    Lei, Bing; Liu, Zhenguo; Ya, Jixuan; Wang, Yibo; Li, Xiaokang

    2016-08-01

    Cut-edge is a kind of damage for the three-dimensional four-directional (3D4d) braided composites which is inevitable because of machining to meet requisite shape and working in the abominable environment. The longitudinal tensile experiment of the 3D4d braided composites with different braiding angles between cut-edge and the ones without cut-edge was conducted. Then representative volume cell (RVC) with interface zones was established to analyze the tensile properties through the fracture and damage mechanics. The periodic boundary conditions under the cut-edge and uncut-edge conditions were imposed to simulate the failure mechanism. Stress-strain distribution and the damage evolution nephogram in cut-edge condition were conducted. Numerical results were coincident with the experimental results. Finally the variation of cut-edge effect with the specimen thickness was simulated by superimposing inner cells. The consequence showed that thickness increase can effectively reduce cut-edge influence on longitudinal strength for 3D4d braided composites. Cut-edge simulation of braided composites has guiding significance on the actual engineering application.

  13. Braided composite bore evacuator chambers for tank cannons

    NASA Technical Reports Server (NTRS)

    Wheeler, Philip C.

    1990-01-01

    Typically, continuous filament composite components are fabricated using a filament winding technique. In this operation, fibers are introduced to a rotating mandrel while a guide holding the material traverses back and forth to place the material in a helical pattern over the surface of the mandrel. This procedure is continued until complete coverage is obtained. An alternative method for fabricating continuous filament composite components is braiding. In the braiding operation a mandrel is traversed through the center of the braider while 144 strands of material traverse around a carrier ring. As the fibers are applied to a mandrel surface, 72 carriers holding the fibers travel clockwise, while another 72 carriers travel counterclockwise to interlock fibers. An additional 72 carriers located on the back of the braider introduce longitudinal fibers to the composite giving the composite lateral strength. The goal of using the braider is to reduce production time by simultaneously applying 144 strands of material onto a mandrel as opposed to the four-strand wrapping most filament winding techniques offer. Benefits to braiding include the ability to (1) introduce longitudinal fibers to the composite structure; (2) fabricate non-symmetric components without using complex functions to produce full coverage; and (3) produce a component with a higher degree of damage tolerance due to the interlocking of fibers. The fabrication of bore evacuator chambers for a tank cannon system is investigated by utilizing a 144 carrier braiding machine, an industrial robot, and a resin applicator system.

  14. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  15. Chiral braided and woven composites: design, fabrication, and electromagnetic characterization

    NASA Astrophysics Data System (ADS)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2011-04-01

    This work presents a new chiral composite composed of copper wires braided with Kevlar and nylon to form conductive coils integrated among structural fiber. To create a fabric, these braids were woven with plain Kevlar fiber. This yielded a composite with all coils possessing the same handedness, producing a chiral material. The electromagnetic response of this fabric was first simulated using a finite element full-wave simulation. For the electromagnetic measurement, the sample was placed between two lens-horn antennas connected to a Vector Network Analyzer. The frequency response of the sample was scanned between 5.5 and 8GHz. The measured scattering parameters were then compared to those of the simulated model. The measured parameters agreed well with the simulation results, showing a considerable chirality within the measured frequency band. The new composite combines the strength and durability of traditional composites with an electromagnetic design to create a multifunctional material.

  16. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  17. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  18. Rubber Impact on 3D Textile Composites

    NASA Astrophysics Data System (ADS)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  19. Through-the Thickness(R) braided composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Brown, Richard T.

    1992-01-01

    Material and structural specimens of Through-the-Thickness(R) braided textile composites were tested in a variety of experiments. The results have demonstrated that the preform architecture provides significant payoffs in damage tolerance, delamination resistance, and attachment strength. This paper describes the braiding process, surveys the experimental data base, and illustrates the application of three dimensional braiding in aircraft structures.

  20. Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations

    SciTech Connect

    Ahn, H.-C.; Yu, W.-R.; Guo, Z.

    2011-05-04

    The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transverse axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.

  1. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  2. Analytical Failure Prediction Method Developed for Woven and Braided Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2003-01-01

    Historically, advances in aerospace engine performance and durability have been linked to improvements in materials. Recent developments in ceramic matrix composites (CMCs) have led to increased interest in CMCs to achieve revolutionary gains in engine performance. The use of CMCs promises many advantages for advanced turbomachinery engine development and may be especially beneficial for aerospace engines. The most beneficial aspects of CMC material may be its ability to maintain its strength to over 2500 F, its internal material damping, and its relatively low density. Ceramic matrix composites reinforced with two-dimensional woven and braided fabric preforms are being considered for NASA s next-generation reusable rocket turbomachinery applications (for example, see the preceding figure). However, the architecture of a textile composite is complex, and therefore, the parameters controlling its strength properties are numerous. This necessitates the development of engineering approaches that combine analytical methods with limited testing to provide effective, validated design analyses for the textile composite structures development.

  3. Macro Scale Independently Homogenized Subcells for Modeling Braided Composites

    NASA Technical Reports Server (NTRS)

    Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.

    2012-01-01

    An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.

  4. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation

  5. Feasibility of a Braided Composite for Orthopedic Bone Cast

    PubMed Central

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  6. Feasibility of a braided composite for orthopedic bone cast.

    PubMed

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized.

  7. RTM370 Polyimide Braided Composites: Characterization and Impact Testing

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.

    2013-01-01

    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.

  8. Improved Subcell Model for the Prediction of Braided Composite Response

    NASA Technical Reports Server (NTRS)

    Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.

    2013-01-01

    In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.

  9. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  10. Ballistic Impact of Braided Composites With a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike

    2004-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites

  11. Ballistic Impact of Braided Composites with a Soft Projectile

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike

    2002-01-01

    Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.

  12. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    NASA Astrophysics Data System (ADS)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2016-12-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  13. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    NASA Astrophysics Data System (ADS)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2017-04-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  14. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  15. Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility.

    PubMed

    Luo, Honglin; Xiong, Guangyao; Yang, Zhiwei; Raman, Sudha R; Li, Qiuping; Ma, Chunying; Li, Deying; Wang, Zheren; Wan, Yizao

    2014-01-01

    In this study, we focused on fabrication and characterization of three-dimensional carbon fiber-reinforced polyetheretherketone (C3-D/PEEK) composites for orthopedic applications. We found that pre-heating of 3-D fabrics before hot-pressing could eliminate pores in the composites prepared by 3-D co-braiding and hot-pressing techniques. The manufacturing process and the processing variables were studied and optimum parameters were obtained. Moreover, the carbon fibers were surface treated by the anodic oxidization and its effect on mechanical properties of the composites was determined. Preliminary cell studies with mouse osteoblast cells were also performed to examine the cytocompatibility of the composites. Feasibility of the C3-D/PEEK composites as load-bearing bone fixation materials was evaluated. Results suggest that the C3-D/PEEK composites show good promising as load-bearing bone fixations.

  16. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  17. Characterization and Analysis of Triaxially Braided Polymer Composites under Static and Impact Loads

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Blinzler, Brina J.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2012-01-01

    In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.

  18. 3D-printing of lightweight cellular composites.

    PubMed

    Compton, Brett G; Lewis, Jennifer A

    2014-09-10

    A new epoxy-based ink is reported, which enables 3D printing of lightweight cellular composites with controlled alignment of multiscale, high-aspectratio fiber reinforcement to create hierarchical structures inspired by balsa wood. Young's modulus values up to 10 times higher than existing commercially available 3D-printed polymers are attainable, while comparable strength values are maintained.

  19. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  20. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  1. Modeling of 3D Woven Composites Containing Multiple Delaminations

    DTIC Science & Technology

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  2. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  3. Impact Damage of 3D Orthogonal Woven Composite Circular Plates

    NASA Astrophysics Data System (ADS)

    Ji, Changgan; Sun, Baozhong; Qiu, Yiping; Gu, Bohong

    2007-11-01

    The damages of 3D orthogonal woven composite circular plate under quasi-static indentation and transverse impact were tested with Materials Test System (MTS) and modified split Hopkinson bar (SHPB) apparatus. The load vs. displacement curves during quasi-static penetration and impact were obtained to study the energy absorption of the composite plate. The fluctuation of the impact stress waves has been unveiled. Differences of the load-displacement curves between the quasi-static and impact loading are discussed. This work also aims at establishing a unit-cell model to analyze the damage of composites. A user material subroutine which named VUMAT for characterizing the constitutive relationship of the 3-D orthogonal woven composite and the damage evolution is incorporated with a finite element code ABAQUS/Explicit to simulate the impact damage process of the composite plates. From the comparison of the load-displacement curves and energy absorption curves of the composite plate between experimental and FEM simulation, it is shown that the unit-cell model of the 3D woven composite and the VUMAT combined with the ABAQUS/Explicit can calculate the impact responses of the circular plate precisely. Furthermore, the model can also be extended to simulate the impact behavior of the 3D woven composite structures.

  4. Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite

    NASA Technical Reports Server (NTRS)

    Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.

    2010-01-01

    A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.

  5. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  6. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.

    2010-01-01

    The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.

  7. Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.

    2010-01-01

    A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.

  8. A Modeling Technique and Representation of Failure in the Analysis of Triaxial Braided Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Quasi-static tests have been performed on triaxially braided carbon fiber composite materials with large unit cell sizes. The effects of different fibers and matrix materials on the failure mode were investigated. Simulations of the tests have been performed using the transient dynamic finite element code, LS-DYNA. However, the wide range of failure modes observed for the triaxial braided carbon fiber composites during tests could not be simulated using composite material models currently available within LS-DYNA. A macroscopic approach has been developed that provides better simulation of the material response in these materials. This approach uses full-field optical measurement techniques to measure local failures during quasi-static testing. Information from these experiments is then used along with the current material models available in LS-DYNA to simulate the influence of the braided architecture on the failure process. This method uses two-dimensional shell elements with integration points through the thickness of the elements to represent the different layers of braid along with a new analytical method for the import of material stiffness and failure data directly. The present method is being used to examine the effect of material properties on the failure process. The experimental approaches used to obtain the required data will be described, and preliminary results of the numerical analysis will be presented.

  9. Mechanical characteristics of novel polyester/NiTi wires braided composite stent for the medical application

    NASA Astrophysics Data System (ADS)

    Zou, Qiuhua; Xue, Wen; Lin, Jing; Fu, Yijun; Guan, Guoping; Wang, Fujun; Wang, Lu

    Stents have been widely used in percutaneous surgery to treat stenosis diseases. The braided NiTi stent, as a promising prototype, still has limitations of low radial force and loose structure. In the present study, a newly integrated composite stent was designed and braided with NiTi wires and polyester multifilament yarns by textile technology. The mechanical properties of four composite stents and the control bare NiTi stent were evaluated by in vitro compression, bending and anti-torsion tests. The results showed that integrated polyester/NiTi composite stents were superior in radial support. The stents could keep patency even when highly curved and had lower stent straightening force. Composite stents with certain structure stayed stable under twisting. The configuration of NiTi wires in composite stents could significantly impact stent deformation under twisting.

  10. Mechanical property of tubular composites manufactured from braided-pultrusion process

    SciTech Connect

    Byun, J.H.; Lee, S.K.

    1994-12-31

    In order to realize the potential of composite materials, it is imperative to develop a manufacturing process, to understand the microstructures, and to assess the structural performance of the composite. The braided-pultrusion process, which combines the pultrusion process with the braiding technology, has been developed by utilizing a novel resin impregnation device. The goal of the development is to achieve both cost-effectiveness and performance of the composite. The tubular composites of diameter 5.3 mm have been produced using Kevlar 49 fiber and polyester resin. In order to assess the mechanical performance of the composites, an analytical method for predicting the elastic constants has been developed. The analysis includes the geometric model of a unit cell, coordinate transformation, and averaging of stiffness and compliance constants of the constituent materials. The analytic predictions were compared favorably with experimental results.

  11. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of

  12. Modeling the Properties of 3D Woven Composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian N.

    1995-01-01

    An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.

  13. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-10-14

    The objectives of the project was to create a graphene reinforced polymer nano-composite viable in a commercial 3-D printer; study the effects of ultra-high loading of graphene in polymer matrices; and determine the functional upper limit of graphene loading.

  14. Processing and characterization of natural fiber reinforced thermoplastic composites using micro-braiding technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Ogihara, Shinji

    In the present study, we investigate fatigue properties of green composites. A hemp fiber yarn reinforced poly(lactic acid) composite was selected as a green composite. Unidirectional (UD) and textile (Textile) composites were fabricated using micro-braiding technique. Fatigue tests results indicated that fatigue damages in UD composites was splitting which occurred just before the final fracture, while matrix crack and debonding between matrix and fiber yarn occurred and accumulated stably in Textile composites. These results were consistent with modulus reduction and acoustic emission measurement during fatigue tests.

  15. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  16. Optimisation du tissage de composites orthogonaux 3D

    NASA Astrophysics Data System (ADS)

    Younes, Rafic; Aboura, Zoheir; Benzeggag, Malk

    2008-09-01

    This Note deals with an optimization study for the representative elementary volume (REV) of the 3D orthogonal reinforcement in order to suggest the internal geometry of wicks as well as the prediction of mechanical and damage properties under axial loading. The applied method of optimization is the one of the sequential quadratic programming (SQP). The mechanical properties are determined by a homogenization study based on the average sum of the rigidities of the constituents and the composite resistance is searched starting from the application of the 3D Tsai-Wu failure criterion. The proposition of the weaving is spotted by the internal geometry represented by the fibers volume fractions, their proportions in each direction and the weaving step of the vertical reinforcement. The results of this study are compared to experimental studies about 3D orthogonal with carbon reinforcements. To cite this article: R. Younes et al., C. R. Mecanique 336 (2008).

  17. Multimaterial magnetically assisted 3D printing of composite materials

    PubMed Central

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-01-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature. PMID:26494528

  18. Multimaterial magnetically assisted 3D printing of composite materials

    NASA Astrophysics Data System (ADS)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.

    2015-10-01

    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  19. Effect of open hole on tensile failure properties of 2D triaxial braided textile composites and tape equivalents

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  20. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  1. Instability and Wave Propagation in Structured 3D Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.

    2014-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.

  2. Nano-Composite Material Development for 3-D Printers

    SciTech Connect

    Satches, Michael Randolph

    2015-12-01

    Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.

  3. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  4. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    NASA Astrophysics Data System (ADS)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  5. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  6. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  7. Prediction of Initiation Site of Destruction of Flat Braided Carbon Fiber Composites Using HTS-SQUID Gradiometer

    NASA Astrophysics Data System (ADS)

    Shinyama, Y.; Hatsukade, Y.; Tanaka, S.; Takai, Y.; Aly-Hassan, M. S.; Nakai, A.; Hamada, H.

    Carbon fiber reinforced polymers (CFRPs) are composite materials with lightweight and high specific strength. As the braided CFRPs have continuous carbon-fiber bundles in their longitudinal direction, they are stronger than conventional CFRPs. In this study, we applied a current-injection-based NDE method using a HTS-SQUID gradiometer to the flat braided CFRPs with and without carbon nanotubes (CNTs), and estimated conditions of the carbon fibers while applying a step-by-step tensile load to the CFRPs. From the results, a possibility to predict an initiation site of the destruction in the braided CFRPs was demonstrated.

  8. Lightweight 3D cellular composites inspired by balsa.

    PubMed

    Malek, Sardar; Raney, Jordan R; Lewis, Jennifer A; Gibson, Lorna J

    2017-03-17

    Additive manufacturing technologies offer new ways to fabricate cellular materials with composite cell walls, mimicking the structure and mechanical properties of woods. However, materials limitations and a lack of design tools have confined the usefulness of 3D printed cellular materials. We develop new carbon fiber reinforced, epoxy inks for 3D printing which result in printed materials with longitudinal Young's modulus up to 57 GPa (exceeding the longitudinal modulus of wood cell wall material). To guide the design of hierarchical cellular materials, we developed a parameterized, multi-scale, finite element model. Computational homogenization based on finite element simulations at multiple length scales is employed to obtain the elastic properties of the material at multiple length scales. Parameters affecting the elastic response of cellular composites, such as the volume fraction, orientation distribution, and aspect ratio of fibers within the cell walls as well as the cell geometry and relative density are included in the model. To validate the model, experiments are conducted on both solid carbon fiber/epoxy composites and cellular structures made from them, showing excellent agreement with computational multi-scale model predictions, both at the cell-wall and at the cellular-structure levels. Using the model, cellular structures are designed and experimentally shown to achieve a specific stiffness nearly as high as that observed in balsa wood. The good agreement between the multi-scale model predictions and experimental data provides confidence in the practical utility of this model as a tool for designing novel 3D cellular composites with unprecedented specific elastic properties.

  9. On the Elasto-Plastic Response of a Large-Tow Triaxial Braided Composite

    SciTech Connect

    Zywicz, E.; O'Brien, M.J.; Nguyen, T.

    2000-06-14

    The elastic-plastic response of a large-tow 0{sup o}/{+-}{theta}{sup o} tri-axially braided composite is numerically simulated to determine the elastic coefficients and post-yield behavior. The ratios of extensional to flexural effective Young's moduli vary from 0.30 to 0.52 in the longitudinal direction and 0.90 to 0.95 in the transverse direction. Measurements on a 2-ply 0{sup o}/{+-} 30{sup o} braid support these numerical trends. The onset of macro yield in uniaxial extension coincides with the experimental values in the longitudinal direction while it is nearly twice the experimental values in the transverse direction. In simple shear, matrix plasticity around the undulations facilitates local rotation of the braiders at the onset of macro yield. Under uniaxial flexure, modest stiffening occurs prior to strain softening in both the principal directions.

  10. Modification of a Macromechanical Finite-Element Based Model for Impact Analysis of Triaxially-Braided Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.

    2010-01-01

    A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally.

  11. Development of hybrid braided composite rods for reinforcement and health monitoring of structures.

    PubMed

    Rana, Sohel; Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A Gomes

    2014-01-01

    In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible.

  12. Development of Hybrid Braided Composite Rods for Reinforcement and Health Monitoring of Structures

    PubMed Central

    Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A. Gomes

    2014-01-01

    In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible. PMID:24574867

  13. Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2013-01-01

    Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid

  14. Investigation on the Bearing Abilities of Three-Dimensional Full Five-Directional Braided Composites with Cut-Edge

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Liu, Zhenguo; Lei, Bing; Huang, Xiang; Li, Xiaokang

    2016-11-01

    The longitudinal tensile experiments of cut-edge effect on the mechanical performance of three-dimensional full five-directional (3DF5D) braided composites were conducted. The specimens involved two different braiding angles and two different cutting ways. Fracture appearance of specimens without cut-edge and cutting along width direction presented flush, while explosive for specimen with cut-edge along thickness direction. The fracture of axis yarns mainly contributed to the damage of specimens. Cut-edge had little influence on the stiffness of 3DF5D braided composites and had approximately 20 % reduction in tensile strength compared with specimens without cut-edge. The periodic boundary conditions under cut-edge and uncut-edge situations were applied to the RVC to simulate the mesoscopic damage mechanism using finite element method. The stress-strain curves and damage evolution nephogram were obtained. The variation of cut-edge effect with the number of inner cells was predicted by superimposing inner cells method, the addition of inner cells could strengthen the performance of 3DF5D braided composites with cut-edge. These results will play an important role in evaluating the mechanical properties of braided materials after cutting.

  15. Elastic properties of large tow 2-D braided composites by numerical and analytical methods

    SciTech Connect

    Nguyen, T D; Zywicz, E

    1998-09-01

    The homogenized extensional and flexural properties of a large tow, two- dimensional, braided carbon-fiber composite lamina were evaluated using analytical and numerical methods. The plane-stress composite lamina was assumed to be periodic in its plane and was modeled with a single representative volume element. The homogenized elastic properties were analytically estimated using beam-theory concepts and upper and lower bound techniques as well as using three-dimensional finite element analyses. The homogenized extensional and bending lamina properties are, in general, distinct properties and are not simply related to each other as in monolithic beams and plates or in composites with very fine and highly periodic microstructures. The importance and cause of distinct homogenized extensional and flexural elastic properties is briefly discussed.

  16. The Effects of Hygrothermal Aging on the Impact Penetration Resistance of Triaxially Braided Composites

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.

    2016-01-01

    An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration

  17. High-strength cellular ceramic composites with 3D microarchitecture

    PubMed Central

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-01-01

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3. PMID:24550268

  18. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  19. A Multi Material Shell Model for the Mechanical Analysis of Triaxial Braided Composites

    NASA Astrophysics Data System (ADS)

    García-Carpintero, A.; Herráez, M.; Xu, J.; S. Lopes, C.; González, C.

    2017-03-01

    An efficient numerical methodology based on a multi material shell (MMS) approximation is proposed in this paper for the analysis of the mechanical behavior of triaxial braided composites subjected to tensile loads. The model is based on a geometrical description of the textile architecture of the material at the Gauss point level of a standard shell including the corresponding yarn geometrical parameters. The mechanical properties at the yarn level were determined from values reported in the literature or by means of micromechanical homogenization of unidirectional fiber reinforced composites. Simulations were carried out on single representative unit cell subjected to periodic boundary conditions and on multiple cell representative volume elements corresponding to the size of the standard width of a tensile specimen. The numerical results were compared with the stress-strain curves obtained experimentally as well as the damage mechanisms progression during deformation captured using radiographs performed on interrupted tests.

  20. Mechanical behavior of a triaxially braided textile composite at high temperature

    NASA Astrophysics Data System (ADS)

    El Mourid, Amine

    The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of

  1. The effects of specimen width on tensile properties of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Pastore, Christopher M.; Bogdanovich, Alexander E.

    1993-01-01

    The objective of this study was to examine the effect of the unit cell architecture on the mechanical response of textile reinforced composite materials. Specifically, the study investigated the effect of unit cell size on the tensile properties of 2D triaxially braided graphite epoxy laminates. The figures contained in this paper reflect the presentation given at the conference. They may be divided into four sections: (1) a short definition of the material system tested; (2) a statement of the problem and a review of the experimental results; (3) experimental results consist of a Moire interferometry study of the strain distribution in the material plus modulus and strength measurements; and (4) a short summary and a description of future work will close the paper.

  2. Fatigue damage characterization of braided and woven fiber reinforced polymer matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Montesano, John

    The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided

  3. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  4. Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading

    DTIC Science & Technology

    2013-07-11

    advanced composites like 3D -OWC. On the other hand, a microscale simulation with resolution of individual fiber filament is impractical due to enormous...REPORT Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The objective of...analysis of 3D woven fiber composites under ballistic loading. Since material behavior is determined by its microstructure, it is essential to

  5. Automated 3D structure composition for large RNAs

    PubMed Central

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J.; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W.

    2012-01-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues. PMID:22539264

  6. Automated 3D structure composition for large RNAs.

    PubMed

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W

    2012-08-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues.

  7. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.

    2008-01-01

    In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria

  8. Modeling of 3-D Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Sullivan, Roy M.; Mital, Subodh K.

    2003-01-01

    Three different approaches are being pursued at the NASA Glenn Research Center to predict the nanostructural behavior of three-dimensional woven ceramic matrix composites. These are: a micromechanics-based approach using W-CEMCAN (Woven Ceramic Matrix Composite Analyzer), a laminate analogy method and a structural frame approach (based on the finite element method). All three techniques are applied to predict the thermomechanical properties of a three-dimensional woven angle interlock C/SiC composite. The properties are predicted for room temperature and 1100 C and the predicted properties are compared to measurements. General observations regarding the three approaches for three-dimensional composite modeling are discussed.

  9. Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties.

    PubMed

    Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong

    2016-07-01

    Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials.

  10. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications

    NASA Astrophysics Data System (ADS)

    Saleh, Mohamed Nasr; Wang, Ying; Yudhanto, Arief; Joesbury, Adam; Potluri, Prasad; Lubineau, Gilles; Soutis, Constantinos

    2016-09-01

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure (~140 %) followed by AI (~105 %) and lastly LTL (~85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints' applications.

  11. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications

    NASA Astrophysics Data System (ADS)

    Saleh, Mohamed Nasr; Wang, Ying; Yudhanto, Arief; Joesbury, Adam; Potluri, Prasad; Lubineau, Gilles; Soutis, Constantinos

    2017-04-01

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure ( 140 %) followed by AI ( 105 %) and lastly LTL ( 85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints' applications.

  12. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    SciTech Connect

    Zhang, Chao

    2015-10-01

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full field strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.

  13. Prostate Mechanical Imaging: 3-D Image Composition and Feature Calculations

    PubMed Central

    Egorov, Vladimir; Ayrapetyan, Suren; Sarvazyan, Armen P.

    2008-01-01

    We have developed a method and a device entitled prostate mechanical imager (PMI) for the real-time imaging of prostate using a transrectal probe equipped with a pressure sensor array and position tracking sensor. PMI operation is based on measurement of the stress pattern on the rectal wall when the probe is pressed against the prostate. Temporal and spatial changes in the stress pattern provide information on the elastic structure of the gland and allow two-dimensional (2-D) and three-dimensional (3-D) reconstruction of prostate anatomy and assessment of prostate mechanical properties. The data acquired allow the calculation of prostate features such as size, shape, nodularity, consistency/hardness, and mobility. The PMI prototype has been validated in laboratory experiments on prostate phantoms and in a clinical study. The results obtained on model systems and in vivo images from patients prove that PMI has potential to become a diagnostic tool that could largely supplant DRE through its higher sensitivity, quantitative record storage, ease-of-use and inherent low cost. PMID:17024836

  14. Composite manufacturing: Simulation of 3-D resin transfer molding

    NASA Astrophysics Data System (ADS)

    Tan, Cheng Ping

    1998-10-01

    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  15. EFFECTS OF HETEROGENEITY ON THE STRENGTH OF 3D COMPOSITES

    SciTech Connect

    M. MAHESH; I. BEYERLEIN; S. PHOENIX

    2001-02-01

    Monte Carlo simulation interpreted with theoretical modeling is used to study the statistical failure modes in unidirectional composites consisting of a hexagonal array of elastic fibers embedded in an elastic matrix. Composite structure is idealized using the chain-of-bundles model in terms of bundles of length {delta} arranged along the fiber direction. Fibers element strengths in {delta}-bundles are taken to be Weibull distributed and Hedgepeth and Van Dyke load sharing is assumed for transverse fiber break arrays. Simulations of {delta}-bundle failure reveal two regimes. When fiber strength variability is low, the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high, cluster formation is suppressed by a more dispersed fiber failure mode. Corresponding to these two cases, they construct simple models that predict the strength distribution of a {delta}-bundle. Their predictions compare very favorably with simulations in the two cases.

  16. Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites

    NASA Astrophysics Data System (ADS)

    Potluri, P.; Hogg, P.; Arshad, M.; Jetavat, D.; Jamshidi, P.

    2012-10-01

    3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance.

  17. Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes

    NASA Astrophysics Data System (ADS)

    Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad

    2016-10-01

    Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.

  18. Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes

    NASA Astrophysics Data System (ADS)

    Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad

    2017-04-01

    Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.

  19. 3D thermography in non-destructive testing of composite structures

    NASA Astrophysics Data System (ADS)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  20. Compressive response and failure of braided textile composites: Experiments and analysis

    NASA Astrophysics Data System (ADS)

    Quek, Shu Ching

    Textile composites have similar mechanical attributes when compared with other fiber reinforced composites, however, because of cost effective manufacturability, they are being considered as a viable alternative for structural applications in the aerospace and automotive industries. This thesis focuses on the compressive response of a 2D flat triaxial braided composite (2DTBC) under conditions that are similar to those encountered when a tubular structural member undergoes axial compressive crush. During crush, the walls of the member are subjected to predominantly biaxial stress state of compression (lengthwise) and tension (widthwise), while, near the end of the tube where the loading is introduced, a combined bending and compression type of biaxial stress state is predominant. Experiments on flat 2DTBCs were carried out under two types of load states: compression/tension (C/T) and bending/compression (B/C). C/T tests were carried out on a special planar biaxial load frame. External loads and full field planar incremental strain fields (the Deltaepsilonx, Deltaepsilon y and Deltagammaxy) were captured during the loading process via digital speckle photography (DSP). Failure mechanisms were investigated and supplemented by post experiment microscopy. Similarly, load and strain data were obtained from the B/C tests, which was based on a novel eccentric Elastica experimental configuration. The experimental results provided fundamental insight into the failure mechanisms of 2DTBCs and motivated the development of robust micromechanics based strength models for the 2DTBCs. In addition, the biaxial experimental data provide grounds for the validation of failure theories that have been conceived on measurements based on uniaxial loading. An analytical model based on constituent properties and textile geometry as input was developed to determine the elastic orthotropic stiffness properties of a 2DTBC. A finite element (FE) based micromechanics model of the 2DTBC was

  1. Investigation of out of plane compressive strength of 3D printed sandwich composites

    NASA Astrophysics Data System (ADS)

    Dikshit, V.; Yap, Y. L.; Goh, G. D.; Yang, H.; Lim, J. C.; Qi, X.; Yeong, W. Y.; Wei, J.

    2016-07-01

    In this study, the 3D printing technique was utilized to manufacture the sandwich composites. Composite filament fabrication based 3D printer was used to print the face-sheet, and inkjet 3D printer was used to print the sandwich core structure. This work aims to study the compressive failure of the sandwich structure manufactured by using these two manufacturing techniques. Two different types of core structures were investigated with the same type of face-sheet configuration. The core structures were printed using photopolymer, while the face-sheet was made using nylon/glass. The out-of-plane compressive strength of the 3D printed sandwich composite structure has been examined in accordance with ASTM standards C365/C365-M and presented in this paper.

  2. Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Dexter, H. Benson

    1997-01-01

    Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.

  3. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  4. Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhou, Chu-wei

    2016-08-01

    For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.

  5. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  6. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation

    NASA Astrophysics Data System (ADS)

    El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.

    2016-03-01

    3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven

  7. Braiding Simulation and Prediction of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pickett, Anthony K.; Sirtautas, Justas; Erber, Andreas

    2009-12-01

    Rotary braiding is a cost effective method to manufacture near net shaped preforms that generally have a closed section and may have an arbitrary shape if braiding is performed over a shaped mandrel. The reinforcement architecture can be varied by the number and spacing of active bobbins, and by the speeds used to ‘take-up’ the braid and move the circumferential bobbins. Analytical methods are available that can reliably predict yarn paths and the final braid meso-structure for simple regular sections, and further analytical methods have been proposed to estimate composite braid elastic mechanical properties. A full simulation chain using the explicit Finite Element (FE) technique is presented for composite braid manufacture and mechanical stiffness prediction of the final composite. First simulation of the braiding process provides detailed information on yarns paths and braid meso-structure, from which Representative Volume Elements (RVE) of the braid may be constructed for analysis of stiffness properties. The techniques are general and can be applied to any braid geometry. A specific problem of meshing the yarn structure and interspersed resin volumes is overcome using conventional solid elements for the yarns and Smooth Particle Hydrodynamics for the resin, with link element to join the two constituents. Details of the background theory, braid simulation methods, meso- model analysis and validation again analytical and test measurements are presented.

  8. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  9. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  10. Development of a Subcell Based Modeling Approach for Modeling the Architecturally Dependent Impact Response of Triaxially Braided Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.

    2016-01-01

    Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work

  11. Compressive Behavior of 3D Woven Composite Stiffened Panels: Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Pan, Ruqin; Li, Chao; Cai, Deng'an; Wang, Xiaopei

    2016-10-01

    The structural behavior and damage propagation of 3D woven composite stiffened panels with different woven patterns under axial-compression are here investigated. The panel is 2.5D interlock woven composites (2.5DIWC), while the straight-stiffeners are 3D woven orthogonal composites (3DWOC). They are coupled together with the Z-fibers from the stiffener passing straight thought the thickness of the panel. A "T-shape" model, in which the fiber bundle structure and resin matrix are drawn out to simulate the real situation of the connection area, is established to predict elastic constants and strength of the connection region. Based on Hashin failure criterion, a progressive damage model is carried out to simulate the compressive behavior of the stiffened panel. The 3D woven composite stiffened panels are manufactured using RTM process and then tested. A good agreement between experimental results and numerical predicted values for the compressive failure load is obtained. From initial damage to final collapse, the panel and stiffeners will not separate each other in the connection region. The main failure mode of 3D woven composite stiffened panels is compressive failure of fiber near the loading end corner.

  12. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.

    PubMed

    Ho, Chee Meng Benjamin; Mishra, Abhinay; Lin, Pearlyn Teo Pei; Ng, Sum Huan; Yeong, Wai Yee; Kim, Young-Jin; Yoon, Yong-Jin

    2017-04-01

    Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well-defined structures of polycaprolactone (PCL) and PCL- carbon nanotube (PCL-CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering.

  13. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  14. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; OBrien, T. Kevin

    2000-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  15. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  16. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  17. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites.

  18. Effects of preform architecture on modulus and strength of 2-D triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Naik, Rajiv; Minguet, Pierre J.

    1995-01-01

    Laminates formed using braided fibrous preforms have been extensively investigated during the course of the past few years as alternatives to unidirectional prepreg tape systems. This paper focused on one aspect of that work. It defined the role of the fibrous preform architecture in controlling a laminate's mechanical properties. The presentation was divided into four sections as the outline listed above illustrates. The presentation began with a brief introduction which defined the objectives of the study and detailed the materials studied. This was followed by a review of empirical test results. The materials' moduli and strengths were measured in both tension and compression. Their shear moduli were also experimentally determined. The review of the empirical data comprised the bulk of the presentation. A comparison of the experimental data to results predicted analytically was then presented. The presentation concluded with a few summary remarks. The specimens studied in this investigation featured 2-D triaxially braided AS4 graphite fiber preforms impregnated with Shell 1895 epoxy resin.

  19. Advances in 3-dimensional braiding

    NASA Technical Reports Server (NTRS)

    Thaxton, Cirrelia; Reid, Rona; El-Shiekh, Aly

    1992-01-01

    This paper encompasses an overview of the history of 3-D braiding and an in-depth survey of the most recent, technological advances in machine design and implementation. Its purpose is to review the major efforts of university and industry research and development into the successful machining of this textile process.

  20. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction.

    PubMed

    Yang, Jian; Cong, Weijian; Chen, Yang; Fan, Jingfan; Liu, Yue; Wang, Yongtian

    2014-02-21

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm.

  1. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  2. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  3. Two-dimensional evaluation of 3D needled Cf/SiC composite fiber bundle surface

    NASA Astrophysics Data System (ADS)

    Wei, Jinhua; Lin, Bin; Cao, Xiaoyan; Zhang, Xiaofeng; Fang, Sheng

    2015-11-01

    The variations of fiber bundle surface microstructure have direct influence on the material performance, especially the friction and wear properties. Therefore, fiber bundle is the smallest evaluation unit of Cf/SiC composite surface. However, due to the anisotropy and inhomogeneity of Cf/SiC composite, it is difficult to evaluate the surface characteristics. Researchers think that two-dimensional evaluation is not suitable for the composites surface assessment any more because of its complex composition and varied surface structure. In this paper, a novel method is introduced for the evaluation of 3D needled Cf/SiC composite fiber bundle surface. On the level of Cf/SiC composite fiber bundle surface, two-dimensional evaluation method is adopted, with which the fiber bundle surface quality can be quantitatively evaluated by the two-dimensional surface roughness Ra. As long as the extracted surface profiles averagely distributed on Cf/SiC composite fiber bundle surface, with appropriate sampling length and sampling number, the mean value of Ra can estimate the whole surface roughness, thus reflecting the roughness degree of surface accurately. This study not only benefits the detection of 3D needled Cf/SiC composite fiber bundle surface quality, and lays a foundation on the evaluation of material functional features in further. And it corresponds to the convenient application in engineering practice.

  4. Damage Accumulation in SiC/SiC Composites with 3D Architectures

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.

    2003-01-01

    The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.

  5. Interface Strength in NiAl-Mo Composites from 3D X-ray Microdiffraction

    SciTech Connect

    Barabash, Rozaliya; Bei, Hongbin; Gao, Yanfei; Ice, Gene E

    2011-01-01

    The depth-dependent strain gradients near buried interfaces in a model system of NiAl-Mo composite were nondestructively probed with 3-D X-ray microdiffraction. Coupled with micromechanical analysis, our study shows that the relaxation of the residual thermal strains in the NiAl-Mo composites results in the formation of a near-surface 'slip zone' with large strain gradients in both the reinforcing Mo fibers and NiAl matrix. Based on these results an approach to calculate the fiber-matrix interface strength for composite materials is suggested.

  6. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  7. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  8. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  9. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Jin; Cai, Deng'an; Zhou, Guangming

    2016-12-01

    Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

  10. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  11. Shear induced alignment of short nanofibers in 3D printed polymer composites

    NASA Astrophysics Data System (ADS)

    Erdem Yunus, Doruk; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-01

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material’s tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  12. Shear induced alignment of short nanofibers in 3D printed polymer composites.

    PubMed

    Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-09

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  13. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  14. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  15. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    PubMed Central

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-01-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites. PMID:26940381

  16. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    NASA Astrophysics Data System (ADS)

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-03-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  17. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites.

    PubMed

    Castles, F; Isakov, D; Lui, A; Lei, Q; Dancer, C E J; Wang, Y; Janurudin, J M; Speller, S C; Grovenor, C R M; Grant, P S

    2016-03-04

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity-which are required in important technology sectors such as electronics and communications-may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6-8.7 and loss tangents in the range 0.005-0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  18. 3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION

    PubMed Central

    Petersen, Richard; Liu, Perng-Ru

    2016-01-01

    Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001). PMID:27642198

  19. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    PubMed

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016.

  20. Application of robust color composite fringe in flip-chip solder bump 3-D measurement

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng

    2017-04-01

    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  1. 3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.

    PubMed

    Petersen, Richard; Liu, Perng-Ru

    2016-05-01

    Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).

  2. A Shell/3D Modeling Technique for Delaminations in Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    1999-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provide a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with plate or shell finite elements. For simple double cantilever beam (DCB), end notched flexure (ENF), and single leg bending (SLB) specimens, mixed mode energy release rate distributions were computed across the width from nonlinear finite element analyses using the virtual crack closure technique. The analyses served to test the accuracy of the shell/3D technique for the pure mode I case (DCB), mode II case (ENF) and a mixed mode I/II case (SLB). Specimens with a unidirectional layup where the delamination is located between two 0 plies, as well as a multidirectional layup where the delamination is located between two non-zero degree plies, were simulated. For a local 3D model extending to a minimum of about three specimen thicknesses in front of and behind the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  3. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    NASA Astrophysics Data System (ADS)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  4. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  5. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  6. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  7. A Periosteum-Inspired 3D Hydrogel-Bioceramic Composite for Enhanced Bone Regeneration .

    PubMed

    Chun, Yong Yao; Wang, Jun Kit; Tan, Nguan Soon; Chan, Peggy Puk Yik; Tan, Timothy Thatt Yang; Choong, Cleo

    2016-02-01

    A 3D injectable hydrogel-bioceramic composite consisting of gelatin-3-(4-hydroxyphenyl) propionic acid (Gtn-HPA) and carboxymethyl cellulose-tyramine (CMC-Tyr), incorporated with fish scale-derived calcium phosphate (CaP), is developed for bone applications. The hydrogel-bioceramic composite has significantly improved the elastic modulus compared to the non-filled hydrogel, of which the addition of 10 w/v% CaP showed zero order fluorescein isothiocyanate (FITC)-dextran release profile and a significantly higher proliferation rate of encapsulated cells. All the samples promote the nucleation and growth of CaP minerals when exposed to 1× SBF. Overall, the hydrogel-bioceramic composite with 10 w/v% CaP can potentially be used as a periosteum-mimicking membrane to facilitate bone regeneration.

  8. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    PubMed

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  9. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    DOE PAGES

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorptionmore » capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  10. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    SciTech Connect

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; Fiedler, B.; Smazna, D.; Adelung, R.; Schulte, K.

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.

  11. 3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite.

    PubMed

    Misra, Santosh K; Ostadhossein, Fatemeh; Babu, Ramya; Kus, Joseph; Tankasala, Divya; Sutrisno, Andre; Walsh, Kathleen A; Bromfield, Corinne R; Pan, Dipanjan

    2017-03-21

    Patients with percutaneous coronary intervention generally receive either bare metal stents or drug-eluting stents to restore the normal blood flow. However, due to the lack of stent production with an individual patient in mind, the same level of effectiveness may not be possible in treating two different clinical scenarios. This study introduces for the first time the feasibility of a patient-specific stenting process constructed from direct 3D segmentation of medical images using direct 3D printing of biodegradable polymer-graphene composite with dual drug incorporation. A biodegradable polymer-carbon composite is prepared doped with graphene nanoplatelets to achieve controlled release of combinatorics as anticoagulation and antirestenosis agents. This study develops a technology prototyped for personalized stenting. An in silico analysis is performed to optimize the stent design for printing and its prediction of sustainability under force exerted by coronary artery or blood flow. A holistic approach covering in silico to in situ-in vivo establishes the structural integrity of the polymer composite, its mechanical properties, drug loading and release control, prototyping, functional activity, safety, and feasibility of placement in coronary artery of swine.

  12. Electromagnetic and absorbing property of CIPs/resin composite using the 3D forming process

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Liang, Zichang; Wang, Xiaobing; Yuan, Liming; Li, Xinghao

    2016-08-01

    The absorbing composite filled with the flaky carbonyl iron particles (CIPs) were prepared using a three-dimensional (3D) forming process, in which the forming powder was fabricated using a milling process. The surface morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer, and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 4-18 GHz. With the variable thickness was set, the reflection loss (RL) was simulated to analyze the absorbing property of the composite. The results showed that the forming powder was uniformly dispersed in the absorber, and the saturation magnetization and the grain structure of the CIPs in the forming powder nearly did not change in the milling process. With the same volume content CIPs added, the average permittivity and the imaginary permeability of the samples added the powder was smaller than the directly mixing sample due to the aggregation effect. The RL results showed that the absorbing composites using the 3D forming process with thickness 6 or 8 mm had an better absorbing property (minimum RL -13.58 and -21.85 dB) in 4-18 GHz.

  13. 3D printing of composite tissue with complex shape applied to ear regeneration.

    PubMed

    Lee, Jung-Seob; Hong, Jung Min; Jung, Jin Woo; Shim, Jin-Hyung; Oh, Jeong-Hoon; Cho, Dong-Woo

    2014-06-01

    In the ear reconstruction field, tissue engineering enabling the regeneration of the ear's own tissue has been considered to be a promising technology. However, the ear is known to be difficult to regenerate using traditional methods due to its complex shape and composition. In this study, we used three-dimensional (3D) printing technology including a sacrificial layer process to regenerate both the auricular cartilage and fat tissue. The main part was printed with poly-caprolactone (PCL) and cell-laden hydrogel. At the same time, poly-ethylene-glycol (PEG) was also deposited as a sacrificial layer to support the main structure. After complete fabrication, PEG can be easily removed in aqueous solutions, and the procedure for removing PEG has no effect on the cell viability. For fabricating composite tissue, chondrocytes and adipocytes differentiated from adipose-derived stromal cells were encapsulated in hydrogel to dispense into the cartilage and fat regions, respectively, of ear-shaped structures. Finally, we fabricated the composite structure for feasibility testing, satisfying expectations for both the geometry and anatomy of the native ear. We also carried out in vitro assays for evaluating the chondrogenesis and adipogenesis of the cell-printed structure. As a result, the possibility of ear regeneration using 3D printing technology which allowed tissue formation from the separately printed chondrocytes and adipocytes was demonstrated.

  14. Individual versus collective fibroblast spreading and migration: regulation by matrix composition in 3D culture.

    PubMed

    Miron-Mendoza, Miguel; Lin, Xihui; Ma, Lisha; Ririe, Peter; Petroll, W Matthew

    2012-06-01

    Extracellular matrix (ECM) supplies both physical and chemical signals to cells and provides a substrate through which fibroblasts migrate during wound repair. To directly assess how ECM composition regulates this process, we used a nested 3D matrix model in which cell-populated collagen buttons were embedded in cell-free collagen or fibrin matrices. Time-lapse microscopy was used to record the dynamic pattern of cell migration into the outer matrices, and 3D confocal imaging was used to assess cell connectivity and cytoskeletal organization. Corneal fibroblasts stimulated with PDGF migrated more rapidly into collagen as compared to fibrin. In addition, the pattern of fibroblast migration into fibrin and collagen ECMs was strikingly different. Corneal fibroblasts migrating into collagen matrices developed dendritic processes and moved independently, whereas cells migrating into fibrin matrices had a more fusiform morphology and formed an interconnected meshwork. A similar pattern was observed when using dermal fibroblasts, suggesting that this response is not unique to corneal cells. We next cultured corneal fibroblasts within and on top of standard collagen and fibrin matrices to assess the impact of ECM composition on the cell spreading response. Similar differences in cell morphology and connectivity were observed – cells remained separated on collagen but coalesced into clusters on fibrin. Cadherin was localized to junctions between interconnected cells, whereas fibronectin was present both between cells and at the tips of extending cell processes. Cells on fibrin matrices also developed more prominent stress fibers than those on collagen matrices. Importantly, these spreading and migration patterns were consistently observed on both rigid and compliant substrates, thus differences in ECM mechanical stiffness were not the underlying cause. Overall, these results demonstrate for the first time that ECM protein composition alone (collagen vs. fibrin) can induce

  15. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.

    PubMed

    Inzana, Jason A; Olvera, Diana; Fuller, Seth M; Kelly, James P; Graeve, Olivia A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2014-04-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1-2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing.

  16. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration

    PubMed Central

    Inzana, Jason A.; Olvera, Diana; Fuller, Seth M.; Kelly, James P.; Graeve, Olivia A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. PMID:24529628

  17. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  18. Higher Order Finite Element Methods for Compositional Simulation in 3D Multiphase Multicomponent Flow

    NASA Astrophysics Data System (ADS)

    Shahraeeni, E.; Firoozabadi, A.

    2012-12-01

    We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.

  19. 3D Simulation of the Growth of Alloy Semiconductor Quantum Dots Considering Morphological and Compositional Coupling

    NASA Astrophysics Data System (ADS)

    Guo, Junyan; Zhang, Yong-Wei; Narayanaswamy, Sridhar

    2012-02-01

    Fabrication of quantum dots (QDs) with high density may be realized by self-assembly via heteroepitaxial growth of thin films. Since the electronic and optoelectronic properties of QDs are sensitive to size, morphology, strain and especially composition, it is of great importance to control their composition profiles and morphology, and engineer the strain in them. Since the growth is a dynamic process, which carries out via surface diffusion driven primarily by strain relaxation and entropy change due to chemical intermixing, a strong coupling between morphological and composition evolutions during this process leads to a rather complex dynamics, which has not been fully understood. In this work, a 3-D finite element model is developed, which is capable of modeling the formation, self-assembly and coarsening of hetero-epitaxial alloy islands by considering the coupling of morphological and compositional evolution. Several interesting experimental observations, such as fast coarsening kinetics; asymmetries in composition profile and island shape; lateral motion of alloy islands have been observed in our simulations. Our model predictions have painted a rather complete picture for the entire dynamic evolution during the growth of nanoscale heteroepitaxial islands.

  20. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  1. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  2. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  3. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  4. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  5. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  6. A Shell/3D Modeling Technique for the Analyses of Delaminated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; OBrien, T. Kevin

    2001-01-01

    A shell/3D modeling technique was developed for which a local three-dimensional solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local three-dimensional model and the global structural model which has been meshed with plate or shell finite elements. Double Cantilever Beam (DCB), End Notched Flexure (ENF), and Single Leg Bending (SLB) specimens were modeled using the shell/3D technique to study the feasibility for pure mode I (DCB), mode II (ENF) and mixed mode I/II (SLB) cases. Mixed mode strain energy release rate distributions were computed across the width of the specimens using the virtual crack closure technique. Specimens with a unidirectional layup and with a multidirectional layup where the delamination is located between two non-zero degree plies were simulated. For a local three-dimensional model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  7. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.

    2007-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.

  8. Correlative Nanoscale 3D Imaging of Structure and Composition in Extended Objects

    PubMed Central

    Xu, Feng; Helfen, Lukas; Suhonen, Heikki; Elgrabli, Dan; Bayat, Sam; Reischig, Péter; Baumbach, Tilo; Cloetens, Peter

    2012-01-01

    Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D) resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies. PMID:23185554

  9. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    NASA Astrophysics Data System (ADS)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers

  10. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    PubMed Central

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-01-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields. PMID:26926357

  11. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-02-01

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields.

  12. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique.

    PubMed

    Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-02-29

    Complex fabrication process and expensive materials have restricted the development of smart three-dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight structures by triggering shape transformation from thin printed composite sheets. The release of the internal strain in printed polymer materials enables the printed composite sheet to keep flat under heating and transform into a designed 3D configuration when cooled down to room temperature. The 3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate smart 3D lightweight structures, opening an avenue for possible applications in engineering fields.

  13. Tibetan Braid

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On October 13, 2000, the Expedition 3 crew of the International Space Station, high over Tibet, took this interesting photo of the Brahmaputra River. This mighty Asian river carves a narrow west-east valley between the Tibetan Plateau to the north and the Himalaya Mountains to the south, as it rushes eastward for more than 1500 km in southwestern China. This 15-km stretch is situated about 35 km south of the ancient Tibetan capital of Lhasa where the river flow becomes intricately braided as it works and reworks its way through extensive deposits of erosional material. This pattern is indicative of a combination heavy sediment discharge from tributaries and reduction of the river's flow from either a change in gradient or perhaps even climate conditions over the watershed. The light color of the deposits and the milky color of the water is attributed to presence of glacial 'flour,' the fine material created by erosion from glaciers. Besides erosion by water and ice, this scene also depicts features created by wind. Note the delicate field of dunes on the alluvial fan toward the right edge of the image. The riverbed here is at an elevation of over 3,500 m, and with the long west-east extent of this barren valley, strong, persistent westerly winds also move and shape these deposits. Photos such as this one bring immediate visual understanding and appreciation of natural processes in some of the most remote locations on Earth. Image ISS003-E-6632, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  14. Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique

    PubMed Central

    Belter, Joseph T.; Dollar, Aaron M.

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications. PMID:25880807

  15. Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge.

    PubMed

    Li, Wei; Swain, Michael V; Li, Qing; Steven, Grant P

    2005-07-01

    An automated 3D finite element (FE) modeling procedure for direct fiber reinforced dental bridge is established on the basis of computer tomography (CT) scan data. The model presented herein represents a two-unit anterior cantilever bridge that includes a maxillary right incisor as an abutment and a maxillary left incisor as a cantilever pontic bonded by adhesive and reinforced fibers. The study aims at gathering fundamental knowledge for design optimization of this type of innovative composite dental bridges. To promote the automatic level of numerical analysis and computational design of new dental biomaterials, this report pays particular attention to the mathematical modeling, mesh generation, and validation of numerical models. To assess the numerical accuracy and to validate the model established, a convergence test and experimental verification are also presented.

  16. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

    PubMed

    Belter, Joseph T; Dollar, Aaron M

    2015-01-01

    In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

  17. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.

  18. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  19. Development of braided rope engine seals

    NASA Technical Reports Server (NTRS)

    Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.

    1994-01-01

    In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.

  20. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite reinforcements. The method is particularly suitable regarding 3D textile reinforcements for which internal geometries are numerous and complex. The approach used for the separation of the yarns in different directions is specialized because the fibres flow in three-dimensional space. An analysis of the image's texture is performed. A hyperelastic model developed for fibre bundles is used for the simulation of the deformation of the 3D reinforcement.

  1. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic

  2. Experimental investigation of braided fabric forming

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Soulat, Damien; Legrand, Xavier; Zemni, Lilia; Jacquot, Pierre-Baptiste

    2016-10-01

    Woven and braided textile structures are largely used as the composite reinforcements. Forming of the continuous fibre reinforcements and thermoplastic resin commingled yarns can be performed at room temperature. The "cool" forming stage is well-controlled and more economical compared to thermoforming. Many studies have been addressed for carbon and glass fibres / thermoplastic commingled yarns reinforced composite forming for woven structure. On the contrary, few research works has deal with the natural fibre reinforced textile forming and none concerns the braided fabrics forming. In this present work, the Flax/Polyamide 12 commingled yarns are used to produce braided fabric and then to analyze their deformability behaviour.

  3. Study of strength properties of ceramic composites with soft filler based on 3D computer simulation

    NASA Astrophysics Data System (ADS)

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.

    2016-11-01

    The movable cellular automaton method which is a computational method of particle mechanics is applied to simulating uniaxial compression of 3D specimens of a ceramic composite. Soft inclusions were considered explicitly by changing the sort (properties) of automata selected randomly from the original fcc packing. The distribution of inclusions in space, their size, and the total fraction were varied. For each value of inclusion fraction, there were generated several representative specimens with individual pore position in space. The resulting magnitudes of the elastic modulus and strength of the specimens were scattered and well described by the Weibull distribution. We showed that to reveal the dependence of the elastic and strength properties of the composite on the inclusion fraction it is much better to consider the mathematical expectation of the corresponding Weibull distribution, rather than the average of the values for the specimens of the same inclusion fraction. It is shown that the relation between the mechanical properties of material and its inclusion fraction depends significantly on the material structure. Namely, percolation transition from isolated inclusions to interconnected clusters of inclusions strongly manifests itself in the dependence of strength on the fraction of inclusions. Thus, the curve of strength versus inclusion fraction fits different equations for a different kind of structure.

  4. Multi-contrast 3D X-ray imaging of porous and composite materials

    SciTech Connect

    Sarapata, Adrian; Herzen, Julia; Ruiz-Yaniz, Maite; Zanette, Irene; Rack, Alexander; Pfeiffer, Franz

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  5. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  6. A facile one-step process for 3D N-doped noncovalent functionalization PS/rGO composites

    NASA Astrophysics Data System (ADS)

    Huang, Weiqi; Wang, Hua; Su, Zheng; Tian, Konghu; Ye, Xianzhu; Bao, Chao; Guo, Yulan; He, Jing; Tian, Xingyou

    2017-03-01

    This work reports a simple, versatile and facile one-step process to prepare the three-dimensional (3D) N-doped noncovalent functionalization polystyrene/reduced graphene oxide (PS/rGO) composites. In this, N, N-dimethylformamide (DMF) acts as the solvent, reducing agent, and more importantly, the N-doping agent. Various measurements have been carried out to characterize the structure and morphology of PS/rGO composites, in particular for the excellent electrical conductivity of PS/rGO composites compared with virgin PS, which was attributed to the 3D pores structure and the N-doping. With regards to the unique properties of graphene, the 3D framework structure and the N-doping, this composite material has great potential properties such as electro-magnetic interference shielding effectiveness (EMI) to be explored.

  7. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.

    PubMed

    Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz

    2016-08-01

    3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology.

  8. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  9. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; ...

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  10. Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

    NASA Astrophysics Data System (ADS)

    Balčiūnas, Evaldas; Lukoševičius, Laurynas; Mackevičiūtė, Dovilė; Rekštytė, Sima; Rutkūnas, Vygandas; Paipulas, Domas; Stankevičiūtė, Karolina; Baltriukienė, Daiva; Bukelskienė, Virginija; Piskarskas, Algis P.; Malinauskas, Mangirdas

    2014-03-01

    We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.

  11. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  12. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core-shell structure.

    PubMed

    Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok

    2013-10-21

    Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure.

  13. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    NASA Astrophysics Data System (ADS)

    Hoshi, Toru; Matsuno, Ryosuke; Sawaguchi, Takashi; Konno, Tomohiro; Takai, Madoka; Ishihara, Kazuhiko

    2008-11-01

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties.

  14. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    PubMed

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement.

  15. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Zhang, Peng; Huo, Jinxing; Ericson, Fredric; Strømme, Maria; Nyholm, Leif

    2014-10-01

    It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g-1, corresponding to specific electrode capacitances of up to ~185 F g-1 based on the weight of the electrode, and 5.5 F cm-2 at a current density of 2 mA cm-2. After 3000 charge/discharge cycles at 30 mA cm-2, the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  16. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  17. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  18. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications.

    PubMed

    Wang, Zhaohui; Tammela, Petter; Zhang, Peng; Huo, Jinxing; Ericson, Fredric; Strømme, Maria; Nyholm, Leif

    2014-11-07

    It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g(-1), corresponding to specific electrode capacitances of up to ∼185 F g(-1) based on the weight of the electrode, and 5.5 F cm(-2) at a current density of 2 mA cm(-2). After 3000 charge/discharge cycles at 30 mA cm(-2), the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.

  19. Using a magnetite/thermoplastic composite in 3D printing of direct replacements for commercially available flow sensors

    NASA Astrophysics Data System (ADS)

    Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.

    2014-09-01

    Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.

  20. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.

    PubMed

    Park, Jisun; Lee, Sang Jin; Chung, Solchan; Lee, Jun Hee; Kim, Wan Doo; Lee, Jae Young; Park, Su A

    2017-02-01

    Cell-printing techniques that can construct three-dimensional (3D) structures with biocompatible materials and cells are of great interest for various biomedical applications, such as tissue engineering and drug-screening studies. For successful cell-printing with cells, bioinks are critical for both the processability of printing and the viability of printed cells. However, the influence of composition on 3D bio-printing with cells has not been well explored. In this study, we investigated different compositions of alginate bioinks by varying the concentrations of high molecular weight alginate (High Alg) and low molecular weight alginate (Low Alg). Bioinks of 3wt% alginate containing High Alg alone or a 1:2 (Low Alg:High Alg) composite allowed for the construction of 3D scaffolds with good processability and shapes. Cell-printing with fibroblasts and in vitro culture studies revealed good viability and growth of the printed cells after up to 7days of culture. Bioinks prepared with High and Low Alg at a 2:1 ratio exhibited better cell growth compared with those of other compositions. This study progresses the design and applications of alginate-based bioinks for cell-printing platforms in soft tissue engineering.

  1. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  2. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    PubMed

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  3. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  4. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites

    NASA Astrophysics Data System (ADS)

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao

    2017-03-01

    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks.

  5. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites

    PubMed Central

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao

    2017-01-01

    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks. PMID:28272436

  6. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.

    PubMed

    Kang, Laura Hockaday; Armstrong, Patrick A; Lee, Lauren Julia; Duan, Bin; Kang, Kevin Heeyong; Butcher, Jonathan Talbot

    2017-02-01

    Photocrosslinking hydrogel technologies are attractive for the biofabrication of cardiovascular soft tissues, but 3D printing success is dependent on multiple variables. In this study we systematically test variables associated with photocrosslinking hydrogels (photoinitiator type, photoinitiator concentration, and light intensity) for their effects on encapsulated cells in an extrusion 3D printable mixture of methacrylated gelatin/poly-ethylene glycol diacrylate/alginate (MEGEL/PEGDA3350/alginate). The fabrication conditions that produced desired hydrogel mechanical properties were compared against those that optimize aortic valve or mesenchymal stem cell viability. In the 3D hydrogel culture environment and fabrication setting studied, Irgacure can increase hydrogel stiffness with a lower proportional decrease in encapsulated cell viability compared to VA086. Human adipose derived mesenchymal stem cells (HADMSC) survived increasing photoinitiator concentrations in photo-encapsulation conditions better than aortic valve interstitial cells (HAVIC) and aortic valve sinus smooth muscle cells (HASSMC). Within the range of photo-encapsulation fabrication conditions tested with MEGEL/PEGDA/alginate (0.25-1.0% w/v VA086, 0.025-0.1% w/v Irgacure 2959, and 365 nm light intensity 2-136 mW/cm(2)), the highest viabilities achieved were 95, 93, and 93% live for HASSMC, HAVIC, and HADMSC respectively. These results identify parameter combinations that optimize cell viability during 3D printing for multiple cell types. These results also indicate that general oxidative stress is higher in photocrosslinking conditions that induce lower cell viability. However, suppressing this increase in intracellular oxidative stress did not improve cell viability, which suggests that other stress mechanisms also contribute.

  7. Self-Assembly of 3-D Multifunctional Ceramic Composites for Photonics and Sensors

    DTIC Science & Technology

    2011-05-02

    discoveries supported by our earlier MURI work. Specific applications include new IR photonic crystal based filters for multispectral imaging, optical ...Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis and P. V. Braun: Multidimensional Architectures for Functional Optical Devices, Advanced Materials, 22...P.V. Braun, “Templated Growth of and Optical Emission from Single Crystal GaAs 3D Photonic Crystals,” SPIE Photonics West, January 2010

  8. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties.

    PubMed

    Yuan, Jingjing; Zhu, Junwu; Bi, Huiping; Meng, Xiaoqian; Liang, Shiming; Zhang, Lili; Wang, Xin

    2013-08-21

    Three-dimensional (3D) graphene-based composite materials have attracted increasing attention, owing to their specific surface area, high conductivity and electronic interactions. Here, we report a convenient route to fabricate a 3D Co3O4/Graphene Hydrogel (CGH) composite as an electrode material for supercapacitors. Utilizing the gelation of a graphene oxide dispersion enables the anchoring of Co3O4 nanoparticles on the graphene sheet surfaces and formation of the hydrogel simultaneously. Remarkably, the spherical Co3O4 particles can serve as spacers to keep the neighboring graphene sheets separated. The CGH exhibits a high specific capacitance (Cs) of 757.5 F g(-1) at a current density of 0.5 A g(-1), indicating its potential application as an electrode material for supercapacitors.

  9. A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite

    NASA Astrophysics Data System (ADS)

    Jaya Christiyan, K. G.; Chandrasekhar, U.; Venkateswarlu, K.

    2016-02-01

    Additive Manufacturing (AM) technologies have been emerged as a fabrication method to obtain engineering components within a short span of time. Desktop 3D printing, also referred as additive layer manufacturing technology is one of the powerful method of rapid prototyping (RP) technique that fabricates three dimensional engineering components. In this method, 3D digital CAD data is converted directly to a product. In the present investigation, ABS + hydrous magnesium silicate composite was considered as the starting material. Mechanical properties of ABS + hydrous magnesium silicate composite material were evaluated. ASTM D638 and ASTM D760 standards were followed for carrying out tensile and flexural tests, respectively. Samples with different layer thickness and printing speed were prepared. Based on the experimental results, it is suggested that low printing speed, and low layer thickness has resulted maximum tensile and flexural strength, as compared to all the other process parameters samples.

  10. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  11. Advancement of braiding/resin transfer molding from commercial to aerospace applications

    NASA Astrophysics Data System (ADS)

    Sharpless, Garrett C.

    1991-03-01

    The braiding process, which produces dry fiber preforms fabricated to net shape for subsequent molding, and its compatible marriage to the resin transfer molding (RTM) process is producing a wide variety of composite products for commercial, recreational, and aircraft/aerospace applications. The design and fabrication of net-shaped braided preforms is the first step in the manufacture of braided/RTM composite parts. In most cases, braiding is the process of choice because the desired preform shape is usually complex. The stability of a braided structure makes it ideal for use in a subsequent RTM operation. The problems and techniques involved in the braiding of various complex preforms are discussed. The RTM process is then examined, along with its compatibility and flexibility with the braiding process in manufacturing. Examples are then presented of structurally demanding applications for braided/RTM composites in the aircraft and aerospace industries.

  12. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-03-07

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  13. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    NASA Astrophysics Data System (ADS)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  14. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    PubMed Central

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  15. Estimating the composition of hydrates from a 3D seismic dataset near Penghu Canyon on Chinese passive margin offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, Wu-Cheng

    2016-04-01

    A bottom-simulating reflector (BSR), representing the base of the gas hydrate stability zone, can be used to estimate geothermal gradients under seafloor. However, to derive temperature estimates at the BSR, the correct hydrate composition is needed to calculate the phase boundary. Here we applied the method by Minshull and Keddie to constrain the hydrate composition and the pore fluid salinity. We used a 3D seismic dataset offshore SW Taiwan to test the method. Different from previous studies, we have considered the effects of 3D topographic effects using finite element modelling and also depth-dependent thermal conductivity. Using a pore water salinity of 2% at the BSR depth as found from the nearby core samples, we successfully used 99% methane and 1% ethane gas hydrate phase boundary to derive a sub-bottom depth vs. temperature plot which is consistent with the seafloor temperature from in-situ measurements. The results are also consistent with geochemical analyses of the pore fluids. The derived regional geothermal gradient is 40.1oC/km, which is similar to 40oC/km used in the 3D finite element modelling used in this study. This study is among the first documented successful use of Minshull and Keddie's method to constrain seafloor gas hydrate composition.

  16. Fabrication and characterization of nanoclay modified PMR type polyimide composites reinforced with 3D woven basalt fabric

    NASA Astrophysics Data System (ADS)

    Xie, Jianfei; Qiu, Yiping

    2009-07-01

    Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.

  17. A Novel Method for Dynamic Short-Beam Shear Testing of 3D Woven Composites

    DTIC Science & Technology

    2011-08-11

    Yip MC, Lin JL (1998) Effects of low-energy impact on the fatigue behavior of carbon /epoxy composites. Composites Science and Technology 58(1):1–8 5...Compos- ite Materials 42(20):2111–2122 12. Davis DC, Whelan BD (2012) An experimental study of interlam- inar shear fracture toughness of a nanotube ...delamination toughness of stitched graphite/epoxy textile composites. Composites Science and Technology 57(7):729–737 15. Chen L, Ifju PG, Sankar BV (2001) A

  18. Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.

    PubMed

    Liu, Wenwen; Li, Jingde; Feng, Kun; Sy, Abel; Liu, Yangshuai; Lim, Lucas; Lui, Gregory; Tjandra, Ricky; Rasenthiram, Lathankan; Chiu, Gordon; Yu, Aiping

    2016-10-05

    Li-ion hybrid supercapacitors (LIHSs) have recently attracted increasing attention as a new and promising energy storage device. However, it is still a great challenge to construct novel LIHSs with high-performance due to the majority of battery-type anodes retaining the sluggish kinetics of Li-ion storage and most capacitor-type cathodes with low specific capacitance. To solve this problem, 3D graphene-wrapped MoO3 nanobelt foam with the unique porous network structure has been designed and prepared as anode material, which delivers high capacity, improved rate performance, and enhanced cycle stability. First-principles calculation reveals that the combination of graphene dramatically reduces the diffusion energy barrier of Li(+) adsorbed on the surface of MoO3 nanobelt, thus improving its electrochemical performance. Furthermore, 3D graphene-wrapped polyaniline nanotube foam derived carbon is employed as a new type of capacitor-type cathode, demonstrating high specific capacitance, good rate performance, and long cycle stability. Benefiting from these two graphene foam-enhanced materials, the constructed LIHSs show a wide operating voltage range (3.8 V), a long stable cycle life (90% capacity retention after 3000 cycles), a high energy density (128.3 Wh·kg(-1)), and a high power density (13.5 kW·kg(-1)). These encouraging performances indicate that the obtained LIHSs may have promising prospect as next-generation energy-storage devices.

  19. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  20. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-03

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  1. Multi-scale Characterisation of the 3D Microstructure of a Thermally-Shocked Bulk Metallic Glass Matrix Composite

    PubMed Central

    Zhang, Wei; Bodey, Andrew J.; Sui, Tan; Kockelmann, Winfried; Rau, Christoph; Korsunsky, Alexander M.; Mi, Jiawei

    2016-01-01

    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods. PMID:26725519

  2. Multi-scale Characterisation of the 3D Microstructure of a Thermally-Shocked Bulk Metallic Glass Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bodey, Andrew J.; Sui, Tan; Kockelmann, Winfried; Rau, Christoph; Korsunsky, Alexander M.; Mi, Jiawei

    2016-01-01

    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods.

  3. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  4. 3D finite element modelling of guided wave scattering at delaminations in composites

    NASA Astrophysics Data System (ADS)

    Murat, Bibi Intan Suraya; Fromme, Paul

    2016-02-01

    Carbon fiber laminate composites are increasingly used for aerospace structures as they offer a number of advantages including a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The guided wave (A0 Lamb wave mode) scattering at delaminations was modeled using full three-dimensional Finite Element (FE) simulations. The influence of the delamination size was systematically investigated from a parameter study. A significant influence of the delamination width on the guided wave scattering was found, especially on the angular dependency of the scattered guided wave amplitude. The sensitivity of guided ultrasonic waves for the detection of delamination damage in composite panels is discussed.

  5. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-07-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness.

  6. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    PubMed Central

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  7. LiFePO4 - 3D carbon nanofiber composites as cathode materials for Li-ions batteries

    NASA Astrophysics Data System (ADS)

    Dimesso, L.; Spanheimer, C.; Jaegermann, W.; Zhang, Y.; Yarin, A. L.

    2012-03-01

    The characterization of carbon nanofiber 3D nonwovens, prepared by electrospinning process, coated with olivine structured lithium iron phosphate is reported. The LiFePO4 as cathode material for lithium ion batteries was prepared by a Pechini-assisted reversed polyol process. The coating has been successfully performed on carbon nanofiber 3D nonwovens by soaking in aqueous solution containing lithium, iron salts and phosphates at 70 °C for 2-4 h. After drying-out, the composites were annealed at 600 °C for 5 h under nitrogen. The surface investigation of the prepared composites showed a uniform coating of the carbon nonwoven nanofibers as well as the formation of cauliflower-like crystalline structures which are uniformly distributed all over the surface area of the carbon nanofibers. The electrochemical measurements on the composites showed good performances delivering a discharge specific capacity of 156 mAhg- 1 at a discharging rate of C/25 and 152 mAhg- 1 at a discharging rate of C/10 at room temperature.

  8. Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display.

    PubMed

    Wang, Kangni; Zheng, Jihong; Gao, Hui; Lu, Feiyue; Sun, Lijia; Yin, Stuart; Zhuang, Songlin

    2015-11-30

    A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display.

  9. 3D modelling of squeeze flow of unidirectional and fabric composite inserts

    NASA Astrophysics Data System (ADS)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland

    2016-10-01

    The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.

  10. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  11. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    PubMed Central

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-01-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669

  12. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    NASA Astrophysics Data System (ADS)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  13. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties.

    PubMed

    Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  14. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner.

  15. In-process 3D laser measurement to control the fiber tape-laying for composite production

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Mersmann, Christoph; Damm, Björn

    2010-05-01

    Metrology is the key to an economically feasible production of fiber-reinforced composites in the field of automated tape laying, applying a novel laser light-section sensor system (LLSS) to measure process quality and feed back the results to close control loops of the production system. The developed method derives 3D measurements from height profiles through an in-process surface scan by the integrated LLSS. Gaps, overlaps, misalignment and defects of the composite tapes are detected during their lay-up and consolidation by comparing the measurement results with a CAD/CAM model of the lay-up. The height profiles are processed with a novel algorithm based on a non-linear least-square fitting to a set of sigmoid functions to ensure sub-pixel accuracy.

  16. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Liang, Yimai; Guo, Na; Li, Linlin; Li, Ruiqing; Ji, Guijuan; Gan, Shucai

    2015-03-01

    Porous 3D flower-like Ag/ZnO heterostructural composites were fabricated by hydrothermal and photochemical deposition methods, without using any pore-directing reagents and surfactants. The obtained samples were characterized by XRD, SEM, TEM, XPS, BJH, DRS, and PL spectrum. The experiment results show that the silver nanoparticles successfully load on the surface of assembled ZnO flowers. The TEM and SEM morphologies demonstrated unique porous 3D flower-like structure of Ag/ZnO. Such special structure makes larger surface area and more active sites exposed during the reaction, facilitating the transportation of reactants and products and increasing the reaction rate. The photocatalytic degradation experiments under UV irradiation using Rhodamine B (RhB) as a model dye were executed. The relative results demonstrate that the photocatalytic activity of Ag/ZnO is obviously improved compared with the pure ZnO and the commercial TiO2 (Degussa P25), the AZ-15 sample has the highest photocatalytic activity. The Ag/ZnO heterostructure composites promoted the separation of photo-induced electrons and holes, which was proved by photoluminescence spectra (PL).

  17. 3D Printing of Aniline Tetramer-Grafted-Polyethylenimine and Pluronic F127 Composites for Electroactive Scaffolds.

    PubMed

    Dong, Shi-Lei; Han, Lu; Du, Cai-Xia; Wang, Xiao-Yu; Li, Lu-Hai; Wei, Yen

    2017-02-01

    Electroactive hydrogel scaffolds are fabricated by the 3D-printing technique using composites of 30% Pluronic F127 and aniline tetramer-grafted-polyethylenimine (AT-PEI) copolymers with various contents from 2.5% to 10%. The synthesized AT-PEI copolymers can self-assemble into nanoparticles with the diameter of ≈50 nm and display excellent electroactivity due to AT conjugation. The copolymers are then homogeneously distributed into 30% Pluronic F127 solution by virtue of the thermosensitivity of F127, denoted as F/AT-PEI composites. Macroscopic photographs of latticed scaffolds elucidate their excellent printability of F/AT-PEI hydrogels for the 3D-printing technique. The conductivities of the printed F/AT-PEI scaffolds are all higher than 2.0 × 10(-3) S cm(-1) , which are significantly improved compared with that of F127 scaffold with only 0.94 × 10(-3) S cm(-1) . Thus, the F/AT-PEI scaffolds can be considered as candidates for application in electrical stimulation of tissue regeneration such as repair of muscle and cardiac nerve tissue.

  18. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  19. Properties and modification of porous 3-D collagen/hydroxyapatite composites.

    PubMed

    Sionkowska, A; Kozłowska, J

    2013-01-01

    A freeze drying technique was used to form porous three-dimensional collagen matrixes modified by the addition of a variable amount of nano-hydroxyapatite. For chemical cross-linking EDC/NHS were used. Physical cross-linking was achieved by dehydrothermal treatment. Mechanical properties, morphology, dissolution, porosity, density, enzymatic degradation and swelling properties of materials have been studied after cross-linking. The density of scaffolds and its compressive modulus increased with an increasing amount of hydroxyapatite and collagen concentration in the composite scaffold, while the swelling ratio and porosity decreased. The studied scaffolds dissolved slowly in PBS solution. DHT cross-linked collagen matrices showed a much faster degradation rate after exposure to collagenase than the EDC cross-linked samples.

  20. Developing a confocal acoustic holography microscope for non-invasive 3D temperature and composition measurements.

    PubMed

    Herring, Rodney A; Jacquemin, Peter; Sawicka, Barbara D; Atalick, Stefan

    2009-06-01

    A confocal acoustic holography microscope (CAHM) has been designed, simulated and partially verified experimentally to take holograms for non-invasive, three-dimensional measurements of a specimen's refractive indices from one view point. The designed and simulated prototype CAHM used a frequency of 2.25 MHz and measured sound speed changes of 16 m/s, temperature changes of 5 degrees C and had a spatial resolution of 660 microm. With future improvements utilizing the latest technologies such as two-dimensional array detectors, Micro-Electro-Mechanical Systems (MEMS), and acoustic lenses, resolutions of 1m/s, 0.5 degrees C, and 150 microm are expected. The CAHM is expected to have many useful applications, including non-invasive mass and heat transfer measurements in fluids and materials and as a medical diagnostic tool to non-intrusively visualize compositions and temperatures within the human body.

  1. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  2. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  3. Performance of Composites from 3D Orthogonal Woven Preforms in terms of Architecture and Sample Location during Resin Infusion

    NASA Astrophysics Data System (ADS)

    Ince, Mehmet Erdem

    Geometric modeling of woven preforms is a useful tool to predict preform thickness, preform areal density and fiber volume fraction (FVF) of constituent yarns. Previous geometrical models of 3D orthogonal woven preforms, which are extensively reviewed in Chapter 2, were limited to plain weave interlacing pattern in jammed case. In this study, generalized geometric models in terms of weave design (represented by a numerical value termed "weave factor") were developed. The models cover both jammed and non-jammed cases, consider circular, racetrack, and rectangular yarn cross-sectional shapes. The models predict thickness, constituent yarn weights, and FVFs of 3D orthogonal woven preforms. The models illustrated fabric architecture potential of 3D orthogonal woven preforms. Numerical results for hypothetical structures showed how to control through the thickness components of the z-yarn and total FVF, that have direct effect on the in-plane and out-of-plane properties, with interlacing pattern (weave factor) and z-yarn linear density. The models were demonstrated as an essential design tool that may be used to develop composites with predicted level of structural parameters and performance. Broad range of 3D orthogonal woven preforms from glass fibers with different architectures were woven and consolidated by vacuum infusion process (VIP) with different z-yarn interlacing pattern, number of y-yarn layers, and x-yarn spacing to verify the model for filament yarns. Dry preform thickness and weight of in-plane yarns predicted by the geometric model for filament yarns correlated well with experimental results. Z-yarn weight of dry preform was 24.3% overestimated by the model due to shortening of z-yarn at cross overs in real preforms due to the flattening of x-yarns caused by the tension of z-yarns. Total FVF of actual dry preform was 0.4% greater than model prediction. However, total FVF of composite was 5.4% overestimated by the model, which is within the experimental

  4. Stress analysis of a rectangular implant in laminated composites using 2-D and 3-D finite elements

    NASA Technical Reports Server (NTRS)

    Chow, Wai T.; Graves, Michael J.

    1992-01-01

    An analysis method using the FEM based on the Hellinger-Reissner variation principle has been developed to determine the 3-D stresses and displacements near a rectangular implant inside a laminated composite material. Three-dimensional elements are employed in regions where the interlaminar stress is considered to be significant; 2-D elements are used in other areas. Uniaxially loaded graphite-epoxy laminates have been analyzed; the implant was modeled as four plies of 3501/6 epoxy located in the middle of the laminate. It is shown that the interlaminar stresses are an order of magnitude lower than the stress representing the applied far-field load. The stress concentration factors of both the interlaminar and in-plane stresses depend on the stacking sequence of the laminate.

  5. 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and sublithospheric upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Griffin, W. L.; Jones, A. G.; Connolly, J.; Lebedev, S.; O'Reilly, S. Y.

    2011-12-01

    High-resolution imaging and characterization of the thermal and compositional structure of the lithospheric and sublithospheric upper mantle are the basis for understanding the formation and evolution of the lithosphere and the interaction between the crust-mantle and lithosphere-asthenosphere systems. Unfortunately, such imaging and characterization using available geophysical-geochemical methods still present unsolved and technically challenging problems. In this contribution we present a new full-3D multi-observable inversion method particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sublithospheric upper mantle. Ambient noise tomography, multiple plane wave earthquake tomography, magnetotelluric, thermal, thermodynamic, and potential field modelling are all combined in a single thermodynamic-geophysical framework and appraised within a general probabilistic (Bayesian) formulation. This circumvents the problems of strong non-linearity involved in traditional inversions, provides highly refined seismic information, minimizes the problem of trade-off between temperature and composition in wave speeds, offers critical insights into incompatibilities between traditional stand-alone methods, and takes advantage of a priori local geochemical information. Both synthetic models and preliminary results in real-case examples will be used to discuss the benefits, robustness, and limitations of this method.

  6. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  7. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization.

    PubMed

    Sagar, Nitin; Khanna, Kunal; Sardesai, Varda S; Singh, Atul K; Temgire, Mayur; Kalita, Mridula Phukan; Kadam, Sachin S; Soni, Vivek P; Bhartiya, Deepa; Bellare, Jayesh R

    2016-12-01

    Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMChNa-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157±30μm and 89.47+0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4h in continuous compression cycle show no improvement in maximum elastic stain of 1.2MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***p<0.001 between different time points thus showing its potential for bone healing. In pre-clinical study histological bone response of the scaffold construct displayed improved activity of bone regeneration in comparison to self healing of control groups (sham) up to week 07 after implantation in rabbit tibia critical-size defect. Therefore, this nHA-CMChNa-GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical and biological

  8. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  9. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment.

    PubMed

    Carrion, Bita; Souzanchi, Mohammad F; Wang, Victor T; Tiruchinapally, Gopinath; Shikanov, Ariella; Putnam, Andrew J; Coleman, Rhima M

    2016-05-01

    Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.

  10. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  11. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  12. Effect of fiber tow size on the thread strength of three-dimensionally braided carbon/epoxy composites

    SciTech Connect

    Chen, P.; Li, J.; Sun, G.; ElShiekh, A.

    1993-12-31

    This study shows the effect of fiber tow size, preform structure and resin type on the pull-out load of threaded composite holes. Two types of preforms, one with axials and the other without axials, were fabricated from 3K, 6K, and 12K carbon fiber tows. These preforms were consolidated with Epon828/T401 and TACTIX123/Melamine5260 respectively. Threaded holes were made in the specimens and the pull-out loads were tested. Test results were compared to the pull-out load of aluminum specimens. Results show that there is a potential to develop composite fasteners.

  13. MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Hongdong; Hu, Zhongli; Su, Yongyao; Ruan, Haibo; Hu, Rong; Zhang, Lei

    2017-01-01

    MnO2 nanorods/three-dimensional reduced graphene oxide (3D-rGO) composite has been synthesized by a simple in situ hydrothermal methord. The X-ray diffraction (XRD) pattern of the as-prepared composite reveals tetragonal structure of α-MnO2. Raman spectroscopic and X-ray photoelectron spectroscopy (XPS) of the samples confirm the coexistence of MnO2 and graphene. The Brunauer-Emmett-Teller (BET) analysis shows the large surface area of the composite. The electron microscopy images of the as-synthesized products reveals the MnO2 nanorods are homogeneously grown on 3D-rGO matrix. Electrochemical characterization exhibits the MnO2 nanorods/3D-rGO composite with large reversible capacity (595 mA h g-1 over 60 cycles at 100 mA g-1), high coulombic efficiency (above 99%), excellent rate capability and good cyclic stability. The superior electrochemical performance can be attributed to the turf-like nanostructure of composite, high capacity of MnO2 and superior electrical conductivity of 3D-rGO. It suggests that MnO2 nanorods/3D-rGO composite will be a promising anode material for Li-ion batteries.

  14. Self-Propagating Combustion Triggered Synthesis of 3D Lamellar Graphene/BaFe12O19 Composite and Its Electromagnetic Wave Absorption Properties

    PubMed Central

    Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Peng, Xiarong; Duan, Shichang; Dang, Alei; Li, Hao; Li, Tiehu

    2017-01-01

    The synthesis of 3D lamellar graphene/BaFe12O19 composites was performed by oxidizing graphite and sequentially self-propagating combustion triggered process. The 3D lamellar graphene structures were formed due to the synergistic effect of the tremendous heat induced gasification as well as huge volume expansion. The 3D lamellar graphene/BaFe12O19 composites bearing 30 wt % graphene present the reflection loss peak at −27.23 dB as well as the frequency bandwidth at 2.28 GHz (< −10 dB). The 3D lamellar graphene structures could consume the incident waves through multiple reflection and scattering within the layered structures, prolonging the propagation path of electromagnetic waves in the absorbers. PMID:28336889

  15. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Roh, Hee-Sang; Jung, Sang-Chul; Kook, Min-Suk; Kim, Byung-Hoon

    2016-12-01

    Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on biocompatibility of 3D scaffolds. This result confirms that this technique was useful tool for improving the biocompatibility in bone tissue engineering application.

  16. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.

    2015-01-01

    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  17. 3D Non-destructive Imaging of Punctures in Polyethylene Composite Armor by THz Time Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palka, N.; Panowicz, R.; Ospald, F.; Beigang, R.

    2015-08-01

    An ultra-high molecular weight polyethylene composite sample totally punctured by a projectile was examined by THz TDS raster scanning method in reflection configuration. The scanning results correctly match the distribution of delaminations inside the sample, which was proven with cross-sectional and frontal views after waterjet cutting. For further analysis, a signal-processing algorithm based on the deconvolution method was developed and the modified reference signal was used to reduce disturbances. The complex refractive index of the sample was determined by transmission TDS technique and was later used for the simulation of pulse propagation by the finite difference time domain method. These simulations verified the correctness of the proposed method and showed its constraints. Using the proposed algorithm, the ambiguous raw THz image was converted into a binary 3D image of the sample, which consists only of two areas: sample—polyethylene and delamination—air. As a result, a clear image of the distribution of delaminations with their spatial extent was obtained which can be used for further comparative analysis. The limitation of the proposed method is that parts of the central area of the puncture cannot be analyzed because tilted layers deflect the incident signal.

  18. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  19. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  20. Microvascular Autonomic Composites

    DTIC Science & Technology

    2012-01-06

    characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE Journal 43: 6-19. Bogdanovich A and Mohamed MH. 2009. Three-Dimensional... carbon in red and bromine in yellow. The fracture surfaces were analyzed by SEM to show film was indistinguishable from the matrix, but by using the...nature, the mother of composite materials, applying microvascular technology to create skin, cartilages, tendons, bones and teeth. Cellulose fiber

  1. Braids, shuffles and symmetrizers

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2009-07-01

    Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.

  2. Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.

    PubMed

    Yan, Liang; Yin, Yuli; Lv, Piaopiao; Zhang, Zhaohui; Wang, Jing; Long, Fang

    2016-04-20

    A novel three-dimensional (3D) magnetic chlorogenic acid (CGA) imprinted polymer (MMIP) was prepared with novel carbon hybrid nanocomposite as the carrier, chlorogenic acid as the template molecule, and methacrylic acid as the functional monomer. The 3D MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, and UV spectrometry in detail. The results showed that the imprinted layer was attached successfully on the surface of a 3D magnetic carbon hybrid nanocomposite. The adsorption performance of the 3D MMIPs was investigated, and the results showed that the 3D MMIPs exhibited high adsorption capacity and fast adsorption rate toward CGA with a maximum adsorption capacity of 10.88 mg g(-1). The extraction conditions involving washing solvent, the pH of eluent solvent, elution volume, and desorption time were also investigated in detail. Combined with high-performance liquid chromatography, the 3D MMIPs have been applied to successfully extract CGA from Eucommia leaf extract samples.

  3. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-02

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(L-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system.

  4. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  5. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  6. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  7. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    SciTech Connect

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  8. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa L.; Schrama, Ernst J. O.

    2015-03-01

    Seismic data indicate that there are large viscosity variations in the mantle beneath Antarctica. Consideration of such variations would affect predictions of models of Glacial Isostatic Adjustment (GIA), which are used to correct satellite measurements of ice mass change. However, most GIA models used for that purpose have assumed the mantle to be uniformly stratified in terms of viscosity. The goal of this study is to estimate the effect of lateral variations in viscosity on Antarctic mass balance estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data. To this end, recently-developed global GIA models based on lateral variations in mantle temperature are tuned to fit constraints in the northern hemisphere and then compared to GPS-derived uplift rates in Antarctica. We find that these models can provide a better fit to GPS uplift rates in Antarctica than existing GIA models with a radially-varying (1D) rheology. When 3D viscosity models in combination with specific ice loading histories are used to correct GRACE measurements, mass loss in Antarctica is smaller than previously found for the same ice loading histories and their preferred 1D viscosity profiles. The variation in mass balance estimates arising from using different plausible realizations of 3D viscosity amounts to 20 Gt/yr for the ICE-5G ice model and 16 Gt/yr for the W12a ice model; these values are larger than the GRACE measurement error, but smaller than the variation arising from unknown ice history. While there exist 1D Earth models that can reproduce the total mass balance estimates derived using 3D Earth models, the spatial pattern of gravity rates can be significantly affected by 3D viscosity in a way that cannot be reproduced by GIA models with 1D viscosity. As an example, models with 1D viscosity always predict maximum gravity rates in the Ross Sea for the ICE-5G ice model, however, for one of the three preferred 3D models the maximum (for the same ice model) is found

  9. Analysis of Composite Skin-Stiffener Debond Specimens Using a Shell/3D Modeling Technique and Submodeling

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin (Technical Monitor); Krueger, Ronald; Minguet, Pierre J.

    2004-01-01

    The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to tension and three-point bending was studied. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlation of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents. In addition, the application of the submodeling technique for the simulation of skin/stringer debond was also studied. Global models made of shell elements and solid elements were studied. Solid elements were used for local submodels, which extended between three and six specimen thicknesses on either side of the delamination front to model the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from the simulations using the submodeling technique were not in agreement with results obtained from full solid models.

  10. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  11. Test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.

    1994-01-01

    Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.

  12. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  13. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  14. Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-05-01

    Surface conductive engineering on Li2S is critical for construction of advanced cathodes of lithium-sulfur batteries. Herein, we construct a high-performance Li2S-based composite cathode with the help of three-dimensional reduced graphene oxide (3D-rGO) network and outer carbon coating. Typically, the Li2S@C particles are uniformly embedded into 3D-rGO to form a binder-free 3D-rGO-Li2S@C cathode by the combination of a liquid solution-evaporation coating and PVP (Polyvinyl Pyrrolidone) carbonization. The 3D-rGO-Li2S@C cathode exhibits a high initial discharge capacity of 856 mAh g-1 at 0.1C, superior cycling stability with a capacity of 388.4 mAh g-1 after 200 cycles at 1C, corresponding to a low capacity fading rate. It is demonstrated that the outer conductive coating is effective and necessary for electrochemical enhancement of Li2S cathodes by improving electrical conductivity and prohibiting polysulfide from shuttling during cycling.

  15. 3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures.

    PubMed

    Jiang, Yaru; Zheng, Xin; Yan, Xiaoqin; Li, Yong; Zhao, Xuan; Zhang, Yue

    2017-05-01

    Designing and optimizing the electrode materials and studying the electrochemical performance or cycle life of the supercapacitor under different working conditions are crucial to its practical application. Herein, we proposed a rational design of 3D-graphene/CoMoO4 nanoplates by a facile two-step hydrothermal method. Owing to the high electron transfer rate of graphene and the high activity of the CoMoO4 nanoplates, the three-dimensional electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (1255.24F/g at 1A/g) and superior cycling stability (91.3% of the original specific capacitance after 3000 cycles at 1A/g). The all-solid-state asymmetric supercapacitor composed of 3D-graphene/CoMoO4 and activated carbon (AC) exhibited a specific capacitance of 109F/g at 0.2A/g and an excellent cycling stability with only 12.1% of the initial specific capacitance off after 3000 cycles at 2A/g. The effects of temperature and charge-discharge current densities on the charge storage capacity of the supercapacitor were also investigated in detail for practical applications.

  16. Hydrothermal synthesis of 3D urchin-like Ag/TiO2/reduced graphene oxide composites and its enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Liu, Yuhuan; Zhou, Yi; Yang, Luyue; Wang, Yutang; Wu, Yiwei; Li, Chaocheng; Lu, Jun

    2016-09-01

    Innovative 3D urchin-like ternary TiO2 composites, which combine Ag nanoparticles with graphene, have been successfully synthesized through a simple hydrothermal method. This process employed nontoxic and mild dihydrate sodium citrate as a reducing agent. During the hydrothermal process, graphene oxide and AgNO3 were reduced to reduced graphene oxide (RGO) and Ag, respectively. Subsequently, they were grown on the surface of rutile TiO2 with a 3D urchin-like microsphere (1.5 μm). The as-prepared 3D urchin-like composites were characterized by X-ray diffraction, SEM and TEM. These techniques were also employed to ensure the morphology of urchin-like and rutile phase of TiO2. FT-IR, Raman spectroscopy and XPS characterization demonstrated the successful reduction in AgNO3 and graphite oxide to metallic Ag and RGO. The UV-visible spectrum of the ternary composite displayed strong absorption in the visible light region, which was attributed to the efficient electron transport of well-dispersed Ag nanoparticles (20-40 nm) and the formation of Ti-O-C bond between graphene and titania. The synthesized urchin-like ternary composite exhibited enhanced photocatalytic activity (98.7 %) for Rhodamine B degradation. This work provides a very convenient chemical route to the scalable production of Ag/TiO2/RGO ternary composite photocatalyst for potential applications in solving the environmental problems and energy issues. Also, the proposed mechanism underlying the photocatalytic degradation of Rhodamine B dyes was discussed.

  17. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  18. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    DTIC Science & Technology

    2015-09-21

    performance in elevated temperature environments. High- temperature polymer matrix composites (HTPMCs) are being considered for such applications . However...the polymer matrix in most HTPMCs cannot operate at temperatures required for many aerospace structural applications . Continuous research seeks to...temperature polymer matrix composites (HTPMCs) applications , other polyimide resins replacement are being researched and developed due to the carcinogenic

  19. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  20. Handbook of Analytical Methods for Textile Composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian N.; Flanagan, Gerry

    1997-01-01

    The purpose of this handbook is to introduce models and computer codes for predicting the properties of textile composites. The handbook includes several models for predicting the stress-strain response all the way to ultimate failure; methods for assessing work of fracture and notch sensitivity; and design rules for avoiding certain critical mechanisms of failure, such as delamination, by proper textile design. The following textiles received some treatment: 2D woven, braided, and knitted/stitched laminates and 3D interlock weaves, and braids.

  1. In-Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt-Infiltrated SiC/SiC Composites Tensile Loaded in Off-Axis Fiber Directions

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.

    2007-01-01

    The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial

  2. 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  3. Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings

    NASA Astrophysics Data System (ADS)

    Slesarenko, Viacheslav; Kazarinov, Nikita; Rudykh, Stephan

    2017-03-01

    The superior mechanical properties of biological materials originate in their complex hierarchical microstructures, combining stiff and soft constituents at different length scales. In this work, we employ a three-dimensional multi-materials printing to fabricate the bio-inspired staggered composites, and study their mechanical properties and failure mechanisms. We observe that bio-inspired staggered composites with inclined stiff tablets are able to undergo two different failure modes, depending on the inclination angle. We find that such artificial structure demonstrates high toughness only under loading applied at relatively small angle to the tablets stacking direction, while for higher angles the composites fail catastrophically. This aspect of the failure behavior was captured experimentally as well as by means of the finite element analysis. We show that even a relatively simple failure model with a strain energy limiter, can be utilized to qualitatively distinguish these two different modes of failure, occurring in the artificial bio-inspired composites.

  4. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  5. Laser-Deposited In Situ TiC-Reinforced Nickel Matrix Composites: 3D Microstructure and Tribological Properties (Postprint)

    DTIC Science & Technology

    2014-04-03

    laser-engineered net shaping TM process. These composites consist of an in situ formed and homogeneously distributed titanium carbide (TiC) phase...distributed primary and eutectic titanium carbide precipitates as well as a graphitic phase encompassing the primary carbides within the nickel...distributed titanium carbide (TiC) phase reinforcing the nickel matrix. Additionally, by tailoring the Ti/C ratio in these composites, an additional

  6. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing.

    PubMed

    Suwanprateeb, J; Sanngam, R; Suvannapruk, W; Panyathanmaporn, T

    2009-06-01

    In situ hydroxyapatite/apatite-wollastonite glass ceramic composite was fabricated by a three dimensional printing (3DP) technique and characterized. It was found that the as-fabricated mean green strength of the composite was 1.27 MPa which was sufficient for general handling. After varying sintering temperatures (1050-1300 degrees C) and times (1-10 h), it was found that sintering at 1300 degrees C for 3 h gave the greatest flexural modulus and strength, 34.10 GPa and 76.82 MPa respectively. This was associated with a decrease in porosity and increase in densification ability of the composite resulting from liquid phase sintering. Bioactivity tested by soaking in simulated body fluid (SBF) and In Vitro toxicity studies showed that 3DP hydroxyapatite/A-W glass ceramic composite was non-toxic and bioactive. A new calcium phosphate layer was observed on the surface of the composite after soaking in SBF for only 1 day while osteoblast cells were able to attach and attain normal morphology on the surface of the composite.

  7. Microstructure and tribological properties of 3D needle-punched C/C-SiC brake composites

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Li, Zhuan; Xiong, Xiang

    2010-04-01

    Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) show excellent tribological properties and are promising candidates for advanced friction materials. A pressure infiltration/carbonization combined with liquid silicon infiltration was developed for fabricating C/C-SiC composites. The carbon fabric preform was fabricated with the three-dimensional needling method. In the pressure infiltration process, the carbon fibre reinforced plastic was prepared by infiltration of the fabric preform with the furan resin. Then the carbon fibre reinforced plastic was carbonized which was pyrolysed to form a porous carbon/carbon composites. Finally, the porous carbon/carbon was infiltrated with molten silicon to obtain C/C-SiC composites. The composites exhibit excellent friction behavior, including a good stability of brake, and the average dynamic μ is 0.38 and static μ is 0.50, in combination with the linear wear rate of about 5.6 μm cycle -1. Moreover, the friction surface was covered with friction film which is about 10 μm in thickness. These results show that the C/C-SiC brake composites are promising candidates for advanced brake and clutch systems.

  8. Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites with Tailored Internal Structure

    NASA Astrophysics Data System (ADS)

    Holmes, Larry R.; Riddick, Jaret C.

    2014-01-01

    A novel additive manufacturing technology is used to create micro-composites, which can be tailored for specific end-use applications. The Field-Aided Laminar Composite (FALCom) process uses specifically focused electric fields to align nano- to micro-sized particles into chain-like structures, which are referred to as pseudo-fibers. These pseudo-fibers are then immediately frozen into place by incident ultraviolet radiation on the photopolymer matrix. The pseudo-fibers are arranged by design, and they are used to create three-dimensional composite structures. Multiple filler materials have been evaluated for use in the FALCom system; however, this report describes aluminum micro-particles that are aligned and oriented in an acrylic photopolymer matrix. A description of the technology and a review of experimental processing are shown, and conclusions, as well as, future work are discussed.

  9. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon; Reyes, Edgar I.; Moon, Kyoung-sik; Rumpf, Raymond C.; Kim, Nam Soo

    2015-03-01

    New metal/polymer composite filaments for fused deposition modeling (FDM) processes were developed in order to observe the thermo-mechanical properties of the new filaments. The acrylonitrile butadiene styrene (ABS) thermoplastic was mixed with copper and iron particles. The percent loading of the metal powder was varied to confirm the effects of metal particles on the thermo-mechanical properties of the filament, such as tensile strength and thermal conductivity. The printing parameters such as temperature and fill density were also varied to see the effects of the parameters on the tensile strength of the final product which was made with the FDM process. As a result of this study, it was confirmed that the tensile strength of the composites is decreased by increasing the loading of metal particles. Additionally, the thermal conductivity of the metal/polymer composite filament was improved by increasing the metal content. It is believed that the metal/polymer filament could be used to print metal and large-scale 3-dimensional (3D) structures without any distortion by the thermal expansion of thermoplastics. The material could also be used in 3D printed circuits and electromagnetic structures for shielding and other applications.

  10. Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells.

    PubMed

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Feng, Hao-Lin; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-05-05

    Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron-hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material-nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2 -TiO2 , SnO2 -TiO2 , and Zn2 SnO4 -TiO2 ; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2 . Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2 -macroporous material-TiO2 -nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.

  11. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river

    NASA Astrophysics Data System (ADS)

    Williams, R. D.; Measures, R.; Hicks, D. M.; Brasington, J.

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  12. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.

    PubMed

    Williams, R D; Measures, R; Hicks, D M; Brasington, J

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  13. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

    PubMed Central

    Measures, R.; Hicks, D. M.; Brasington, J.

    2016-01-01

    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  14. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  15. ECM Composition and Rheology Regulate Growth, Motility, and Response to Photodynamic Therapy in 3D Models of Pancreatic Ductal Adenocarcinoma.

    PubMed

    Cramer, Gwendolyn M; Jones, Dustin P; El-Hamidi, Hamid; Celli, Jonathan P

    2017-01-01

    Pancreatic ductal adenocarcinoma is characterized by prominent stromal involvement, which plays complex roles in regulating tumor growth and therapeutic response. The extracellular matrix (ECM)-rich stroma associated with this disease has been implicated as a barrier to drug penetration, although stromal depletion strategies have had mixed clinical success. It remains less clear how interactions with ECM, acting as a biophysical regulator of phenotype, not only a barrier to drug perfusion, regulate susceptibilities and resistance to specific therapies. In this context, an integrative approach is used to evaluate invasive behavior and motility in rheologically characterized ECM as determinants of chemotherapy and photodynamic therapy (PDT) responses. We show that in 3D cultures with ECM conditions that promote invasive progression, response to PDT is markedly enhanced in the most motile ECM-infiltrating populations, whereas the same cells exhibit chemoresistance. Conversely, drug-resistant sublines with enhanced invasive potential were generated to compare differential treatment response in identical ECM conditions, monitored by particle tracking microrheology measurements of matrix remodeling. In both scenarios, ECM-infiltrating cell populations exhibit increased sensitivity to PDT, whether invasion is consequent to selection of chemoresistance, or whether chemoresistance is correlated with acquisition of invasive behavior. However, while ECM-invading, chemoresistant cells exhibit mesenchymal phenotype, induction of EMT in monolayers without ECM was not sufficient to enhance PDT sensitivity, yet does impart chemoresistance as expected. In addition to containing platform development with broader applicability to inform microenvironment-dependent therapeutics, these results reveal the efficacy of PDT for targeting the most aggressive, chemoresistant, invasive pancreatic ductal adenocarcinoma associated with dismal outcomes for this disease.

  16. Matrix Cracking in 3D Orthogonal Melt-Infiltrated SiC/SiC Composites with Various Z-Fiber Types

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.

    2003-01-01

    The occurrence of matrix cracks in melt-infiltrated SiC/SiC composites with a 3D orthogonal architecture was determined at room temperature for specimens tested in tension oriented in the X-direction (parallel to Z-bundle weave direction) and Y-direction (perpendicular to Z-bundle weave direction) and Y-direction (perpendicular to Z-bundle weave direction). The fiber-types were Sylramic and Sylramic-IBN in the X and Y-directions and lower modulus ZMI, T300, and rayon in the Z-direction. Acoustic emission (AE) was used to monitor the matrix cracking activity. For Y-direction composites, the AE data was used to determine the exact (+/- 0.25 mm) location where matrix cracks occurred in the 3D orthogonal architecture. This enabled the determination of the stress-dependent matrix crack distributions for small but repeatable matrix rich 'unidirectional' and the matrix poor 'cross-ply' regions within the architecture. It was found that matrix cracking initiated at very low stresses (approx. 40 MPa) in the 'unidirectional' regions for the largest z-direction fiber tow composites. Decreasing the size of the z-fiber bundle, increased the stress for matrix cracking in the 'unidirectional' regions. Matrix cracking in the 'cross-ply' regions always occurred at higher stresses than in 'unidirectional' regions, and the stress-dependent matrix crack distribution of the 'cross-ply' regions was always over a wider stress-range than the 'unidirectional' regions. For composites tested in the X-direction, a lower elastic modulus and a narrower and lower stress-range for matrix cracking were observed compared to composites tested in the Y-direction.

  17. Reducing Uncertainty in the Distribution of Hydrogeologic Units within Volcanic Composite Units of Pahute Mesa Using High-Resolution 3-D Resistivity Methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.

    2010-01-01

    The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site (NTS) northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the groundwater table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the NTS including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. Volcanic composite units make up much of the area within the Pahute Mesa Corrective Action Unit (CAU) at the NTS, Nevada. The extent of many of these volcanic composite units extends throughout and south of the primary areas of past underground testing at Pahute and Rainier Mesas. As situated, these units likely influence the rate and direction of groundwater flow and radionuclide transport. Currently, these units are poorly resolved in terms of their hydrologic properties introducing large uncertainties into current CAU-scale flow and transport models. In 2007, the U.S. Geological Survey (USGS), in cooperation with DOE and NNSA-NSO acquired three-dimensional (3-D) tensor magnetotelluric data at the NTS in Area 20 of Pahute Mesa CAU. A total of 20 magnetotelluric recording stations were established at about 600-m spacing on a 3-D array and were tied to ER20-6 well and other nearby well control (fig. 1). The purpose of this survey was to determine if closely spaced 3-D resistivity measurements can be used to characterize the distribution of shallow (600- to 1,500-m-depth range) devitrified rhyolite lava-flow aquifers (LFA) and zeolitic tuff confining units (TCU) in areas of limited drill hole control on

  18. High velocity impact on different hybrid architectures of 2D laminated and 3D warp interlock fabric composite

    NASA Astrophysics Data System (ADS)

    Provost, B.; Boussu, F.; Coutellier, D.; Vallee, D.; Rondot, F.

    2012-08-01

    For decades, conventional amour shield is mainly oriented on metallic materials which are today well-known. Since the use of non conventional threats as IEDs, performances of those protections are required to be upgraded. The expected improvements that manufacturers are looking for are mainly oriented to the weight reduction which is the key parameter to reduce the fuel consumption, increase the payload, and offer more manoeuvrability to vehicles [1]. However, the difficulty is to reduce as cautiously as possible the total mass of the protection solution while ensuring the safety of the vehicle. One of the possible solutions is to use new combinations of materials, able to be more efficient against new threats and lighter than the traditional steel armour. It is in this context that the combination between some well-known ballistic alloys and textile composite material appear as a high potential solution for armour plated protection. Indeed, used as a backing, textile composite material present some interesting properties such as a very low density compared with steel and good behaviour in term of ballistic efficiency. This study proposes to test and compare the behaviour and efficiency of three different textile composite backings.

  19. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  20. Anyonic braiding in optical lattices

    PubMed Central

    Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.

    2007-01-01

    Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038

  1. Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea.

    PubMed

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.

  2. Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea

    PubMed Central

    Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application. PMID:25177697

  3. Contrast Enhancement of MicroCT Scans to Aid 3D Modelling of Carbon Fibre Fabric Composites

    NASA Astrophysics Data System (ADS)

    Djukic, Luke P.; Pearce, Garth M.; Herszberg, Israel; Bannister, Michael K.; Mollenhauer, David H.

    2013-12-01

    This paper presents a methodology for volume capture and rendering of plain weave and multi-layer fabric meso-architectures within a consolidated, cured laminate. Micro X-ray Computed Tomography (MicroCT) is an excellent tool for the non-destructive visualisation of material microstructures however the contrast between tows and resin is poor for carbon fibre composites. Firstly, this paper demonstrates techniques to improve the contrast of the microCT images by introducing higher density materials such as gold, iodine and glass into the fabric. Two approaches were demonstrated to be effective for enhancing the differentiation between the tows in the reconstructed microCT visualisations. Secondly, a method of generating three-dimensional volume models of woven composites using microCT scan data is discussed. The process of generating a model is explained from initial manufacture with the aid of an example plain weave fabric. These methods are to be used in the finite element modelling of three-dimensional fabric preforms in future work.

  4. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  5. In vitro bone formation by mesenchymal stem cells with 3D collagen/β-TCP composite scaffold.

    PubMed

    Todo, Mitsugu; Arahira, Takaaki

    2013-01-01

    Recent years, various kinds of natural polymers and bioceramics has been used to develop porous scaffolds for bone tissue engineering. Among of them, collagen guarantees good biological conditions, and β-tricalcium phosphate (β-TCP) possesses good oseteoconductivity, cellular adhesion, accelerated differentiation and mechanical property. In this study, rat bone marrow mesenchymal stem cells (rMSC) were cultured in β-TCP/collagen composite scaffolds up to 28 days in order to assess the time-dependent behavior of the extracellular matrix formation and the mechanical performance of the scaffold-cell system. The cell number and ALP activity were evaluated using a spectrophotometric plate reader. Gene expression of osteogenesis was analyzed using the real-time PCR reactions. Compression tests were also conducted periodically by using a conventional testing machine to evaluate the elastic modulus. The increasing behaviors of cell number and ALP activity in the composite scaffold were much better than in the collagen scaffold. The gene expression of osteocalcin and collagen type-I in collagen/β-TCP scaffold was higher than that of the collagen scaffold. The compressive modulus also increased up to 28 days. These results clearly showed that the distribution of micro β-TCP particles is very effective to increase the elastic modulus and promote cell growth.

  6. Finite-time braiding exponents

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  7. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won

    2017-03-01

    Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.

  8. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling

    PubMed Central

    Pingel, Jessica; Lu, Yinhui; Starborg, Tobias; Fredberg, Ulrich; Langberg, Henning; Nedergaard, Anders; Weis, MaryAnn; Eyre, David; Kjaer, Michael; Kadler, Karl E

    2014-01-01

    Achilles tendinopathies display focal tissue thickening with pain and ultrasonography changes. Whilst complete rupture might be expected to induce changes in tissue organization and protein composition, little is known about the consequences of non-rupture-associated tendinopathies, especially with regards to changes in the content of collagen type I and III (the major collagens in tendon), and changes in tendon fibroblast (tenocyte) shape and organization of the extracellular matrix (ECM). To gain new insights, we took biopsies from the tendinopathic region and flanking healthy region of Achilles tendons of six individuals with clinically diagnosed tendinopathy who had no evidence of cholesterol, uric acid and amyloid accumulation. Biochemical analyses of collagen III/I ratio were performed on all six individuals, and electron microscope analysis using transmission electron microscopy and serial block face-scanning electron microscopy were made on two individuals. In the tendinopathic regions, compared with the flanking healthy tissue, we observed: (i) an increase in the ratio of collagen III : I proteins; (ii) buckling of the collagen fascicles in the ECM; (iii) buckling of tenocytes and their nuclei; and (iv) an increase in the ratio of small-diameter : large-diameter collagen fibrils. In summary, load-induced non-rupture tendinopathy in humans is associated with localized biochemical changes, a shift from large-to small-diameter fibrils, buckling of the tendon ECM, and buckling of the cells and their nuclei. PMID:24571576

  9. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  10. Preparation and photo-induced charge transfer of the composites based on 3D structural CdS nanocrystals and MEH-PPV

    SciTech Connect

    Deng, Dan; Shi, Minmin; Chen, Fei; Chen, Lin; Jiang, Xiaoxia; Chen, Hongzheng

    2010-05-15

    We report the synthesis of 3D structural CdS nanocrystals by a simple biomolecule-assisted hydrothermal process. The CdS nanocrystals are composed of many branched nanorods with the diameter of about 50 nm, and the length of about 250 nm. The phase and crystallographic properties are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). The composites based on CdS nanocrystals and poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) have been prepared by spin-coating of the mixture in the common solvent. The optical properties of the composites are investigated using ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopies. A significant fluorescence quenching of MEH-PPV in the composites is observed at high CdS nanocrystals/MEH-PPV ratios, indicating that the photo-induced charge transfer occurred due to the energy level offset between the donor MEH-PPV and the acceptor CdS nanocrystals. The obvious photovoltaic behavior of the solar cell made from this composite further demonstrates the mentioned photo-induced charge transfer process. (author)

  11. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites

    NASA Astrophysics Data System (ADS)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.

    2016-07-01

    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  12. 3D nanospherical CdxZn1-xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance

    NASA Astrophysics Data System (ADS)

    Huang, Meina; Yu, Jianhua; Deng, Changshun; Huang, Yingheng; Fan, Minguang; Li, Bin; Tong, Zhangfa; Zhang, Feiyue; Dong, Lihui

    2016-03-01

    Herein, a series of CdxZn1-xS and sulfide/graphene photocatalysts with 3D nanospherical framework have been successfully fabricated by one-pot solvothermal method for the first time. The morphology and structure of samples were confirmed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectrometry, N2 adsorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The as-prepared samples exhibit excellent photocatalytic activities and photocorrosion resistance in the degradation of dyes under visible light. The Cd0.5Zn0.5S/rGO sample shows the most efficient in the photodegradation of methyl orange (MO). It takes about 30 min for degradation completely. The enhanced photocatalytic activity is mainly attributed to the slow photon enhancement of the 3D structure, and the heterojunction between the 3D nanospherical Cd0.5Zn0.5S solid solutions and a high quality 2D rGO support, which can greatly promote the separation of light-induced electrons and holes. Moreover, the large SBET and extended light absorption range also play an important role for improving the photocatalytic activity. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Cd0.5Zn0.5S/rGO by forming heterojunction between CdS and ZnS, and transferring the photogenerated electrons of Cd0.5Zn0.5S to rGO. The present work can provide rational design of graphene-based photocatalysts with large contact interface and strong interaction between the composites for other application.

  13. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  14. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  15. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  16. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H.; Adams, Michael L.

    2006-01-01

    This viewgraph presentation describes the effects of compression, staging and braid angle on braided rope seals. The contents include: 1) Test Fixture Schematics; 2) Comparison of Hybrid Seal Braid Architecture; 3) Residual Interference After Compression Cycling; 4) Effect of Compression, Braid, and Staging on Seal Flow; 5) Effect of Staging on Seal Pressure Drop; 6) Three Stag Seal Durability; 7) P&W Turbine Vane Seal Requirements; and 8) Next Generation Fighter F-22 P&W F119 Engines.

  17. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  18. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  19. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tian, Chungui; Wang, Jingchao; Sun, Li; Shi, Keying; Zhou, Wei; Fu, Honggang

    2014-06-01

    3D nanoflower-like CuxO/multilayer graphene composites (CuMGCs) have been successfully synthesized as a new type of room temperature NOx gas sensor. Firstly, the expanded graphite (EG) was activated by KOH and many moderate functional groups were generated; secondly, Cu(CH3COO)2 and CTAB underwent full infusion into the interlayers of activated EG (aEG) by means of a vacuum-assisted technique and then reacted with the functional groups of aEG accompanied by the exfoliation of aEG via reflux. Eventually, the 3D nanoflower consisting of 5-9 nm CuxO nanoparticles homogeneously grow in situ on aEG. The KOH activation of EG plays a key role in the uniform formation of CuMGCs. When being used as gas sensors for detection of NOx, the CuMGCs achieved a higher response at room temperature than that of the corresponding CuxO. In detail, the CuMGCs show a higher NOx gas sensing performance with low detection limit of 97 ppb, high gas response of 95.1% and short response time of 9.6 s to 97.0 ppm NOx at room temperature. Meanwhile, the CuMGC sensor presents a favorable linearity, good selectivity and stability. The enhancement of the sensing response is mainly attributed to the improved conductivity of the CuMGCs. A series of Mott-Schottky and EIS measurements demonstrated that the CuMGCs have much higher donor densities than CuxO and can easily capture and migrate electrons from the conduction band, resulting in the enhancement of electrical conductivity.3D nanoflower-like CuxO/multilayer graphene composites (CuMGCs) have been successfully synthesized as a new type of room temperature NOx gas sensor. Firstly, the expanded graphite (EG) was activated by KOH and many moderate functional groups were generated; secondly, Cu(CH3COO)2 and CTAB underwent full infusion into the interlayers of activated EG (aEG) by means of a vacuum-assisted technique and then reacted with the functional groups of aEG accompanied by the exfoliation of aEG via reflux. Eventually, the 3D nanoflower

  20. Braiding DNA: experiments, simulations, and models.

    PubMed

    Charvin, G; Vologodskii, A; Bensimon, D; Croquette, V

    2005-06-01

    DNA encounters topological problems in vivo because of its extended double-helical structure. As a consequence, the semiconservative mechanism of DNA replication leads to the formation of DNA braids or catenanes, which have to be removed for the completion of cell division. To get a better understanding of these structures, we have studied the elastic behavior of two braided nicked DNA molecules using a magnetic trap apparatus. The experimental data let us identify and characterize three regimes of braiding: a slightly twisted regime before the formation of the first crossing, followed by genuine braids which, at large braiding number, buckle to form plectonemes. Two different approaches support and quantify this characterization of the data. First, Monte Carlo (MC) simulations of braided DNAs yield a full description of the molecules' behavior and their buckling transition. Second, modeling the braids as a twisted swing provides a good approximation of the elastic response of the molecules as they are intertwined. Comparisons of the experiments and the MC simulations with this analytical model allow for a measurement of the diameter of the braids and its dependence upon entropic and electrostatic repulsive interactions. The MC simulations allow for an estimate of the effective torsional constant of the braids (at a stretching force F = 2 pN): C(b) approximately 48 nm (as compared with C approximately 100 nm for a single unnicked DNA). Finally, at low salt concentrations and for sufficiently large number of braids, the diameter of the braided molecules is observed to collapse to that of double-stranded DNA. We suggest that this collapse is due to the partial melting and fraying of the two nicked molecules and the subsequent right- or left-handed intertwining of the stretched single strands.

  1. Braid-plain dynamics and bank erosion along the Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.

    2009-12-01

    Braid-plain activity and geomorphic features in the Matanuska River in southcentral Alaska between 1949 and 2006 were examined to support a bank erosion hazard assessment. The glacial Matanuska River drains 6,500 km2 and is braided for 85 percent of its 150 km course, which parallels a major highway and flows through the towns of Sutton and Palmer, Alaska. The historical braid plain was defined as the envelope of areas with active channels, unvegetated bars, or vegetated bars with evidence of channels since 1949 and delineated in a GIS from 1949, 1962, and 2006 aerial orthoimagery. We created a strip map of bank height and composition (primarily bedrock and unconsolidated sediment) at braid-plain margins and outlined valley bottom features (terraces and tributary fans) adjacent to the braid plain to assess erodibility. Braid-plain dynamism has created a mosaic of extensive lightly vegetated bars interspersed with forested bars in strips along the banks and in small mid-channel positions. Abandoned channels filled with groundwater or tributary streamflow have created clearwater side channels within these bars that serve as the primary spawning location for chum, sockeye, and coho salmon in the Matanuska River basin. Erosion magnitudes for the periods 1949-1962 and 1962-2006 were computed as braid-plain expansion at transects across the historical braid-plain boundaries. Episodic, spatially distributed erosion and the antiquity of some eroded surfaces suggests that average annual erosion rates at a location are not adequate for assessing future erosion at that location in a braid plain. Lateral expansion caused bank erosion of 100 -275 m at 20 locations over the full period, about half at tributary fans and most occurring in a single time period. Minor growth of tributary fans constricted the braid plain, and emerging terraces have the potential to shrink the braid plain. Eroded banks included undated but pre-historic fluvial terraces and tributary fans. Where

  2. Majorana Braiding with Thermal Noise

    NASA Astrophysics Data System (ADS)

    Pedrocchi, Fabio L.; DiVincenzo, David P.

    2015-09-01

    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.

  3. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  4. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  5. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Schutt, Derek L.; Jones, Alan G.; Fullea, Javier; Griffin, William L.

    2016-10-01

    We apply a novel 3-D multiobservable probabilistic tomography method that we have recently developed and benchmarked, to directly image the thermochemical structure of the Colorado Plateau and surrounding areas by jointly inverting P wave and S wave teleseismic arrival times, Rayleigh wave dispersion data, Bouguer anomalies, satellite-derived gravity gradients, geoid height, absolute (local and dynamic) elevation, and surface heat flow data. The temperature and compositional structures recovered by our inversion reveal a high level of correlation between recent basaltic magmatism and zones of high temperature and low Mg# (i.e., refertilized mantle) in the lithosphere, consistent with independent geochemical data. However, the lithospheric mantle is overall characterized by a highly heterogeneous thermochemical structure, with only some features correlating well with either Proterozoic and/or Cenozoic crustal structures. This suggests that most of the present-day deep lithospheric architecture reflects the superposition of numerous geodynamic events of different scale and nature to those that created major crustal structures. This is consistent with the complex lithosphere-asthenosphere system that we image, which exhibits a variety of multiscale feedback mechanisms (e.g., small-scale convection, magmatic intrusion, delamination, etc.) driving surface processes. Our results also suggest that most of the present-day elevation in the Colorado Plateau and surrounding regions is the result of thermochemical buoyancy sources within the lithosphere, with dynamic effects (from sublithospheric mantle flow) contributing only locally up to ˜15-35%.

  6. Calculation of effective conductivity of 2D and 3D composite materials with anisotropic constituents and different inclusion shapes in Mathematica

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, José Luis; Bravo-Castillero, Julián

    2008-08-01

    The study of the effective properties of composite materials with anisotropic constituents and different inclusion shapes has motivated the development of the Mathematica 6.0 package "CompositeMaterials". This package can be used to calculate the effective anisotropic conductivity tensor of two-phase composites. Any fiber cross section, even percolating ones, can be studied in the 2D composites. "Rectangular Prism" and "Ellipsoidal" inclusion shapes with arbitrary orientations can be investigated in the 3D composites. This package combines the Asymptotic Homogenization Method and the Finite Element Method in order to obtain the effective conductivity tensor. The commands and options of the package are illustrated with two sample applications for two- and three-dimensional composites. Program summaryProgram title:CompositeMaterials Catalogue identifier:AEAU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAU_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:132 183 No. of bytes in distributed program, including test data, etc.:1 334 908 Distribution format:tar.gz Programming language:Mathematica 6.0 Computer:Any that can run Mathematica 6.0 and where the open-source free C-programs Triangle ( http://www.cs.cmu.edu/ quake/triangle.html) and TetGen ( http://tetgen.berlios.de/) can be compiled and executed. Tested in Intel Pentium computers. Operating system:Any that can run Mathematica 6.0 and where the open-source free C-programs Triangle ( http://www.cs.cmu.edu/ quake/triangle.html) and TetGen ( http://tetgen.berlios.de/) can be compiled and executed. Tested in Windows XP. RAM:Small two-dimensional calculations require less than 100 MB. Large three-dimensional calculations require 500 MB or more. Classification:7.9 External routines:One Mathematica Add-on and

  7. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  8. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  9. Systematically generated two-qubit anyon braids

    NASA Astrophysics Data System (ADS)

    Carnahan, Caitlin; Zeuch, Daniel; Bonesteel, N. E.

    2016-05-01

    Fibonacci anyons are non-Abelian particles for which braiding is universal for quantum computation. Reichardt has shown how to systematically generate nontrivial braids for three Fibonacci anyons which yield unitary operations with off-diagonal matrix elements that can be made arbitrarily small in a particular natural basis through a simple and efficient iterative procedure. This procedure does not require brute force search, the Solovay-Kitaev method, or any other numerical technique, but the phases of the resulting diagonal matrix elements cannot be directly controlled. We show that despite this lack of control the resulting braids can be used to systematically construct entangling gates for two qubits encoded by Fibonacci anyons.

  10. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair.

    PubMed

    Chatzinikolaidou, Maria; Rekstyte, Sima; Danilevicius, Paulius; Pontikoglou, Charalampos; Papadaki, Helen; Farsari, Maria; Vamvakaki, Maria

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2h after seeding, and up to several days, and a proliferation increase after 14 and 21days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell-material combination in bone tissue engineering.

  11. Electrochemical and bio-sensing platform based on a novel 3D Cu nano-flowers/layered MoS₂ composite.

    PubMed

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2016-05-15

    A novel 3D nano-flower-like Cu/multi-layer molybdenum disulfide composite (CuNFs/MoS2) modified glassy carbon electrode (GCE) has been successfully constructed. It was a highly sensitive and selective non-enzymatic hydrogen peroxide (H2O2) and glucose biosensor. The morphology of the obtained CuNFs-MoS2 nano-particles was investigated with the use of a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The physicochemical properties of the modified electrode were characterized at each of the construction stages with the use of an electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The new sensor combined the advantages of MoS2 and CuNFs, and exhibited high electro-catalytic activity toward H2O2 and glucose. Quantitative analysis of H2O2 and glucose was carried out with the use of the amperometric i-t method. Linear ranges were obtained between 0.04-1.88 μM and 1.88-35.6 μM for H2O2 and 1-20 μM and 20-70 μM for glucose, and their corresponding limits of detection (LOD) were 0.021 μM and 0.32 μM. This novel sensor was successfully applied for the quantitative analysis of H2O2 in tap water and glucose in human serum samples.

  12. Advanced textile structural composites -- status and outlook

    SciTech Connect

    Arendts, F.J.; Drechsler, K.; Brandt, J.

    1993-12-31

    Composites with 3D woven, braided or knitted fiber reinforcement offer a high potential for the cost-effective manufacturing of structures featuring an interesting mechanical performance, for example with regard to damage tolerance or energy absorption capability. In this paper, the properties of various textile structural composites with regard to stiffness, strength, damage tolerance, energy absorption capability as well as the respective manufacturing processes (RTM or thermoplastic hybrid-yarn technique) are presented in comparison to conventional ud tape based composites. The influence of the fiber architecture on the mechanical performance (tensile stiffness and strength, compression strength, interlaminar shear strength, compression strength after impact, fracture mechanical properties, through-penetration resistance) of monolithic and composite sandwich structures has been evaluated in an experimental study. It has been shown that composites involving new 3D weavings with minimum fiber crimp can compete with tape-based laminates as far as stiffness and strength are concerned. Using knittings makes it possible to manufacture composites having superior through-penetration resistance. The specific feature of the 3D braiding process is the ability to produce complex shaped structures having a high degree of freedom with regard to fiber geometry. Finally, the application of various textile structural composites will be presented on the basis of three demonstrator components (automotive engine mount, aircraft leading edge and motor cycle helmet), and the potential for further developments will be discussed.

  13. First principles cable braid electromagnetic penetration model

    SciTech Connect

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  14. First principles cable braid electromagnetic penetration model

    DOE PAGES

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  15. Braided magnetic fields: equilibria, relaxation and heating

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.

    2016-05-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.

  16. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  17. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  18. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  20. Application of braid statistics to particle dynamics

    NASA Astrophysics Data System (ADS)

    Skjeltorp, Arne T.; Clausen, Sigmund; Helgesen, Geir

    1999-12-01

    How, in a simple and forceful way, do we characterize the dynamics of systems with several moving components? The methods based on the theory of braids may provide the answer. Knot and braid theory is a subfield of mathematics known as topology. It involves classifying different ways of tracing curves in space. Knot theory originated more than a century ago and is today a very active area of mathematics. Recently, we have been able to use notions from braid theory to map the complicated trajectories of tiny magnetic beads confined between two plates and subjected to complex magnetic fields. The essentially two-dimensional motion of a bead can be represented as a curve in a three-dimensional space-time diagram, and so several beads in motion produce a set of braided curves. The topological description of these braids thus provides a simple and concise language for describing the dynamics of the system, as if the beads perform a complicated dance as they move about one another, and the braid encodes the choreography of this dance.

  1. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  2. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  3. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  4. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  5. Equilibrium theory for braided elastic filaments

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  6. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. Quon 3D language for quantum information

    PubMed Central

    Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.

    2017-01-01

    We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790

  10. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  11. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. Braiding patterns on an inclined plane.

    PubMed

    Mertens, Keith; Putkaradze, Vakhtang; Vorobieff, Peter

    2004-07-08

    A jet of fluid flowing down a partially wetting, inclined plane usually meanders but--by maintaining a constant flow rate--meandering can be suppressed, leading to the emergence of a beautiful braided structure. Here we show that this flow pattern can be explained by the interplay between surface tension, which tends to narrow the jet, and fluid inertia, which drives the jet to widen. These observations dispel misconceptions about the relationship between braiding and meandering that have persisted for over 20 years.

  13. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  14. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  15. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  16. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.

    1993-01-01

    This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.

  17. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  18. Ferrofluids, complex particle dynamics and braid description

    NASA Astrophysics Data System (ADS)

    Skjeltorp, Arne T.; Clausen, Sigmund; Helgesen, Geir

    2001-05-01

    Finely divided magnetic matter is important in many areas of science and technology. A special sub-class of systems are made up of freely moving particles suspended in a carrier liquid where the magnetic interactions play an important role in the actual structure formation and dynamical behaviour. These include ferrofluids, which are colloids of magnetic particles dispersed in carrier fluids, magnetic micro-beads, which are micrometer sized plastic beads loaded with iron oxide, and nonmagnetic particles dispersed in ferrofluids, forming the so-called "magnetic holes". How, in a simple and forceful way, is it possible to characterise the dynamics of systems with several moving components like dispersed magnetic particles subjected to external magnetic fields? The methods based on the theory of braids may provide the answer. Braid theory is a sub-field of mathematics known as topology. It involves classifying different ways of tracing curves in space. The topological description of braids thus provides a simple and concise language for describing the dynamics of a system of moving particles as if they perform a complicated dance as they move about one another, and the braid encodes the choreography of this dance.

  19. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  20. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  1. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. Designing Biomaterials for 3D Printing.

    PubMed

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  3. Regoliths in 3-D

    NASA Technical Reports Server (NTRS)

    Grant, John; Cheng, Andrew; Delamere, Allen; Gorevan, Steven; Korotev, Randy; McKay, David; Schmitt, Harrison; Zarnecki, John

    1996-01-01

    A planetary regolith is any layer of fragments, unconsolidated material that may or may not be textually or compositionally altered relative to underlying substrate and occurs on the outer surface of a solar system body. This includes fragmented material from volcanic, sedimentary, and meteoritic infall sources, and derived by any process (e.g. impact and all other endogenic or exogenic processes). Many measurements that can be made from orbit or from Earth-based observations provide information only about the uppermost portions of a regolith and not the underlying substrate(s). Thus an understanding of the formation processes, physical properties, composition, and evolution of planetary regoliths is essential in answering scientific questions posed by the Committee on Planetary and Lunar Exploration (COMPLEX). This paper provides examples of measurements required to answer these critical science questions.

  4. Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage.

    PubMed

    Jia, Xilai; Zhu, Xiao; Cheng, Yanhua; Chen, Zheng; Ning, Guoqing; Lu, Yunfeng; Wei, Fei

    2015-07-01

    Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications.

  5. 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries

    PubMed Central

    Wu, Feng; Li, Jian; Tian, Yafen; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Shi; Bao, Liying

    2015-01-01

    3D coral-like, nitrogen and sulfur co-doped mesoporous carbon has been synthesized by a facile hydrothermal-nanocasting method to house sulfur for Li–S batteries. The primary doped species (pyridinic-N, pyrrolic-N, thiophenic-S and sulfonic-S) enable this carbon matrix to suppress the diffusion of polysulfides, while the interconnected mesoporous carbon network is favourable for rapid transport of both electrons and lithium ions. Based on the synergistic effect of N, S co-doping and the mesoporous conductive pathway, the as-fabricated C/S cathodes yield excellent cycling stability at a current rate of 4 C (1 C = 1675 mA g−1) with only 0.085% capacity decay per cycle for over 250 cycles and ultra-high rate capability (693 mAh g−1 at 10 C rate). These capabilities have rarely been reported before for Li-S batteries. PMID:26288961

  6. High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan

    2012-02-01

    Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.

  7. Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanwen; Zhang, Yu; Sun, Wenping; Tan, Hui Teng; Franklin, Joseph B.; Guo, Yuanyuan; Fan, Haosen; Ulaganathan, Mani; Wu, Xing-Long; Luo, Zhong-Zhen; Madhavi, Srinivasan; Yan, Qingyu

    2016-03-01

    Two-dimensional (2D) graphene oxide/polypyrrole (GO/PPy) hybrid materials derived from in-situ polymerization are used as precursors for constructing functionalized three-dimensional (3D) porous nitrogen-doped carbon nanosheet frameworks (FT-PNCNFs) through a one-step activation strategy. In the formation process of FT-PNCNFs, PPY is directly converted into hierarchical porous nitrogen-doped carbon layers, while GO is simultaneously reduced to become electrically conductive. The complementary functions of individual components endow the FT-PNCNFs with excellent properties for both supercapacitors (SCs) and sodium ion batteries (SIBs) applications. When tested in symmetrical SC, the FT-PNCNFs demonstrate superior energy storage behaviour. At an extremely high scan rate of 3000 mV s-1, the cyclic voltammetry (CV) curve retains an inspiring quasi-rectangle shape in KOH solution. Meanwhile, high capacitances (∼247 F g-1 at 10 mV s-1; ∼146 F g-1 at 3000 mV s-1) and good cycling stability (∼95% retention after 8000 cycles) are achieved. In addition, an attractive SIB anode performance could be achieved. The FT-PNCNFs electrode delivers a reversible capacity of 187 mAh g-1 during 160th cycle at 100 mA g-1. Its reversible capacity retains 144 mAh g-1 after extending the number of cycles to 500 at 500 mA g-1.

  8. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  9. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.

    PubMed

    Paşcu, Elena I; Cahill, Paul A; Stokes, Joseph; McGuinness, Garrett B

    2016-04-01

    Bone tissue engineering scaffolds have two challenging functional tasks to fulfil: to encourage cell proliferation, differentiation and matrix synthesis and to provide suitable mechanical stability upon implantation. Composites of biopolymers and bioceramics combine the advantages of both types of materials, resulting in better processability and enhanced mechanical and biological properties through matrix reinforcement. In the present study, novel thick bone composite scaffolds were successfully fabricated using electrospun flat sheets of polyhydroxybutyrate-polyhydroxyvalerate/nanohydroxyapatite/silk fibroin essence (2% nanohydroxyapatite - 2% silk fibroin essence and 5% nanohydroxyapatite - 5% silk fibroin essence, respectively). Their potential asin vitrobone regeneration scaffolds was evaluated using mouse calvarian osteoblast cells (MC3T3-E1), in terms of morphology (scanning electron microscope), cell attachment, cell proliferation, Col type I, osteopontin and bone alkaline phosphatase activity (Quantitative Real Time Polymerase Chain Reaction [qRT-PCR], enzyme-linked immunosorbent assay, immunocytochemistry). Electrospun polyhydroxybutyrate-polyhydroxyvalerate scaffolds were used as reference constructs. The results showed that the compressive and tensile mechanical properties of the scaffolds are dependent on the change in their composition, and the treatment these underwent. Furthermore, methanol-treated and autoclaved (MA) P2 (2% nanohydroxyapatite, 2% silk fibroin essence) samples appeared to exhibit more promising tensile properties. Additionally, the compressive tests results confirmed that the methanol pre-treatment and the autoclaving step lead to an increase in the P2 secant modulus when compared to the non-methanol-treated ones, P2 and P5 (5% nanohydroxyapatite, 5% silk fibroin essence), respectively.Both formulations of polyhydroxybutyrate-polyhydroxyvalerate/nanohydroxyapatite/silk fibroin essence composite promoted greater cell adhesion and

  10. Non-Abelian Braiding of Light

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-01

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.

  11. 3D Viscoelastic traction force microscopy.

    PubMed

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  12. Braid group representation on quantum computation

    SciTech Connect

    Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  13. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability.

    PubMed

    Gouveia, Ricardo M; González-Andrades, Elena; Cardona, Juan C; González-Gallardo, Carmen; Ionescu, Ana M; Garzon, Ingrid; Alaminos, Miguel; González-Andrades, Miguel; Connon, Che J

    2017-03-01

    Ideally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo bio-fabrication of easy-retrievable, scaffold-free human

  14. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  15. Imperfect dark energy from kinetic gravity braiding

    SciTech Connect

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander E-mail: oriol.pujolas@cern.ch E-mail: alexander.vikman@nyu.edu

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  16. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  17. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  18. Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds–an in vitro efficacy study

    PubMed Central

    Ma, Rui; Lai, Yu-xiao; Li, Long; Tan, Hong-lue; Wang, Jia-li; Li, Ye; Tang, Ting-ting; Qin, Ling

    2015-01-01

    Bone infections are common in trauma-induced open fractures with bone defects. Therefore, developing anti-infection scaffolds for repairing bone defects is desirable. This study develoepd novel Mg-based porous composite scaffolds with a basal matrix composed of poly(lactic-co-glycolicacid) (PLGA) and tricalcium phosphate (TCP). A unique low-temperature rapid prototyping technology was used to fabricate the scaffolds, including PLGA/TCP (PT), PLGA/TCP/5%Mg (PT5M), PLGA/TCP/10%Mg (PT10M), and PLGA/TCP/15%Mg (PT15M). The bacterial adhesion and biofilm formation of Staphylococcus aureus were evaluated. The results indicated that the Mg-based scaffolds significantly inhibited bacterial adhesion and biofilm formation compared to PT, and the PT10M and PT15M exhibited significantly stronger anti-biofilm ability than PT5M. In vitro degratation tests revealed that the degradation of the Mg-based scaffolds caused an increase of pH, Mg2+ concentration and osmolality, and the increased pH may be one of the major contributing factors to the antibacterial function of the Mg-based scaffolds. Additionally, the PT15M exhibited an inhibitory effect on cell adhesion and proliferation of MC3T3-E1 cells. In conclusion, the PLGA/TCP/Mg scaffolds could inhibit bacterial adhesion and biofilm formation, and the PT10M scaffold was considered to be an effective composition with considerable antibacterial ability and good cytocompatibility. PMID:26346217

  19. High-Efficiency Robust Free-Standing Composited Phosphor Films with 2D and 3D Nanostructures for High-Power Remote White LEDs.

    PubMed

    Lai, Chun-Feng; Li, Jia-Sian; Shen, Chung-Wen

    2017-02-08

    This study demonstrated that combined free-standing quasi-amorphous/micropattern (QA/MP) composited resin film-assisted phosphor films enhanced the mechanical robustness, luminous efficacy, color rendering index (CRI), and special R9 of high-power remote warm white light-emitting diodes (WLEDs). Introducing QA/MP nanostructures into phosphor film resulted in high efficiency of remote warm WLEDs with low phosphor thickness (approximately 25 μm) and reduced the correlated color temperature (CCT) from cold white light (approximately 5565 K) to warm white light (approximately 3178 K). The QA/MP composited phosphor films (CPFs) used for high-power remote WLEDs enhanced the CRI and special R9 and reduced the CCT. These results were attributed to that QA resin film reflected the blue light and re-emitted the added red emission. CIR (84), a natural warm white CCT (3178 K), and an acceptable luminous efficacy (102.5 lm/W) were achieved from the QA/MP CPFs of high-power remote WLEDs during operation at an input power of 10 W (current of 700 mA). The bending strength of QA/MP CPFs at approximately 112 N was significantly enhanced by 40% compared with that of flat CPFs. The QA/MP CPFs applied to high-power remote WLEDs exhibited good thermal and optical stability. QA/MP CPFs were also conducted to a reliability analysis (RA), in which temperature of 85 °C and relative humidity of 85% were applied for 3288 h. Lumen maintenance was degraded by 8% during RA test because the transmittance of trimethylolopropane ethoxylate triacrylate resins was degraded under high temperature. Overall, we implemented a reliable and inexpensive technology that can potentially reduce phosphor thickness, address the out-bin problems of defective WLEDs, and fabricate flat-panel lighting source with good lighting quality.

  20. Diffusive evolution of experimental braided rivers

    NASA Astrophysics Data System (ADS)

    Reitz, M. D.; Lajeunesse, E.; Jerolmack, D. J.; Limare, A.; Metivier, F.; Devauchelle, O.

    2012-12-01

    Braided rivers are complex systems in which a network of ephemeral, interacting channels continually migrate to create a rapidly changing landscape, with activity on a range of scales from channel to network organization. A previously proposed formulation in the literature has described the macroscopic behavior of braided rivers with a relationship between sediment flux and system slope that has the form of diffusion. This deterministic relationship has yet to be shown to be a true expression of stastistical diffusion on the macroscopic scale that results from stochastic behavior at the unit scale. We present results of a set of ~1m-scale experiments of braided rivers forming over a bed of monodisperse glass beads, designed to quantify both the characteristics of individual channels and the statistics of the system, and to test the extent to which statistical diffusion is applicable to braided rivers. Our data consist of repeat high-resolution topography scans, which provide data on both topographic relief and water depth values. The experiments evolve from an initial flat bed, allowing us to study the approach of the system to a steady state. We find that, although channels migrate rapidly, they have stable, self-similar geometries organized to a critical Shields stress criterion, which suggests that the timescale of channel geometry organization is small compared to dynamic channel timescales. Analysis of the channel network through time shows a decorrelation that is random and memoryless, and which occurs over time and space scales that yield a diffusivity estimate consistent with the deterministic theoretical prediction. Further investigation shows that many aspects of the system dynamics can be directly described with this diffusional framework. The timescale to equilibrium slope and topographic steady state, the rate at which correlation lengthscales increase through time, and the dependence of the equilibrium slope on sediment flux can all be described with

  1. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  2. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  3. Development of test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Fedro, Mark J.

    1993-01-01

    NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.

  4. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  5. Observable Signatures of Energy Release in Braided Coronal Loops

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Janvier, M.; Tiwari, S. K.; Galsgaard, K.; Winebarger, A. R.; Cirtain, J. W.

    2017-03-01

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to the observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.

  6. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    SciTech Connect

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simple models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.

  7. Self-organized braiding in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Berger, M. A.; Asgari-Targhi, M.; Deluca, E. E.

    2015-08-01

    In this paper, we investigate the evolution of braided solar coronal loops. We assume that coronal loops consist of several internal strands which twist and braid about each other. Reconnection between the strands leads to small flares and heating of the loop to x-ray temperatures. Using a method of generating and releasing braid structure similar to a forest fire model, we show that the reconnected field lines evolve to a self-organised critical state. In this state, the frequency distributions of coherent braid sequences as well as flare energies follow power law distributions. We demonstrate how the presence of net helicity in the loop alters the distribution laws.

  8. Measurement of gas transport through fiber preforms and densified composites for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1998-05-01

    Gas transport via pressure-driven permeation or via concentration-driven diffusion is a key step in the chemical vapor infiltration (CVI) process. This paper describes methods for the measurement of these properties for CVI preforms and partially infiltrated composites. Results are presented for Nicalon-fiber cloth layup preforms and composites, Nextel-fiber braid preforms and composites, and a Nicalon-fiber three-dimensional (3-D) weave composite. The permeability of Nicalon cloth layup preforms is strongly dependent on the packing density over the range of 29--40 vol% but is only weakly dependent on the orientation of the alternating cloth layers. The permeability of Nextel braid preforms is dependent on the thread count and the weight for cloths with similar construction and packing density. The gas permeability of the finer wave (6.3 tows/cm (16 tows/in.)) is approximately one-half that of the coarser weave (3.5 tows/cm (9 tows/in.)). Results are reported for a small number of infiltrated composites with Nextel fiber reinforcement. Attempts to mount a Nicalon-fiber 3-D weave preform specimen have been unsuccessful. Results for a small number of composite specimens with 3-D weave reinforcement are reported.

  9. Equations on knot polynomials and 3d/5d duality

    SciTech Connect

    Mironov, A.; Morozov, A.

    2012-09-24

    We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. The shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.

  10. Fine Aerosol Bulk Composition Measured on WP-3D Research Aircraft in Vicinity of the Northeastern United States - Results from NEAQS

    NASA Technical Reports Server (NTRS)

    Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Brock, C. A.; Wollny, A. G.; Holloway, J. S.; deGouw, J. A.; Warneke, C.

    2007-01-01

    During the New England Air Quality Study (NEAQS) in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC) of the submicron (PM(sub 1.0)) aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM) was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S.) and Canada was predominantly sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (approximately 60% micro gram /micro gram) and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass was largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar throughout all altitudes within the boundary layer (altitude less than 2.5 km), but was significantly higher at altitude layers in the free troposphere (above 2.5 km). A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the

  11. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States - results from NEAQS

    NASA Astrophysics Data System (ADS)

    Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Brock, C. A.; Wollny, A. G.; Holloway, J. S.; de Gouw, J. A.; Warneke, C.

    2007-06-01

    During the New England Air Quality Study (NEAQS) in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC) of the submicron (PM1.0) aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM) was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S.) and Canada was predominantly sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg-1) and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass was largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar throughout all altitudes within the boundary layer (altitude less than 2.5 km), but was significantly higher at altitude layers in the free troposphere (above 2.5 km). A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised

  12. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States - results from NEAQS

    NASA Astrophysics Data System (ADS)

    Peltier, R. E.; Sullivan, A. P.; Weber, R. J.; Brock, C. A.; Wollny, A. G.; Holloway, J. S.; de Gouw, J. A.; Warneke, C.

    2007-02-01

    During the New England Air Quality Study (NEAQS) in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC) of the submicron (PM1.0) aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM) was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S.) and Canada was predominately sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg-1) and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar within the boundary layer (altitude less than ~2.5 km), but was significantly higher in the free troposphere (above ~2.5 km). A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components (~60%).

  13. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  14. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  15. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  17. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  18. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  19. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  20. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  1. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  2. Standard methods for filled hole tension testing of textile composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Masters, J. E.

    1995-01-01

    The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.

  3. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  4. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  5. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  6. A Tow-Level Progressive Damage for Simulating Carbon-Fiber Textile Composites: Interim Report

    SciTech Connect

    Zywicz, E.

    2000-07-01

    A numerical approach to model the elasto-plastic and tensile damage response of tri-axially braided carbon-fiber polymeric-matrix composites is developed. It is micromechanically based and consists of a simplified unit cell geometry, a plane-stress tow-level constitutive relationship, a one-dimensional undulation constitutive law, and a non-traditional shell element integration rule. The braided composite lamina is idealized as periodic in the plane, and a simplified three-layer representative volume (RV) is assembled from axial and braider tows and pure resin regions. The constituents in each layer are homogenized with an iso-strain assumption in the fiber-direction and an iso-stress condition in the other directions. In the upper and lower layers, the fiber-direction strain is additively decomposed into an undulation and a tow portion. A finite-deformation tow model predicts the plane-stress tow response and is coupled to the undulation constitutive relationship. The overall braid model is implemented in DYNA3D and works with traditional shell elements. The finite-deformation tow constitutive relationship is derived from the fiber elasticity and the isotropic elasto-plastic power-law hardening matrix response using a thermodynamic framework and simple homogenization assumptions. The model replicates tensile damage evolution, in a smeared sense, parallel and perpendicular to the fiber axis and is regularized to yield mesh independent results. The tow-level model demonstrates reasonable agreement, prior to damage, with detailed three-dimensional FE (finite element) elasto-plastic simulations of aligned, periodically arranged, uni-directional composites. The 3-layer braid model response is compared with predictions obtained from detailed micromechanical simulations of the braid's unit cell in uni-axial extension, shear, and flexure for three braid angles. The elastic properties show good agreement as does the non-linear response for loadings dominated by the axial

  7. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  8. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  9. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation.

    PubMed

    Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung

    2015-10-07

    A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation.

  10. Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood

    ERIC Educational Resources Information Center

    Arnott, Luke

    2012-01-01

    "Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…

  11. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  12. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  13. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  14. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  15. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  16. River channel patterns: Braided, meandering, and straight

    USGS Publications Warehouse

    Leopold, Luna Bergere; Wolman, M. Gordon

    1957-01-01

    Channel pattern is used to describe the plan view of a reach of river as seen from an airplane, and includes meandering, braiding, or relatively straight channels.Natural channels characteristically exhibit alternating pools or deep reaches and riffles or shallow reaches, regardless of the type of pattern. The length of the pool or distance between riffles in a straight channel equals the straight line distance between successive points of inflection in the wave pattern of a meandering river of the same width. The points of inflection are also shallow points and correspond to riffles in the straight channel. This distance, which is half the wavelength of the meander, varies approximately as a linear function of channel width. In the data we analysed the meander wavelength, or twice the distance between successive riffles, is from 7 to 12 times the channel width. It is concluded that the mechanics which may lead to meandering operate in straight channels.River braiding is characterized by channel division around alluvial islands. The growth of an island begins as the deposition of a central bar which results from sorting and deposition of the coarser fractions of the load which locally cannot be transported. The bar grows downstream and in height by continued deposition on its surface, forcing the water into the flanking channels, which, to carry the flow, deepen and cut laterally into the original banks. Such deepening locally lowers the water surface and the central bar emerges as an island which becomes stabilized by vegetation. Braiding was observed in a small river in a laboratory. Measurements of the adjustments of velocity, depth, width, and slope associated with island development lead to the conclusion that braiding is one of the many patterns which can maintain quasi-equilibrium among discharge, load, and transporting ability. Braiding does not necessarily indicate an excess of total load.Channel cross section and pattern are ultimately controlled by the

  17. Tensor Network Algorithms for Braiding Anyons

    NASA Astrophysics Data System (ADS)

    Ayeni, Babatunde; Singh, Sukhwinder; Pfeifer, Robert; Brennen, Gavin

    Anyons are point-like (quasi)particles which exist only in two-dimensional systems and have exchange statistics that are neither bosonic nor fermionic. These particles were first proposed as a mere theoretical curiosity, but it was later shown that they arise in topological states of matter and that certain species of non-Abelian anyons can be used for low error quantum computation. Despite the importance of anyons, fundamentally and technologically, comparatively little is understood about their many body behaviour especially when the non local effects of braiding are taken into account. This largely due to the lack of efficient numerical methods to study them. In order to circumvent this problem, and to broaden our understanding of the physics of anyons, the authors have developed several numerical methods based on tensor network algorithms including: anyonic Matrix Product States (MPS), anyonic Time Evolving Block Decimation (TEBD), anyonic Density Matrix Renormalization Group (DMRG), and Anyonic U(1) MPS. These can be used to simulate static interacting and itinerant braiding anyons on a finite or infinite lattice. We have used our methods to study the phase diagrams of some species, such as Abelian Z3 anyons and non-Abelian Fibonacci and Ising.

  18. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  19. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  20. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  1. Stabilization of inactive braid channels by vegetation as a mechanism for suppressing braiding and reinforcing the dominant channels in a braided network

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Tal, M.

    2009-12-01

    A defining feature of braided rivers is their pattern of multiple interweaving channels. A set of laboratory experiments on braiding kinematics demonstrated that only a subset of the total apparent channels at any given time is actually transporting bed material and actively involved in channel morphodynamics. The number of active channels versus the total number of channels was found to vary independently with changes in discharge and each stabilized around an average value when the discharge was remained constant for a sufficiently long time. The results suggest that a ratio of the number of active braids (ABI) to the total number of braids (TBI) and the time-variation of this ratio is a more accurate way to characterize a network of braided channels than the standard braiding index. At any given time, the non-active channels in the network had typically been active earlier and were likely to be reactivated later at the expense of the currently active ones. The implication is that bed activity shifts from one channel to another without obliterating the previous channel. A separate series of laboratory experiments demonstrated that riparian vegetation can cause a braided channel to self-organize to a single-thread channel. The initial condition for the experiments was steady-state braiding in noncohesive sand under uniform discharge. From here, an experiment consisted of repeated cycles alternating a short duration high flow with a long duration low flow, and uniform dispersal of alfalfa seeds over the bed at the end of each high flow. Plants established on freshly deposited bars and areas of braid plain that were unoccupied during low flow. The presence of the plants had the effect of progressively focusing the high flow so that a single dominant channel developed. The unvegetated braided state was typically comprised of one dominant braid channel and several secondary channels. The dominant channel was able to readily switch its location while previously active

  2. The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, CH3D, GeH4, H2O) and the Jovian D/H isotropic ratio

    NASA Technical Reports Server (NTRS)

    Kunde, V.; Hanel, R.; Maguire, W.; Gautier, D.; Baluteau, J. P.; Marten, A.; Chedin, A.; Husson, N.; Scott, N.

    1982-01-01

    The gas composition of the troposphere of Jupiter in the clearest regions of the North Equatorial Belt (NEB) was derived from the Voyager 1 IRIS data. The infrared spectrum for this homogeneous cloud free region was modeled to infer altitude profiles for NH3, PH3, GeH4 and H2O. The Profiles for NH3 and PH3 were found to be depleted in the upper troposphere but otherwise in agreement with their solar values at the 1 bar level. The mole fraction for CH3D was determined to be 3.5(+1.0 or -1.3) x 10 to the minus 7th power. The GeH4 mole fraction of 7+ or -2 x 10 to the minus 10th power at the 2 to 3 bar level is a factor of 10 lower than the solar value. The H2O mole fraction is approximately 1 x 0.00001 at the 2.5 bar level and is increasing to approximately 3 x 0.00001 at 4 bars where it is a factor of 30 lower than solar. Using IRIS infrared values for the mole fractions of CH3D and CH4 a value of D/H = 3.6(+1.0 or -1.4)x 0.00001 is derived. Assuming this Jovian D/H ratio is representative of the protosolar nebula, and correcting for chemical galactic evolution, yields a value of 5.5 - 9.0 x 0.00001 for the primordial D/H ratio and an upper limit of 1.8 to 2.4 x 10 to the minus 31st power cu cm for the present day baryon density.

  3. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  4. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  5. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung

    2015-09-01

    A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation.A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad

  6. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  7. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  8. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  10. Unique topological characterization of braided magnetic fields

    SciTech Connect

    Yeates, A. R.; Hornig, G.

    2013-01-15

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

  11. New scheme for braiding Majorana fermions

    PubMed Central

    Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao

    2014-01-01

    Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov–de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved. PMID:27877725

  12. Rear-cross-lenticular 3D display without eyeglasses

    NASA Astrophysics Data System (ADS)

    Morishima, Hideki; Nose, Hiroyasu; Taniguchi, Naosato; Inoguchi, Kazutaka; Matsumura, Susumu

    1998-04-01

    We have developed a prototype 3D Display system without any eyeglasses, which we call `Rear Cross Lenticular 3D Display' (RCL3D), that is very compact and produces high quality 3D image. The RCL3D consists of a LCD panel, two lenticular lens sheets which run perpendicular to each other, a Checkered Pattern Mask and a backlight panel. On the LCD panel, a composite image which consists of alternately arranged horizontally striped images for right eye and left eye, is displayed. This composite image form is compatible with the field sequential stereoscopic image data. The light from backlight panel goes through the apertures of the Checkered Pattern Mask and illuminates the horizontal lines of images for right eye and left eye on LCD and goes to the right eye position and left eye position separately by the function of the two lenticular lens sheets. With this principle, the RCL3D shows 3D image to an observer without any eyeglasses. We applied simulation of viewing zone, using random ray tracing to the RCL3D and found that illuminated areas for right eye and left eye are separated clearly as series of alternate vertical stripes. We will present the prototype of the RCL3D (14.5', XGA) and simulation results.

  13. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  14. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  15. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  16. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. Origins of massive-type sandstones in braided river systems

    NASA Astrophysics Data System (ADS)

    Martin, Charlotte A. L.; Turner, Brian R.

    1998-07-01

    This study details largely ignored massive-type, predominantly structureless sandstones preserved within braided fluvial successions of Carboniferous to Triassic age. Architectural element analysis reveals that these sediments were deposited within sand-dominated perennial systems of low braiding index. Cross-stratified braid bar deposits are interbedded with, and laterally equivalent to geometrically distinct, largely structureless massive-type sandbodies identified as two separate architectural elements: channel-like (SMC) and sheet-like (SMS). Sub-divisions within these broad categories define six geometric units which are texturally distinct from each other and from the structured sediments of the same lithological unit. Since massive-type sandstone elements have many features in common with the deposits of highly concentrated, laminar sediment/water flows, they are interpreted in terms of similar depositional processes. SMC elements form elongate channel-like features which trend both at high angles to, and parallel with, the palaeoflow of host fluvial channels. The lower bounding surfaces of SMC elements may be either erosive or non-erosive, and describe symmetrical cross-sections with margins dipping <50°. Concentric laminae are preserved parallel to the scour margins which grade into a structureless sandstone fill. Diffuse laminae and water escape structures are commonly preserved in the upper portion of these elements, which are interpreted as the deposits of sandy debris flows related to flu