Science.gov

Sample records for 3-d cell cultures

  1. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  2. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor. PMID:26386332

  3. Multizone Paper Platform for 3D Cell Cultures

    PubMed Central

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  4. An Optically Controlled 3D Cell Culturing System

    PubMed Central

    Ishii, Kelly S.; Hu, Wenqi; Namekar, Swapnil A.; Ohta, Aaron T.

    2012-01-01

    A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability. PMID:22701475

  5. 3D Cell Culture Imaging with Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  6. Microfluidic 3D cell culture: from tools to tissue models.

    PubMed

    van Duinen, Vincent; Trietsch, Sebastiaan J; Joore, Jos; Vulto, Paul; Hankemeier, Thomas

    2015-12-01

    The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications. PMID:26094109

  7. Culturing Cells in 3D Ordered Cellular Solids

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui; Lin, Wang-Jung; Lin, Jing-Ying

    2011-03-01

    Constructing a well-defined 3D microenvironment for cell growth is a key step for tissue engineering and mechanobiology. We demonstrate high-throughput fabrication of gelatin-based ordered cellular solids with tunable pore size and solid fraction. This process involves generating monodisperse liquid foam with a cross-flow microfluidic device. The monodisperse liquid foam was further processed into open-cell solid foam, which was used as scaffolds for 3D cell culture. Three distinct cell types were cultured under these conditions and displayed appropriate physiological, morphological, and functional characteristics. Epithelial cells formed cyst-like structures and were polarized inside pores, myoblasts adopted a tubular structure and fused into myotubes, and fibroblasts exhibited wide varieties of morphologies depending on their location inside the scaffolds. These ordered cellular solids therefore make possible the study of pore-size effects on cells.

  8. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. PMID:25453259

  9. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  10. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  11. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  12. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    PubMed Central

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  14. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  15. Effects of 3-D microwell culture on growth kinetics and metabolism of human embryonic stem cells

    PubMed Central

    Azarin, Samira M.; Larson, Elise A.; Almodóvar-Cruz, Janice M; de Pablo, Juan J.; Palecek, Sean P.

    2013-01-01

    Human embryonic stem cells (hESCs) hold potential in the field of tissue engineering given their capacity for both limitless self-renewal and differentiation to any adult cell type. However, several limitations, including the ability to expand undifferentiated cells and efficiently direct differentiation at scales needed for commercial cell production, prevent realizing the potential of hESCs in tissue engineering. Numerous studies have illustrated that 3-D culture systems provide microenvironmental cues that affect hESC pluripotency and differentiation fates, but little is known about how 3-D culture affects cell expansion. Here we have used a 3-D microwell array to model the differences in hESC growth kinetics and metabolism in 2-D vs. 3-D cultures. Our results demonstrated that 3-D microwell culture reduced hESC size and proliferative capacity, and impacted cell cycle dynamics, lengthening the G1 phase and shortening the G2/M phase of the cell cycle. However, glucose and lactate metabolism were similar in 2-D and 3-D cultures. Elucidating the effects of 3-D culture on growth and metabolism of hESCs may facilitate efforts for developing integrated, scalable cell expansion and differentiation processes with these cells. PMID:23586789

  16. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice.

    PubMed

    Ruedinger, Ferdinand; Lavrentieva, Antonina; Blume, Cornelia; Pepelanova, Iliyana; Scheper, Thomas

    2015-01-01

    Hydrogels have become one of the most popular platforms for three-dimensional (3D) cultivation of mammalian cells. The enormous versatility of hydrogel materials makes it possible to design scaffolds with predefined mechanical properties, as well as with desired biofunctionality. 3D hydrogel constructs have been used for a variety of applications, including tissue engineering of microorgan systems, drug delivery, cytotoxicity testing, and drug screening. Moreover, 3D culture is applied for investigating cellular physiology, stem cell differentiation, and tumor models and for studying interaction mechanisms between the extracellular matrix and cells. In this paper, we review current examples of performance-based hydrogel design for 3D cell culture applications. A major emphasis is placed on a description of how standard analytical protocols and imaging techniques are being adapted to analysis of 3D cell culture in hydrogel systems. PMID:25432676

  17. Bioimpedance monitoring of 3D cell culturing--complementary electrode configurations for enhanced spatial sensitivity.

    PubMed

    Canali, Chiara; Heiskanen, Arto; Muhammad, Haseena Bashir; Høyum, Per; Pettersen, Fred-Johan; Hemmingsen, Mette; Wolff, Anders; Dufva, Martin; Martinsen, Ørjan Grøttem; Emnéus, Jenny

    2015-01-15

    A bioimpedance platform is presented as a promising tool for non-invasive real-time monitoring of the entire process of three-dimensional (3D) cell culturing in a hydrogel scaffold. In this study, the dynamics involved in the whole process of 3D cell culturing, starting from polymerisation of a bare 3D gelatin scaffold, to human mesenchymal stem cell (MSC) encapsulation and proliferation, was monitored over time. The platform consists of a large rectangular culture chamber with four embedded vertical gold plate electrodes that were exploited in two- and three terminal (2T and 3T) measurement configurations. By switching between the different combinations of electrode couples, it was possible to generate a multiplexing-like approach, which allowed for collecting spatially distributed information within the 3D space. Computational finite element (FE) analysis and electrochemical impedance spectroscopic (EIS) characterisation were used to determine the configurations' sensitivity field localisation. The 2T setup gives insight into the interfacial phenomena at both electrode surfaces and covers the central part of the 3D cell culture volume, while the four 3T modes provide focus on the dynamics at the corners of the 3D culture chamber. By combining a number of electrode configurations, complementary spatially distributed information on a large 3D cell culture can be obtained with maximised sensitivity in the entire 3D space. The experimental results show that cell proliferation can be monitored within the tested biomimetic environment, paving the way to further developments in bioimpedance tracking of 3D cell cultures and tissue engineering. PMID:25058941

  18. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells

    PubMed Central

    Takahashi, Yu; Hori, Yuji; Yamamoto, Tomohisa; Urashima, Toshiki; Ohara, Yasunori; Tanaka, Hideo

    2015-01-01

    3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2 and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to corresponding inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular responses in order to identify potential drugs. PMID:26182370

  19. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    PubMed Central

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  20. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates.

    PubMed

    Leung, Brendan M; Moraes, Christopher; Cavnar, Stephen P; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2015-04-01

    Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure. PMID:25510473

  1. Dynamic 3D micropatterned cell co-cultures within photocurable and chemically degradable hydrogels

    PubMed Central

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2014-01-01

    In this paper we report on the development of dynamically controlled 3D micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analyzed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures, generated cells with higher expression of cardiac genes and proteins as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner the method presented in this study is useful for a range of cell culture applications related to tissue engineering and regenerative medicine. PMID:24170301

  2. Peptide Hydrogels – Versatile Matrices for 3D Cell Culture in Cancer Medicine

    PubMed Central

    Worthington, Peter; Pochan, Darrin J.; Langhans, Sigrid A.

    2015-01-01

    Traditional two-dimensional (2D) cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D) cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell–cell and cell–material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites, and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability, and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture is short sequence, self-assembling peptide hydrogels. In addition to the review of recent work toward the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture. PMID:25941663

  3. Development of 3D hydrogel culture systems with on-demand cell separation.

    PubMed

    Hamilton, Sharon K; Bloodworth, Nathaniel C; Massad, Christopher S; Hammoudi, Taymour M; Suri, Shalu; Yang, Peter J; Lu, Hang; Temenoff, Johnna S

    2013-04-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3D co-culture methods lack the ability to effectively separate two cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme, while cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  4. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.

    PubMed

    Utech, Stefanie; Prodanovic, Radivoje; Mao, Angelo S; Ostafe, Raluca; Mooney, David J; Weitz, David A

    2015-08-01

    Monodisperse alginate microgels (10-50 μm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated and cultured in the generated 3D microenvironments. PMID:26039892

  5. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures.

    PubMed

    Joshi, Pranav; Lee, Moo-Yeal

    2015-12-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  6. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  7. Microscale 3-D collagen cell culture assays in conventional flat-bottom 384-well plates

    PubMed Central

    Leung, Brendan M.; Moraes, Christopher; Cavnar, Stephen; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi

    2015-01-01

    Three-dimensional culture systems such as cell-laden hydrogels are superior to standard 2-D monolayer cultures for many drug-screening applications. However, their adoption in high throughput screening (HTS) have been lagging, in part due to the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden pre-polymer solutions into 2-D well-plates is a potential solution, but typically requires large volumes of reagents to avoid evaporation during polymerization, which increases cost, makes drug penetration variable and imaging complex. Here we describe a technique to efficiently produce 3-D ‘microgels’ using automated liquid handling systems and standard, non-patterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of ~2.5 mm-diameter microwell with no concerns over evaporation and meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. Cytotoxicity of chemotherapeutics were monitored by bioluminescence and demonstrates that 3-D cultures confer chemoresistance, as compared to similar 2-D culture. This data hence, demonstrates the importance of culturing cells in 3-D to obtain realistic cellular responses. Overall, this system provided a simple and inexpensive method for integrating 3-D culture capability into existing HTS infrastructure. PMID:25510473

  8. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.

    PubMed

    Grist, S M; Nasseri, S S; Poon, T; Roskelley, C; Cheung, K C

    2016-07-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications. PMID:27493703

  9. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    PubMed Central

    Liebmann, Thomas; Rydholm, Susanna; Akpe, Victor; Brismar, Hjalmar

    2007-01-01

    Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology. PMID:18070345

  10. Hot embossing for fabrication of a microfluidic 3D cell culture platform

    PubMed Central

    Jeon, Jessie S.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.

    2011-01-01

    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact. PMID:21113663

  11. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    PubMed

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  12. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    PubMed Central

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  13. MAPLE deposition of 3D micropatterned polymeric substrates for cell culture

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Mihailescu, Mona; Calenic, Bogdan; Luculescu, Catalin Romeo; Greabu, Maria; Dinescu, Maria

    2013-08-01

    3D micropatterned poly(lactide-co-glycolide)/polyurethane (PLGA/PU) substrates were produced by MAPLE deposition through masks and used for regulating the behavior of oral keratinocyte stem cells in response to topography. Flat PLGA/PU substrates were produced for comparison. 3D imaging of the PLGA/PU substrates and of the cultured cells was performed by Digital Holographic Microscopy. The micropatterns were in the shape of squares of 50 × 50 and 80 × 80 μm2 areas, ~1.8 μm in height and separated by 20 μm wide channels. It was found that substrate topography guided the adhesion of the cultured cells: on the smooth substrates the cells adhered randomly and showed no preferred orientation; in contrast, on the micropatterned substrates the cells adhered preferentially onto the squares and not in the separating channels. Furthermore, key properties of the cells (size, viability, proliferation rate and stem cell marker expression) did not show any dependence on substrate topography. The size of the cultured cells, their viability, the proportions of actively/slow proliferating cells, as well as the stem cell markers expressions, were similar for both flat and micropatterned substrates. Finally, it was found that the cells cultured on the PLGA/PU substrates deposited by MAPLE exhibited similar properties as the controls (i.e. cells cultured on glass slides), indicating the capability of the former to preserve the properties of the keratinocyte stem cells.

  14. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids

    PubMed Central

    Foty, Ramsey

    2011-01-01

    Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels1or in biomaterial scaffolds2. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of

  15. Genetically Encoded Sender–Receiver System in 3D Mammalian Cell Culture

    PubMed Central

    2013-01-01

    Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin–Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell–cell communication networks in 3D cell culture. PMID:24313393

  16. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  17. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  18. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  19. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.

    PubMed

    Li, Yanfen; Kilian, Kristopher A

    2015-12-30

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  20. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing. PMID:25380249

  1. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  2. A 3D human neural cell culture system for modeling Alzheimer's disease.

    PubMed

    Kim, Young Hye; Choi, Se Hoon; D'Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J; Klee, Justin B; Brüstle, Oliver; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-07-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks. PMID:26068894

  3. Preparation of 3D fibrin scaffolds for stem cell culture applications.

    PubMed

    Kolehmainen, Kathleen; Willerth, Stephanie M

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the

  4. Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications

    PubMed Central

    Kolehmainen, Kathleen; Willerth, Stephanie M.

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche 1. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues 2. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue.3 A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo4. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors 5. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside 6,7. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis

  5. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  6. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  7. Self-organization of neural patterns and structures in 3D culture of stem cells

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshiki

    2013-05-01

    Over the last several years, much progress has been made for in vitro culture of mouse and human ES cells. Our laboratory focuses on the molecular and cellular mechanisms of neural differentiation from pluripotent cells. Pluripotent cells first become committed to the ectodermal fate and subsequently differentiate into uncommitted neuroectodermal cells. Both previous mammalian and amphibian studies on pluripotent cells have indicated that the neural fate is a sort of the basal direction of the differentiation of these cells while mesoendodermal differentiation requires extrinsic inductive signals. ES cells differentiate into neuroectodermal cells with a rostral-most character (telencephalon and hypothalamus) when they are cultured in the absence of strong patterning signals. In this talk, I first discuss this issue by referring to our recent data on the mechanism of spontaneous neural differentiation in serum-free culture of mouse ES cells. Then, I will talk about self-organization phenomena observed in 3D culture of ES cells, which lead to tissue-autonomous formation of regional structures such as layered cortical tissues. I also discuss our new attempt to monitor these in vitro morphogenetic processes by live imaging, in particular, self-organizing morphogenesis of the optic cup in three-dimensional cultures.

  8. Low-level laser therapy in 3D cell culture model using gingival fibroblasts.

    PubMed

    Basso, Fernanda G; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-07-01

    Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm(2). Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm(2) increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm(2), while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair. PMID:27126408

  9. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  10. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. PMID:24636868

  11. Acrylic-acid-functionalized PolyHIPE scaffolds for use in 3D cell culture.

    PubMed

    Hayward, Adam S; Sano, Naoko; Przyborski, Stefan A; Cameron, Neil R

    2013-12-01

    This study describes the development of a functional porous polymer for use as a scaffold to support 3D hepatocyte culture. A high internal phase emulsion (HIPE) is prepared containing the monomers styrene (STY), divinylbenzene (DVB), and 2-ethylhexyl acrylate (EHA) in the external oil phase and the monomer acrylic acid (Aa) in the internal aqueous phase. Upon thermal polymerization with azobisisobutyronitrile (AIBN), the resulting porous polymer (polyHIPE) is found to have an open-cell morphology and a porosity of 89%, both suitable characteristics for 3D cell scaffold applications. X-ray photo-electron spectroscopy reveals that the polyHIPE surface contained 7.5% carboxylic acid functionality, providing a useful substrate for subsequent surface modifications and bio-conjugations. Initial bio-compatibility assessments with human hepatocytes show that the acid functionality does not have any detrimental effect on cell adhesion. It is therefore believed that this material can be a useful precursor scaffold towards 3D substrates that offer tailored surface functionality for enhanced cell adhesion. PMID:24243821

  12. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture.

    PubMed

    Choi, Da Jeong; Choi, Seung Mi; Kang, Hae Yeong; Min, Hye-Jin; Lee, Rira; Ikram, Muhammad; Subhan, Fazli; Jin, Song Wan; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik

    2015-07-10

    One of the most challenging objectives of 3D cell culture is the development of scaffolding materials with outstanding biocompatibility and favorable mechanical strength. In this study, we fabricated a novel nanofibrous scaffold composed of fish collagen (FC) and polycaprolactone (PCL) blends by using the electrospinning method. Nanofibrous scaffolds were characterized using a scanning electron microscope (SEM), and it was revealed that the diameter of nanofibers decreased as FC content was increased in the FC/PCL composite nanofibers. The cytocompatibility of the FC/PCL scaffolds was evaluated by SEM, WST-1 assay, confocal microscopy, western blot, and RT-PCR. It was found that the scaffolds not only facilitated the adhesion, spreading, protrusions, and proliferation of thymic epithelial cells (TECs), but also stimulated the expression of genes and proteins involved in cell adhesion and T-cell development. Thus, these results suggest that the FC/PCL composite nanofibrous scaffolds will be a useful model of 3D cell culture for TECs and may have wide applicability in the future for engineering tissues or organs. PMID:25617682

  13. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  14. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model.

    PubMed

    Shelper, Todd B; Lovitt, Carrie J; Avery, Vicky M

    2016-09-01

    Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay. PMID:27552143

  15. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.

    PubMed

    Charwat, Verena; Schütze, Karin; Holnthoner, Wolfgang; Lavrentieva, Antonina; Gangnus, Rainer; Hofbauer, Pablo; Hoffmann, Claudia; Angres, Brigitte; Kasper, Cornelia

    2015-07-10

    Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called "z-stacks". However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell

  16. Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels

    PubMed Central

    Mabry, Kelly M.; Payne, Samuel Z.; Anseth, Kristi S.

    2015-01-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled “Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype” (Mabry et al., 2015) [2]. PMID:26702427

  17. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  18. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells.

    PubMed

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  19. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  20. Monitoring of Apoptosis in 3D Cell Cultures by FRET and Light Sheet Fluorescence Microscopy

    PubMed Central

    Weber, Petra; Schickinger, Sarah; Wagner, Michael; Angres, Brigitte; Bruns, Thomas; Schneckenburger, Herbert

    2015-01-01

    Non-radiative cell membrane associated Förster Resonance Energy Transfer (FRET) from an enhanced cyan fluorescent protein (ECFP) to an enhanced yellow fluorescent protein (EYFP) is used for detection of apoptosis in 3-dimensional cell cultures. FRET is visualized in multi-cellular tumor spheroids by light sheet based fluorescence microscopy in combination with microspectral analysis and fluorescence lifetime imaging (FLIM). Upon application of staurosporine and to some extent after treatment with phorbol-12-myristate-13-acetate (PMA), a specific activator of protein kinase c, the caspase-3 sensitive peptide linker DEVD is cleaved. This results in a reduction of acceptor (EYFP) fluorescence as well as a prolongation of the fluorescence lifetime of the donor (ECFP). Fluorescence spectra and lifetimes may, therefore, be used for monitoring of apoptosis in a realistic 3-dimensional system, while light sheet based microscopy appears appropriate for 3D imaging at low light exposure. PMID:25761242

  1. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells.

    PubMed

    Emura, M; Aufderheide, M

    2016-05-01

    Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis. PMID:26951634

  2. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  3. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-03-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

  4. Curved and folded micropatterns in 3D cell culture and tissue engineering.

    PubMed

    Yilmaz, Cem Onat; Xu, Zinnia S; Gracias, David H

    2014-01-01

    Cells live in a highly curved and folded micropatterned environment within the human body. Hence, there is a need to develop engineering paradigms to replicate these microenvironments in order to investigate the behavior of cells in vitro, as well as to develop bioartificial organs for tissue engineering and regenerative medicine. In this chapter, we first motivate the need for such micropatterns based on anatomical considerations and then survey methods that can be utilized to generate curved and folded micropatterns of relevance to 3D cell culture and tissue engineering. The methods surveyed can broadly be divided into two classes: top-down approaches inspired by conventional 2D microfabrication and bottom-up approaches most notably in the self-assembly of thin patterned films. These methods provide proof of concept that the high resolution, precise and reproducible patterning of cell and matrix microenvironments in anatomically relevant curved and folded geometries is possible. A specific protocol is presented to create curved and folded hydrogel micropatterns. PMID:24560507

  5. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    PubMed Central

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-01-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel. PMID:25752700

  6. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    PubMed

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. PMID:24613390

  7. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  8. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures.

    PubMed

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  9. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    PubMed Central

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  10. Effect of particle size in a colloidal hydrogel scaffold for 3D cell culture.

    PubMed

    Gu, Jianjun; Zhao, Yening; Guan, Ying; Zhang, Yongjun

    2015-12-01

    The in situ-forming colloidal hydrogels from the thermal gelation of poly(N-isopropylacrylamide) (PNIPAM) microgel dispersions have been exploited for 3D cell culture. The properties of the hydrogel scaffold need to be tuned to further improve its performance. In addition, cellular uptake of the microgel particles need to be reduced to avoid their potential undesired influence. For these purposes we systematically examined the effect of microgel particle size on the hydrogel scaffold. It was found that gel properties could be tuned via changing particle size. Increasing particle size reduces the gel strength and its syneresis degree, both of which are favorable for cell growth. Meanwhile increasing particle size could also reduce significantly the cellular uptake of the microgel particles. Microgel with a size of ~162 nm shows the highest cellular uptake, beyond which cellular uptake decreases with increasing particle size. Hydrogel scaffold from 300 nm microgel, with suitable physical properties and reduced cellular uptake, were successfully used for multicellular spheroid generation. PMID:26613865

  11. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry.

    PubMed

    LaBonia, Gabriel J; Lockwood, Sarah Y; Heller, Andrew A; Spence, Dana M; Hummon, Amanda B

    2016-06-01

    Realistic in vitro models are critical in the drug development process. In this study, a novel in vitro platform is employed to assess drug penetration and metabolism. This platform, which utilizes a 3D printed fluidic device, allows for dynamic dosing of three dimensional cell cultures, also known as spheroids. The penetration of the chemotherapeutic irinotecan into HCT 116 colon cancer spheroids was examined with MALDI imaging mass spectrometry (IMS). The active metabolite of irinotecan, SN-38, was also detected. After twenty-four hours of treatment, SN-38 was concentrated to the outside of the spheroid, a region of actively dividing cells. The irinotecan prodrug localization contrasted with SN-38 and was concentrated to the necrotic core of the spheroids, a region containing mostly dead and dying cells. These results demonstrate that this unique in vitro platform is an effective means to assess drug penetration and metabolism in 3D cell cultures. This innovative system can have a transformative impact on the preclinical evaluation of drug candidates due to its cost effectiveness and high throughput. PMID:27198560

  12. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    PubMed Central

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  13. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  14. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures.

    PubMed

    Smolina, Margarita; Goormaghtigh, Erik

    2015-04-01

    One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section. One possible approach for overcoming this problem is to obtain the IR spectral signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices appear to generate an environment that mimics better the in vivo environment. There are, at present, series of breast cancer cell lines that have been thoroughly characterized in two- and three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we describe the methods used to grow, to process, and to characterize a triple-negative breast cancer cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it with traditional monolayer cultures and tissue sections. While unsupervised analyses did not completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised statistical analysis resulted in an almost perfect separation. When IR spectral responses of epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging because of correlating well-characterized cell line features with clinical biopsies. PMID:25568895

  15. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  16. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-01

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. PMID:24936458

  17. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.

    PubMed

    Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M

    2016-07-01

    This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031

  18. Unique characteristics of human mesenchymal stem/progenitor cells (MSC) pre-activated in 3D cultures under different conditions

    PubMed Central

    Ylostalo, Joni H.; Bartosh, Thomas J.; Tiblow, April; Prockop, Darwin J.

    2014-01-01

    Background Human mesenchymal stem cells (MSCs) are being employed in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3D. Here we compared the activation of MSCs in 3D in fetal bovine serum (FBS) containing medium and in multiple xeno-free media formulations. Methods MSC aggregation and sphere formation was studied using hanging drop cultures with medium containing FBS or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with gene expression and protein secretion measurements and with functional studies using macrophages and cancer cells. Results MSCs did not condense into tight spheroids and express a full complement of therapeutic genes in MEMα or several commercial stem-cell media. However, we identified a chemically-defined xeno-free media that when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (PGE2, TSG-6) and anti-cancer molecules (TRAIL, IL-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in an LPS-stimulated macrophage system, and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death. Discussion We demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed here for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications. PMID:25231893

  19. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells

    PubMed Central

    Herroon, Mackenzie Katheryn; Diedrich, Jonathan Driscoll; Podgorski, Izabela

    2016-01-01

    Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte–tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate

  20. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    NASA Astrophysics Data System (ADS)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  1. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    PubMed

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science. PMID:25411113

  2. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  3. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D

    PubMed Central

    Kloxin, April M.; Lewis, Katherine J. R.; DeForest, Cole A.; Seedorf, Gregory; Tibbitt, Mark W.; Balasubramaniam, Vivek

    2012-01-01

    We describe the development of a well-based cell culture platform that enables experimenters to control the geometry and connectivity of cellular microenvironments spatiotemporally. The base material is a hydrogel comprised of photolabile and enzyme-labile crosslinks and pendant cell adhesion sequences, enabling spatially-specific, in situ patterning with light and cell-dictated microenvironment remodeling through enzyme secretion. Arrays of culture wells of varying shape and size were patterned into the hydrogel surface using photolithography, where well depth was correlated with irradiation dose. The geometry of these devices can be subsequently modified through sequential patterning, while simultaneously monitoring changes in cell geometry and connectivity. Towards establishing the utility of these devices for dynamic evaluation of the influence of physical cues on tissue morphogenesis, the effect of well shape on lung epithelial cell differentiation (i.e., primary mouse alveolar type II cells, ATII cells) was assessed. Shapes inspired by alveoli were degraded into hydrogel surfaces. ATII cells were seeded within the well-based arrays and encapsulated by the addition of a top hydrogel layer. Cell differentiation in response to these geometries was characterized over 7 days of culture with immunocytochemistry (surfactant protein C, ATII; T1α protein, alveolar type I (ATI) differentiated epithelial cells) and confocal image analysis. Individual cell clusters were further connected by eroding channels between wells during culture via controlled two-photon irradiation. Collectively, these studies demonstrate the development and utility of responsive hydrogel culture devices to study how a range of microenvironment geometries of evolving shape and connectivity might influence or direct cell function. PMID:23138879

  4. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  5. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes.

    PubMed

    Occhetta, Paola; Centola, Matteo; Tonnarelli, Beatrice; Redaelli, Alberto; Martin, Ivan; Rasponi, Marco

    2015-01-01

    The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a 'developmental engineering' approach for skeletal tissue regeneration. PMID:25983217

  6. Fibrillized peptide microgels for cell encapsulation and 3D cell culture

    PubMed Central

    Tian, Ye F.; Devgun, Jason M.; Collier, Joel H.

    2012-01-01

    One of the advantages of materials produced by self-assembly is that in principle they can be formed in any given container to produce materials of predetermined shapes and sizes. Here, we developed a method for triggering peptide self-assembly within the aqueous phase of water-in-oil emulsions to produce spherical microgels composed of fibrillized peptides. Size control over the microgels was achieved by specification of blade type, speed, and additional shear steps in the emulsion process. Microgels constructed in this way could then be embedded within other self-assembled peptide matrices by mixing pre-formed microgels with un-assembled peptides and inducing gelation of the entire composite, offering a route towards multi-peptide materials with micron-scale domains of different peptide formulations. The gels themselves were cytocompatible, as was the microgel fabrication procedure, enabling the encapsulation of NIH 3T3 fibroblasts and C3H10T-1/2 mouse pluripotent stem cells with good viability. PMID:22773926

  7. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells

    PubMed Central

    Zhao, Shuting; Agarwal, Pranay; Rao, Wei; Huang, Haishui; Zhang, Renliang; Liu, Zhenguo; Yu, Jianhua; Weisleder, Noah; Zhang, Wujie; He, Xiaoming

    2014-01-01

    A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic. PMID:25036382

  8. Comparison of the Expression of Hepatic Genes by Human Wharton’s Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems

    PubMed Central

    Khodabandeh, Zahra; Vojdani, Zahra; Talaei-Khozani, Tahereh; Jaberipour, Mansoureh; Hosseini, Ahmad; Bahmanpour, Soghra

    2016-01-01

    Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. Methods: HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. Results: The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. Conclusion: Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other. PMID:26722142

  9. Multiplex profiling of cellular invasion in 3D cell culture models.

    PubMed

    Burgstaller, Gerald; Oehrle, Bettina; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states. PMID:23671660

  10. Multiplex Profiling of Cellular Invasion in 3D Cell Culture Models

    PubMed Central

    Burgstaller, Gerald; Oehrle, Bettina; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states. PMID:23671660

  11. Effect of Factors Secreted by the Placenta on Phenotype of THP-1 Cells Cultured on a 3D Scaffold.

    PubMed

    Lvova, T Yu; Stepanova, O I; Viazmina, L P; Okorokova, L S; Belyakova, K L; Belikova, M E; Selkov, S A; Sokolov, D I

    2016-05-01

    We studied the effects of secretory products of the placenta obtained from women with normal pregnancy and preeclampsia on the expression of surface markers by THP-1 cells cultured on a 3D Matrigel scaffold. Secretory products of third trimester placentas obtained from women with normal pregnancy reduced the relative number of THP-1 cells expressing CD54 and CD14 molecules and expression of CD14 and CD95 molecules by THP-1 cells in comparison with the effect of secretory products first trimester placentas. In parallel, the intensity of CD49d expression by THP-1 cells increased in the presence of secretory products of third trimester placentas in comparison with the first trimester. No differences in the expression of the studied molecules by THP-1 cells under the effect of placentas from women with physiological pregnancy and patients with preeclampsia were found. PMID:27259498

  12. Influence of electrical stimulation on 3D-cultures of adipose tissue derived progenitor cells (ATDPCs) behavior.

    PubMed

    Castells-Sala, C; Sanchez, B; Recha-Sancho, L; Puig, V; Bragos, R; Semino, C E

    2012-01-01

    Tissue engineering has a fundamental role in regenerative medicine. Still today, the major motivation for cardiac regeneration is to design a platform that enables the complete tissue structure and physiological function regeneration of injured myocardium areas. Although tissue engineering approaches have been generally developed for two-dimensional (2D) culture systems, three-dimensional (3D) systems are being spotlighted as the means to mimic better in vivo cellular conditions. This manuscript examines the influence of electrical stimulation on 3D cultures of adipose tissue-derived progenitor cells (ATDPCs). ATDPCs cells were encapsulated into a self-assembling peptide nanoscaffold (RAD16-I) and continuously electro stimulated during 14-20 days with 2-ms pulses of 50mV/cm at a frequency of 1 Hz. Good cellular network formation and construct diameter reduction was observed in electro stimulated samples. Importantly, the process of electro stimulation does not disrupt cell viability or connectivity. As a future outlook, differentiation studies to cardiomyocytes-like cells will be performed analyzing gene profile and protein expression. PMID:23367213

  13. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    PubMed

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique. PMID:23173303

  14. A 3D ex vivo mandible slice system for longitudinal culturing of transplanted dental pulp progenitor cells.

    PubMed

    Colombo, John S; Howard-Jones, Rachel A; Young, Fraser I; Waddington, Rachel J; Errington, Rachel J; Sloan, Alastair J

    2015-10-01

    Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell-lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the β-actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP-DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP-DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell-micro-community, phenotypically modified in the tooth (the "biology"); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high-content imaging (the biology in a "multiplex" format). PMID:25963448

  15. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    NASA Astrophysics Data System (ADS)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  16. Establishment of 3D organotypic cultures using human neonatal epidermal cells.

    PubMed

    Gangatirkar, Pradnya; Paquet-Fifield, Sophie; Li, Amy; Rossi, Ralph; Kaur, Pritinder

    2007-01-01

    This protocol describes an ex vivo three-dimensional coculture system optimized to study the skin regenerative ability of primary human keratinocytes grown at the air-liquid interface on collagen matrices embedded with human dermal fibroblasts. An option for enrichment of keratinocyte stem cells and their progeny using fluorescence-activated cell sorting is also provided. Initially, dermal equivalents, comprising human passaged fibroblasts seeded in a collagen matrix, are grown on porous filters (3 mum) placed in transwells. After 1 week, primary human keratinocytes are seeded on this base. One week later, an air-lift transition is performed, leading to the differentiation of the keratinocytes, which are macroscopically visible as artificial skin after a couple of days. The cultures can be harvested 1 week after the air-lift and processed for immunohistochemistry or gene expression analysis. The overall procedure can be completed in 3 weeks, including the preparation of the dermal equivalent and the seeding of the primary keratinocytes. PMID:17401352

  17. Effect of Lyso-phosphatidylcholine and Schnurri-3 on Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells to Calcifying Vascular Cells in 3D Culture

    PubMed Central

    Castro-Chavez, Fernando; Vickers, Kasey C.; Sam Lee, Jae; Tung, Ching-Hsuan; Morrisett, Joel D.

    2015-01-01

    Background In vitro cell culture is a widely used technique for investigating a range of processes such as stem cell behavior, regenerative medicine, tissue engineering, and drug discovery. Conventional cell culture is performed in Petri dishes or flasks where cells typically attach to a flat glass or plastic surface as a cell monolayer. However, 2D cell mono-layers do not provide a satisfactory representation of in vivo conditions. A 3D culture could be a much better system for representing the conditions that prevail in vivo. Methods and results To simulate 3D conditions, vascular smooth muscle cells (VSMCs) were loaded with gold–polyvmer–iron oxide hydrogel, enabling levitation of the cells by using spatially varying magnetic fields. These magnetically levitated 3D cultures appeared as freely suspended, clustered cells which proliferated 3–4 times faster than cells in conventional 2D cultures. When the levitated cells were treated with 10 nM lysophosphatidylcholine (LPC), for 3 days, cell clusters exhibited translucent extensions/rods 60–80 µm wide and 200–250 µm long. When 0.5 µg/µl Schnurri-3 was added to the culture containing LPC, these extensions were smaller or absent. When excited with 590–650 nm light, these extensions emitted intrinsic fluorescence at >667 nm. When the 3D cultures were treated with a fluorescent probe specific for calcium hydroxyapatite (FITC-HABP-19), the cell extensions/rods emitted intensely at 518 nm, the λmax for FITC emission. Pellets of cells treated with LPC were more enriched in calcium, phosphate, and glycosaminogly-cans than cells treated with LPC and Schnurri-3. Conclusions In 3D cultures, VSMCs grow more rapidly and form larger calcification clusters than cells in 2D cultures. Transdifferentiation of VSMC into calcifying vascular cells is enhanced by LPC and attenuated by Schnurri-3. General significance The formation of calcified structures in 3D VSMC cultures suggests that similar structures may be formed

  18. 3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression.

    PubMed

    Pinto, Sheena; Stark, Hans-Jürgen; Martin, Iris; Boukamp, Petra; Kyewski, Bruno

    2015-01-01

    Intra-thymic T cell development requires an intricate three-dimensional meshwork composed of various stromal cells, i.e., non-T cells. Thymocytes traverse this scaffold in a highly coordinated temporal and spatial order while sequentially passing obligatory check points, i.e., T cell lineage commitment, followed by T cell receptor repertoire generation and selection prior to their export into the periphery. The two major resident cell types forming this scaffold are cortical (cTECs) and medullary thymic epithelial cells (mTECs). A key feature of mTECs is the so-called promiscuous expression of numerous tissue-restricted antigens. These tissue-restricted antigens are presented to immature thymocytes directly or indirectly by mTECs or thymic dendritic cells, respectively resulting in self-tolerance. Suitable in vitro models emulating the developmental pathways and functions of cTECs and mTECs are currently lacking. This lack of adequate experimental models has for instance hampered the analysis of promiscuous gene expression, which is still poorly understood at the cellular and molecular level. We adapted a 3D organotypic co-culture model to culture ex vivo isolated mTECs. This model was originally devised to cultivate keratinocytes in such a way as to generate a skin equivalent in vitro. The 3D model preserved key functional features of mTEC biology: (i) proliferation and terminal differentiation of CD80(lo), Aire-negative into CD80(hi), Aire-positive mTECs, (ii) responsiveness to RANKL, and (iii) sustained expression of FoxN1, Aire and tissue-restricted genes in CD80(hi) mTECs. PMID:26275017

  19. The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets.

    PubMed

    Nagamoto, Yasuhito; Tashiro, Katsuhisa; Takayama, Kazuo; Ohashi, Kazuo; Kawabata, Kenji; Sakurai, Fuminori; Tachibana, Masashi; Hayakawa, Takao; Furue, Miho Kusuda; Mizuguchi, Hiroyuki

    2012-06-01

    Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are known to be a useful cell source for drug screening. We recently developed an efficient hepatic differentiation method from hESCs and hiPSCs by sequential transduction of FOXA2 and HNF1α. It is known that the combination of three-dimensional (3D) culture and co-culture, namely 3D co-culture, can maintain the functions of primary hepatocytes. However, hepatic maturation of hESC- or hiPSC-derived hepatocyte-like cells (hEHs or hiPHs, respectively) by 3D co-culture systems has not been examined. Therefore, we utilized a cell sheet engineering technology to promote hepatic maturation. The gene expression levels of hepatocyte-related markers (such as cytochrome P450 enzymes and conjugating enzymes) and the amount of albumin secretion in the hEHs or hiPHs, which were 3D co-cultured with the Swiss 3T3 cell sheet, were significantly up-regulated in comparison with those in the hEHs or hiPHs cultured in a monolayer. Furthermore, we found that type I collagen synthesized in Swiss 3T3 cells plays an important role in hepatic maturation. The hEHs or hiPHs that were 3D co-cultured with the Swiss 3T3 cell sheet would be powerful tools for medical applications, such as drug screening. PMID:22445253

  20. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  1. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins

    PubMed Central

    Edmondson, Rasheena; Adcock, Audrey F.; Yang, Liju

    2016-01-01

    This study investigated the effects of matrix on the behaviors of 3D-cultured cells of two prostate cancer cell lines, LNCaP and DU145. Two biologically-derived matrices, Matrigel and Cultrex BME, and one synthetic matrix, the Alvetex scaffold, were used to culture the cells. The cell proliferation rate, cellular response to anti-cancer drugs, and expression levels of proteins associated with drug sensitivity/resistance were examined and compared amongst the 3D-cultured cells on the three matrices and 2D-cultured cells. The cellular responses upon treatment with two common anti-cancer drugs, Docetaxel and Rapamycin, were examined. The expressions of epidermal growth factor receptor (EGFR) and β-III tubulin in DU145 cells and p53 in LNCaP cells were examined. The results showed that the proliferation rates of cells cultured on the three matrices varied, especially between the synthetic matrix and the biologically-derived matrices. The drug responses and the expressions of drug sensitivity-associated proteins differed between cells on various matrices as well. Among the 3D cultures on the three matrices, increased expression of β-III tubulin in DU145 cells was correlated with increased resistance to Docetaxel, and decreased expression of EGFR in DU145 cells was correlated with increased sensitivity to Rapamycin. Increased expression of a p53 dimer in 3D-cultured LNCaP cells was correlated with increased resistance to Docetaxel. Collectively, the results showed that the matrix of 3D cell culture models strongly influences cellular behaviors, which highlights the imperative need to achieve standardization of 3D cell culture technology in order to be used in drug screening and cell biology studies. PMID:27352049

  2. A 3D ex vivo mandible slice system for longitudinal culturing of transplanted dental pulp progenitor cells

    PubMed Central

    Colombo, John S.; Young, Fraser I.; Waddington, Rachel J.; Errington, Rachel J.; Sloan, Alastair J.

    2015-01-01

    Abstract Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell‐lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the β‐actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP‐DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP‐DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell‐micro‐community, phenotypically modified in the tooth (the “biology”); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high‐content imaging (the biology in a “multiplex” format). © 2015 The Authors. Published by Wiley Periodicals, Inc. PMID:25963448

  3. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    PubMed

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses. PMID:26562056

  4. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  5. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals. PMID:25785560

  6. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

    PubMed Central

    Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.

    2014-01-01

    Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332

  7. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  8. Interactions of Pluronic nanocarriers with 2D and 3D cell cultures: Effects of PEO block length and aggregation state.

    PubMed

    Arranja, Alexandra; Denkova, Antonia G; Morawska, Karolina; Waton, Gilles; van Vlierberghe, Sandra; Dubruel, Peter; Schosseler, François; Mendes, Eduardo

    2016-02-28

    This work reveals how the physicochemical properties of Pluronic block copolymers influence significantly their interactions with cancer cells, whether in monolayer or spheroid cultures, and how different clinical applications can be foreseen. Two-dimensional (2D) and three-dimensional (3D) cell culture models were used to investigate the interactions of Pluronic carriers with different PEO block length and aggregation state (unimers versus cross-linked micelles) in HeLa and U87 cancer cells. Stabilized micelles of Pluronic P94 or F127 were obtained by polymerization of a crosslinking agent in the micelles hydrophobic core. Nanocarriers were functionalized with a fluorescent probe for visualization, and with a chelator for radiolabeling with Indium-111 and gamma-quantification. The 2D cell models revealed that the internalization pathways and ultimate cellular localization of the Pluronic nanocarriers depended largely on both the PEO block size and aggregation state of the copolymers. The smaller P94 unimers with an average radius of 2.1nm and the shortest PEO block mass (1100gmol(-1)) displayed the highest cellular uptake and retention. 3D tumor spheroids were used to assess the penetration capacity and toxicity potential of the nanocarriers. Results showed that cross-linked F127 micelles were more efficiently delivered across the tumor spheroids, and the penetration depth depends mostly on the transcellular transport of the carriers. The Pluronic P94-based carriers with the shortest PEO block length induced spheroid toxicity, which was significantly influenced by the spheroid cellular type. PMID:26792572

  9. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application. PMID:25611196

  10. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    PubMed

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-01

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation. PMID:27185139

  11. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  12. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression

    PubMed Central

    Liu, Xiao-qing; Kiefl, Rosemarie; Roskopf, Claudia; Tian, Fei; Huber, Rudolf M.

    2016-01-01

    In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues. PMID:27232698

  13. Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model.

    PubMed

    Lin, Shiyu; Xie, Jing; Gong, Tao; Shi, Sirong; Zhang, Tao; Fu, Na; Lin, Yunfeng

    2016-01-01

    Co-implantation of adipose-derived stromal cells (ASCs) and endothelial cells (ECs) can markedly expedite the formation of functional microvascular beds and provides possible methods for cell-based revascularization therapies to treat various diseases. Furthermore, we investigated the role of TGFβ/Smad signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model established in vitro with co-culture between ASCs and ECs. We found that angiogenesis was attenuated in the co-culture gels after inhibition of ALK5/Smad2/3 with SB431542. Genes coding for VEGF-A, VEGF-B, VE-ca, FGF-1, PDGF, BMP-4, and BMP-7 were significantly reduced in both mono-cultured and co-cultured ECs. Furthermore, the decrease in co-cultured ECs was prominent relative to mono-cultured ECs. Taken together, these findings suggest that in the co-culture between ASCs and ECs, TGFβ/Smad signal pathway regulates angiogenesis via ECs; moreover, the findings that the co-cultured ECs were regulated more significantly than mono-cultured ECs suggest that suppression of Smad signal pathway may regulate the paracrine secretion of ASCs to further modulate angiogenesis of ECs. PMID:26694166

  14. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures

    PubMed Central

    2013-01-01

    Background Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. Methods To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose–response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. Results Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose–response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. Conclusion Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium

  15. Thiol–ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture

    PubMed Central

    Xu, Kedi; Fu, Yao; Chung, WeiJu; Zheng, Xiaoxiang; Cui, Yujia; Hsu, Ian C.; Kao, Weiyuan John

    2013-01-01

    Although various cell encapsulation materials are available commercially for a wide range of potential therapeutic cells, their combined clinical impact remains inconsistent. Synthetic materials such as poly(ethylene glycol) (PEG) hydrogels are mechanically robust and have been extensively explored but lack natural biofunctionality. Naturally derived materials including collagen, fibrin and alginate-chitosan are often labile and mechanically weak. In this paper we report the development of a hybrid biomatrix based on the thiol-ene reaction of PEG diacrylate (PEGdA) and cysteine/PEG-modified gelatin (gel-PEG-Cys). We hypothesized that covalent crosslinking decreases gelatin dissolution thus increasing gelatin resident time within the matrix and the duration of its biofunctionality; at the same time the relative ratio of PEGdA to gel-PEG-Cys in the matrix formulation directly affects hydrogel bulk and local microenvironment properties. Bulk viscoelastic properties were highly dependent on PEGdA concentration and total water content, while gel-PEG-Cys concentration was more critical to swelling profiles. Microviscoelastic properties were related to polymer concentration. The covalently crosslinked gel-PEG-Cys with PEGdA decreased gelatin dissolution out of the matrix and collagenase-mediated degradation. Fibroblasts and keratinocyte increased adhesion density and formed intercellular connections on stiffer hydrogel surfaces, while cells exhibited more cytoplasmic spreading and proliferation when entrapped within softer hydrogels. Hence, this material system contains multiparametric factors that can easily be controlled to modulate the chemical, physical and biological properties of the biomatrix for soft tissue scaffolding and cell presentation to reconstruct lost tissue architecture and physical functionality. PMID:22484717

  16. Biophysically Defined and Cytocompatible Covalently Adaptable Networks as Viscoelastic 3D Cell Culture Systems

    PubMed Central

    McKinnon, Daniel D.; Domaille, Dylan W.; Cha, Jennifer N.; Anseth, Kristi S.

    2015-01-01

    Presented here is a cytocompatible covalently adaptable hydrogel uniquely capable of mimicking the complex biophysical properties of native tissue and enabling natural cell functions without matrix degradation. Demonstrated is both the ability to control elastic modulus and stress relaxation time constants by more than an order of magnitude while predicting these values based on fundamental theoretical understanding and the simulation of muscle tissue and the encapsulation of myoblasts. PMID:24127293

  17. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture

    PubMed Central

    Hao, Yiting; Shih, Han; Muňoz, Zachary; Kemp, Arika; Lin, Chien-Chi

    2013-01-01

    We report here a synthetically simple yet highly tunable and diverse visible light mediated thiol-vinyl gelation system for fabricating cell-instructive hydrogels. Gelation was achieved via a mixed-mode step-and-chain-growth photopolymerization using functionalized 4-arm poly(ethylene glycol) as backbone macromer, eosin-Y as photosensitizer, and di-thiol containing molecule as dual purpose co-initiator/cross-linker. N-vinylpyrrolidone (NVP) was used to accelerate gelation kinetics and to adjust the stiffness of the hydrogels. Visible light (wavelength: 400–700nm) was used to initiate rapid gelation (gel points: ~20 seconds) that reached completion within a few minutes. The major differences between current thiol-vinyl gelation and prior visible light mediated photopolymerization are that: (1) the co-initiator triethanolamine (TEOA) used in the previous systems was replaced with multifunctional thiols and (2) mixed-mode polymerized gels contain less network heterogeneity. The gelation kinetics and gel properties at the same PEG macromer concentration could be tuned by changing the identity of vinyl groups and di-thiol cross-linkers, as well as concentration of cross-linker and NVP. Specifically, acrylate-modified PEG afforded the fastest gelation rate, followed by acrylamide and methacrylate-functionalized PEG. Increasing NVP concentration also accelerated gelation and led to a higher network cross-linking density. Further, increasing di-thiol peptide concentration in the gel formulation increased hydrogel swelling and decreased gel stiffness. Due to the formation of thiol-ether-ester bonds following thiol-acrylate reaction, the gels degraded hydrolytically following a pseudo first order degradation kinetics. Degradation rate was controlled by adjusting thiol or NVP content in the polymer precursor solution. The cytocompatibility and utility of this hydrogel system were evaluated using in situ encapsulation of human mesenchymal stem cells (hMSC). Encapsulated h

  18. Hematopoietic Stem and Progenitor Cell Expansion in Contact with Mesenchymal Stromal Cells in a Hanging Drop Model Uncovers Disadvantages of 3D Culture

    PubMed Central

    Schmal, Olga; Seifert, Jan; Schäffer, Tilman E.; Walter, Christina B.; Aicher, Wilhelm K.; Klein, Gerd

    2016-01-01

    Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard. PMID:26839560

  19. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  20. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  1. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  2. A 3-D microfluidic combinatorial cell array.

    PubMed

    Liu, Mike C; Tai, Yu-Chong

    2011-02-01

    We present the development of a three-dimensional (3-D) combinatorial cell culture array device featured with integrated three-input, eight-output combinatorial mixer and cell culture chambers. The device is designed for cell-based screening of multiple compounds simultaneously on a microfluidic platform. The final assembled device is composed of a porous membrane integrated in between a Parylene 3-D microfluidic chip and a PDMS microfluidic chip. The membrane turned the cell culture chambers into two-level configuration to facilitate cell loading and to maintain cells in a diffusion dominated space during device operation. Experimentally, we first characterized the combined compound concentration profile at each chamber using a fluorescence method. We then successfully demonstrated the functionality of the quantitative cell-based assay by culturing B35 rat neuronal cells on this device and screening the ability of three compounds (1,5-dihydroxyisoquinoline, deferoxamine, and 3-aminobenzoic acid) to attenuate cell death caused by cytotoxic hydrogen peroxide. In another experiment, we assayed for the combinatorial effects of three chemotherapeutic compound exposures (vinorelbine, paclitaxel, and γ-linolenic acid) on human breast cancer cells, MDA-MB-231. The same technology will enable the construction of inexpensive lab-on-a-chip devices with high-input combinatorial mixer for performing high-throughput cell-based assay and highly parallel and combinatorial chemical or biochemical reactions. PMID:21063783

  3. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

    PubMed

    Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael

    2016-01-01

    Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation. PMID:25738417

  4. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro.

    PubMed

    Qian, Xu; Yuan, Fang; Zhimin, Zhu; Anchun, Mo

    2013-08-01

    The aim of the study was to investigate the biocompatibility and osteogenic effectiveness of the porous nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold material that was cultured with the rat bone marrow mesenchymal stem cells (rBMSCs), under the static culture condition and the dynamic perfusion culture condition in vitro, and to investigate whether the 3D perfusion culture condition was better in provoking proliferation of rBMSCs than the 3D static culture condition. The Methyl thiazolyl tetrazolium (MTT) assay, alkaline phosphatase (ALP) activity assay, Osteocalcin (OCN) assay and scanning electron microscope (SEM) were used to observe the proliferation and differentiation of rBMSCs. The samples were respectively harvested at 1st, 3rd, 7th, 14th, and 21st days and effect comparisons were made between the two of the culture conditions. The results showed that values of MTT, ALP, and OCN were increased continuously and revealed a significant difference between the two culture conditions (p < 0.05). On the 14th day, SEM revealed calcified nodules 2-8 μm in diameter in the lamellar structure. Under the static culture condition, the pores were covered with the cells looking like a piece of blanket, but under the perfusion culture condition the cells were observed to have a 3D lamellar structure. In conclusion, the porous n-HA/PA66 scaffold material can be used as a good candidate material for the bone scaffold construction in the tissue engineering because of its excellent 3D structure, which can greatly improve the proliferation and differentiation of rBMSCs and make them proliferate and osteogenesis even better under the perfusion culture condition. PMID:23362119

  5. RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures.

    PubMed

    Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A

    2015-01-01

    We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124

  6. RCCS Bioreactor-Based Modelled Microgravity Induces Significant Changes on In Vitro 3D Neuroglial Cell Cultures

    PubMed Central

    Mazzoleni, Giovanna; Fanò-Illic, Giorgio; Mariggiò, Maria A.

    2015-01-01

    We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124

  7. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture.

    PubMed

    Ingeson-Carlsson, Camilla; Martinez-Monleon, Angela; Nilsson, Mikael

    2015-11-01

    Tumor microenvironment influences targeted drug therapy. In this study we compared drug responses to RAF and MEK inhibitors on tumor cell migration in 2D and 3D culture of BRAF(V600E) mutant cell lines derived from human papillary (BCPAP) and anaplastic (SW1736) thyroid carcinomas. Scratch wounding was compared to a double-layered collagen gel model developed for analysis of directed tumor cell invasion during prolonged culture. In BCPAP both PLX4720 and U0126 inhibited growth and migration in 2D and decreased tumor cell survival in 3D. In SW1736 drugs had no effect on migration in 2D but decreased invasion in 3D, however this related to reduced growth. Dual inhibition of BRAF(V600E) and MEK reduced but did not prevent SW1736 invasion although rebound phosphorylation of ERK in response to PLX4720 was blocked by U0126. These findings indicate that anti-tumor drug effects in vitro differ depending on culture conditions (2D vs. 3D) and that the invasive features of anaplastic thyroid cancer depend on non-MEK mechanism(s). PMID:26384551

  8. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead

  9. One-Step Microfluidic Generation of Pre-Hatching Embryo-Like Core-Shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells

    PubMed Central

    Agarwal, Pranay; Zhao, Shuting; Bielecki, Peter; Rao, Wei; Choi, Jung K.; Zhao, Yi; Yu, Jianhua; Zhang, Wujie; He, Xiaoming

    2013-01-01

    A novel core-shell microcapsule system is developed in this study to mimic the miniaturized 3D architecture of pre-hatching embryos with an aqueous liquid core of embryonic cells and a hydrogel-shell of zona pellucida. This is done by microfabricating a non-planar microfluidic flow-focusing device that enables one-step generation of microcapsules with an alginate hydrogel shell and an aqueous liquid core of cells from two aqueous fluids. Mouse embryonic stem (ES) cells encapsulated in the liquid core are found to survive well (> 92 %). Moreover, ~ 20 ES cells in the core can proliferate to form a single ES cell aggregate in each microcapsule within 7 days while at least a few hundred cells are usually needed by the commonly used hanging-drop method to form an embryoid body (EB) in each hanging drop. Quantitative RT-PCR analyses show significantly higher expression of pluripotency marker genes in the 3D aggregated ES cells compared to the cells under 2D culture. The aggregated ES cells can be efficiently differentiated into beating cardiomyocytes using a small molecule (cardiogenol C) without complex combination of multiple growth factors. Taken together, the novel 3D microfluidic and pre-hatching embryo-like microcapsule systems are of importance to facilitate in vitro culture of pluripotent stem cells for their ever-increasing use in modern cell-based medicine. PMID:24113543

  10. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    PubMed Central

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  11. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  12. Poly(vinyl alcohol)/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study

    PubMed Central

    Moscato, Stefania; Ronca, Francesca; Campani, Daniela; Danti, Serena

    2015-01-01

    It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena. PMID:25590431

  13. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    PubMed

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an

  14. Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

    PubMed Central

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi

  15. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  16. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  17. High-Throughput 3D Screening Reveals Differences in Drug Sensitivities between Culture Models of JIMT1 Breast Cancer Cells

    PubMed Central

    Fey, Vidal; Mpindi, John-Patrick; Kleivi Sahlberg, Kristine; Kallioniemi, Olli; Perälä, Merja

    2013-01-01

    The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode

  18. Alzheimer’s in 3D culture: Challenges and perspectives

    PubMed Central

    D'Avanzo, Carla; Aronson, Jenna; Kim, Young Hye; Choi, Se Hoon; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Summary Alzheimer’s disease (AD) is the most common cause of dementia, and there is currently no cure. The “β-amyloid cascade hypothesis” of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including β-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery. PMID:26252541

  19. Alzheimer's in 3D culture: challenges and perspectives.

    PubMed

    D'Avanzo, Carla; Aronson, Jenna; Kim, Young Hye; Choi, Se Hoon; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-10-01

    Alzheimer's disease (AD) is the most common cause of dementia, and there is currently no cure. The "β-amyloid cascade hypothesis" of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including β-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery. PMID:26252541

  20. Sub-100 nm biodegradable nanoparticles: in vitro release features and toxicity testing in 2D and 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Biondi, Marco; Guarnieri, Daniela; Yu, Hui; Belli, Valentina; Netti, Paolo Antonio

    2013-02-01

    A big challenge in tumor targeting by nanoparticles (NPs), taking advantage of the enhanced permeability and retention effect, is the fabrication of small size devices for enhanced tumor penetration, which is considered fundamental to improve chemotherapy efficacy. The purposes of this study are (i) to engineer the formulation of doxorubicin-loaded poly(d,l-lactic-co-glycolic acid) (PLGA)-block-poly(ethylene glycol) (PEG) NPs to obtain <100 nm devices and (ii) to translate standard 2D cytotoxicity studies to 3D collagen systems in which an initial step gradient of the NPs is present. Doxorubicin release can be prolonged for days to weeks depending on the NP formulation and the pH of the release medium. Sub-100 nm NPs are effectively internalized by HeLa cells in 2D and are less cytotoxic than free doxorubicin. In 3D, <100 nm NPs are significantly more toxic than larger ones towards HeLa cells, and the cell death rate is affected by the contributions of drug release and device transport through collagen. Thus, the reduction of NP size is a fundamental feature from both a technological and a biological point of view and must be properly engineered to optimize the tumor response to the NPs.

  1. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies.

    PubMed

    Tran, Nhu Mai; Dufresne, Murielle; Duverlie, Gilles; Castelain, Sandrine; Défarge, Christian; Paullier, Patrick; Legallais, Cecile

    2013-01-01

    Three-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation. The effects of Ca-alg bead preparation on structural cell organization, liver-specific functions, and the expression of specific receptors implicated in hepatotropic virus permissivity were evaluated. Hepatic cells were cultured in 500 μm diameter Ca-alg beads for 7 days under dynamic conditions. For all culture systems, cell viability reached almost 100% at day 7. Cell proliferation was concomitantly followed by hepatocyte organization in aggregates, which adopted two different morphologies (spheroid aggregates or multicellular channel-like structures), depending on Ca-alg bead preparation. These cellular organizations established a real 3D hepatocyte architecture with cell polarity, cell junctions, and abundant bile canaliculi possessing microvillus-lined channels. The functionality of these 3D cultures was confirmed by the production of albumin and the exhibition of CYP1A activity over culture time, which were variable, according to Ca-alg bead condition. The expression of specific receptors of hepatitis C virus by Huh-7 cells suggests encouraging data for the further development of a new viral culture system in Ca-alg beads. In summary, this 3D hepatic cell culture represents a promising physiologically relevant system for further in vitro studies and demonstrates that an

  2. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

    PubMed

    Truong, Vinh X; Hun, Michael L; Li, Fanyi; Chidgey, Ann P; Forsythe, John S

    2016-07-21

    Hydrogels prepared from naturally derived gelatin can provide a suitable environment for cell attachment and growth, making them favourable materials in tissue engineering. However, physically crosslinked gelatin hydrogels are not stable under physiological conditions while chemical crosslinking of gelatin by radical polymerization may be harmful to cells. In this study, we attached the norbornene functional group to gelatin, which was subsequently crosslinked with a polyethylene glycol (PEG) linker via the nitrile oxide-norbornene click reaction. The rapid crosslinking process allows the hydrogel to be formed within minutes of mixing the polymer solutions under physiological conditions, allowing the gels to be used as injectable materials. The hydrogels properties including mechanical strength, swelling and degradation, can be tuned by changing either the ratio of the reacting groups or the total concentration of the polymer precursors. Murine embryonic fibroblastic cells cultured in soft gels (2 wt% of gelatin and 1 wt% of PEG linker) demonstrated high cell viability as well as similar phenotypic profiles (PDGFRα and MTS15) to Matrigel cultures over 5 days. Thymic epithelial cell and fibroblast co-cultures produced epithelial colonies in these gels following 7 days incubation. These studies demonstrate that gelatin based hydrogels, prepared using "click" crosslinking, provide a robust cell culture platform with retained benefits of the gelatin material, and are therefore suitable for use in various tissue engineering applications. PMID:27217071

  3. Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer.

    PubMed

    Augustine, Tanya N; Dix-Peek, Thérèse; Duarte, Raquel; Candy, Geoffrey P

    2015-11-01

    Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines. PMID:26215372

  4. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells.

    PubMed

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  5. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells

    PubMed Central

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  6. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    PubMed

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. PMID:27612777

  7. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  8. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  9. Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC

    PubMed Central

    Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun

    2016-01-01

    Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis. PMID:27117207

  10. AlgiMatrix™-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research.

    PubMed

    Godugu, Chandraiah; Singh, Mandip

    2016-01-01

    Routinely used two-dimensional cell culture-based models often fail while translating the observations into in vivo models. This setback is more common in cancer research, due to several reasons. The extracellular matrix and cell-to-cell interactions are not present in two-dimensional (2D) cell culture models. Diffusion of drug molecules into cancer cells is hindered by barriers of extracellular components in in vivo conditions, these barriers are absent in 2D cell culture models. To better mimic or simulate the in vivo conditions present in tumors, the current study used the alginate based three-dimensional cell culture (AlgiMatrix™) model, which resembles close to the in vivo tumor models. The current study explains the detailed protocols involved in AlgiMatrix™ based in vitro non-small-cell lung cancer (NSCLC) models. The suitability of this model was studied by evaluating, cytotoxicity, apoptosis, and penetration of nanoparticles into the in vitro tumor spheroids. This study also demonstrated the effect of EphA2 receptor targeted docetaxel-loaded nanoparticles on MDA-MB-468 TNBC cell lines. The methods section is subdivided into three subsections such as (1) preparation of AlgiMatrix™-based 3D in vitro tumor models and cytotoxicity assays, (2) free drug and nanoparticle uptake into spheroid studies, and (3) western blot, IHC, and RT-PCR studies. PMID:26608295

  11. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics.

    PubMed

    Kim, Jong Hyun; Jang, Yu Jin; An, Su Yeon; Son, Jeongsang; Lee, Jaehun; Lee, Gyunggyu; Park, Ji Young; Park, Han-Jin; Hwang, Dong-Youn; Kim, Jong-Hoon; Han, Jiyou

    2015-09-01

    Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the cell-based therapy of liver disease and the development of effective in vitro toxicity screening tools. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized hepatic differentiation protocol, which produces >90% (BGO1 and CHA15) albumin-positive HLCs with no purification process from human embryonic stem cell lines. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating 3D spheroidal aggregate of HLCs, compared with 2D HLCs. The 3D differentiation method increased expression of nuclear receptors (NRs) that regulate the proper expression of key hepatic enzymes. Furthermore, significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids, compared with 2D HLCs. HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated further functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic metabolizing ability of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models. PMID:26089346

  12. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  13. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.

    PubMed

    Ron-Doitch, Sapir; Sawodny, Beate; Kühbacher, Andreas; David, Mirjam M Nordling; Samanta, Ayan; Phopase, Jaywant; Burger-Kentischer, Anke; Griffith, May; Golomb, Gershon; Rupp, Steffen

    2016-05-10

    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganism's plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8±10.1nm, shelf-life stability of >1year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles' lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (>20μM), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400μM). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. PMID:27012977

  14. Development of transferrin targeted NCL-240 micelles and their evaluation using in-vitro 3D cancer cell culture (spheroid) models

    NASA Astrophysics Data System (ADS)

    Nagelli, Srikar Goud

    The main objective of this project was to develop targeted micellar delivery systems of a novel cytotoxic drug (NCL-240; a second generation DM-PIT-1 analog) and to evaluate their efficacy using optimized 3D cell culture spheroid models. Spheroids were optimized for several cancer cell lines using a range of techniques such as non-adhesive liquid overlay method, hanging drop method, and co-culturing. Transferrin (Tf)-conjugated NCL-240 micelles were prepared with varying Tf amounts and their cytotoxicities were evaluated using the optimized spheroid models. The uptake and penetration of the formulations were also studied using confocal microscopy. The results indicated that the concentration of NCL-240 micelles required to achieve the same cytotoxicity was relatively higher in spheroids compared to the monolayers. Also, In NCI-ADR-RES, Tf-targeted NCL-240 micelles were shown to have a significant increase in cytotoxicity compared to untargeted NCL-240 micelles. Even the penetration and uptake studies indicated that targeting improves the uptake and penetration of formulations. However, in U87-MG spheroids, there was a significant difference in cell viability among micelles compared to free drug but no significant benefit due to targeting was observed. The same formulations penetrated lesser in U87-MG spheroids compared to NCI-ADR-RES spheroids. This study thereby emphasizes the importance of drug screening in spheroid models as the penetration dynamics are varying from cell line to cell line because of the 3D structure.

  15. Tailored and biodegradable poly(2-oxazoline) microbeads as 3D matrices for stem cell culture in regenerative therapies.

    PubMed

    Lück, Steffen; Schubel, René; Rüb, Jannick; Hahn, Dominik; Mathieu, Evelien; Zimmermann, Heike; Scharnweber, Dieter; Werner, Carsten; Pautot, Sophie; Jordan, Rainer

    2016-02-01

    We present the synthesis of hydrogel microbeads based on telechelic poly(2-oxazoline) (POx) crosslinkers and the methacrylate monomers (HEMA, METAC, SPMA) by inverse emulsion polymerization. While in batch experiments only irregular and ill-defined beads were obtained, the preparation in a microfluidic (MF) device resulted in highly defined hydrogel microbeads. Variation of the MF parameters allowed to control the microbead diameter from 50 to 500 μm. Microbead elasticity could be tuned from 2 to 20 kPa by the POx:monomer composition, the POx chain length, net charge of the hydrogel introduced via the monomer as well as by the organic content of the aqueous phase. The proliferations of human mesenchymal stem cells (hMSCs) on the microbeads were studied. While neutral, hydrophilic POx-PHEMA beads were bioinert, excessive colonization of hMSCs on charged POx-PMETAC and POx-PSPMA was observed. The number of proliferated cells scaled roughly linear with the METAC or SPMA comonomer content. Additional collagen I coating further improved the stem cell proliferation. Finally, a first POx-based system for the preparation of biodegradable hydrogel microcarriers is described and evaluated for stem cell culturing. PMID:26686977

  16. Combination of 12-O-tetradecanoylphorbol-13-acetate with diethyldithiocarbamate markedly inhibits pancreatic cancer cell growth in 3D culture and in immunodeficient mice

    PubMed Central

    HUANG, HUARONG; CAO, KAJIA; MALIK, SAQUIB; ZHANG, QIUYAN; LI, DONGLI; CHANG, RICHARD; WANG, HUAQIAN; LIN, WEIPING; VAN DOREN, JEREMIAH; ZHANG, KUN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    The aim of the present study was to determine the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and diethyldithiocarbamate (DDTC) alone or in combination on human pancreatic cancer cells cultured in vitro and grown as xenograft tumors in nude mice. Pancreatic cancer cells were treated with either DDTC or TPA alone, or in combination and the number of viable cells was then determined by trypan blue ecxlusion assay and the number of apoptotic cells was determined by morphological assessment by staining the cells with propidium idiode and examining them under a fluorescence microscope. Treatment with DDTC or TPA alone inhibited the growth and promoted the apoptosis of pancreatic cancer cells in a concentration-dependent manner. These effects were more prominent following treatment with TPA in combination with DDTC than following treatment with either agent alone in PANC-1 cells in monolayer cultures and in 3 dimensional (3D) cultures. The potent effects of the combination treatment on PANC-1 cells were associated with the inhibition of nuclear factor-κB (NF-κB) activation and the decreased expression of Bcl-2 induced by DDTC, as shown by NF-κB-dependent reporter gene expression assay and western blot analysis. Furthermore, treatment of nude mice with DDTC + TPA strongly inhibited the growth of PANC-1 xenograft tumors. The results of the present study indicate that the administration of TPA and DDTC in combination may be an effective strategy for inhibiting the growth of pancreatic cancer. PMID:25847449

  17. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  18. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  19. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    SciTech Connect

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  20. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor.

    PubMed

    Sriram, Renuka; Van Criekinge, Mark; Hansen, Ailin; Wang, Zhen J; Vigneron, Daniel B; Wilson, David M; Keshari, Kayvan R; Kurhanewicz, John

    2015-09-01

    We have developed a 3D cell/tissue culture bioreactor compatible with hyperpolarized (HP) (13)C MR and interrogated HP [1-(13)C]lactate production and efflux in human renal cell carcinoma (RCC) cells. This platform is capable of resolving intracellular and extracellular HP lactate pools, allowing the kinetic measurement of lactate production and efflux in the context of cancer aggressiveness and response to therapy. HP (13)C MR studies were performed on three immortalized human renal cell lines: HK2, a normal renal proximal tubule cell line from which a majority of RCCs arise, UMRC6, a cell line derived from a localized RCC, and UOK262, an aggressive and metastatic RCC. The intra- (Lacin ) and extracellular (Lacex ) HP lactate signals were robustly resolved in dynamic (13)C spectra of the cell lines due to a very small but reproducible chemical shift difference (0.031 ± 0.0005 ppm). Following HP [1-(13)C]pyruvate delivery, the ratio of HP Lacin /Lacex was significantly lower for UOK262 cells compared with both UMRC6 and HK2 cells due to a significant (p < 0.05) increase in the Lacex pool size. Lacin /Lacex correlated with the MCT4 mRNA expression of the cell lines, and inhibition of MCT4 transport using DIDS resulted in a significant reduction in the HP Lacex pool size. The extension of these studies to living patient-derived RCC tissue slices using HP [1,2-(13)C2]pyruvate demonstrated a similarly split lactate doublet with a high Lacex pool fraction; in contrast, only a single NMR resonance is noted for HP [5-(13)C]glutamate, consistent with intracellular localization. These studies support the importance of lactate efflux as a biomarker of cancer aggressiveness and metastatic potential, and the utility of the MR compatible 3D cell/tissue culture bioreactor to study not only cellular metabolism but also transport. Additionally, this platform offers a sophisticated way to follow therapeutic interventions and screen novel therapies that target lactate export. PMID

  1. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture.

    PubMed

    Zhang, Jingjing; Mujeeb, Ayeesha; Du, Yanan; Lin, Jianhao; Ge, Zigang

    2015-06-01

    Macroporous hydrogels have shown great promise as scaffolds for cartilage engineering by facilitating nutrition transport and tissue in growth. Cell-matrix adhesion-a fundamental process in tissue engineering-has shown a profound effect on subsequent cell phenotype, extracellular matrix (ECM) accumulation, and tissue reorganization. In this study, arginine-glycine-aspartic acid (RGD) was introduced to macroporous hydrogels of poly (ethylene glycol) (PEG) to fabricate PEG-G400 (with 0.4mM RGD) and PEG-G2000 (2mM RGD) to probe the cell-matrix interactions within hydrogels. Primary chondrocytes demonstrated a slightly stretched morphology with increasing RGD concentration and PEG-G2000 hydrogels boosted cell viability, proliferation, and deposition of collagen II and GAG, in comparison to the PEG-G400 and PEG-RED groups. Results also revealed chondrocytes within the cell aggregates underwent dedifferentiation and hypertrophy within RGD incorporated hydrogels, as evidenced by the high level of gene expression of collagen I on day 14 and strong immunohistological staining of collagen X and collagen I on day 35. Evidently, a high concentration of RGD (2mM RGD) enhanced cell-matrix interactions through elevating the expression of integrin β1 and vinculin. Thus, the integration of RGD in macroporous hydrogels with a concentration of 2 mM may be sufficient for improving cell functionality, with a slight probability of dedifferentiation and hypertrophy of chondrocytes. PMID:26107534

  2. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC).

    PubMed

    Alessandri, Kevin; Feyeux, Maxime; Gurchenkov, Basile; Delgado, Christophe; Trushko, Anastasiya; Krause, Karl-Heinz; Vignjević, Daniela; Nassoy, Pierre; Roux, Aurélien

    2016-04-26

    We present here a microfluidic device that generates sub-millimetric hollow hydrogel spheres, encapsulating cells and coated internally with a layer of reconstituted extracellular matrix (ECM) of a few microns thick. The spherical capsules, composed of alginate hydrogel, originate from the spontaneous instability of a multi-layered jet formed by co-extrusion using a coaxial flow device. We provide a simple design to manufacture this device using a DLP (digital light processing) 3D printer. Then, we demonstrate how the inner wall of the capsules can be decorated with a continuous ECM layer that is anchored to the alginate gel and mimics the basal membrane of a cellular niche. Finally, we used this approach to encapsulate human Neural Stem Cells (hNSC) derived from human Induced Pluripotent Stem Cells (hIPSC), which were further differentiated into neurons within the capsules with negligible loss of viability. Altogether, we show that these capsules may serve as cell micro-containers compatible with complex cell culture conditions and applications. These developments widen the field of research and biomedical applications of the cell encapsulation technology. PMID:27025278

  3. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  4. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    PubMed Central

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised by adherence to plastic, appropriate expression of cluster of differentiation (CD) markers, and differentiation to osteoblasts and chondrocytes in vitro. AD-MSC were grown in three-dimensional (3D) culture and treated with or without transforming growth factor beta (TGFβ) to direct them to produce annulus-like ECM as determined by proteoglycan content and collagen expression. AD-MSC were co-cultured with human annulus cells and grown in 3D culture. Results AD-MSC produced a proteoglycan and collagen type I rich ECM after treatment with TGFβ in 3D culture as confirmed by a 48% increase in proteoglycan content assayed by 1,9-dimethylmethylene blue (DMB), and by immunohistochemical identification of ECM components. Co-culture of human annulus and sand rat AD-MSC in 3D culture resulted in a 20% increase in proteoglycan production compared with the predicted value of the sum of the individual cultures. Conclusion Results support the hypothesis that AD-MSC have potential in cell-based therapy for disc degeneration. PMID:18691412

  5. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    PubMed Central

    Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565

  6. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  7. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  8. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  9. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo.

    PubMed

    Quent, Verena M C; Theodoropoulos, Christina; Hutmacher, Dietmar W; Reichert, Johannes C

    2016-06-01

    We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, μCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation. PMID:25781662

  10. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates

    PubMed Central

    Amer, Luke D.; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J.; Bryant, Stephanie J.

    2015-01-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15) μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced in both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (~2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1+/Nkx6.1+ cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. PMID:25913222

  11. Single Cell Traction Microscopy within 3D Collagen Matrices

    NASA Astrophysics Data System (ADS)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  12. Filling gaps in cultural heritage documentation by 3D photography

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    This contribution promotes 3D photography as an important tool to obtain objective object information. Keeping mainly in mind World Heritage documentation as well as Heritage protection, it is another intention of this paper, to stimulate the interest in applications of 3D photography for professionals as well as for amateurs. In addition this is also an activity report of the international CIPA task group 3. The main part of this paper starts with "Digging the treasure of existing international 3D photography". This does not only belong to tangible but also to intangible Cultural Heritage. 3D photography clearly supports the recording, the visualization, the preservation and the restoration of architectural and archaeological objects. Therefore the use of 3D photography in C.H. should increase on an international level. The presented samples in 3D represent a voluminous, almost partly "forgotten treasure" of international archives for 3D photography. The next chapter is on "Promoting new 3D photography in Cultural Heritage". Though 3D photographs are a well-established basic photographic and photogrammetric tool, even suited to provide "near real" documentation, they are still a matter of research and improvement. Beside the use of 3D cameras even single lenses cameras are very much suited for photographic 3D documentation purposes in Cultural Heritage. Currently at the Faculty of Civil Engineering of the University of Applied Sciences Magdeburg-Stendal, low altitude aerial photography is exposed from a maximum height of 13m, using a hand hold carbon telescope rod. The use of this "huge selfie stick" is also an (international) recommendation, to expose high resolution 3D photography of monuments under expedition conditions. In addition to the carbon rod recently a captive balloon and a hexacopter UAV- platform is in use, mainly to take better synoptically (extremely low altitude, ground truth) aerial photography. Additional experiments with respect to "easy

  13. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues

    PubMed Central

    Baker, Brendon M.; Chen, Christopher S.

    2012-01-01

    Summary Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which – in turn – regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems. PMID:22797912

  14. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  15. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    SciTech Connect

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan; Avery, Vicky M.

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  16. Functional 3D human primary hepatocyte spheroids made by co-culturing hepatocytes from partial hepatectomy specimens and human adipose-derived stem cells.

    PubMed

    No, Da Yoon; Lee, Seung-A; Choi, Yoon Young; Park, DoYeun; Jang, Ju Yun; Kim, Dong-Sik; Lee, Sang-Hoon

    2012-01-01

    We have generated human hepatocyte spheroids with uniform size and shape by co-culturing 1∶1 mixtures of primary human hepatocytes (hHeps) from partial hepatectomy specimens and human adipose-derived stem cells (hADSCs) in concave microwells. The hADSCs in spheroids could compensate for the low viability and improve the functional maintenance of hHeps. Co-cultured spheroids aggregated and formed compact spheroidal shapes more rapidly, and with a significantly higher viability than mono-cultured spheroids. The liver-specific functions of co-cultured spheroids were greater, although they contained half the number of hepatocytes as mono-cultured spheroids. Albumin secretion by co-cultured spheroids was 10% higher on day 7, whereas urea secretion was similar, compared with mono-cultured spheroids. A quantitative cytochrome P450 assay showed that the enzymatic activity of co-cultured spheroids cultured for 9 days was 28% higher than that of mono-cultured spheroids. These effects may be due to the transdifferentiation potential and paracrine healing effects of hADSCs on hHeps. These co-cultured spheroids may be useful for creating artificial three-dimensional hepatic tissue constructs and for cell therapy with limited numbers of human hepatocytes. PMID:23236387

  17. Exploring Cultural Heritage Resources in a 3d Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.

    2012-06-01

    Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.

  18. Protein-Engineered Hydrogel Encapsulation for 3-D Culture of Murine Cochlea

    PubMed Central

    Chang, David T.; Chai, Renjie; DiMarco, Rebecca; Heilshorn, Sarah C.; Cheng, Alan G.

    2016-01-01

    Hypothesis Elastin-like protein (ELP) hydrogel helps maintain the three-dimensional (3-D) cochlear structure in culture. Background Whole-organ culture of the cochlea is a useful model system facilitating manipulation and analysis of live sensory cells and surrounding nonsensory cells. The precisely organized 3-D cochlear structure demands a culture method that preserves this delicate architecture; however, current methods have not been optimized to serve such a purpose. Methods A protein-engineered ELP hydrogel was used to encapsulate organ of Corti isolated from neonatal mice. Cultured cochleae were immunostained for markers of hair cells and supporting cells. Organ of Corti hair cell and supporting cell density and organ dimensions were compared between the ELP and nonencapsulated systems. These culture systems were then compared with noncultured cochlea. Results After 3 days in vitro, vital dye uptake and immunostaining for sensory and nonsensory cells show that encapsulated cochlea contain viable cells with an organized architecture. In comparison with nonencapsulated cultured cochlea, ELP-encapsulated cochleae exhibit higher densities of hair cells and supporting cells and taller and narrower organ of Corti dimensions that more closely resemble those of noncultured cochleae. However, we found compromised cell viability when the culture period extended beyond 3 days. Conclusion We conclude that the ELP hydrogel can help preserve the 3-D architecture of neonatal cochlea in short-term culture, which may be applicable to in vitro study of the physiology and pathophysiology of the inner ear. PMID:25111520

  19. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures

    PubMed Central

    Hanson Shepherd, Jennifer N.; Parker, Sara T.; Shepherd, Robert F.; Gillette, Martha U.; Lewis, Jennifer A.; Nuzzo, Ralph G.

    2011-01-01

    Three-dimensional (3D) microperiodic scaffolds of poly(2-hydroxyethyl methacrylate) (pHEMA) have been fabricated by direct-write assembly of a photopolymerizable hydrogel ink. The ink is initially composed of physically entangled pHEMA chains dissolved in a solution of HEMA monomer, comonomer, photoinitiator and water. Upon printing 3D scaffolds of varying architecture, the ink filaments are exposed to UV light, where they are transformed into an interpenetrating hydrogel network of chemically cross-linked and physically entangled pHEMA chains. These 3D microperiodic scaffolds are rendered growth compliant for primary rat hippocampal neurons by absorption of polylysine. Neuronal cells thrive on these scaffolds, forming differentiated, intricately branched networks. Confocal laser scanning microscopy reveals that both cell distribution and extent of neuronal process alignment depend upon scaffold architecture. This work provides an important step forward in the creation of suitable platforms for in vitro study of sensitive cell types. PMID:21709750

  20. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  1. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium.

    PubMed

    Speroni, Lucia; Sweeney, Michael F; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression. PMID:26891095

  2. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  3. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  4. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.

    PubMed

    Lee, Youlee; Lee, Jong Min; Bae, Pan-Kee; Chung, Il Yup; Chung, Bong Hyun; Chung, Bong Geun

    2015-04-01

    We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications. PMID:25641332

  5. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. PMID:27384934

  6. Ideal Positions: 3D Sonography, Medical Visuality, Popular Culture.

    PubMed

    Seiber, Tim

    2016-03-01

    As digital technologies are integrated into medical environments, they continue to transform the experience of contemporary health care. Importantly, medicine is increasingly visual. In the history of sonography, visibility has played an important role in accessing fetal bodies for diagnostic and entertainment purposes. With the advent of three-dimensional (3D) rendering, sonography presents the fetus visually as already a child. The aesthetics of this process and the resulting imagery, made possible in digital networks, discloses important changes in the relationship between technology and biology, reproductive health and political debates, and biotechnology and culture. PMID:26164291

  7. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-01

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering. PMID:27321481

  8. 3D Culture Assays of Murine Mammary Branching Morphogenesis and Epithelial Invasion

    PubMed Central

    Nguyen-Ngoc, Kim-Vy; Shamir, Eliah R.; Huebner, Robert J.; Beck, Jennifer N.; Cheung, Kevin J.; Ewald, Andrew J.

    2016-01-01

    Epithelia are fundamental tissues that line cavities, glands, and outer body surfaces. We use three-dimensional (3D) embedded culture of primary murine mammary epithelial ducts, called “organoids,” to recapitulate in days in culture epithelial programs that occur over weeks deep within the body. Modulating the composition of the extracellular matrix (ECM) allows us to model cell- and tissue-level behaviors observed in normal development, such as branching morphogenesis, and in cancer, such as invasion and dissemination. Here, we describe a collection of protocols for 3D culture of mammary organoids in different ECMs and for immunofluorescence staining of 3D culture samples and mammary gland tissue sections. We illustrate expected phenotypic outcomes of each assay and provide troubleshooting tips for commonly encountered technical problems. PMID:25245692

  9. 3D culture assays of murine mammary branching morphogenesis and epithelial invasion.

    PubMed

    Nguyen-Ngoc, Kim-Vy; Shamir, Eliah R; Huebner, Robert J; Beck, Jennifer N; Cheung, Kevin J; Ewald, Andrew J

    2015-01-01

    Epithelia are fundamental tissues that line cavities, glands, and outer body surfaces. We use three-dimensional (3D) embedded culture of primary murine mammary epithelial ducts, called "organoids," to recapitulate in days in culture epithelial programs that occur over weeks deep within the body. Modulating the composition of the extracellular matrix (ECM) allows us to model cell- and tissue-level behaviors observed in normal development, such as branching morphogenesis, and in cancer, such as invasion and dissemination. Here, we describe a collection of protocols for 3D culture of mammary organoids in different ECMs and for immunofluorescence staining of 3D culture samples and mammary gland tissue sections. We illustrate expected phenotypic outcomes of each assay and provide troubleshooting tips for commonly encountered technical problems. PMID:25245692

  10. Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation.

    PubMed

    Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Thurow, K

    2016-08-01

    The shift from 2D cultures to 3D cultures enables improvement in cell culture research due to better mimicking of in vivo cell behavior and environmental conditions. Different cell lines and applications require altered 3D constructs. The automation of the manufacturing and screening processes can advance the charge stability, quality, repeatability, and precision. In this study we integrated the automated production of three 3D cell constructs (alginate beads, spheroid cultures, pellet cultures) using the Biomek Cell Workstation and compared them with the traditional manual methods and their consequent bioscreening processes (proliferation, toxicity; days 14 and 35) using a high-throughput screening system. Moreover, the possible influence of antibiotics (penicillin/streptomycin) on the production and screening processes was investigated. The cytotoxicity of automatically produced 3D cell cultures (with and without antibiotics) was mainly decreased. The proliferation showed mainly similar or increased results for the automatically produced 3D constructs. We concluded that the traditional manual methods can be replaced by the automated processes. Furthermore, the formation, cultivation, and screenings can be performed without antibiotics to prevent possible effects. PMID:26203054

  11. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM.

    PubMed

    Chennell, George; Willows, Robin J W; Warren, Sean C; Carling, David; French, Paul M W; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  12. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

    PubMed

    Emont, Margo P; Yu, Hui; Jun, Heejin; Hong, Xiaowei; Maganti, Nenita; Stegemann, Jan P; Wu, Jun

    2015-12-01

    It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation. PMID:26425808

  13. Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-κB pathway.

    PubMed

    Lu, Meng; Zhou, Fang; Hao, Kun; Liu, Jiali; Chen, Qianying; Ni, Ping; Zhou, Honghao; Wang, Guangji; Zhang, Jingwei

    2015-01-15

    Monolayer cells are largely different from tumor masses, and might misguide drug screenings. 3D in vitro cell culture models simulate the characteristics of tumor masses in vivo and have recently been used in many studies of anti-cancer drugs. Among various 3D cell culture models, multi-cellular layer (MCL) models allow for the direct quantitative assessment of the penetration of chemotherapeutic agents through solid tissue environments without requiring the use of fluorescently labeled drugs or imaging molecules. Therefore, in our present study, a 3D-no base and embedded MCF-7 MCL model was successfully developed for a 14-day culture. Over time, its thickness and cell layers increased and exhibited highly proliferative properties and drug resistance to adriamycin (ADR) with markedly elevated IC50 values. Meanwhile, G2/M stage cycle arrest was also observed, which likely up-regulated P-gp expression through the Chk2/p53/NF-κB pathway. The elevated P-gp expression altered the ADR penetration kinetics in MCF-7 MCLs in vitro by accelerating the apparent penetration of ADR through the intercellular spaces of the MCLs. Additionally, a decreased ADR retention within tumor cells was observed, but could be significantly reversed by a P-gp inhibitor. The attenuated ADR retention in the deeper cells of tumor masses was confirmed in xenografted mice in vivo. This phenomenon could be elucidated by the mathematical modeling of penetration kinetics parameters. Our study provided a new model that evaluated and improved the quantification of the drug penetration kinetics, revealed the relationship between P-gp and drug penetration through tumor masses, and suggested the potential molecular mechanisms. PMID:25478729

  14. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  15. Measuring Actin Flow in 3D Cell Protrusions

    PubMed Central

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of

  16. Embedding Knowledge in 3D Data Frameworks in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Coughenour, C. M.; Vincent, M. L.; de Kramer, M.; Senecal, S.; Fritsch, D.; Flores Gutirrez, M.; Lopez-Menchero Bendicho, V. M.; Ioannides, M.

    2015-08-01

    At present, where 3D modeling and visualisation in cultural heritage are concerned, an object's documentation lacks its interconnected memory provided by multidisciplinary examination and linked data. As the layers of paint, wood, and brick recount a structure's physical properties, the intangible, such as the forms of worship through song, dance, burning incense, and oral traditions, contributes to the greater story of its cultural heritage import. Furthermore, as an object or structure evolves through time, external political, religious, or environmental forces can affect it as well. As tangible and intangible entities associated with the structure transform, its narrative becomes dynamic and difficult to easily record. The Initial Training Network for Digital Cultural Heritage (ITN-DCH), a Marie Curie Actions project under the EU 7th Framework Programme, seeks to challenge this complexity by developing a novel methodology capable of offering such a holistic framework. With the integration of digitisation, conservation, linked data, and retrieval systems for DCH, the nature of investigation and dissemination will be augmented significantly. Examples of utilisating and evaluating this framework will range from a UNESCOWorld Heritage site, the Byzantine church of Panagia Forviotissa Asinou in the Troodos Mountains of Cyprus, to various religious icons and a monument located at the Monastery of Saint Neophytos. The application of this effort to the Asinou church, representing the first case study of the ITN-DCH project, is used as a template example in order to assess the technical challenges involved in the creation of such a framework.

  17. Automated full-3D shape measurement of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Karaszewski, Maciej; Zaluski, Wojciech; Bolewicki, Pawel

    2009-07-01

    In this paper a fully automated 3D shape measurement system is presented. It consists of rotary stage for cultural heritage objects placement, vertical linear stage with mounted robot arm (with six degrees of freedom) and structured light measurement set-up mounted to its head. All these manipulation devices are automatically controlled by collision detection and next-best-view calculation modules. The goal of whole system is to automatically (without any user attention) and rapidly (from days and weeks to hours) measure whole object. Measurement head is automatically calibrated by the system and its possible working volume starts from centimeters and ends up to one meter. We present some measurement results with different working scenarios along with discussion about its possible applications.

  18. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  19. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion.

    PubMed

    Kenar, Halime; Kose, Gamze T; Toner, Mehmet; Kaplan, David L; Hasirci, Vasif

    2011-08-01

    The goal of this study was to design and develop a myocardial patch to use in the repair of myocardial infarctions or to slow down tissue damage and improve long-term heart function. The basic 3D construct design involved two biodegradable macroporous tubes, to allow transport of growth media to the cells within the construct, and cell seeded, aligned fiber mats wrapped around them. The microfibrous mat housed mesenchymal stem cells (MSCs) from human umbilical cord matrix (Wharton's Jelly) aligned in parallel to each other in a similar way to cell organization in native myocardium. Aligned micron-sized fiber mats were obtained by electrospinning a polyester blend (PHBV (5% HV), P(L-D,L)LA (70:30) and poly(glycerol sebacate) (PGS)). The micron-sized electrospun parallel fibers were effective in Wharton's Jelly (WJ) MSCs alignment and the cells were able to retract the mat. The 3D construct was cultured in a microbioreactor by perfusing the growth media transiently through the macroporous tubing for two weeks and examined by fluorescence microscopy for cell distribution and preservation of alignment. The fluorescence images of thin sections of 3D constructs from static and perfused cultures confirmed enhanced cell viability, uniform cell distribution and alignment due to nutrient provision from inside the 3D structure. PMID:21570112

  20. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. PMID:26195589

  1. Diachronic 3d Reconstruction for Lost Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Russo, M.

    2011-09-01

    Cultural Heritage artifacts can often be underestimated for their hidden presence in the landscape. Such problem is particularly large in countries like Italy, where the massive amount of "famous" artifacts tends to neglect other presences unless properly exposed, or when the remains are dramatically damaged leaving very few interpretation clues to the visitor. In such cases a virtual presentation of the Cultural Heritage site can be of great help, specially for explaining the evolution of its status, giving sometimes sense to few spare stones. The definition of these digital representations deal with two crucial aspects: on the one hand the possibility of 3D surveying the relics in order to have an accurate geometrical image of the current status of the artifact; on the other hand the presence of historical sources both in form of written text or images, that once properly matched with the current geometrical data, may help to recreate digitally a set of 3D models representing visually the various historical phases (diachronic model), up to the current one. The core of this article is the definition of an integrated methodology that starts from an high-resolution digital survey of the remains of an ancient building and develops a coherent virtual reconstruction from different historical sources, suggesting a scalable method suitable to be re-used for generating a 4D (geometry + time) model of the artifact. This approach has been experimented on the "Basilica di San Giovanni in Conca" in Milan, a very significant example for its complex historic evolution that combines evident historic values with an invisible presence inside the city.

  2. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes.

    PubMed

    Yates, Karen E; Allemann, Florin; Glowacki, Julie

    2005-01-01

    Repair of damaged cartilage usually requires replacement tissue or substitute material. Tissue engineering is a promising means to produce replacement cartilage from autologous or allogeneic cell sources. Scaffolds provide a three-dimensional (3D) structure that is essential for chondrocyte function and synthesis of cartilage-specific matrix proteins (collagen type II, aggrecan) and sulfated proteoglycans. In this study, we assessed porous, 3D collagen sponges for in vitro engineering of cartilage in both standard and serum-free culture conditions. Bovine articular chondrocytes (bACs) cultured in 3D sponges accumulated and maintained cartilage matrix over 4 weeks, as assessed by quantitative measures of matrix content, synthesis, and gene expression. Chondrogenesis by bACs cultured with Nutridoma as a serum replacement was equivalent or better than control cultures in serum. In contrast, chondrogenesis in insulin-transferrin-selenium (ITS(+3)) serum replacement cultures was poor, apparently due to decreased cell survival. These data indicate that porous 3D collagen sponges maintain chondrocyte viability, shape, and synthetic activity by providing an environment favorable for high-density chondrogenesis. With quantitative assays for cartilage-specific gene expression and biochemical measures of chondrogenesis in these studies, we conclude that the collagen sponges have potential as a scaffold for cartilage tissue engineering. PMID:15735900

  3. Evaluation of the cytotoxic effects of humid lightweight coal ash derived from the disposal of waste on normal human keratinocyte and endothelial cell lines in 2-D and 3-D culture.

    PubMed

    Scanarotti, Chiara; Vernazza, Stefania; Brignone, Massimiliano; Danailova, Jenia; Pronzato, Maria A; Bassi, Anna M

    2013-12-01

    The presence of waste in the environment has frequently been indicated as a significant risk to human health. Therefore, landfill sites and the disposal of urban solid and non-hazardous waste by incineration are subject to much environmental monitoring, in addition to the regulations already in place. However, little action has been taken, and consequently no specific legislation exists, in relation to the assessment of the real biological risk of various substances, including chemical mixtures and ashes, derived from the incineration processes. This study assessed the cytotoxic potential of humid lightweight coal ash (LA) derived from incineration processes and waste management, on two cell lines: NCTC 2544 normal human keratinocytes and HECV endothelial cells. To reach this goal and to assess more-realistic methods for animal replacement, we employed different in vitro experimental approaches: acute and longer exposure to LA, by direct and indirect contact (0-2mg/ml and 16mg, respectively), both in 2-D and 3-D cultures. In 2-D HECV cultures, we observed a decrease in the viability index, but only during direct contact with LA doses higher than 0.1mg/ml. Moreover, some striking differences in cytotoxicity were observed between the 2-D and 3-D models. Taken together, these observations indicate that, for studying pollutant toxicity during longer exposure times, 3-D cultures in direct contact with the pollutant seem to offer a more suitable approach - they mimic the in vivo behaviour of cells more realistically and under strictly controlled conditions. Thus, in readiness for possible forthcoming European regulations, we believe that the proposed study, even in its preliminary phase, can provide new advice on the assessment of the toxic and biological potential of particular chemical compounds derived from waste management processes. PMID:24512233

  4. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    PubMed Central

    Lambros, Maria P.; DeSalvo, Michael K.; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  5. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis.

    PubMed

    Lambros, Maria P; DeSalvo, Michael K; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-12-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC-QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  6. Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations.

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented. The 3D structure of biosamples can be recognized without fluorescence. The cubic platform employs two types of hydrogels that are compatible with conventional culture dishes or well plates, facilitating growth in culture, ease of handling, and viewing at multiple angles. PMID:27128576

  7. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  8. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  9. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  10. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  11. Screening for Stromal and Matrix Effects in 3D Microenvironments of Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Montanez-Sauri, Sara I.

    Breast cancer progression ensures through the acquisition of genetic mutations, the uncontrollable growth of cells, and their progression to invasion. Studies have shown that the surrounding three-dimensional (3D) microenvironment can also influence breast cancer cell progression by controlling the morphology, differentiation, proliferation, and migration of cells. However, most of the currently available in vitro screening platforms are based on the two-dimensional (2D) culture of cells, and do not provide cells with the complex 3D microenvironment that exists in vivo. Therefore, there is a need for more biologically relevant in vitro platforms to help decipher the complexity of the microenvironment and its influence in breast cancer. In this dissertation we present an automated microfluidic platform that allows to efficiently screen for the effect of multiple matrix and stromal microenvironment in 3D cultures of breast cancer cells. Several extracellular matrix (ECM) compositions and stromal cells are included in the 3D microenvironments to examine their influence on breast cancer cell behavior. The screening results suggest that collagen gels with fibronectin might be influencing paracrine signals between breast cancer cells and stromal cells. The ability of the platform to culture and treat cells in 3D microenvironments offers a powerful screening tool for the identification of compounds and interactions using more in vivo-like 3D microenvironments. The identification of these mechanisms will increase our current understanding of breast cancer, and will aid in the identification of potential therapeutics.

  12. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  13. Individual versus Collective Fibroblast Spreading and Migration: Regulation by Matrix Composition in 3-D Culture

    PubMed Central

    Miron-Mendoza, Miguel; Lin, Xihui; Ma, Lisha; Ririe, Peter; Petroll, W. Matthew

    2012-01-01

    Extracellular matrix (ECM) supplies both physical and chemical signals to cells and provides a substrate through which fibroblasts migrate during wound repair. To directly assess how ECM composition regulates this process, we used a nested 3D matrix model in which cell-populated collagen buttons were embedded in cell-free collagen or fibrin matrices. Time-lapse microscopy was used to record the dynamic pattern of cell migration into the outer matrices, and 3-D confocal imaging was used to assess cell connectivity and cytoskeletal organization. Corneal fibroblasts stimulated with PDGF migrated more rapidly into collagen as compared to fibrin. In addition, the pattern of fibroblast migration into fibrin and collagen ECMs was strikingly different. Corneal fibroblasts migrating into collagen matrices developed dendritic processes and moved independently, whereas cells migrating into fibrin matrices had a more fusiform morphology and formed an interconnected meshwork. A similar pattern was observed when using dermal fibroblasts, suggesting that this response in not unique to corneal cells. We next cultured corneal fibroblasts within and on top of standard collagen and fibrin matrices to assess the impact of ECM composition on the cell spreading response. Similar differences in cell morphology and connectivity were observed – cells remained separated on collagen but coalesced into clusters on fibrin. Cadherin was localized to junctions between interconnected cells, whereas fibronectin was present both between cells and at the tips of extending cell processes. Cells on fibrin matrices also developed more prominent stress fibers than those on collagen matrices. Importantly, these spreading and migration patterns were consistently observed on both rigid and compliant substrates, thus differences in ECM mechanical stiffness were not the underlying cause. Overall, these results demonstrate for the first time that ECM protein composition alone (collagen vs. fibrin) can

  14. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    SciTech Connect

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore, using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  15. Directed 3D cell alignment and elongation in microengineered hydrogels.

    PubMed

    Aubin, Hug; Nichol, Jason W; Hutson, Ché B; Bae, Hojae; Sieminski, Alisha L; Cropek, Donald M; Akhyari, Payam; Khademhosseini, Ali

    2010-09-01

    Organized cellular alignment is critical to controlling tissue microarchitecture and biological function. Although a multitude of techniques have been described to control cellular alignment in 2D, recapitulating the cellular alignment of highly organized native tissues in 3D engineered tissues remains a challenge. While cellular alignment in engineered tissues can be induced through the use of external physical stimuli, there are few simple techniques for microscale control of cell behavior that are largely cell-driven. In this study we present a simple and direct method to control the alignment and elongation of fibroblasts, myoblasts, endothelial cells and cardiac stem cells encapsulated in microengineered 3D gelatin methacrylate (GelMA) hydrogels, demonstrating that cells with the intrinsic potential to form aligned tissues in vivo will self-organize into functional tissues in vitro if confined in the appropriate 3D microarchitecture. The presented system may be used as an in vitro model for investigating cell and tissue morphogenesis in 3D, as well as for creating tissue constructs with microscale control of 3D cellular alignment and elongation, that could have great potential for the engineering of functional tissues with aligned cells and anisotropic function. PMID:20638973

  16. Cyto-3D-print to attach mitotic cells.

    PubMed

    Castroagudin, Michelle R; Zhai, Yujia; Li, Zhi; Marnell, Michael G; Glavy, Joseph S

    2016-08-01

    The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal. PMID:26464272

  17. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques. PMID:25727058

  18. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines.

    PubMed

    van Wenum, Martien; Adam, Aziza A A; Hakvoort, Theodorus B M; Hendriks, Erik J; Shevchenko, Valery; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application. PMID:27489500

  19. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines

    PubMed Central

    van Wenum, Martien; Adam, Aziza A.A.; Hakvoort, Theodorus B.M.; Hendriks, Erik J.; Shevchenko, Valery; van Gulik, Thomas M.; Chamuleau, Robert A.F.M.; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application. PMID:27489500

  20. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. PMID:22509834

  1. Proteomic comparison of 3D and 2D glioma models reveals increased HLA-E expression in 3D models is associated with resistance to NK cell-mediated cytotoxicity.

    PubMed

    He, Weiqi; Kuang, Yongqin; Xing, Xuemin; Simpson, Richard J; Huang, Haidong; Yang, Tao; Chen, Jingmin; Yang, Libin; Liu, Enyu; He, Weifeng; Gu, Jianwen

    2014-05-01

    Three-dimensional cell culture techniques can better reflect the in vivo characteristics of tumor cells compared with traditional monolayer cultures. Compared with their 2D counterparts, 3D-cultured tumor cells showed enhanced resistance to the cytotoxic T cell-mediated immune response. However, it remains unclear whether 3D-cultured tumor cells have an enhanced resistance to NK cell cytotoxicity. In this study, a total of 363 differentially expressed proteins were identified between the 2D- and 3D-cultured U251 cells by comparative proteomics, and an immune-associated protein-protein interaction (PPI) network based on these differential proteins was constructed by bioinformatics. Within the network, HLA-E, as a molecule for inhibiting NK cell activation, was significantly up-regulated in the 3D-cultured tumor cells. Then, we found that the 3D-cultured U251 cells exhibited potent resistance to NK cell cytotoxicity in vitro and were prone to tumor formation in vivo. The resistance of the 3D-cultured tumor cells to NK cell lysis was mediated by the HLA-E/NKG2A interaction because the administration of antibodies that block either HLA-E or NKG2A completely eliminated this resistance and significantly decreased tumor formation. Taken together, our findings indicate that HLA-E up-regulation in 3D-cultured cells may result in enhanced tumor resistance to NK cell-mediated immune response. PMID:24742303

  2. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs. PMID:25929950

  3. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  4. Fibroblasts Lead the Way: A Unified View of 3D Cell Motility.

    PubMed

    Petrie, Ryan J; Yamada, Kenneth M

    2015-11-01

    Primary human fibroblasts are remarkably adaptable, able to migrate in differing types of physiological 3D tissue and on rigid 2D tissue culture surfaces. The crawling behavior of these and other vertebrate cells has been studied intensively, which has helped generate the concept of the cell motility cycle as a comprehensive model of 2D cell migration. However, this model fails to explain how cells force their large nuclei through the confines of a 3D matrix environment and why primary fibroblasts can use more than one mechanism to move in 3D. Recent work shows that the intracellular localization of myosin II activity is governed by cell-matrix interactions to both force the nucleus through the extracellular matrix (ECM) and dictate the type of protrusions used to migrate in 3D. PMID:26437597

  5. Ex vivo 3D osteocyte network construction with primary murine bone cells

    PubMed Central

    Sun, Qiaoling; Gu, Yexin; Zhang, Wenting; Dziopa, Leah; Zilberberg, Jenny; Lee, Woo

    2015-01-01

    Osteocytes reside as three-dimensionally (3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because: (1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and (2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to: (1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and (2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to: (1) distribute and entrap cells within the interstitial spaces between the microbeads and (2) maintain average cell-to-cell distance to be about 19 µm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions (SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of: (1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes, (2) studying physiological functions of 3D-networked osteocytes with in vitro convenience, and (3) developing clinically relevant human bone disease models. PMID:26421212

  6. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  7. Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures.

    PubMed

    Simon, Karen A; Warren, Nicholas J; Mosadegh, Bobak; Mohammady, Marym R; Whitesides, George M; Armes, Steven P

    2015-12-14

    It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel). PMID:26509930

  8. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  9. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  10. Cell force measurements in 3D microfabricated environments based on compliant cantilevers.

    PubMed

    Marelli, Mattia; Gadhari, Neha; Boero, Giovanni; Chiquet, Matthias; Brugger, Jürgen

    2014-01-21

    We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties. PMID:24217771

  11. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  12. Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase

    PubMed Central

    Kim, Areum; Lakshman, Neema; Petroll, W.Matthew

    2007-01-01

    The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100 μm thick fibrillar collagen matrices and cultured for 24 hours in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p < 0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction. PMID:16978606

  13. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models

    PubMed Central

    Sung, Kyung Eun; Su, Xiaojing; Berthier, Erwin; Pehlke, Carolyn; Friedl, Andreas; Beebe, David J.

    2013-01-01

    The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models. PMID:24124550

  14. Cell colonization in degradable 3D porous matrices

    PubMed Central

    Lawrence, Benjamin J

    2008-01-01

    Cell colonization is an important in a wide variety of biological processes and applications including vascularization, wound healing, tissue engineering, stem cell differentiation and biosensors. During colonization porous 3D structures are used to support and guide the ingrowth of cells into the matrix. In this review, we summarize our understanding of various factors affecting cell colonization in three-dimensional environment. The structural, biological and degradation properties of the matrix all play key roles during colonization. Further, specific scaffold properties such as porosity, pore size, fiber thickness, topography and scaffold stiffness as well as important cell material interactions such as cell adhesion and mechanotransduction also influence colonization. PMID:19262124

  15. Revealing the cytoskeletal organization of invasive cancer cells in 3D.

    PubMed

    Geraldo, Sara; Simon, Anthony; Vignjevic, Danijela M

    2013-01-01

    Cell migration has traditionally been studied in 2D substrates. However, it has become increasingly evident that there is a need to study cell migration in more appropriate 3D environments, which better resemble the dimensionality of the physiological processes in question. Migratory cells can substantially differ in their morphology and mode of migration depending on whether they are moving on 2D or 3D substrates. Due to technical difficulties and incompatibilities with most standard protocols, structural and functional analysis of cells embedded within 3D matrices still remains uncommon. This article describes methods for preparation and imaging of 3D cancer cell cultures, either as single cells or spheroids. As an appropriate ECM substrate for cancer cell migration, we use nonpepsinized rat tail collagen I polymerized at room-temperature and fluorescently labeled to facilitate visualization using standard confocal microscopes. This work also includes a protocol for 3D immunofluorescent labeling of endogenous cell cytoskeleton. Using these protocols we hope to contribute to a better description of the molecular composition, localization, and functions of cellular structures in 3D. PMID:24192916

  16. XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells.

    PubMed

    Taylor-Kashton, Cheryl; Lichtensztejn, Daniel; Baloglu, Erkan; Senapedis, William; Shacham, Sharon; Kauffman, Michael G; Kotb, Rami; Mai, Sabine

    2016-12-01

    Previous work has shown that the three-dimensional (3D) nuclear organization of telomeres is altered in cancer cells and the degree of alterations coincides with aggressiveness of disease. Nuclear pores are essential for spatial genome organization and gene regulation and XPO1 (exportin 1/CRM1) is the key nuclear export protein. The Selective Inhibitor of Nuclear Export (SINE) compounds developed by Karyopharm Therapeutics (KPT-185, KPT-330/selinexor, and KPT-8602) inhibit XPO1 nuclear export function. In this study, we investigated whether XPO1 inhibition has downstream effects on the 3D nuclear organization of the genome. This was assessed by measuring the 3D telomeric architecture of normal and tumor cells in vitro and ex vivo. Our data demonstrate for the first time a rapid and preferential disruption of the 3D nuclear organization of telomeres in tumor cell lines and in primary cells ex vivo derived from treatment-naïve newly diagnosed multiple myeloma patients. Normal primary cells in culture as well as healthy lymphocyte control cells from the same patients were minimally affected. Using both lymphoid and non-lymphoid tumor cell lines, we found that the downstream effects on the 3D nuclear telomere structure are independent of tumor type. We conclude that the 3D nuclear organization of telomeres is a sensitive indicator of cellular response when treated with XPO1 inhibitors. J. Cell. Physiol. 231: 2711-2719, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991404

  17. Microtubule regulation of corneal fibroblast morphology and mechanical activity in 3-D culture

    PubMed Central

    Kim, Areum; Petroll, W. Matthew

    2007-01-01

    The purpose of this study was to investigate the role of microtubules in regulating corneal fibroblast structure and mechanical behavior using static (3-D) and dynamic (4-D) imaging of both cells and their surrounding matrix. Human corneal fibroblasts transfected to express GFP-zyxin (to label focal adhesions) or GFP-tubulin (to label microtubules) were plated at low density inside 100 μm thick type I collagen matrices. After 24 hours, the effects of nocodazole (to depolymerize microtubules), cytochalasin D (to disrupt f-actin), and/or Y-27632 (to block Rho-kinase) were evaluated using 3-D and 4-D imaging of both cells and ECM. After 24 hours of incubation, cells had well organized microtubules and prominent focal adhesions, and significant cell-induced matrix compaction was observed. Addition of nocodazole induced rapid microtubule disruption which resulted in Rho activation and additional cellular contraction. The matrix was pulled inward by retracting pseudopodial processes, and focal adhesions appeared to mediate this process, when present. Following 24 hour exposure to nocodazole, there was an even greater increase in both the number of stress fibers and the amount of matrix compaction and alignment at the ends of cells. When Rho-kinase was inhibited, disruption of microtubules resulted in retraction of dendritic cell processes, and rapid formation and extension of lamellipodial processes at random locations along the cell body, eventually leading to a convoluted, disorganized cell shape. These data suggest that microtubules modulate both cellular contractility and local collagen matrix reorganization via regulation of Rho/Rho kinase activity. In addition, microtubules appear to play a central role in dynamic regulation of cell spreading mechanics, morphology and polarity in 3-D culture. PMID:17716657

  18. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  19. Engineering controllable architecture in matrigel for 3D cell alignment.

    PubMed

    Jang, Jae Myung; Tran, Si-Hoai-Trung; Na, Sang Cheol; Jeon, Noo Li

    2015-02-01

    We report a microfluidic approach to impart alignment in ECM components in 3D hydrogels by continuously applying fluid flow across the bulk gel during the gelation process. The microfluidic device where each channel can be independently filled was tilted at 90° to generate continuous flow across the Matrigel as it gelled. The presence of flow helped that more than 70% of ECM components were oriented along the direction of flow, compared with randomly cross-linked Matrigel. Following the oriented ECM components, primary rat cortical neurons and mouse neural stem cells showed oriented outgrowth of neuronal processes within the 3D Matrigel matrix. PMID:25585718

  20. Engineering a 3D microfluidic culture platform for tumor-treating field application

    PubMed Central

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  1. Engineering a 3D microfluidic culture platform for tumor-treating field application.

    PubMed

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  2. Engineering a 3D microfluidic culture platform for tumor-treating field application

    NASA Astrophysics Data System (ADS)

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-05-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.

  3. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  4. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  5. 3D culture of ovarian follicles: a system towards their engineering?

    PubMed

    Zuccotti, Maurizio; Merico, Valeria; Rebuzzini, Paola; Belli, Martina; Vigone, Giulia; Mulas, Francesca; Fassina, Lorenzo; Wruck, Wasco; Adjaye, James; Bellazzi, Riccardo; Garagna, Silvia

    2015-01-01

    Infertility in women is a health priority. Designing a robust culture protocol capable of attaining complete follicle growth is an exciting challenge, for its potential clinical applications, but also as a model to observe and closely study the sequence of molecular events that lie behind the intricate relationship existing between the oocyte and surrounding follicle cells. Here, we describe the procedures used to maintain the ovarian follicle 3D architecture employing a variety of in vitro systems and several types of matrices. Collagen and alginate are the matrices that led to better results, including proof-of-concept of full-term development. Pioneer in its kind, these studies underlie the drawbacks encountered and the need for a culture system that allows more quantitative analyses and predictions, projecting the culture of the ovarian follicle into the realm of tissue engineering. PMID:26505254

  6. A biofidelic 3D culture model to study the development of brain cellular systems.

    PubMed

    Ren, M; Du, C; Herrero Acero, E; Tang-Schomer, M D; Özkucur, N

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  7. A biofidelic 3D culture model to study the development of brain cellular systems

    PubMed Central

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  8. C3d adjuvant effects are mediated through the activation of C3d-specific autoreactive T cells

    PubMed Central

    De Groot, Anne S.; Ross, Ted M.; Levitz, Lauren; Messitt, Timothy J.; Tassone, Ryan; Boyle, Christine M.; Vincelli, Amber J.; Moise, Leonard; Martin, William; Knopf, Paul M.

    2014-01-01

    Complement fragment C3d covalently attached to antigens enhances immune responses, particularly for antigens lacking T cell epitopes. Enhancement has been attributed to receptor cross-linking between complement receptor CR2 (CD21) and polysaccharide antigen to surface IgM on naïve B cells. Paradoxically, C3d has still been shown to increase immune responses in CD21 KO mice, suggesting that an auxiliary activation pathway exists. In prior studies, we demonstrated the CD21-independent C3d adjuvant effect might be due to T cell recognition of C3d T helper epitopes processed and presented by MHC class II on the B cell surface. C3d peptide sequences containing concentrated clusters of putative human C3 T cell epitopes were identified using the epitope-mapping algorithm, EpiMatrix. These peptide sequences were synthesized and shown in vitro to bind multiple HLA-DR alleles with high affinity, and induce IFNγ responses in healthy donor PBMCs. In the present studies, we establish further correlations between HLA binding and HLA-specific lymphocyte reactions with select epitope clusters. Additionally, we show that the T cell phenotype of C3d-specific reactive T cells is CD4+CD45RO+ memory T cells. Finally, mutation of a single T cell epitope residing within the P28 peptide segment of C3d resulted in significantly diminished adjuvant activity in BALB/c mice. Collectively, these studies support the hypothesis that the paradoxical enhancement of immune responses by C3d in the absence of CD21 is due to internalization and processing of C3d into peptides that activate autoreactive CD4+ T helper cells in the context of HLA class II. PMID:25385064

  9. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    PubMed

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-03-01

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering. PMID:26756962

  10. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  11. Ultra-High Resolution 3D Imaging of Whole Cells.

    PubMed

    Huang, Fang; Sirinakis, George; Allgeyer, Edward S; Schroeder, Lena K; Duim, Whitney C; Kromann, Emil B; Phan, Thomy; Rivera-Molina, Felix E; Myers, Jordan R; Irnov, Irnov; Lessard, Mark; Zhang, Yongdeng; Handel, Mary Ann; Jacobs-Wagner, Christine; Lusk, C Patrick; Rothman, James E; Toomre, Derek; Booth, Martin J; Bewersdorf, Joerg

    2016-08-11

    Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes. PMID:27397506

  12. Protrusive waves guide 3D cell migration along nanofibers

    PubMed Central

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander

    2015-01-01

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933

  13. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  14. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  15. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis

    PubMed Central

    East, Emma; Golding, Jonathan P; Phillips, James B

    2009-01-01

    A major impediment to CNS repair is the glial scar, which forms following damage and is composed mainly of ramified, ‘reactive’ astrocytes that inhibit neuronal regrowth. The transition of astrocytes into this reactive phenotype (reactive gliosis) is a potential therapeutic target, but glial scar formation has proved difficult to study in monolayer cultures because they induce constitutive astrocyte activation. Here we demonstrate a 3D collagen gel system in which primary rat astrocytes were maintained in a persistently less reactive state than comparable cells in monolayer, resembling their status in the undamaged CNS. Reactivity, proliferation and viability were monitored and quantified using confocal, fluorescence and time-lapse microscopy, 3D image analysis, RT–PCR and ELISA. To assess the potential of this system as a model of reactive gliosis, astrocytes in 3D were activated with TGFβ1 to a ramified, reactive phenotype (elevated GFAP, Aquaporin 4, CSPG, Vimentin and IL-6 secretion). This provides a versatile system in which astrocytes can be maintained in a resting state, then be triggered to undergo reactive gliosis, enabling real-time monitoring and quantitative analysis throughout and providing a powerful new tool for research into CNS damage and repair. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19813215

  16. 3D cancer cell migration in a confined matrix

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  17. Capture and 3D culture of colonic crypts and colonoids in a microarray platform

    PubMed Central

    Wang, Yuli; Ahmad, Asad A.; Shah, Pavak K.; Sims, Christopher E.; Magness, Scott T.; Allbritton, Nancy L.

    2013-01-01

    Crypts are the basic structural and functional units of colonic epithelium and can be isolated from the colon and cultured in vitro into multi-cell spheroids termed “colonoids”. Both crypts and colonoids are ideal building blocks for construction of an in vitro tissue model of the colon. Here we proposed and tested a microengineered platform for capture and in vitro 3D culture of colonic crypts and colonoids. An integrated platform was fabricated from polydimethylsiloxane which contained two fluidic layers separated by an array of cylindrical microwells (150-μm diameter, 150-μm depth) with perforated bottoms (30-μm opening, 10-μm depth) termed “microstrainers”. As fluid moved through the array, crypts or colonoids were retained in the microstrainers with a >90% array-filling efficiency. Matrigel as an extracellular matrix was then applied to the microstrainers to generate isolated Matrigel pockets encapsulating the crypts or colonoids. After supplying the essential growth factors, epidermal growth factor, Wnt-3A, R-spondin 2 and noggin, 63±13% of the crypts and 77±8% of the colonoids cultured in the microstrainers over a 48–72 h period formed viable 3D colonoids. Thus colonoid growth on the array was similar to that under standard culture conditions (78±5%). Additionally the colonoids displayed the same morphology and similar numbers of stem and progenitor cells as those under standard culture conditions. Immunofluorescence staining confirmed that the differentiated cell-types of the colon, goblet cells, enteroendocrine cells and absorptive enterocytes, formed on the array. To demonstrating the utility of the array in tracking the colonoid fate, quantitative fluorescence analysis was performed on the arrayed colonoids exposed to reagents such as Wnt-3A and the γ-secretase inhibitor LY-411575. The successful formation of viable, multi-cell type colonic tissue on the microengineered platform represents a first step in the building of a

  18. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology

    PubMed Central

    Shao, Yue; Sang, Jianming; Fu, Jianping

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network – with transcriptional coactivators YAP and TAZ at the center stage – that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D. PMID:25818411

  19. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.

    PubMed

    Jones, Gemma L; Walton, Robin; Czernuszka, Jan; Griffiths, Sarah L; El Haj, Alicia J; Cartmell, Sarah H

    2010-09-15

    There is a need in tissue-engineering for 3D scaffolds that mimic the natural extracellular matrix of bone to enhance cell adhesion, proliferation, and differentiation. The scaffold is also required to be degradable. A highly porous scaffold has been developed to incorporate two of the extracellular components found in bone-collagen and hydroxyapatite (HA). The scaffold's collagen component is an afibrillar monomeric type I atelocollagen extracted from foetal calf's skin. This provided a novel environment for the inclusion of HA powder. Five hundred thousand primary human osteoblasts were seeded onto 4 mm cubed scaffolds that varied in ratio of HA to collagen. Weight ratios of 1:99, 25:75, 50:50, and 75:25 hydroxyapatite:collagen (HA:Collagen) were analysed. The scaffolds plus cells were cultured for 21 days. DNA assays and live/dead viability staining demonstrated that all of the scaffolds supported cell proliferation and viability. An alkaline phosphatase assay showed similar osteoblast phenotype maintenance on all of the 3D scaffolds analysed at 21 days. MicroCT analysis demonstrated an increase in total sample volume (correlating to increase in unmineralised matrix production). An even distribution of HA throughout the collagen matrix was observed using this technique. Also at 3 weeks, reductions in the percentage of the mineralised phase of the constructs were seen. These results indicate that each of the ratios of HA/collagen scaffolds have great potential for bone tissue engineering. PMID:20694991

  20. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells.

    PubMed

    Ji, Xiong; Dadon, Daniel B; Powell, Benjamin E; Fan, Zi Peng; Borges-Rivera, Diego; Shachar, Sigal; Weintraub, Abraham S; Hnisz, Denes; Pegoraro, Gianluca; Lee, Tong Ihn; Misteli, Tom; Jaenisch, Rudolf; Young, Richard A

    2016-02-01

    In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease. PMID:26686465

  1. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    PubMed

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets. PMID:26663707

  2. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture.

    PubMed

    DeJonge, Rachel E; Liu, Xiao-Ping; Deig, Christopher R; Heller, Stefan; Koehler, Karl R; Hashino, Eri

    2016-01-01

    Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles-a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo. PMID:27607106

  3. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  4. A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.

    PubMed

    Christoffersson, Jonas; Bergström, Gunnar; Schwanke, Kristin; Kempf, Henning; Zweigerdt, Robert; Mandenius, Carl-Fredrik

    2016-01-01

    Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here, we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging. PMID:27052611

  5. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  6. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine. PMID:25721231

  7. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    PubMed Central

    Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J.

    2014-01-01

    Introduction Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Results Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. Summary We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance. PMID:25222612

  8. Upregulations of metallothionein gene expressions and tolerance to heavy metal toxicity by three dimensional cultivation of HepG2 cells on VECELL 3-D inserts.

    PubMed

    Kubo, Takashi; Kuroda, Yukie; Horiuchi, Shinichiro; Kim, Su-Ryang; Sekino, Yuko; Ishida, Seiichi

    2016-02-01

    The VECELL 3-D insert is a new culture scaffold consisting of collagen-coated ePTFE (expanded polytetrafluoroethylene) mesh. We analyzed the effects of VECELL 3-D inserts on the functionality of HepG2, a human hepatocellular carcinoma cell line. HepG2 cells cultured on VECELL 3-D inserts maintained a round shape, while those cultured on a standard culture plate or collagen-coated cell culture plate showed a flattened and cubic epithelial-like shape. HepG2 cells cultured on VECELL 3-D inserts had showed upregulated expression of metallothionein genes and in turn a higher tolerance to toxicity induced by heavy metals. These results suggest that HepG2 cell functions were changed by the cell morphology that is induced by culturing on a VECELL 3-D insert. PMID:26763402

  9. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities.

    PubMed

    Cheng, Delin; Hou, Jie; Hao, Lijing; Cao, Xiaodong; Gao, Huichang; Fu, Xiaoling; Wang, Yingjun

    2016-08-01

    Native cells live in a three-dimensional (3D) extracellular matrix (ECM) capable of regulating cell activities through various physical and chemical factors. Designed topographies have been well proven to trigger significant difference in cell behaviours. However, present topographies are almost all constructed on two-dimensional (2D) substrates like discs and films, which are far from features like 3D and porosity required in application like bone repair. Here we bottom-up assembled poly(lactic-co-glycolic acid)/calcium carbonate (PLGA/CC) microspheres with superficial porous topography intactly into a 3D porous scaffold. Because the scaffold was obtained through a mild technique, the bioactivity of released BMP-2 was well retained. Mouse bone marrow mesenchymal stem cells (mMSCs) were cultured on produced scaffolds having different 3D topographies. It turned out that osteogenic differentiation of mMSCs did respond to the 3D topographies, while proliferation didn't. Gene expression of αv and β1 integrins revealed that adhesion was supposed to be the underlying mechanism for osteogenic response. The study provides insight into enhancing function of practical scaffolds by elaborate topography design. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1056-1063, 2016. PMID:26013977

  10. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    PubMed

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions. PMID:26283159

  11. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I).

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Blatz, Veronika; Jäckh, Christine; Freytag, Eva-Maria; Fabian, Eric; Landsiedel, Robert; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing. PMID:22509833

  12. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  13. Quasi-horizontal circulation cells in 3D seawater intrusion

    NASA Astrophysics Data System (ADS)

    Abarca, Elena; Carrera, Jesús; Sánchez-Vila, Xavier; Voss, Clifford I.

    2007-06-01

    SummaryThe seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion.

  14. Quasi-horizontal circulation cells in 3D seawater intrusion

    USGS Publications Warehouse

    Abarca, E.; Carrera, J.; Sanchez-Vila, X.; Voss, C.I.

    2007-01-01

    The seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion. ?? 2007 Elsevier B.V. All rights reserved.

  15. Measuring the correlation between cell mechanics and myofibroblastic differentiation during maturation of 3D microtissues

    NASA Astrophysics Data System (ADS)

    Zhao, Ruogang; Wang, Weigang; Boudou, Thomas; Chen, Christopher; Reich, Daniel

    2013-03-01

    Tissue stiffness and cellular contractility are two of the most important biomechanical factors regulating pathological transitions of encapsulated cells, such as the differentiation of fibroblasts into myofibroblasts - a key event contributing to tissue fibrosis. However, a quantitative correlation between tissue stiffness and cellular contraction and myofibroblast differentiation has not yet been established in 3D environments, mainly due to the lack of suitable 3D tissue culture models that allow both tissue remodeling and simultaneous measurement of the cell/tissue mechanics. To address this, we have developed a magnetic microtissue tester system that allows the remodeling of arrays of cell-laden 3D collagen microtissues and the measurement of cell and tissue mechanics using magnetically actuated elastomeric microcantilevers. By measuring the development of cell/tissue mechanical properties and the expression level of α-smooth muscle actin (α-SMA, a marker for myofibroblast differentiation) during a 6 day culture period, we found microtissue stiffness increased by 45% and α-SMA expression increased by 38%, but tissue contraction forces only increased by 10%, indicating that tissue stiffness may be the predominant mechanical factor for regulation of myofibroblast differentiation. This study provides new quantitative insight into the regulatory effect of cell and tissue mechanics on cellular function. Supported in part by NIH grant HL090747

  16. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  17. An approach to quantifying 3D responses of cells to extreme strain

    PubMed Central

    Li, Yuhui; Huang, Guoyou; Li, Moxiao; Wang, Lin; Elson, Elliot L.; Jian Lu, Tian; Genin, Guy M.; Xu, Feng

    2016-01-01

    The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells. PMID:26887698

  18. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  19. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  20. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  1. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. PMID:25453953

  2. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  3. Controllable Production of Transplantable Adult Human High-Passage Dermal Papilla Spheroids Using 3D Matrigel Culture

    PubMed Central

    Miao, Yong; Sun, Ya Bin; Liu, Bing Cheng; Jiang, Jin Dou

    2014-01-01

    We have succeeded in culturing human dermal papilla (DP) cell spheroids and developed a three-dimensional (3D) Matrigel (basement membrane matrix) culture technique that can enhance and restore DP cells unique characteristics in vitro. When 1×104 DP cells were cultured on the 96-well plates precoated with Matrigel for 5 days, both passage 2 and passage 8 DP cells formed spheroidal microtissues with a diameter of 150–250 μm in an aggregative and proliferative manner. We transferred and recultured these DP spheroids onto commercial plates. Cells within DP spheres could disaggregate and migrate out, which was similar to primary DP. Moreover, we examined the expression of several genes and proteins associated with hair follicle inductivity of DP cells, such as NCAM, Versican, and α-smooth muscle actin, and confirmed that their expression level was elevated in the spheres compared with the dissociated DP cells. To examine the hair-inducing ability of DP spheres, hair germinal matrix cells (HGMCs) and DP spheres were mixed and cultured on Matrigel. Unlike the dissociated DP cells and HGMCs cocultured in two dimensions, HGMCs can differentiate into hair-like fibers under the induction of the DP spheres made from the high-passage cells (passage 8) in vitro. We are the first to show that passage 3 human HGMCs differentiate into hair-like fibers in the presence of human DP spheroids. These results suggest that the 3D Matrigel culture technique is an ideal culture model for forming DP spheroids and that sphere formation partially models the intact DP, resulting in hair induction, even by high-passage DP cells. PMID:24528213

  4. Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated osteogenic differentiation

    PubMed Central

    Klumpers, Darinka D.; Zhao, Xuanhe; Mooney, David J.; Smit, Theo H.

    2013-01-01

    During embryonic development, morphogenetic processes give rise to a variety of shapes and patterns that lead to functional tissues and organs. While the impact of chemical signals in these processes is widely studied, the role of physical cues is less understood. The aim of this study was to test the hypothesis that the interplay of cell mediated contraction and mechanical boundary conditions alone can result in spatially regulated differentiation in simple 3D constructs. An experimental model consisting of a 3D cell-gel construct and a finite element (FE) model were used to study the effect of cellular traction exerted by mesenchymal stem cells (MSCs) on an initially homogeneous matrix under inhomogeneous boundary conditions. A robust shape change is observed due to contraction under time-varying mechanical boundary conditions, which is explained by the finite element model. Furthermore, distinct local differences of osteogenic differentiation are observed, with a spatial pattern independent of osteogenic factors in the culture medium. Regions that are predicted to have experienced relatively high shear stress at any time during contraction, correlate with the regions of distinct osteogenesis. Taken together, these results support the underlying hypothesis that cellular contractility and mechanical boundary conditions alone can result in spatially regulated differentiation. These results will have important implications for tissue engineering and regeneration. PMID:23925497

  5. Techniques for Assessing 3-D Cell-Matrix Mechanical Interactions In Vitro and In Vivo

    PubMed Central

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W. Matthew

    2013-01-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  6. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo.

    PubMed

    Miron-Mendoza, Miguel; Koppaka, Vindhya; Zhou, Chengxin; Petroll, W Matthew

    2013-10-01

    Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell-matrix mechanical interactions in 3-D culture models, tissue explants and living animals. PMID:23819988

  7. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line.

    PubMed

    Souza, Aline G; Marangoni, Karina; Fujimura, Patrícia T; Alves, Patrícia T; Silva, Márcio J; Bastos, Victor Alexandre F; Goulart, Luiz R; Goulart, Vivian A

    2016-02-15

    Human prostate cancer (PCa) is a highly heterogeneous and multifactorial disease. Current clinical biomarkers are not sufficiently accurate, thus being unable to predict the clinical outcome. Therefore, searching for new biomarkers aiming to improve diagnosis, prognosis and therapy is still required. In this study, we performed 3D Cell-SELEX against PC-3 prostate cancer cell line, a novel strategy to select specific nucleic acid ligands against spheroid cells in 3D cell culture. This original system combines Cell-SELEX, a process that exploits the cellular structure to generate specific ligands, and 3D cell culture, an approach that mimics the tissue microenvironment in vitro. In the first round of 3D Cell-SELEX, a negative selection against RWPE-1, non-tumor cell line, was performed to subtract non-tumor specific aptamers. The supernatant was used in eight additional rounds of selection, which were performed against PC-3 cell line. After nine selection cycles, eight PC-3 specific RNA aptamers were selected and sequenced. The aptamers presented sizes between 20 and 50 nucleotides-long, with low free energy (∆G<-13.6), which contributed for their spontaneous folding and high stability. Furthermore, our results showed the aptamer A4 as a specific ligand to prostate tumor cells, with dissociation constant in the nanomolar scale. Therefore, the novel 3D Cell-SELEX procedure improved the selection of PCa cell-surface ligands and the aptamer A4 has shown potential for the identification of prostate tumor cells, suggesting the application of this molecule in further screening assays for PCa. PMID:26821206

  8. Biologic variability of human foreskin fibroblasts in 2D and 3D culture: implications for a wound healing model

    PubMed Central

    2009-01-01

    Background The fibroblast-populated 3D collagen matrix is a model of tissue and healing which has been used since the 1980's. It was hypothesized that anchorage disruption of the collagen matrix would produce p53-dependent apoptosis in the embedded fibroblasts, but results of hypothesis testing were variant. Findings The response of p53 to anchorage disruption in 3D culture or to UV irradiation in 2D culture was influenced both by fibroblast strain and culture conditions. It also was determined that data scatter in a collagen matrix contraction assay was related to fibroblast strain and possibly to technical factors, such as cell culture technician and/or number of matrices utilized. Subsequent analysis suggested that phenotypic drift and/or inter-strain genetic variability may have been responsible for the data scatter. In addition, several technical factors were identified that may have contributed to the scatter. Conclusion Experimentation with human foreskin fibroblasts in both 2D and 3D culture can produce variant data. The underlying cause of the data scatter appears to be partially due to the biologic variability of the fibroblast. PMID:19922655

  9. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    PubMed

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry. PMID:25686978

  10. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  11. Cell interaction study method using novel 3D silica nanoneedle gradient arrays

    PubMed Central

    Rajput, Deepak; Crowder, Spencer; Hofmeister, Lucas; Costa, Lino; Sung, Hak-Joon; Hofmeister, William

    2012-01-01

    Understanding cellular interactions with culture substrate features is important to advance cell biology and regenerative medicine. When surface topographical features are considerably larger in vertical dimension and are spaced at least one cell dimension apart, the features act as 3D physical barriers that can guide cell adhesion, thereby altering cell behavior. In the present study, we investigated competitive interactions of cells with neighboring cells and matrix using a novel nanoneedle gradient array. A gradient array of nanoholes was patterned at the surface of fused silica by single-pulse femtosecond laser machining. A negative replica of the pattern was extracted by nanoimprinting with a thin film of polymer. Silica was deposited on top of the polymer replica to form silica nanoneedles. NIH 3T3 fibroblasts were cultured on silica nanoneedles and their behavior was studied and compared with those cultured on a flat silica surface. The presence of silica nanoneedles was found to enhance the adhesion of fibroblasts while maintaining cell viability. The anisotropy in the arrangement of silica nanoneedles was found to affect the morphology and spreading of fibroblasts. Additionally, variations in nanoneedle spacing regulated cell-matrix and cell-cell interactions, effectively preventing cell aggregation in areas of tightly-packed nanoneedles. This proof-of-concept study provides a reproducible means for controlling competitive cell adhesion events and offers a novel system whose properties can be manipulated to intimately control cell behavior. PMID:23006558

  12. 3D Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels

    PubMed Central

    Scott, Carolyn M.; Forster, Colleen L.; Kokkoli, Efrosini

    2015-01-01

    The design of scaffolds which mimic the stiffness, nanofiber structure, and biochemistry of the native extra-cellular matrix (ECM) has been a major objective for the tissue engineering field. Furthermore, mimicking the innate three dimensional (3D) environment of the ECM has been shown to significantly alter cellular response compared to traditional two dimensional (2D) culture. We report the development of a self-assembling, fibronectin-mimetic, peptide-amphiphile nanofiber scaffold for 3D cell culture. To form such a scaffold, 5 mol% of a bioactive PR_g fibronectin-mimetic peptide-amphiphile was mixed with 95 mol% of a diluent peptide-amphiphile (E2) whose purpose was to neutralize electrostatic interactions, increase the gelation kinetics and promote cell survival. Atomic force microscopy verified the fibrilar structure of the gels and the mechanical properties were characterized for various weight percent (wt%) formulations of the 5 mol% PR_g - 95 mol% E2 peptide-amphiphile mixture. The 0.5 wt% formulations had an elastic modulus of 429.0 ± 21.3 Pa while the 1.0 wt% peptide-amphiphile hydrogels had an elastic modulus of 808.6 ± 38.1 Pa. The presence of entrapped cells in the gels decreased the elastic modulus and the decrease was a function of the cell loading. While both formulations supported cell proliferation, the 0.5 wt% gels supported significantly greater NIH3T3/GFP fibroblast cell proliferation throughout the gels than the 1.0 wt% gels. However, compared to the 0.5 wt% formulations, the 1.0 wt% hydrogels promoted greater increase in mRNA expression and production of fibronectin and type IV collagen ECM proteins. This study suggests that this fibronectin-mimetic scaffold holds great promise in the advance of 3D culture applications and cell therapies. PMID:25970351

  13. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    PubMed

    Alépée, Natalie; Bahinski, Anthony; Daneshian, Mardas; De Wever, Bart; Fritsche, Ellen; Goldberg, Alan; Hansmann, Jan; Hartung, Thomas; Haycock, John; Hogberg, Helena; Hoelting, Lisa; Kelm, Jens M; Kadereit, Suzanne; McVey, Emily; Landsiedel, Robert; Leist, Marcel; Lübberstedt, Marc; Noor, Fozia; Pellevoisin, Christian; Petersohn, Dirk; Pfannenbecker, Uwe; Reisinger, Kerstin; Ramirez, Tzutzuy; Rothen-Rutishauser, Barbara; Schäfer-Korting, Monika; Zeilinger, Katrin; Zurich, Marie-Gabriele

    2014-01-01

    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing. PMID:25027500

  14. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.

    PubMed

    Dziasko, Marc A; Tuft, Stephen J; Daniels, Julie T

    2015-09-01

    Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche. PMID:26142953

  15. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  16. The self-organization of grid cells in 3D.

    PubMed

    Stella, Federico; Treves, Alessandro

    2015-01-01

    Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. PMID:25821989

  17. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  18. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells

    PubMed Central

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443

  19. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  20. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    PubMed

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. PMID:25609254

  1. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.

    PubMed

    Kang, Jihoon; Lee, Dong Woo; Hwang, Hyun Ju; Yeon, Sang-Eun; Lee, Moo-Yeal; Kuh, Hyo-Jeong

    2016-06-21

    Three-dimensional (3D) cancer cell culture models mimic the complex 3D organization and microenvironment of human solid tumor tissue and are thus considered as highly predictive models representing avascular tumor regions. Confocal laser scanning microscopy is useful for monitoring drug penetration and therapeutic responses in 3D tumor models; however, photonic attenuation at increasing imaging depths and limited penetration of common fluorescence tracers are significant technical challenges to imaging. Immunohistological staining would be a good alternative, but the preparation of tissue sections from rather fragile spheroids through fixing and embedding procedures is challenging. Here we introduce a novel 3 × 3 mini-pillar array chip that can be utilized for 3D cell culturing and sectioning for high-content histologic analysis. The mini-pillar array chip facilitated the generation of 3D spheroids of human cancer cells within hydrogels such as alginate, collagen, and Matrigel. As expected, visualization of the 3D distribution of calcein AM and doxorubicin by optical sectioning was limited by photonic attenuation and dye penetration. The integrity of the 3D microtissue section was confirmed by immunostaining on paraffin sections and cryo-sections. The applicability of the mini-pillar array for drug activity evaluation was tested by measuring viability changes in spheroids exposed to anti-cancer agents, 5-fluorouracil and tirapazamine. Thus, our novel mini-pillar array platform can potentially promote high-content histologic analysis of 3D cultures and can be further optimized for field-specific needs. PMID:27194205

  2. Engineering a perfusable 3D human liver platform from iPS cells.

    PubMed

    Schepers, Arnout; Li, Cheri; Chhabra, Arnav; Seney, Benjamin Tschudy; Bhatia, Sangeeta

    2016-07-01

    In vitro models of human tissue are crucial to our ability to study human disease as well as develop safe and effective drug therapies. Models of single organs in static and microfluidic culture have been established and shown utility for modeling some aspects of health and disease; however, these systems lack multi-organ interactions that are critical to some aspects of drug metabolism and toxicity. Thus, as part of a consortium of researchers, we have developed a liver chip that meets the following criteria: (1) employs human iPS cells from a patient of interest, (2) cultures cells in perfusable 3D organoids, and (3) is robust to variations in perfusion rate so as to be compatible in series with other specialized tissue chips (e.g. heart, lung). In order to achieve this, we describe methods to form hepatocyte aggregates from primary and iPS-derived cells, alone and in co-culture with support cells. This necessitated a novel culture protocol for the interrupted differentiation of iPS cells that permits their removal from a plated surface and aggregation while maintaining phenotypic hepatic functions. In order to incorporate these 3D aggregates in a perfusable platform, we next encapsulated the cells in a PEG hydrogel to prevent aggregation and overgrowth once on chip. We adapted a C-trap chip architecture from the literature that enabled robust loading with encapsulated organoids and culture over a range of flow rates. Finally, we characterize the liver functions of this iHep organoid chip under perfusion and demonstrate a lifetime of at least 28 days. We envision that such this strategy can be generalized to other microfluidic tissue models and provides an opportunity to query patient-specific liver responses in vitro. PMID:27296616

  3. Registration of 3D and multispectral data for the study of cultural heritage surfaces.

    PubMed

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  4. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  5. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    SciTech Connect

    Kim, Sun-Ah; Lee, Eun Kyung; Kuh, Hyo-Jeong

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  6. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.

    PubMed

    Hribar, K C; Finlay, D; Ma, X; Qu, X; Ondeck, M G; Chung, P H; Zanella, F; Engler, A J; Sheikh, F; Vuori, K; Chen, S C

    2015-06-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  7. Nonlinear 3D Projection Printing of Concave Hydrogel Microstructures for Long-Term Multicellular Spheroid and Embryoid Body Culture

    PubMed Central

    Hribar, K.C; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S.

    2015-01-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propogation. Here, we used a continuous 3D projection printing approach – with an important modification of nonlinear exposure — to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  8. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  9. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC).

    PubMed

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-01-01

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc. PMID:27622567

  10. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression

    PubMed Central

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  11. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications. PMID:25294368

  12. Increasing 3D Matrix Rigidity Strengthens Proliferation and Spheroid Development of Human Liver Cells in a Constant Growth Factor Environment.

    PubMed

    Bomo, Jérémy; Ezan, Frédéric; Tiaho, François; Bellamri, Medjda; Langouët, Sophie; Theret, Nathalie; Baffet, Georges

    2016-03-01

    Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three-dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well-spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity-dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening. PMID:26331987

  13. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  14. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  15. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment. PMID:26696441

  16. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform.

    PubMed

    Gallego-Perez, Daniel; Higuita-Castro, Natalia; Sharma, Sadhana; Reen, Rashmeet K; Palmer, Andre F; Gooch, Keith J; Lee, L James; Lannutti, John J; Hansford, Derek J

    2010-03-21

    Guided assembly of microscale tissue subunits (i.e. 3D cell clusters/aggregates) has found applications in cell therapy/tissue engineering, cell and developmental biology, and drug discovery. As cluster size and geometry are known to influence cellular responses, the ability to spatially control cluster formation in a high throughput manner could be advantageous for many biomedical applications. In this work, a micro- and nanofabricated platform was developed for this purpose, consisting of a soft-lithographically fabricated array of through-thickness microwells structurally bonded to a sheet of electrospun fibers. The microwells and fibers were manufactured from several polymers of biomedical interest. Human hepatocytes were used as model cells to demonstrate the ability of the platform to allow controlled cluster formation. In addition, the ability of the device to support studies on semi-controlled heterotypic interactions was demonstrated by co-culturing hepatocytes and fibroblasts. Preliminary experiments with other cells of interest (pancreatic cells, embryonic stem cells, and cardiomyocytes) were also conducted. Our platform possesses several advantages over previously developed microwell arrays: a more in vivo-like topographical stimulation of cells; better nutrient/waste exchange through the underlying nanofiber mat; and easy integration into standard two-chamber cell culture well systems. PMID:20221567

  17. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  18. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

    SciTech Connect

    Foroni, Laura; Vasuri, Francesco; Valente, Sabrina; Gualandi, Chiara; Focarete, Maria Letizia; Caprara, Giacomo; Scandola, Mariastella; D'Errico-Grigioni, Antonia; Pasquinelli, Gianandrea

    2013-06-10

    We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.

  19. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  20. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    PubMed Central

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  1. Towards a 3d Based Platform for Cultural Heritage Site Survey and Virtual Exploration

    NASA Astrophysics Data System (ADS)

    Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P.

    2013-07-01

    This paper present a 3D platform that enables to make both cultural heritage site survey and its virtual exploration. It provides a single and easy way to use framework for merging multi scaled 3D measurements based on photogrammetry, documentation produced by experts and the knowledge of involved domains leaving the experts able to extract and choose the relevant information to produce the final survey. Taking into account the interpretation of the real world during the process of archaeological surveys is in fact the main goal of a survey. New advances in photogrammetry and the capability to produce dense 3D point clouds do not solve the problem of surveys. New opportunities for 3D representation are now available and we must to use them and find new ways to link geometry and knowledge. The new platform is able to efficiently manage and process large 3D data (points set, meshes) thanks to the implementation of space partition methods coming from the state of the art such as octrees and kd-trees and thus can interact with dense point clouds (thousands to millions of points) in real time. The semantisation of raw 3D data relies on geometric algorithms such as geodetic path computation, surface extraction from dense points cloud and geometrical primitive optimization. The platform provide an interface that enables expert to describe geometric representations of interesting objects like ashlar blocs, stratigraphic units or generic items (contour, lines, … ) directly onto the 3D representation of the site and without explicit links to underlying algorithms. The platform provide two ways for describing geometric representation. If oriented photographs are available, the expert can draw geometry on a photograph and the system computes its 3D representation by projection on the underlying mesh or the points cloud. If photographs are not available or if the expert wants to only use the 3D representation then he can simply draw objects shape on it. When 3D

  2. Microencapsulation of Neuroblastoma Cells and Mesenchymal Stromal Cells in Collagen Microspheres: A 3D Model for Cancer Cell Niche Study

    PubMed Central

    Yeung, Pan; Sin, Hoi Shun; Chan, Shing; Chan, Godfrey Chi Fung; Chan, Barbara Pui

    2015-01-01

    There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they can better recapitulate the complex in vivo situation. And the fact that the progression and development of tumor are closely associated to its stromal microenvironment has been increasingly recognized. The establishment of such tumor supportive niche is vital in understanding tumor progress and metastasis. The mesenchymal origin of many cells residing in the cancer niche provides the rationale to include MSCs in mimicking the niche in neuroblastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitro model and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted stromal environment. Results showed that the incorporation of MSCs in the model lead to accelerated growth of cancer cells as well as recapitulation of at least partially the tumor microenvironment in vivo. The current study therefore demonstrates the feasibility for the collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer studies. PMID:26657086

  3. Pulmonary surfactant expression analysis--role of cell-cell interactions and 3-D tissue-like architecture.

    PubMed

    Nandkumar, Maya A; Ashna, U; Thomas, Lynda V; Nair, Prabha D

    2015-03-01

    Surfactant production is important in maintaining alveolar function both in vivo and in vitro, but surfactant expression is the primary property lost by alveolar Type II Pneumocytes in culture and its maintenance is a functional requirement. To develop a functional tissue-like model, the in vivo cell-cell interactions and three dimensional architecture has to be reproduced. To this end, 3D button-shaped synthetic gelatin vinyl acetate (GeVAc) co-polymer scaffold was seeded with different types of lung cells. Functionality of the construct was studied under both static and dynamic conditions. The construct was characterized by Environmental Scanning Electron and fluorescent microscopy, and functionality of the system was analyzed by studying mRNA modulations of all four surfactant genes A, B, C, and D by real time-PCR and varying culture conditions. The scaffold supports alveolar cell adhesion and maintenance of cuboidal morphology, and the alveolar-specific property of surfactant synthesis, which would otherwise be rapidly lost in culture. This is a novel 3D system that expresses all 4 surfactants for a culture duration of 3 weeks. PMID:25262918

  4. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    SciTech Connect

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving

  5. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  6. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    PubMed

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  7. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  8. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    PubMed

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications. PMID:25384798

  9. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    PubMed

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. PMID:25063093

  10. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system

    PubMed Central

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  11. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system.

    PubMed

    Seo, Ha-Rim; Jeong, Hyo Eun; Joo, Hyung Joon; Choi, Seung-Cheol; Park, Chi-Yeon; Kim, Jong-Ho; Choi, Ji-Hyun; Cui, Long-Hui; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2016-01-01

    The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis. PMID:27357248

  12. Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study.

    PubMed

    Zhang, Zhixiong; Chen, Yu-Chih; Cheng, Yu-Heng; Luan, Yi; Yoon, Euisik

    2016-07-01

    3D cell culture in the extracellular matrix (ECM), which not only provides structural support to cellular constituents, but also initiates regulatory biochemical cues for a variety of important cell functions in tissue, has become more and more important in understanding cancer pathology and drug testing. Although the ECM-gel has been used in cell culture both in bulk and on-chip, previous studies focused on collective cell behavior rather than single-cell heterogeneity. To track the behavior of each individual cell, we have developed a gel-island chip, which can form thousands of islands containing single cells encapsulated by the desired ECM. Optimized by Poisson's distribution, the device can attain 34% single cell capture efficiency of the exact number of single cells per island. A good culture media exchange rate and high cell viability can be achieved in the gel-islands. The cells in the islands can be automatically counted for high-throughput analysis. As a proof of concept, we monitored the proliferation and differentiation of single Notch+ (stem-like) T47D breast cancer cells. The 3D collagen gel environment was found to be favorable for the stem-like phenotype through better self-renewal and de-differentiation (Notch- to Notch+ transition). More interestingly, we found that the Notch- de-differentiated cells were more resistant to doxorubicin and cisplatin than the Notch+ cells. Combining the 3D ECM culture and single cell resolution, the presented platform can automatically analyze the individual cell behaviors of hundreds of cells using a small amount of drug and reagents. PMID:27270563

  13. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.

    PubMed

    Izadifar, Zohreh; Chang, Tuanjie; Kulyk, William; Chen, Xiongbiao; Eames, B Frank

    2016-03-01

    Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted with primary cells from embryonic chick cartilage. During initial two-dimensional culture expansion of these primary cells, two morphologically and molecularly distinct cell populations ("rounded" and "fibroblastic") were isolated. The biological performance of each population was evaluated in 3D hybrid constructs separately. The cell viability, proliferation, and cartilage differentiation were observed at high levels in hybrid constructs of both cell populations, confirming the validity of these 3D bioprinting parameters for effective cartilage tissue engineering. Statistically significant performance variations were observed, however, between the rounded and fibroblastic cell populations. Molecular and morphological data support the notion that such performance differences may be attributed to the relative differentiation state of rounded versus fibroblastic cells (i.e., differentiated chondrocytes vs. chondroprogenitors, respectively), which is a relevant issue for cell-based tissue engineering strategies. Taken together, our study demonstrates that bioprinting 3D hybrid constructs of PCL and cell-impregnated alginate hydrogel is a promising approach for

  14. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    PubMed

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  15. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  16. 3D Timelapse Analysis of Muscle Satellite Cell Motility

    PubMed Central

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, DDW

    2009-01-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. Stem Cells 2009;27:2527–2538 PMID:19609936

  17. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis.

    PubMed

    Fitzgerald, Kathleen A; Guo, Jianfeng; Raftery, Rosanne M; Castaño, Irene Mencía; Curtin, Caroline M; Gooding, Matt; Darcy, Raphael; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2016-09-25

    siRNA has emerged as a potential therapeutic for the treatment of prostate cancer but effective delivery remains a major barrier to its clinical application. This study aimed to develop and characterise a 3D in vitro co-culture model to simulate prostate cancer bone metastasis and to assess the ability of the model to investigate nanoparticle-mediated siRNA delivery and gene knockdown. PC3 or LNCaP prostate cancer cells were co-cultured with hFOB 1.19 osteoblast cells in 2D on plastic tissue culture plates and in 3D on collagen scaffolds mimicking the bone microenvironment. To characterise the co-culture model, cell proliferation, enzyme secretion and the utility of two different gene delivery vectors to mediate siRNA uptake and gene knockdown were assessed. Cell proliferation was reduced by∼50% by day 7 in the co-culture system relative to monoculture (PC3 and LNCaP co-cultures, in 2D and 3D) and an enhanced level of MMP9 (a marker of bone metastasis) was secreted into the media (1.2-4-fold increase depending on the co-culture system). A cationic cyclodextrin gene delivery vector proved significantly less toxic in the co-culture system relative to the commercially available vector Lipofectamine 2000(®). In addition, knockdown of both the GAPDH gene (minimum 15%) and RelA subunit of the NF-κB transcription factor (minimum 20%) was achieved in 2D and 3D cell co-cultures. Results indicate that the prostate cancer-osteoblast in vitro co-culture model was more physiologically relevant vs the monoculture. This model has the potential to help improve the design and efficacy of gene delivery formulations, to more accurately predict in vivo performance and, therefore, to reduce the risk of product failure in late-stage clinical development. PMID:27492023

  18. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. PMID:19609936

  19. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    SciTech Connect

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  20. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  1. The Niha Sites (lebanon) Cultural Landscape: a 3d Model of Sanctuaries and Their Context

    NASA Astrophysics Data System (ADS)

    Yasmine, J.

    2013-07-01

    The paper aims at presenting the historical sites of Niha (Beqaa valley, Lebanon), their cultural values, and the methodology applied in the assessment of these values through the use of 3D modelling. The whole cultural landscape comprises the current village of Niha (altitude 1100 m), the archaeological site of Hosn-Niha (altitude 1350m), and the area located between these two sites. Two rural sanctuaries constitute the major archaeological remains present in the landscape: the first, located in the village of Niha, is composed of two roman temples with various archaeological structures; the second is located at the top of an antique settlement 2,5 km above the village of Niha. This second sanctuary Hosn-Niha, includes two temples, one church, remnants of numerous structures, and remains of an antique village. The cultural and religious values of both these sites are clear. However, questions arise regarding the choice for establishing the sanctuaries in these locations. The aim of the research is to try to understand the reasons for the various settlements in relationship with the topography and the landscape. The methodology applied in the research addresses two levels: a - The landscape level, and b - the built-up archaeology level. The global 3D models of both the landscape and the sanctuaries allow us to understand the various relations between the landscape, the sanctuaries and the various archaeological structures. An assessment of the various cultural resources found around the sanctuaries, while considering the reasons for their specific placement in the landscape can shed light on the reasons of these choices.

  2. a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Kıvılcım, C. Ö.; Duran, Z.

    2016-06-01

    The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.

  3. Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices.

    PubMed

    Duan, Bin; Hockaday, Laura A; Das, Shoshana; Xu, Charlie; Butcher, Jonathan T

    2015-08-01

    Living tissue-engineered heart valves (TEHV) would be a major benefit for children who require a replacement with the capacity for growth and biological integration. A persistent challenge for TEHV is accessible human cell source(s) that can mimic native valve cell phenotypes and matrix remodeling characteristics that are essential for long-term function. Mesenchymal stem cells derived from bone marrow (BMMSC) or adipose tissue (ADMSC) are intriguing cell sources for TEHV, but they have not been compared with pediatric human aortic valve interstitial cells (pHAVIC) in relevant 3D environments. In this study, we compared the spontaneous and induced multipotency of ADMSC and BMMSC with that of pHAVIC using different induction media within three-dimensional (3D) bioactive hybrid hydrogels with material modulus comparable to that of aortic heart valve leaflets. pHAVIC possessed some multi-lineage differentiation capacity in response to induction media, but limited to the earliest stages and much less potent than either ADMSC or BMMSC. ADMSC expressed cell phenotype markers more similar to pHAVIC when conditioned in basic fibroblast growth factor (bFGF) containing HAVIC growth medium, while BMMSC generally expressed similar extracellular matrix remodeling characteristics to pHAVIC. Finally, we covalently attached bFGF to PEG monoacrylate linkers and further covalently immobilized in the 3D hybrid hydrogels. Immobilized bFGF upregulated vimentin expression and promoted the fibroblastic differentiation of pHAVIC, ADMSC, and BMMSC. These findings suggest that stem cells retain a heightened capacity for osteogenic differentiation in 3D culture, but can be shifted toward fibroblast differentiation through matrix tethering of bFGF. Such a strategy is likely important for utilizing stem cell sources in heart valve tissue engineering applications. PMID:25594437

  4. Enhancing surface interactions with colon cancer cells on a transferrin-conjugated 3D nanostructured substrate.

    PubMed

    Banerjee, Shashwat S; Paul, Debjani; Bhansali, Sujit G; Aher, Naval D; Jalota-Badhwar, Archana; Khandare, Jayant

    2012-06-11

    A transferrin-conjugated PEG-Fe(3) O(4) nanostructured matrix is developed to explore cellular responses in terms of enhanced cell adhesion, specific interactions between ligands in the matrix and molecular receptors on the cell membrane, comparison of cell shapes on 2D and 3D surfaces, and effect of polymer architecture on cell adhesion. Integration of such advanced synthetic nanomaterials into a functionalized 3D matrix to control cell behavior on surfaces will have implications in nanomedicine. PMID:22434693

  5. Optimal 3-D culture of primary articular chondrocytes for use in the Rotating Wall Vessel Bioreactor

    PubMed Central

    Mellor, Liliana F.; Baker, Travis L.; Brown, Raquel J.; Catlin, Lindsey W.; Oxford, Julia Thom

    2014-01-01

    INTRODUCTION Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology but also maintain gene expression characteristics of primary articular chondrocytes. METHODS Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 days. DISCUSSION Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering. PMID:25199120

  6. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening.

    PubMed

    Hild, Marc; Jaffe, Aron B

    2016-01-01

    The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc. PMID:27171795

  7. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well. PMID:26998397

  8. Modeling cell migration on filamentous tracks in 3D

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2014-03-01

    Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.

  9. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    PubMed Central

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; SCHRÖDER, RASMUS R

    2015-01-01

    images, cellular components were segmented to locate the individual organelles within the 3D reconstruction of the whole cell and also to create an inventory of organelles. Based on their morphologies we could identify specific cell types in the different hematopoietic organs. We could also quantify the proportion of each cell type in the whole population isolated from a given organ. Some of these specific cells from zebrafish were grown in a culture dish together with human cancer cells. By time-lapse light microscopy we observed that the fish cells attacked the cancer cells and killed them. From this we concluded that these cells must be similar to the cytotoxic cells from humans that play an important role in defence against spontaneously arising cancer cells in our bodies. They form special structures, called immunological synapses that we could also identify on our arrays and reconstruct in 3D. This is the first time the potential of zebrafish immune cells to form immunological synapses has been demonstrated. Our study is a good example for the practicality and benefit of array tomography in high-throughput ultrastructure imaging of substantial volumes, applicable to many areas of cell and developmental biology. PMID:25611576

  10. Culturing Uveal Melanoma Cells.

    PubMed

    Angi, Martina; Versluis, Mieke; Kalirai, Helen

    2015-04-01

    A major challenge in cancer research is the use of appropriate models with which to study a specific biological question. Cell lines have long been used to study cellular processes and the effects of individual molecules because they are easy to use, grow rapidly, produce reproducible results and have a strong track record in research. In uveal melanoma in particular, the absence of animal models that faithfully replicate the behavior of the human disease has propagated the generation and use of numerous cell lines by individual research groups. This in itself, however, can be viewed as a problem due to the lack of standardization when characterizing these entities to determine how closely they reflect the genetic and phenotypic characteristics of this disease. The alternative is to use in vitro primary cultures of cells obtained directly from uveal melanoma patient samples, but this too has its difficulties. Primary cell cultures are difficult to use, hard to obtain and can show considerable heterogeneity. In this article, we review the following: (1) the uveal melanoma cell lines that are currently available, discussing the importance of establishing a bank of those that represent the molecular heterogeneity of uveal melanoma; (2) the methods used to isolate and perform short-term cultures of primary uveal melanoma cells, and (3) the establishment of 3D tissue culture models that bridge the gap between 2D in vitro systems and in vivo models with which to dissect cancer biology and perform therapeutic screens. PMID:27171555

  11. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

    PubMed

    Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M

    2014-08-29

    Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration. PMID:25170155

  12. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    PubMed

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. PMID:23686741

  13. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels

    PubMed Central

    Soman, Pranav; Chung, Peter H.; Zhang, Alvin; Chen, Shaochen

    2013-01-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. PMID:23686741

  14. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  15. Local 3D matrix confinement determines division axis through cell shape

    PubMed Central

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-01-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype. PMID:26515603

  16. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons.

    PubMed

    Wardyn, Joanna D; Sanderson, Chris; Swan, Laura E; Stagi, Massimiliano

    2015-08-15

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology. PMID:25962333

  17. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons

    PubMed Central

    Wardyn, Joanna D.; Sanderson, Chris; Swan, Laura E.; Stagi, Massimiliano

    2015-01-01

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology. PMID:25962333

  18. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Remondino, F.

    2014-06-01

    The easy generation of 3D geometries (point clouds or polygonal models) with fully automated image-based methods poses nontrivial problems on how to check a posteriori the quality of the achieved results. Clear statements and procedures on how to plan the camera network, execute the survey and use automatic tools to achieve the prefixed requirements are still an open issue. Although such issues had been discussed and solved some years ago, the importance of camera network geometry is today often underestimated or neglected in the cultural heritage field. In this paper different camera network geometries, with normal and convergent images, are analyzed and the accuracy of the produced results are compared to ground truth measurements.

  19. Recapitulating cranial osteogenesis with neural crest cells in 3-D microenvironments.

    PubMed

    Namkoong, Bumjin; Güven, Sinan; Ramesan, Shwathy; Liaudanskaya, Volha; Abzhanov, Arhat; Demirci, Utkan

    2016-02-01

    The experimental systems that recapitulate the complexity of native tissues and enable precise control over the microenvironment are becoming essential for the pre-clinical tests of therapeutics and tissue engineering. Here, we described a strategy to develop an in vitro platform to study the developmental biology of craniofacial osteogenesis. In this study, we directly osteo-differentiated cranial neural crest cells (CNCCs) in a 3-D in vitro bioengineered microenvironment. Cells were encapsulated in the gelatin-based photo-crosslinkable hydrogel and cultured up to three weeks. We demonstrated that this platform allows efficient differentiation of p75 positive CNCCs to cells expressing osteogenic markers corresponding to the sequential developmental phases of intramembranous ossification. During the course of culture, we observed a decrease in the expression of early osteogenic marker Runx2, while the other mature osteoblast and osteocyte markers such as Osterix, Osteocalcin, Osteopontin and Bone sialoprotein increased. We analyzed the ossification of the secreted matrix with alkaline phosphatase and quantified the newly secreted hydroxyapatite. The Field Emission Scanning Electron Microscope (FESEM) images of the bioengineered hydrogel constructs revealed the native-like osteocytes, mature osteoblasts, and cranial bone tissue morphologies with canaliculus-like intercellular connections. This platform provides a broadly applicable model system to potentially study diseases involving primarily embryonic craniofacial bone disorders, where direct diagnosis and adequate animal disease models are limited. PMID:26675129

  20. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array.

    PubMed

    Li, Yiwei; Chen, Pu; Wang, Yachao; Yan, Shuangqian; Feng, Xiaojun; Du, Wei; Koehler, Stephan A; Demirci, Utkan; Liu, Bi-Feng

    2016-05-01

    Heterogeneous 3D cell microenvironment arrays are rapidly assembled by combining surface-wettability-guided assembly and microdroplet-array-based operations. This approach enables precise control over individual shapes, sizes, chemical concentrations, cell density, and 3D spatial distribution of multiple components. This technique provides a cost-effective solution to meet the increasing demand of stem cell research, tissue engineering, and drug screening. PMID:26991071

  1. Assessment of the developmental toxicity of nanoparticles in an ex vivo 3D model, the murine limb bud culture system.

    PubMed

    Bigaeva, Emilia; Paradis, France-Hélène; Moquin, Alexandre; Hales, Barbara F; Maysinger, Dusica

    2015-01-01

    The rapid growth of nanotechnological products for biomedical applications has exacerbated the need for suitable biological tests to evaluate the potential toxic effects of nanomaterials. The possible consequences of exposure during embryo and fetal development are of particular concern. The limb bud culture is an ex vivo 3D model in which growth, cell differentiation, and tissue organization occur and both molecular and functional endpoints can be quantitatively assessed. We employed this model to assess biochemical and morphological changes induced during organogenesis by two classes of nanostructured materials: quantum dot nanocrystals and organic polyglycerol sulfate dendrimers (dPGS). We show that quantum dots carrying mercaptopropionic acid (QD-MPA) on the surface, commonly used in biological studies, inhibit the development of limb buds from CD1 wildtype and Col2a1; Col10a1; Col1a1 triple transgenic fluorescent reporter mice, as revealed by changes in several morphological and biochemical markers. QD-MPA interfere with chondrogenesis and osteogenesis and disrupt the expression of COL10A1 and COL1A1, key markers of differentiation. In contrast, equivalent (3-100 nM) concentrations of dPGS do not adversely affect limb development. Neither QD-MPA nor dPGS-Cy5 alters the expression of several markers of cell proliferation or apoptosis. Collectively, these results suggest that murine limb buds in culture constitute a convenient, inexpensive and reliable developmental model for the assessment of the nanotoxicological effects of nanocrystals and polymers. In these 3D cultures, any effect that is observed can be directly ascribed to the nanostructures per se or a degradation component released from the complex nanostructure. PMID:25387253

  2. Cancer Tissue Engineering: A Novel 3D Polystyrene Scaffold for In Vitro Isolation and Amplification of Lymphoma Cancer Cells from Heterogeneous Cell Mixtures

    PubMed Central

    Caicedo-Carvajal, Carlos E.; Liu, Qing; Remache, Yvonne; Goy, Andre; Suh, K. Stephen

    2011-01-01

    Isolation and amplification of primary lymphoma cells in vitro setting is technically and biologically challenging task. To optimize culture environment and mimic in vivo conditions, lymphoma cell lines were used as a test case and were grown in 3-dimension (3D) using a novel 3D tissue culture polystyrene scaffold with neonatal stromal cells to represent a lymphoma microenvironment. In this model, the cell proliferation was enhanced more than 200-fold or 20,000% neoplastic surplus in 7 days when less than 1% lymphoma cells were cocultured with 100-fold excess of neonatal stroma cells, representing 3.2-fold higher proliferative rate than 2D coculture model. The lymphoma cells grew and aggregated to form clusters during 3D coculture and did not maintained the parental phenotype to grow in single-cell suspension. The cluster size was over 5-fold bigger in the 3D coculture by day 4 than 2D coculture system and contained less than 0.00001% of neonatal fibroblast trace. This preliminary data indicate that novel 3D scaffold geometry and coculturing environment can be customized to amplify primary cancer cells from blood or tissues related to hematological cancer and subsequently used for personalized drug screening procedures. PMID:22073378

  3. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  4. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice

    PubMed Central

    Higuchi, Carolyn M.; Maeda, Yuuki; Horiuchi, Toshitaka; Yamazaki, Yukiko

    2015-01-01

    In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture

  5. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  6. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  7. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    PubMed

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-06-01

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm). PMID:27219645

  8. Automatic detection of endothelial cells in 3D angiogenic sprouts from experimental phase contrast images

    NASA Astrophysics Data System (ADS)

    Wang, MengMeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H. Harry

    2015-03-01

    Cell migration studies in 3D environments become more popular, as cell behaviors in 3D are more similar to the behaviors of cells in a living organism (in vivo). We focus on the 3D angiogenic sprouting in microfluidic devices, where Endothelial Cells (ECs) burrow into the gel matrix and form solid lumen vessels. Phase contrast microscopy is used for long-term observation of the unlabeled ECs in the 3D microfluidic devices. Two template matching based approaches are proposed to automatically detect the unlabeled ECs in the angiogenic sprouts from the acquired experimental phase contrast images. Cell and non-cell templates are obtained from these phase contrast images as the training data. The first approach applies Partial Least Square Regression (PLSR) to find the discriminative features and their corresponding weight to distinguish cells and non-cells, whereas the second approach relies on Principal Component Analysis (PCA) to reduce the template feature dimension and Support Vector Machine (SVM) to find their corresponding weight. Through a sliding window manner, the cells in the test images are detected. We then validate the detection accuracy by comparing the results with the same images acquired with a confocal microscope after cells are fixed and their nuclei are stained. More accurate numerical results are obtained for approach I (PLSR) compared to approach II (PCA & SVM) for cell detection. Automatic cell detection will aid in the understanding of cell migration in 3D environment and in turn result in a better understanding of angiogenesis.

  9. Cell compatible encapsulation of filaments into 3D hydrogels.

    PubMed

    Schirmer, Katharina S U; Gorkin, Robert; Beirne, Stephen; Stewart, Elise; Thompson, Brianna C; Quigley, Anita F; Kapsa, Robert M I; Wallace, Gordon G

    2016-01-01

    Tissue engineering scaffolds for nerve regeneration, or artificial nerve conduits, are particularly challenging due to the high level of complexity the structure of the nerve presents. The list of requirements for artificial nerve conduits is long and includes the ability to physically guide nerve growth using physical and chemical cues as well as electrical stimulation. Combining these characteristics into a conduit, while maintaining biocompatibility and biodegradability, has not been satisfactorily achieved by currently employed fabrication techniques. Here we present a method combining pultrusion and wet-spinning techniques facilitating incorporation of pre-formed filaments into ionically crosslinkable hydrogels. This new biofabrication technique allows the incorporation of conducting or drug-laden filaments, controlled guidance channels and living cells into hydrogels, creating new improved conduit designs. PMID:27213861

  10. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo – Implications for Tissue Engineering and Clinical Applications

    PubMed Central

    Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C.; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation. PMID:26580800

  11. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.

    PubMed

    Szabó, Dóra Júlia; Noer, Agate; Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation. PMID:26580800

  12. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.

    PubMed

    Kamei, Ken-ichiro; Mashimo, Yasumasa; Koyama, Yoshie; Fockenberg, Christopher; Nakashima, Miyuki; Nakajima, Minako; Li, Junjun; Chen, Yong

    2015-04-01

    Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening. PMID:25686903

  13. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  14. Ex-Vivo Dynamic 3-D Culture of Human Tissues in the RCCS™ Bioreactor Allows the Study of Multiple Myeloma Biology and Response to Therapy

    PubMed Central

    Ponzoni, Maurilio; Belloni, Daniela; Berenzi, Angiola; Girlanda, Stefania; Caligaris-Cappio, Federico; Mazzoleni, Giovanna; Ferrero, Elisabetta

    2013-01-01

    Three-dimensional (3-D) culture models are emerging as invaluable tools in tumor biology, since they reproduce tissue-specific structural features and cell-cell interactions more accurately than conventional 2-D cultures. Multiple Myeloma, which depends on myeloma cell-Bone Marrow microenvironment interactions for development and response to drugs, may particularly benefit from such an approach. An innovative 3-D dynamic culture model based on the use of the RCCS™ Bioreactor was developed to allow long-term culture of myeloma tissue explants. This model was first validated with normal and pathological explants, then applied to tissues from myeloma patients. In all cases, histological examination demonstrated maintenance of viable myeloma cells inside their native microenvironment, with an overall well preserved histo-architecture including bone lamellae and vessels. This system was then successfully applied to evaluate the cytotoxic effects exerted by the proteasome inhibitor Bortezomib not only on myeloma cells but also on angiogenic vessels. Moreover, as surrogate markers of specialized functions expressed by myeloma cells and microenvironment, β2 microglobulin, VEGF and Angiopoietin-2 levels, as well as Matrix Metalloproteases activity, were evaluated in supernatants from 3D cultures and their levels reflected the effects of Bortezomib treatment. Notably, determination of β2 microglobulin levels in supernatants from Bortezomib-treated samples and in patients'sera following Bortezomib-based therapies disclosed an overall concordance in the response to the drug ex vivo and in vivo. Our findings indicate, as a proof of principle, that 3-D, RCCS™ bioreactor-based culture of tissue explants can be exploited for studying myeloma biology and for a pre-clinical approach to patient-targeted therapy. PMID:23990965

  15. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  16. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  17. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  18. 3D Differentiation of Neural Stem Cells in Macroporous Photopolymerizable Hydrogel Scaffolds

    PubMed Central

    Li, Hang; Wijekoon, Asanka; Leipzig, Nic D.

    2012-01-01

    Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm2, 10 wt%, 6330±1160 µm2, 20 wt%, 7600±1550 µm2) compared with controls (0 wt%, 3150±220 µm2). Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation. PMID:23144988

  19. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.

    PubMed

    Pedron, Sara; Becka, Eftalda; Harley, Brendan A C

    2013-10-01

    Human glioblastoma multiforme (hGBM) is the most common, aggressive, and deadly form of brain cancer. A major obstacle to understanding the impact of extracellular cues on glioblastoma invasion is the absence of model matrix systems able to replicate compositional and structural elements of the glioma mass as well as the surrounding brain tissue. Contact with a primary extracellular matrix component in the brain, hyaluronan, is believed to play a pivotal role in glioma cell invasion and malignancy. In this study we report use of gelatin and poly(ethylene glycol) (PEG) based hydrogel platforms to evaluate the effect of extracellular (composition, mechanics, HA incorporation) and intracellular (epidermal growth factor receptor overexpression) factors on the malignant transformation of U87MG glioma cells. Three-dimensional culture platforms elicit significantly different responses of U87MG glioma cells versus standard 2D culture. Critically, grafting brain-mimetic hyaluronic acid (HA) into the hydrogel network was found to induce significant, dose-dependent alterations of markers of glioma malignancy versus non-grafted 3D gelatin or PEG hydrogels. Clustering of glioma cells was observed exclusively in HA containing gels and expression profiles of malignancy-associated genes were found to vary biphasically with incorporated HA content. We also found HA-induced expression of MMP-2 is blocked by +EGFR signaling, suggesting a connection between CD44 and EGFR in glioma malignancy. Together, this work describes an adaptable platform for manipulating the local extracellular microenvironment surrounding glioma cells and highlights the importance of developing such systems for investigating the etiology and early growth of glioblastoma multiforme tumors. PMID:23827186

  20. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    PubMed Central

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  1. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  2. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  3. Segmentation of Whole Cells and Cell Nuclei From 3-D Optical Microscope Images Using Dynamic Programming

    PubMed Central

    McCullough, Dean P.; Gudla, Prabhakar R.; Harris, Bradley S.; Collins, Jason A.; Meaburn, Karen J.; Nakaya, Masa-Aki; Yamaguchi, Terry P.; Misteli, Tom; Lockett, Stephen J.

    2009-01-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection. PMID:18450544

  4. 3D Human Adipose-Derived Stem Cell Clusters as a Model for In Vitro Fibrosis.

    PubMed

    Rajangam, Thanavel; Park, Min Hee; Kim, Sang-Heon

    2016-07-01

    Excessive extracellular matrix (ECM) deposition is a cause of progressive fibrosis, which ultimately leads to progressive organ dysfunction. The lack of an in vitro fibrosis model and in vitro drug screening tools limits the development of effective antifibrotic drugs. The profibrotic cytokine transforming growth factor-β1 (TGF-β1), which is secreted by a variety of cells under continuous hypoxic condition, correlates strongly with tissue fibrosis and is largely responsible for the observed increases in ECM deposition in fibrotic diseases. In this study, we established an in vitro fibrosis model in which human adipose-derived stem cells (hASCs) secrete TGF-β1 by engineering three-dimensional cell masses (3DCMs) of hASCs on a maltose-binding protein-basic fibroblast growth factor (MBP-FGF2)-immobilized substrate. We found that the hypoxic microenvironment created in the interior of 3DCMs during the early stages of culture leads to activation and synthesis of TGF-β1. The gene expression of fibrosis-related molecules such as TGF-β1, α-smooth muscle actin (αSMA), and collagen type I was upregulated in 3DCMs. As culture time increased, overexpression of TGF-β1 led to differentiation of hASCs into activated myofibroblasts, which accumulate excessive collagen type I and are characterized by αSMA expression. Furthermore, immunofluorescence data verified the increase in collagen type I synthesis in αSMA-positive cells. Scanning electron microscopy revealed rigid and compact 3DCMs, probably due to accumulation of ECM components and cross-linking of these components. The advantage of this TGF-β1-mediated 3D in vitro fibrosis model is that it opens up new avenues to understand the common mechanism of fibrosis, which will then facilitate the development of broadly effective antifibrotic compounds and the screening of existing antifibrotic agents. To the best of our knowledge, this is the first proper biomimetic 3D in vitro fibrosis model to be developed. PMID

  5. [Novel methods for studies of testicular development and spermatogenesis: From 2D to 3D culture].

    PubMed

    Zhang, Lian-dong; Li, He-cheng; Zhang, Tong-dian; Wang, Zi-ming

    2016-03-01

    The two-dimensional model of cell culture is an important method in the study of testicular development and spermatogenesis but can not effectively mimic and regulate the testicular microenvironment and the whole process of spermatogenesis due to the lack of relevant cell factors and the disruption of a three-dimensional spatial structure. In the past 20 years, the development and optimization of the in vitro model such as testis organotypic culture and in vivo model such as testis transplantation achieved a transformation from two- to three-dimension. The maintenance and optimization of the testicular niche structure could mimic the testicular microenvironment and cell types including Leydig, Sertoli and germ cells, which showed similar biological behaviors to those in vivo. Besides, the cell suspension or tissue fragment floats in the gas-liquid interface so that the development of somatic and germ cells is well maintained in vitro whilst the feedback linkage between grafted testis tissue and hypothalamus-pituitary of the host rebuilt in the in vitro model provides an endocrinological basis for spermatogenesis, which serves as an effective methodology to better understand the organogenesis and development of the testis as well as testicular function regulation, advancing the concept of treatment of male infertility. Al- though each of the methods may have its limitations, the progress in the processing, freezing, thawing, and transplantation of cells and tissues will surely promote their clinical application and present their value in translational medicine. PMID:27172668

  6. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  7. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter.

    PubMed

    Santoro, Francesca; Dasgupta, Sabyasachi; Schnitker, Jan; Auth, Thorsten; Neumann, Elmar; Panaitov, Gregory; Gompper, Gerhard; Offenhäusser, Andreas

    2014-07-22

    An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling. PMID:24963873

  8. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell

    PubMed Central

    Bohórquez, Diego; Haque, Fariha; Medicetty, Satish; Liddle, Rodger A.

    2015-01-01

    Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue. PMID:26273796

  9. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells

    PubMed Central

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L.; Han, Jessica H.; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H.; Bussey, Kimberly J.; Meldrum, Deirdre R.

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an ‘epigenetic’ drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat’s differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  10. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    PubMed

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-01-01

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action. PMID:27503568

  11. Culturing thick brain slices: An interstitial 3D microperfusion system for enhanced viability

    PubMed Central

    Rambani, Komal; Vukasinovic, Jelena; Glezer, Ari; Potter, Steve M.

    2009-01-01

    Brain slice preparations are well-established models for a wide spectrum of in vitro investigations in the neuroscience discipline. However, these investigations are limited to acute preparations or thin organotypic culture preparations due to the lack of a successful method that allows culturing of thick organotypic brain slices. Thick brain slice cultures suffer necrosis due to ischemia deep in the tissue resulting from a destroyed circulatory system and subsequent diffusion-limited supply of nutrients and oxygen. Although thin organotypic brain slice cultures can be successfully cultured using a well established roller tube method (a monolayer organotypic culture) (Gahwiler B H, 1981) or a membrane insert method (up to 1–4 cell layers, <150μm)(Stoppini L et al., 1991), these methods fail to support thick tissue preparations. A few perfusion methods (using submerged or interface/microfluidic chambers) have been reported to enhance the longevity (up to few hours) of acute slice preparations (up to 600μm thick) (Hass H L et al., 1979; Nicoll R A and Alger B E, 1981; Passeraub P A et al., 2003). Here, we report a unique interstitial microfluidic perfusion technique to culture thick (700μm) organotypic brain slices. The design of the custom-made micro-perfusion chamber facilitates laminar, interstitial perfusion of oxygenated nutrient medium throughout the tissue thickness with concomitant removal of depleted medium and catabolites. We examined the utility of this perfusion method to enhance the viability of the thick organotypic brain slice cultures after 2 days and 5 days in vitro (DIV). We investigated the range of amenable flow rates that enhance the viability of 700μm thick organotypic brain slices compared to the unperfused control cultures. Our perfusion method allows up to 84.6% viability (P<0.01) and up to 700μm thickness, even after 5 DIV. Our results also confirm that these cultures are functionally active and have their in vivo cytoarchitecture

  12. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition.

    PubMed

    Pettinato, Giuseppe; Ramanathan, Rajesh; Fisher, Robert A; Mangino, Martin J; Zhang, Ning; Wen, Xuejun

    2016-01-01

    Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields, cellular heterogeneity, and limited scalability. In the present study, we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes, secreted hepatic proteins such as Albumin, Alpha Fetoprotein, and Fibrinogen, metabolized ammonia, and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes, such as LDL storage and uptake, ICG uptake and release, and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure, providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1. PMID:27616299

  13. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  14. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  15. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  16. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture

    PubMed Central

    Lemmo, Stephanie; Atefi, Ehsan; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories. PMID:25221631

  17. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry

    NASA Astrophysics Data System (ADS)

    Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P.

    2014-06-01

    The combined use of high-resolution digital images taken from ground as well as from RPAS (Remotely Piloted Aircraft Systems) have significantly increased the potential of close range digital photogrammetry applications in Cultural Heritage surveying and modeling. It is in fact possible, thanks to SfM (Structure from Motion), to simultaneously process great numbers of aerial and terrestrial images for the production of a dense point cloud of an object. In order to analyze the accuracy of results, we started numerous tests based on the comparison between 3D digital models of a monumental complex realized by the integration of aerial and terrestrial photogrammetry and an accurate TLS (Terrestrial Laser Scanner) reference model of the same object. A lot of digital images of a renaissance castle, assumed as test site, have been taken both by ground level and by RPAS at different distances and flight altitudes and with different flight patterns. As first step of the experimentation, the images were previously processed with Agisoft PhotoScan, one of the most popular photogrammetric software. The comparison between the photogrammetric DSM of the monument and a TLS reference one was carried out by evaluating the average deviation between the points belonging to the two entities, both globally and locally, on individual façades and architectural elements (sections and particular). In this paper the results of the first test are presented. A good agreement between photogrammetric and TLS digital models of the castle is pointed out.

  18. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures.

    PubMed

    Engel, Brian J; Constantinou, Pamela E; Sablatura, Lindsey K; Doty, Nathaniel J; Carson, Daniel D; Farach-Carson, Mary C; Harrington, Daniel A; Zarembinski, Thomas I

    2015-08-01

    Validation of a high-throughput compatible 3D hyaluronic acid hydrogel coculture of cancer cells with stromal cells. The multilayered hyaluronic acid hydrogels improve drug screening predictability as evaluated with a panel of clinically relevant chemotherapeutics in both prostate and endometrial cancer cell lines compared to 2D culture. PMID:26059746

  19. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  20. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter.

    PubMed

    Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A; Chiou, Pei-Yu

    2013-11-12

    We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23 000 cells per s with 90% purity in high-purity mode and at a throughput of 45 000 cells per s with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μs complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m s(-1)) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418

  1. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection

    NASA Astrophysics Data System (ADS)

    Zhu, Shuyan; Li, Hualin; Yang, Mengsu; Pang, Stella W.

    2016-07-01

    Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry–Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 102 to 1 × 107 cells ml‑1 with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm‑2 of RPE cells for high sensitivity cell detection.

  2. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection.

    PubMed

    Zhu, Shuyan; Li, Hualin; Yang, Mengsu; Pang, Stella W

    2016-07-22

    Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry-Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 10(2) to 1 × 10(7) cells ml(-1) with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm(-2) of RPE cells for high sensitivity cell detection. PMID:27275952

  3. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D.

    PubMed

    Kraning-Rush, Casey M; Carey, Shawn P; Lampi, Marsha C; Reinhart-King, Cynthia A

    2013-03-01

    While the mechanisms employed by metastatic cancer cells to migrate remain poorly understood, it has been widely accepted that metastatic cancer cells can invade the tumor stroma by degrading the extracellular matrix (ECM) with matrix metalloproteinases (MMPs). Although MMP inhibitors showed early promise in preventing metastasis in animal models, they have largely failed clinically. Recently, studies have shown that some cancer cells can use proteolysis to mechanically rearrange their ECM to form tube-like "microtracks" which other cells can follow without using MMPs themselves. We speculate that this mode of migration in the secondary cells may be one example of migration which can occur without endogenous protease activity in the secondary cells. Here we present a technique to study this migration in a 3D, collagen-based environment which mimics the size and topography of the tracks produced by proteolytically active cancer cells. Using time-lapse phase-contrast microscopy, we find that these microtracks permit the rapid and persistent migration of noninvasive MCF10A mammary epithelial cells, which are unable to otherwise migrate in 3D collagen. Additionally, while highly metastatic MDAMB231 breast cancer cells are able to invade a 3D collagen matrix, seeding within the patterned microtracks induced significantly increased cell migration speed, which was not decreased by pharmacological MMP inhibition. Together, these data suggest that microtracks within a 3D ECM may facilitate the migration of cells in an MMP-independent fashion, and may r