Science.gov

Sample records for 3-d cell cultures

  1. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  2. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  3. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor.

  4. Multizone Paper Platform for 3D Cell Cultures

    PubMed Central

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  5. Microfluidic titer plate for stratified 3D cell culture.

    PubMed

    Trietsch, Sebastiaan J; Israëls, Guido D; Joore, Jos; Hankemeier, Thomas; Vulto, Paul

    2013-09-21

    Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.

  6. Fabricating gradient hydrogel scaffolds for 3D cell culture.

    PubMed

    Chatterjee, Kaushik; Young, Marian F; Simon, Carl G

    2011-05-01

    Optimizing cell-material interactions is critical for maximizing regeneration in tissue engineering. Combinatorial and high-throughput (CHT) methods can be used to systematically screen tissue scaffolds to identify optimal biomaterial properties. Previous CHT platforms in tissue engineering have involved a two-dimensional (2D) cell culture format where cells were cultured on material surfaces. However, these platforms are inadequate to predict cellular response in a three-dimensional (3D) tissue scaffold. We have developed a simple CHT platform to screen cell-material interactions in 3D culture format that can be applied to screen hydrogel scaffolds. Herein we provide detailed instructions on a method to prepare gradients in elastic modulus of photopolymerizable hydrogels.

  7. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  8. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  9. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  10. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  11. Preservation of the 3D Phenotype Upon Dispersal of Cultured Cell Spheroids Into Monolayer Cultures.

    PubMed

    Koshkin, Vasilij; Ailles, Laurie E; Liu, Geoffrey; Krylov, Sergey N

    2017-01-01

    In functional cytometric studies, cultured cells are exposed to effectors (e.g., drugs), and the heterogeneity of cell responses are studied using cytometry techniques (e.g., image cytometry). Such studies are difficult to perform on 3D cell cultures. A solution is to disperse 3D clusters and transfer the cells to the 2D state before applying effectors and using cytometry. This approach requires that the lifetime of the 3D phenotype be longer than the duration of the experiment. Here we studied the dynamics of phenotype transformation from 3D to 2D and searched for means of slowing this transformation down in dispersed spheroids of MCF7 cells. We found three functional biomarkers of the 3D phenotype in MCF7 cell spheroids that are absent in the 2D cell culture: (i) the presence of a subpopulation with an elevated drug-expelling capacity; (ii) the presence of a subpopulation with an elevated cytoprotective capacity; and (iii) the accumulation of cells in the G1 phase of the cell cycle. Monitoring these biomarkers in cells transferred from the 3D state to the 2D state revealed their gradual extinction. We found that the combined application of an elevated cell density and thiol-containing medium supplements increased the lifetime of the 3D phenotype by several fold to as long as 96 h. Our results suggest that extending the lifetime of the 3D phenotype in the cells transferred from the 3D state to the 2D state can facilitate detailed functional cytometric studies, such as measurements of population heterogeneity of cytotoxicity, chemosensitivity, and radiosensitivity. J. Cell. Biochem. 118: 154-162, 2017. © 2016 Wiley Periodicals, Inc.

  12. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  14. Design of 3D printed insert for hanging culture of Caco-2 cells.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2014-12-17

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30-100% higher brush border enzyme activity and ∼2-7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R(2) = 0.92) to the human oral adsorption than that of the Transwell culture (R(2) = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption.

  15. A porous 3D cell culture micro device for cell migration study.

    PubMed

    Ma, Liang; Zhou, Changchun; Lin, Biaoyang; Li, Wei

    2010-08-01

    Cell migration under chemoattractant is an important biological step in cancer metastasis that causes the spread of malignant tumor cells. Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as three dimensional (3D) cell culturing and tissue engineering. In this paper we report a novel 3D cell culture device based on porous polymeric material to study cancer migration. We fabricated a porous channel on a polymeric chip using a selective ultrasonic foaming method. We demonstrate that a chemical concentration gradient could be established through the porous channel due to the slow diffusion process. We show that significant cell migration could be observed through the porous channel within 1-2 weeks of cell culturing when metastatic M4A4-GFP breast cancer cells were induced by 20% fetal bovine serum (FBS).We also developed a mathematical model to evaluate the diffusivity and concentration gradient through the fabricated porous structure.

  16. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells

    PubMed Central

    El Assal, Rami; Gurkan, Umut A.; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M.; Demirci, Utkan

    2016-01-01

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi’s sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery. PMID:28004818

  17. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells.

    PubMed

    El Assal, Rami; Gurkan, Umut A; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M; Demirci, Utkan

    2016-12-22

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi's sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery.

  18. Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models.

    PubMed

    Yue, Xiaoshan; Lukowski, Jessica K; Weaver, Eric M; Skube, Susan B; Hummon, Amanda B

    2016-12-02

    Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC-MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations.

  19. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan.

    PubMed

    Bédouin, Y; Pellen Mussi, P; Tricot-Doleux, S; Chauvel-Lebret, D; Auroy, P; Ravalec, X; Oudadesse, H; Perez, F

    2015-01-01

    This study reports the in vitro biocompatibility of a composite biomaterial composed of 46S6 bioactive glass in association with chitosan (CH) by using 3D osteoblast culture of SaOS2. The 46S6 and CH composite (46S6-CH) forms small hydroxyapatite crystals on its surface after only three days immersion in the simulated body fluid. For 2D osteoblast culture, a significant increase in cell proliferation was observed after three days of contact with 46S6 or 46S6-CH-immersed media. After six days, 46S6-CH led to a significant increase in cell proliferation (128%) compared with pure 46S6 (113%) and pure CH (122%). For 3D osteoblast culture, after six days of culture, there was an increase in gene expression of markers of the early osteoblastic differentiation (RUNX2, ALP, COL1A1). Geometric structures corresponding to small apatite clusters were observed by SEM on the surface of the spheroids cultivated with 46S6 or 46S6-CH-immersed media. We showed different cellular responses depending on the 2D and 3D cell culture model. The induction of osteoblast differentiation in the 3D cell culture explained the differences of cell proliferation in contact with 46S6, CH or 46S6-CH-immersed media. This study confirmed that the 3D cell culture model is a very promising tool for in vitro biological evaluation of bone substitutes' properties.

  20. Modeling spatial distribution of oxygen in 3d culture of islet beta-cells.

    PubMed

    McReynolds, John; Wen, Yu; Li, Xiaofei; Guan, Jianjun; Jin, Sha

    2017-01-01

    Three-dimensional (3D) scaffold culture of pancreatic β-cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β-cells is that β-cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β-cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell-laden collagen culture on β-cell proliferation, a culture model with encapsulation of an oxygen-generator was established. The oxygen-generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β-cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial-temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation-aided 3D culture would augment the oxygen supply required for the β-cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell-laden scaffold cultures with an in situ oxygen supply significantly improved the β-cells' biological function. These β-cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β-cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221-228, 2017.

  1. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    PubMed Central

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  2. Paper/PMMA Hybrid 3D Cell Culture Microfluidic Platform for the Study of Cellular Crosstalk.

    PubMed

    Lei, Kin Fong; Chang, Chih-Hsuan; Chen, Ming-Jie

    2017-04-06

    Studying cellular crosstalk is important for understanding tumor initiation, progression, metastasis, and therapeutic resistance. Moreover, a three-dimensional (3D) cell culture model can provide a more physiologically meaningful culture microenvironment. However, studying cellular crosstalk in a 3D cell culture model involves tedious processing. In this study, a paper/poly(methyl methacrylate) (PMMA) hybrid 3D cell culture microfluidic platform was successfully developed for the study of cellular crosstalk. The platform was a paper substrate with culture microreactors placed on a PMMA substrate with hydrogel-infused channels. Different types of cells were directly seeded and cultured in the microreactors. Aberrant cell proliferation of the affected cells was induced by secretions from transfected cells, and the proliferation ratios were investigated using a colorimetric method. The results showed that the responses of cellular crosstalk were different in different types of cells. Moreover, neutralizing and competitive assays were performed to show the functionality of the platform. Additionally, the triggered signaling pathways of the affected cells were directly analyzed by a subsequent immunoassay. The microfluidic platform provides a simple method for studying cellular crosstalk and the corresponding signaling pathways in a 3D culture model.

  3. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    PubMed Central

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S.

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3-D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme and cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  4. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  5. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation.

    PubMed

    Watson, P Marc D; Kavanagh, Edel; Allenby, Gary; Vassey, Matthew

    2017-02-01

    Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.

  6. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.

    PubMed

    Grist, S M; Nasseri, S S; Poon, T; Roskelley, C; Cheung, K C

    2016-07-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications.

  7. 3D cell culture: a review of current approaches and techniques.

    PubMed

    Haycock, John W

    2011-01-01

    Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

  8. A Cost-Effective Method to Assemble Biomimetic 3D Cell Culture Platforms

    PubMed Central

    Khalil, Sabreen; El-Badri, Nagwa; El-Mokhtaar, Mohamed; Al-Mofty, Saif; Farghaly, Mohamed; Ayman, Radwa; Habib, Dina; Mousa, Noha

    2016-01-01

    Developing effective stem cell based therapies requires the design of complex in vitro culture systems for more accurate representation of the stem cell niche. Attempts to improve conventional cell culture platforms include the use of biomaterial coated culture plates, sphere culture, microfluidic systems and bioreactors. Most of these platforms are not cost-effective, require industrial technical expertise to fabricate, and remain too simplistic compared to the physiological cell niche. The human amniotic membrane (hAM) has been used successfully in clinical grafting applications due to its unique biological composition and regenerative properties. In this study, we present a combinatorial platform that integrates the hAM with biomolecular, topographic and mechanical cues in one versatile model. Methods We utilized the hAM to provide the biological and the three dimensional (3D) topographic components of the prototype. The 3D nano-roughness of the hAM was characterized using surface electron microscopy and surface image analysis (ImageJ and SurfaceJ). We developed additional macro-scale and micro-scale versions of the platform which provided additional shear stress factors to simulate the fluid dynamics of the in vivo extracellular fluids. Results Three models of varying complexities of the prototype were assembled. A well-defined 3D surface modulation of the hAM in comparable to commercial 3D biomaterial culture substrates was achieved without complex fabrication and with significantly lower cost. Performance of the prototype was demonstrated through culture of primary human umbilical cord mononuclear blood cells (MNCs), human bone marrow mesenchymal stem cell line (hBMSC), and human breast cancer tissue. Conclusion This study presents methods of assembling an integrated, flexible and low cost biomimetic cell culture platform for diverse cell culture applications. PMID:27935982

  9. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    PubMed Central

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  10. Polymer-based mesh as supports for multi-layered 3D cell culture and assays.

    PubMed

    Simon, Karen A; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron D; Ngo, Philip M; Whitesides, George M

    2014-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.

  11. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  12. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  13. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  14. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  15. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  16. A 3D human neural cell culture system for modeling Alzheimer's disease.

    PubMed

    Kim, Young Hye; Choi, Se Hoon; D'Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J; Klee, Justin B; Brüstle, Oliver; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-07-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.

  17. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.

  18. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  19. Developing Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities.

    PubMed

    Lei, Yuguo; Jeong, Daeun; Xiao, Jifang; Schaffer, David V

    2014-06-01

    Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies, tissue engineering, high throughput pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells; however, scalable production of human pluripotent stem cells and their derivatives at a high density and under well-defined conditions has been a challenge. We recently reported a simple, efficient, fully defined, scalable, and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentiation. Here, we describe additional design rationale and characterization of this system. For instance, we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast, using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC expansion and differentiation at a high density if compatible with hPSC biology. Finally, there are considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for producing hPSCs and their progeny.

  20. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.

    PubMed

    Tam, Roger Y; Smith, Laura J; Shoichet, Molly S

    2017-03-27

    Conventional cell culture techniques using 2D polystyrene or glass have provided great insight into key biochemical mechanisms responsible for cellular events such as cell proliferation, differentiation, and cell-cell interactions. However, the physical and chemical properties of 2D culture in vitro are dramatically different than those found in the native cellular microenvironment in vivo. Cells grown on 2D substrates differ significantly from those grown in vivo, and this explains, in part, why many promising drug candidates discovered through in vitro drug screening assays fail when they are translated to in vivo animal or human models. To overcome this obstacle, 3D cell culture using biomimetic hydrogels has emerged as an alternative strategy to recapitulate native cell growth in vitro. Hydrogels, which are water-swollen polymers, can be synthetic or naturally derived. Many methods have been developed to control the physical and chemical properties of the hydrogels to match those found in specific tissues. Compared to 2D culture, cells cultured in 3D gels with the appropriate physicochemical cues can behave more like they naturally do in vivo. While conventional hydrogels involve modifications to the bulk material to mimic the static aspects of the cellular microenvironment, recent progress has focused on using more dynamic hydrogels, the chemical and physical properties of which can be altered with external stimuli to better mimic the dynamics of the native cellular microenvironment found in vivo. In this Account, we describe our progress in designing stimuli-responsive, optically transparent hydrogels that can be used as biomimetic extracellular matrices (ECMs) to study cell differentiation and migration in the context of modeling the nervous system and cancer. Specifically, we developed photosensitive agarose and hyaluronic acid hydrogels that are activated by single or two-photon irradiation for biomolecule immobilization at specific volumes within the 3D

  1. Maturation of Induced Pluripotent Stem Cell Derived Hepatocytes by 3D-Culture

    PubMed Central

    Gieseck III, Richard L.; Hannan, Nicholas R. F.; Bort, Roque; Hanley, Neil A.; Drake, Rosemary A. L.; Cameron, Grant W. W.; Wynn, Thomas A.; Vallier, Ludovic

    2014-01-01

    Induced pluripotent stem cell derived hepatocytes (IPSC-Heps) have the potential to reduce the demand for a dwindling number of primary cells used in applications ranging from therapeutic cell infusions to in vitro toxicology studies. However, current differentiation protocols and culture methods produce cells with reduced functionality and fetal-like properties compared to adult hepatocytes. We report a culture method for the maturation of IPSC-Heps using 3-Dimensional (3D) collagen matrices compatible with high throughput screening. This culture method significantly increases functional maturation of IPSC-Heps towards an adult phenotype when compared to conventional 2D systems. Additionally, this approach spontaneously results in the presence of polarized structures necessary for drug metabolism and improves functional longevity to over 75 days. Overall, this research reveals a method to shift the phenotype of existing IPSC-Heps towards primary adult hepatocytes allowing such cells to be a more relevant replacement for the current primary standard. PMID:24466060

  2. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  3. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  4. Self-organization of neural patterns and structures in 3D culture of stem cells

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshiki

    2013-05-01

    Over the last several years, much progress has been made for in vitro culture of mouse and human ES cells. Our laboratory focuses on the molecular and cellular mechanisms of neural differentiation from pluripotent cells. Pluripotent cells first become committed to the ectodermal fate and subsequently differentiate into uncommitted neuroectodermal cells. Both previous mammalian and amphibian studies on pluripotent cells have indicated that the neural fate is a sort of the basal direction of the differentiation of these cells while mesoendodermal differentiation requires extrinsic inductive signals. ES cells differentiate into neuroectodermal cells with a rostral-most character (telencephalon and hypothalamus) when they are cultured in the absence of strong patterning signals. In this talk, I first discuss this issue by referring to our recent data on the mechanism of spontaneous neural differentiation in serum-free culture of mouse ES cells. Then, I will talk about self-organization phenomena observed in 3D culture of ES cells, which lead to tissue-autonomous formation of regional structures such as layered cortical tissues. I also discuss our new attempt to monitor these in vitro morphogenetic processes by live imaging, in particular, self-organizing morphogenesis of the optic cup in three-dimensional cultures.

  5. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.

    PubMed

    Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L

    2015-05-21

    We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation

  6. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture.

    PubMed

    Sasai, Yoshiki

    2013-05-02

    The behavior of stem cells, when they work collectively, can be much more sophisticated than one might expect from their individual programming. This Perspective covers recent discoveries about the dynamic patterning and structural self-formation of complex organ buds in 3D stem cell culture, including the generation of various neuroectodermal and endodermal tissues. For some tissues, epithelial-mesenchymal interactions can also be manipulated in coculture to guide organogenesis. This new area of stem cell research-the spatiotemporal control of dynamic cellular interactions-will open a new avenue for next-generation regenerative medicine.

  7. Scaffold-free and scaffold-assisted 3D culture enhances differentiation of bone marrow stromal cells.

    PubMed

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Sahoo, Sanjeeb Kumar; Verma, Rama Shanker

    2016-02-01

    3D cultures of stem cells can preserve differentiation potential or increase the efficiency of methods that induce differentiation. Mouse bone marrow-derived stromal cells (BMSCs) were cultured in 3D as scaffold-free spheroids or "mesoid bodies" (MBs) and as aggregates on poly(lactic) acid microspheres (MB/MS). 3D cultures demonstrated viable cells, interaction on multiple planes, altered cell morphology, and the formation of structures similar to epithelial cell bridges. Cell proliferation was limited in suspension cultures of MB and MB/MS; however, cells regained proliferative capacity when transferred to flat substrates of tissue culture plates (TCPs). Expanded as monolayer, cells retained expression of Sca-1 and CD44 stem cell markers. 3D cultures demonstrated enhanced potential for adipogenic and osteogenic differentiation showing higher triglyceride accumulation and robust mineralization in comparison with TCP cultures. Enhanced and efficient adipogenesis was also observed in 3D cultures generated in a rotating cell culture system. Preservation of multilineage potential of BMSC was demonstrated in 5-azacytidine treatment of 3D cultures and TCP by expression of cardiac markers GATA4 and ACTA1 although functioning cardiomyocytes were not derived.

  8. Low-level laser therapy in 3D cell culture model using gingival fibroblasts.

    PubMed

    Basso, Fernanda G; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-07-01

    Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm(2). Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm(2) increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm(2), while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair.

  9. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  10. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.

  11. A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells

    PubMed Central

    Zhang, Wujie; Zhao, Shuting; Rao, Wei; Snyder, Jedidiah; Choi, Jung K.; Wang, Jifu; Khan, Iftheker A.; Saleh, Navid B.; Mohler, Peter J.; Yu, Jianhua; Hund, Thomas J.; Tang, Chuanbing; He, Xiaoming

    2013-01-01

    In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine. PMID:23505611

  12. Enzymatically triggered peptide hydrogels for 3D cell encapsulation and culture.

    PubMed

    Szkolar, Laura; Guilbaud, Jean-Baptiste; Miller, Aline F; Gough, Julie E; Saiani, Alberto

    2014-07-01

    We have investigated the possibility of using enzymatically triggered peptide hydrogels for the encapsulation and culture of cells. Based on recent work done on the enzymatically triggered gelation of FEFK (F, phenylalanine; E, glutamic acid; K, lysine) using thermolysin, a protease enzyme from Bacillus Thermoproteolyticus Rokko, we have investigated the possibility of using this gelation triggering mechanism to encapsulate cells within a 3D hydrogel matrix. First, the properties of enzymatically triggered hydrogels prepared in phosphate buffer solution were investigated and compared with the properties of hydrogels prepared in HPLC grade water from our previous work. We showed that the use of phosphate buffer solution allowed the production of hydrogels with very high shear moduli (>1 MPa). The gelation kinetics was also investigated, and the mechanical properties of the system were shown to closely follow the synthesis of the octapeptide by the enzyme through reverse hydrolysis. In a second phase, we developed, on the basis of information acquired, a facile protocol for the encapsulation of cells and plating of the hydrogel. Human dermal fibroblasts were then used to exemplify the use of these materials. FEFEFKFK octapeptide hydrogels prepared under the same conditions and with the same mechanical properties were used as a control. We showed that no significant differences were observed between the two systems and that after a decrease in cell number on day 1, cells start to proliferate. After 5 days of culture, the cells can be seen to start to adopt a stretched morphology typical of fibroblasts. The results clearly show that the protocol developed minimises the potential detrimental effect that thermolysin can have on the cells and that these enzymatically triggered hydrogels can be used for the 3D encapsulation and culture of cells.

  13. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.

  14. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model.

    PubMed

    Shelper, Todd B; Lovitt, Carrie J; Avery, Vicky M

    2016-09-01

    Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay.

  15. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.

    PubMed

    Charwat, Verena; Schütze, Karin; Holnthoner, Wolfgang; Lavrentieva, Antonina; Gangnus, Rainer; Hofbauer, Pablo; Hoffmann, Claudia; Angres, Brigitte; Kasper, Cornelia

    2015-07-10

    Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called "z-stacks". However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell

  16. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  17. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance

    PubMed Central

    Breslin, Susan; O'Driscoll, Lorraine

    2016-01-01

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs. PMID:27304190

  18. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.

    PubMed

    Breslin, Susan; O'Driscoll, Lorraine

    2016-07-19

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs.

  19. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  20. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-03-07

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition.

  1. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  2. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

    PubMed Central

    Sailon, Alexander M.; Allori, Alexander C.; Davidson, Edward H.; Reformat, Derek D.; Allen, Robert J.; Warren, Stephen M.

    2009-01-01

    Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67% ± 5.0%, while in the core it was 0.3% ± 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% ± 8.3% and core density of 76% ± 3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems. PMID:20037739

  3. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels.

    PubMed

    Malinen, Melina M; Kanninen, Liisa K; Corlu, Anne; Isoniemi, Helena M; Lou, Yan-Ru; Yliperttula, Marjo L; Urtti, Arto O

    2014-06-01

    Physiologically relevant hepatic cell culture models must be based on three-dimensional (3D) culture of human cells. However, liver cells are generally cultured in two-dimensional (2D) format that deviates from the normal in vivo morphology. We generated 3D culture environment for HepaRG liver progenitor cells using wood-derived nanofibrillar cellulose (NFC) and hyaluronan-gelatin (HG) hydrogels. Culture of undifferentiated HepaRG cells in NFC and HG hydrogels induced formation of 3D multicellular spheroids with apicobasal polarity and functional bile canaliculi-like structures, structural hallmarks of the liver tissue. Furthermore, hepatobiliary drug transporters, MRP2 and MDR1, were localized on the canalicular membranes of the spheroids and vectorial transport of fluorescent probes towards the biliary compartment was demonstrated. Cell culture in 3D hydrogel supported the mRNA expression of hepatocyte markers (albumin and CYP3A4), and metabolic activity of CYP3A4 in the HepaRG cell cultures. On the contrary, the 3D hydrogel cultures with pre-differentiated HepaRG cells showed decreasing expression of albumin and CYP3A4 transcripts as well as CYP3A4 activity. It is concluded that NFC and HG hydrogels expedite the hepatic differentiation of HepaRG liver progenitor cells better than the standard 2D culture environment. This was shown as improved cell morphology, expression and localization of hepatic markers, metabolic activity and vectorial transport. The NFC and HG hydrogels are promising materials for hepatic cell culture and tissue engineering.

  4. Visualization of Mesenchymal Stromal Cells in 2Dand 3D-Cultures by Scanning Electron Microscopy with Lanthanide Contrasting.

    PubMed

    Novikov, I A; Vakhrushev, I V; Antonov, E N; Yarygin, K N; Subbot, A M

    2017-02-01

    Mesenchymal stromal cells from deciduous teeth in 2D- and 3D-cultures on culture plastic, silicate glass, porous polystyrene, and experimental polylactoglycolide matrices were visualized by scanning electron microscopy with lanthanide contrasting. Supravital staining of cell cultures with a lanthanide-based dye (neodymium chloride) preserved normal cell morphology and allowed assessment of the matrix properties of the carriers. The developed approach can be used for the development of biomaterials for tissue engineering.

  5. Scaffolds for 3D in vitro culture of neural lineage cells.

    PubMed

    Murphy, Ashley R; Laslett, Andrew; O'Brien, Carmel M; Cameron, Neil R

    2017-03-01

    Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research.

  6. Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture.

    PubMed

    Liu, Xiaofang; Yan, Fang; Yao, Hailei; Chang, Mingyang; Qin, Jinhua; Li, Yali; Wang, Yunfang; Pei, Xuetao

    2014-11-01

    Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.

  7. Curved and folded micropatterns in 3D cell culture and tissue engineering.

    PubMed

    Yilmaz, Cem Onat; Xu, Zinnia S; Gracias, David H

    2014-01-01

    Cells live in a highly curved and folded micropatterned environment within the human body. Hence, there is a need to develop engineering paradigms to replicate these microenvironments in order to investigate the behavior of cells in vitro, as well as to develop bioartificial organs for tissue engineering and regenerative medicine. In this chapter, we first motivate the need for such micropatterns based on anatomical considerations and then survey methods that can be utilized to generate curved and folded micropatterns of relevance to 3D cell culture and tissue engineering. The methods surveyed can broadly be divided into two classes: top-down approaches inspired by conventional 2D microfabrication and bottom-up approaches most notably in the self-assembly of thin patterned films. These methods provide proof of concept that the high resolution, precise and reproducible patterning of cell and matrix microenvironments in anatomically relevant curved and folded geometries is possible. A specific protocol is presented to create curved and folded hydrogel micropatterns.

  8. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-03-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

  9. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    PubMed

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered.

  10. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  11. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    PubMed Central

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  12. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.

  13. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    PubMed Central

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  14. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  15. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  16. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-06

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  17. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    PubMed

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  18. Thermo-responsive non-woven scaffolds for "smart" 3D cell culture.

    PubMed

    Rossouw, Claire L; Chetty, Avashnee; Moolman, Francis Sean; Birkholtz, Lyn-Marie; Hoppe, Heinrich; Mancama, Dalu T

    2012-08-01

    The thermo-responsive polymer poly(N-isopropylacrylamide) has received widespread attention for its in vitro application in the non-invasive, non-destructive release of adherent cells on two dimensional surfaces. In this study, 3D non-woven scaffolds fabricated from poly(propylene) (PP), poly(ethylene terephthalate) (PET), and nylon that had been grafted with PNIPAAm were tested for their ability to support the proliferation and subsequent thermal release of HC04 and HepG2 hepatocytes. Hepatocyte viability and proliferation were estimated using the Alamar Blue assay and Hoechst 33258 total DNA quantification. The assays revealed that the pure and grafted non-woven scaffolds maintained the hepatocytes within the matrix and promoted 3D proliferation comparable to that of the commercially available Algimatrix™ alginate scaffold. Albumin production and selected cytochrome P450 genes expression was found to be superior in cells growing on pure and grafted non-woven PP scaffolds as compared to cells grown as a 2D monolayer. Two scaffolds, namely, PP-g-PNIPAAm-A and PP-g-PNIPAAm-B were identified as having far superior thermal release capabilities; releasing the majority of the cells from the matrices within 2 h. This is the first report for the development of 3D non-woven, thermo-responsive scaffolds able to release cells from the matrix without the use of any enzymatic assistance or scaffold degradation.

  19. Novel 3-D cell culture system for in vitro evaluation of anticancer drugs under anchorage-independent conditions.

    PubMed

    Aihara, Ayako; Abe, Natsuki; Saruhashi, Koichiro; Kanaki, Tatsuro; Nishino, Taito

    2016-12-01

    Anticancer drug discovery efforts have used 2-D cell-based assay models, which fail to forecast in vivo efficacy and result in a lower success rate of clinical approval. Recent 3-D cell culture models are expected to bridge the gap between 2-D and in vivo models. However, 3-D cell culture methods that are available for practical anticancer drug screening have not yet been fully attained. In this study, we screened several polymers for their ability to suspend cells or cell spheroids homogeneously in a liquid medium without changing the viscosity behavior, and identified gellan gum (FP001), as the most potent polymer. FP001 promoted cell dispersion in the medium and improved the proliferation of a wide range of cancer cell lines under low attachment conditions by inhibiting the formation of large-sized spheroids. In addition, cancer cells cultured with FP001-containing medium were more susceptible to inhibitors of epidermal growth factor (EGF) signaling than those cultured under attachment conditions. We also showed that ligands of the EGF receptor family clearly enhance proliferation of SKOV3 ovarian carcinoma cells under anchorage-independent conditions with FP001. Consistent with this result, the cells grown with FP001 showed higher EGF receptor content compared with cells cultured under attachment conditions. In conclusion, we developed a novel 3-D cell culture system that is available for high throughput screening of anticancer agents, and is suitable for evaluation of molecular-targeted anticancer drugs. Three-dimensional cell culture using FP001 will be of value in the development of useful technologies for anticancer drug discovery.

  20. A 3D Culture System Enhances the Ability of Human Bone Marrow Stromal Cells to Support the Growth of Limbal Stem/Progenitor Cells

    PubMed Central

    González, Sheyla; Mei, Hua; Nakatsu, Martin N.; Baclagon, Elfren R.; Deng, Sophie X.

    2016-01-01

    The standard method of cultivating limbal epithelial progenitor/stem cells (LSCs) on a monolayer of mouse 3T3 feeder cells possesses the risk of cross-contamination in clinical applications. Human feeder cells have been used to eliminate this risk; however, efficiency from xenobiotic-free cultures on a monolayer appears to be lower than in the standard method using 3T3 cells. We investigated whether bone marrow stromal cells (BMSCs), also known as bone marrow-derived mesenchymal stem cells, could serve as feeder cells for the expansion of LSCs in the 3-dimensional (3D) system. Primary single human LSCs on a monolayer of 3T3s served as the control. Very poor growth was observed when single LSCs were cultured on BMSCs. When LSC clusters were cultured on a BMSC monolayer (CC-BM), 3D culture system (3D CC-BM) and fibrin 3D system (fibrin 3D CC-BM), the 3D CC-BM method supported a greater LSC expansion. The 3D CC-BM system produced a 2.5-fold higher cell growth rate than the control (p<0.05). The proportion of K14+ and p63αbright cells were comparable to those in the control (p>0.05), whereas the proportion of K12+ cells was lower (p<0.05). These results indicate that BMSCs can efficiently support the expansion of the LSC population in the 3D culture. PMID:26896856

  1. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells.

    PubMed

    Herroon, Mackenzie Katheryn; Diedrich, Jonathan Driscoll; Podgorski, Izabela

    2016-01-01

    Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte-tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate

  2. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures

    PubMed Central

    Mrozowska, Paulina S.

    2016-01-01

    MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures. PMID:27138252

  3. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    PubMed

    Campbell, Jonathan J; Davidenko, Natalia; Caffarel, Maria M; Cameron, Ruth E; Watson, Christine J

    2011-01-01

    Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  4. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.

    PubMed

    Knight, Eleanor; Przyborski, Stefan

    2015-12-01

    Research in mammalian cell biology often relies on developing in vitro models to enable the growth of cells in the laboratory to investigate a specific biological mechanism or process under different test conditions. The quality of such models and how they represent the behavior of cells in real tissues plays a critical role in the value of the data produced and how it is used. It is particularly important to recognize how the structure of a cell influences its function and how co-culture models can be used to more closely represent the structure of real tissue. In recent years, technologies have been developed to enhance the way in which researchers can grow cells and more readily create tissue-like structures. Here we identify the limitations of culturing mammalian cells by conventional methods on two-dimensional (2D) substrates and review the popular approaches currently available that enable the development of three-dimensional (3D) tissue models in vitro. There are now many ways in which the growth environment for cultured cells can be altered to encourage 3D cell growth. Approaches to 3D culture can be broadly categorized into scaffold-free or scaffold-based culture systems, with scaffolds made from either natural or synthetic materials. There is no one particular solution that currently satisfies all requirements and researchers must select the appropriate method in line with their needs. Using such technology in conjunction with other modern resources in cell biology (e.g. human stem cells) will provide new opportunities to create robust human tissue mimetics for use in basic research and drug discovery. Application of such models will contribute to advancing basic research, increasing the predictive accuracy of compounds, and reducing animal usage in biomedical science.

  5. A Genetically Modified Protein-Based Hydrogel for 3D Culture of AD293 Cells

    PubMed Central

    Du, Xiao; Wang, Jingyu; Diao, Wentao; Wang, Ling; Long, Jiafu; Zhou, Hao

    2014-01-01

    Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence ‘GRGDSP’ to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery. PMID:25233088

  6. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  7. 3D Cell Culture in a Self-Assembled Nanofiber Environment

    PubMed Central

    Gubbe, John D.; Brekke, John H.

    2016-01-01

    The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young’s modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease. PMID:27632425

  8. Increased ROS production in non-polarized mammary epithelial cells induces monocyte infiltration in 3D culture.

    PubMed

    Li, Linzhang; Chen, Jie; Xiong, Gaofeng; St Clair, Daret K; Xu, Wei; Xu, Ren

    2017-01-01

    Loss of epithelial cell polarity promotes cell invasion and cancer dissemination. Therefore, identification of factors that disrupt polarized acinar formation is crucial. Reactive oxygen species (ROS) drive cancer progression and promote inflammation. Here, we show that the non-polarized breast cancer cell line T4-2 generates significantly higher ROS levels than polarized S1 and T4R cells in three-dimensional (3D) culture, accompanied by induction of the nuclear factor κB (NF-κB) pathway and cytokine expression. Minimizing ROS in T4-2 cells with antioxidants reestablished basal polarity and inhibited cell proliferation. Introducing constitutively activated RAC1 disrupted cell polarity and increased ROS levels, indicating that RAC1 is a crucial regulator that links cell polarity and ROS generation. We also linked monocyte infiltration with disruption of polarized acinar structure using a 3D co-culture system. Gain- and loss-of-function experiments demonstrated that increased ROS in non-polarized cells is necessary and sufficient to enhance monocyte recruitment. ROS also induced cytokine expression and NF-κB activity. These results suggest that increased ROS production in mammary epithelial cell leads to disruption of cell polarity and promotes monocyte infiltration.

  9. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System

    DTIC Science & Technology

    2014-04-01

    for metastatic breast cancer cells to grow or remain dormant. This hypothesis is being tested using a 3D bioreactor of ECM, derived from osteoblasts...dormant human cells to proliferate in the bioreactor in co-culture with OB. The effect appears to depend on prostaglandin production. Chronic...growth of cancer cells, murine osteoblasts, MC3T3-E1, were grown for 2 months in the bioreactor with a basal medium of αMEM with 10mM β

  10. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes

    PubMed Central

    Occhetta, Paola; Centola, Matteo; Tonnarelli, Beatrice; Redaelli, Alberto; Martin, Ivan; Rasponi, Marco

    2015-01-01

    The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a ‘developmental engineering’ approach for skeletal tissue regeneration. PMID:25983217

  11. 3D cell culture systems--towards primary drug discovery platforms: an interview with Heinz Ruffner (Novartis) and Jan Lichtenberg (InSphero).

    PubMed

    Ruffner, Heinz; Lichtenberg, Jan

    2012-07-01

    Advanced cell culture systems for regenerative medicine, drug efficacy and toxicity testing, enabling technologies to create and analyze 3D cell culture systems were the topics of the 3D cell culture meeting taking place in March 14-16, 2012 at the Technopark in Zurich, Switzerland. At this meeting Biotechnology Journal had the pleasure to talk to Dr. Heinz Ruffner, Novartis AG, and Dr. Jan Lichtenberg, co-founder and CEO of InSphero AG, about challenges and perspectives in using 3D cell culture systems as primary drug discovery platforms.

  12. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.

    PubMed

    Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P

    2014-04-01

    Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.

  13. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    NASA Astrophysics Data System (ADS)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  14. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture.

    PubMed

    Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem

    2016-01-01

    Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices.

  15. A photo-degradable supramolecular hydrogel for selective delivery of microRNA into 3D-cultured cells.

    PubMed

    Zhou, Zhengquan; Yi, Qikun; Xia, Tingting; Yin, Wencui; Kadi, Adnan A; Li, Jinbo; Zhang, Yan

    2017-03-08

    Multi-functional supramolecular hydrogels have emerged as smart biomaterials for diverse biomedical applications. Here we report a multi-functional supramolecular hydrogel formed by the conjugate of the bioactive GRGDS peptide with biaryltetrazole that is the substrate of photo-click reaction. The hydrogel was used as a biocompatible matrix to encapsulate live cells for 3D culture. The presence of the RGD epitope in the hydrogelator enhanced the interaction of the nanofiber with integrin over-expressing cells, which resulted in the selective enhancement in the miRNA delivery into the encapsulated U87 cells. The intramolecular photo-click reaction of the biaryltetrazole moiety in the hydrogelator leads to a sensitive photo-response of the hydrogel, which allowed photo-degradation of the hydrogel for release of the encapsulated live cells for further bio-assay of the intracellular species.

  16. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines

    PubMed Central

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-01-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  17. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins.

    PubMed

    Edmondson, Rasheena; Adcock, Audrey F; Yang, Liju

    2016-01-01

    This study investigated the effects of matrix on the behaviors of 3D-cultured cells of two prostate cancer cell lines, LNCaP and DU145. Two biologically-derived matrices, Matrigel and Cultrex BME, and one synthetic matrix, the Alvetex scaffold, were used to culture the cells. The cell proliferation rate, cellular response to anti-cancer drugs, and expression levels of proteins associated with drug sensitivity/resistance were examined and compared amongst the 3D-cultured cells on the three matrices and 2D-cultured cells. The cellular responses upon treatment with two common anti-cancer drugs, Docetaxel and Rapamycin, were examined. The expressions of epidermal growth factor receptor (EGFR) and β-III tubulin in DU145 cells and p53 in LNCaP cells were examined. The results showed that the proliferation rates of cells cultured on the three matrices varied, especially between the synthetic matrix and the biologically-derived matrices. The drug responses and the expressions of drug sensitivity-associated proteins differed between cells on various matrices as well. Among the 3D cultures on the three matrices, increased expression of β-III tubulin in DU145 cells was correlated with increased resistance to Docetaxel, and decreased expression of EGFR in DU145 cells was correlated with increased sensitivity to Rapamycin. Increased expression of a p53 dimer in 3D-cultured LNCaP cells was correlated with increased resistance to Docetaxel. Collectively, the results showed that the matrix of 3D cell culture models strongly influences cellular behaviors, which highlights the imperative need to achieve standardization of 3D cell culture technology in order to be used in drug screening and cell biology studies.

  18. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins

    PubMed Central

    Edmondson, Rasheena; Adcock, Audrey F.; Yang, Liju

    2016-01-01

    This study investigated the effects of matrix on the behaviors of 3D-cultured cells of two prostate cancer cell lines, LNCaP and DU145. Two biologically-derived matrices, Matrigel and Cultrex BME, and one synthetic matrix, the Alvetex scaffold, were used to culture the cells. The cell proliferation rate, cellular response to anti-cancer drugs, and expression levels of proteins associated with drug sensitivity/resistance were examined and compared amongst the 3D-cultured cells on the three matrices and 2D-cultured cells. The cellular responses upon treatment with two common anti-cancer drugs, Docetaxel and Rapamycin, were examined. The expressions of epidermal growth factor receptor (EGFR) and β-III tubulin in DU145 cells and p53 in LNCaP cells were examined. The results showed that the proliferation rates of cells cultured on the three matrices varied, especially between the synthetic matrix and the biologically-derived matrices. The drug responses and the expressions of drug sensitivity-associated proteins differed between cells on various matrices as well. Among the 3D cultures on the three matrices, increased expression of β-III tubulin in DU145 cells was correlated with increased resistance to Docetaxel, and decreased expression of EGFR in DU145 cells was correlated with increased sensitivity to Rapamycin. Increased expression of a p53 dimer in 3D-cultured LNCaP cells was correlated with increased resistance to Docetaxel. Collectively, the results showed that the matrix of 3D cell culture models strongly influences cellular behaviors, which highlights the imperative need to achieve standardization of 3D cell culture technology in order to be used in drug screening and cell biology studies. PMID:27352049

  19. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds.

    PubMed

    Leferink, A M; Santos, D; Karperien, M; Truckenmüller, R K; van Blitterswijk, C A; Moroni, L

    2015-12-01

    Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell sensing and mechano-transduction in a three-dimensional (3D) context. For several other mechanisms such as cell-cell signaling, cell proliferation and cell morphology, it is well-known that cells behave differently on a planar surface compared to cells in 3D environments. In classical tissue engineering approaches, a combination of cells, 3D scaffolds and soluble factors are considered as the key ingredients for the generation of mechanically stable 3D tissue constructs. However, when MSCs are used for tissue engineering strategies, little is known about the maintenance of their differentiation potential in 3D scaffolds after the removal of differentiation soluble factors. In this study, the differentiation potential of human MSCs (hMSCs) into the chondrogenic and osteogenic lineages on two distinct 3D scaffolds, additive manufactured electrospun scaffolds, was assessed and compared to conventional 2D culture. Human MSCs cultured in the presence of soluble factors in 3D showed to differentiate to the same extent as hMSCs cultured as 2D monolayers or as scaffold-free pellets, indicating that the two scaffolds do not play a consistent role in the differentiation process. In the case of phenotypic changes, the achieved differentiated phenotype was not maintained after the removal of soluble factors, suggesting that the plasticity of hMSCs is retained in 3D cell culture systems. This finding can have implications for future tissue engineering approaches in which the validation of hMSC differentiation on 3D scaffolds will not be sufficient to ensure the maintenance of the functionality of the cells in the absence of appropriate differentiation signals.

  20. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    PubMed

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  1. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  2. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    PubMed

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-05

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation.

  3. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application.

  4. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  5. Chrysotile effects on human lung cell carcinoma in culture: 3-D reconstruction and DNA quantification by image analysis

    PubMed Central

    Cortez, Beatriz A; Machado-Santelli, Glaucia M

    2008-01-01

    Background Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification. PMID:18588678

  6. 3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study

    PubMed Central

    Wu, Di; Wan, Jian; Huang, Yan; Guo, Yibing; Xu, Tianxin; Zhu, Mingyan; Fan, Xiangjun; Zhu, Shajun; Ling, Changchun; Li, Xiaohong; Lu, Jingjing; Zhu, Hui; Zhou, Pengcheng; Lu, Yuhua; Wang, Zhiwei

    2015-01-01

    Type 1 diabetes is an autoimmune disease which is due to the lack of β cells. The ideal therapy to cure the disease is pancreas transplantation, but its application is confined to a limited number of people due to the shortage of organ and the need for life-long immunosuppression. Regenerative medicine methods such as a tissue engineered pancreas seem to provide a useful method. In order to construct a microenvironment similar to the native pancreas that is suitable for not only cell growth but also cellular function exertion, a decellularized mouse pancreas was used as a natural 3D scaffold in this experiment. MIN-6 β cells were planted in the bioscaffold. The cell engraftment was verified by HE staining and SEM. Immunostaining procedures were performed to confirm the normal function of the engrafted cells. qRT-PCR demonstrated that insulin gene expression of the recellularized pancreas was upregulated compared with conventional plate-cultured cells. In vivo experiment was also accomplished to further evaluate the function of the recellularized bioscaffold and the result was inspiring. And beyond doubt this will bring new hope for type 1 diabetic patients. PMID:26688810

  7. Thiol–ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture

    PubMed Central

    Xu, Kedi; Fu, Yao; Chung, WeiJu; Zheng, Xiaoxiang; Cui, Yujia; Hsu, Ian C.; Kao, Weiyuan John

    2013-01-01

    Although various cell encapsulation materials are available commercially for a wide range of potential therapeutic cells, their combined clinical impact remains inconsistent. Synthetic materials such as poly(ethylene glycol) (PEG) hydrogels are mechanically robust and have been extensively explored but lack natural biofunctionality. Naturally derived materials including collagen, fibrin and alginate-chitosan are often labile and mechanically weak. In this paper we report the development of a hybrid biomatrix based on the thiol-ene reaction of PEG diacrylate (PEGdA) and cysteine/PEG-modified gelatin (gel-PEG-Cys). We hypothesized that covalent crosslinking decreases gelatin dissolution thus increasing gelatin resident time within the matrix and the duration of its biofunctionality; at the same time the relative ratio of PEGdA to gel-PEG-Cys in the matrix formulation directly affects hydrogel bulk and local microenvironment properties. Bulk viscoelastic properties were highly dependent on PEGdA concentration and total water content, while gel-PEG-Cys concentration was more critical to swelling profiles. Microviscoelastic properties were related to polymer concentration. The covalently crosslinked gel-PEG-Cys with PEGdA decreased gelatin dissolution out of the matrix and collagenase-mediated degradation. Fibroblasts and keratinocyte increased adhesion density and formed intercellular connections on stiffer hydrogel surfaces, while cells exhibited more cytoplasmic spreading and proliferation when entrapped within softer hydrogels. Hence, this material system contains multiparametric factors that can easily be controlled to modulate the chemical, physical and biological properties of the biomatrix for soft tissue scaffolding and cell presentation to reconstruct lost tissue architecture and physical functionality. PMID:22484717

  8. Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture.

    PubMed

    Jorgens, Danielle M; Inman, Jamie L; Wojcik, Michal; Robertson, Claire; Palsdottir, Hildur; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S; Bissell, Mina J; Xu, Ke; Auer, Manfred

    2017-01-01

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.

  9. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture

    PubMed Central

    Hao, Yiting; Shih, Han; Muňoz, Zachary; Kemp, Arika; Lin, Chien-Chi

    2013-01-01

    We report here a synthetically simple yet highly tunable and diverse visible light mediated thiol-vinyl gelation system for fabricating cell-instructive hydrogels. Gelation was achieved via a mixed-mode step-and-chain-growth photopolymerization using functionalized 4-arm poly(ethylene glycol) as backbone macromer, eosin-Y as photosensitizer, and di-thiol containing molecule as dual purpose co-initiator/cross-linker. N-vinylpyrrolidone (NVP) was used to accelerate gelation kinetics and to adjust the stiffness of the hydrogels. Visible light (wavelength: 400–700nm) was used to initiate rapid gelation (gel points: ~20 seconds) that reached completion within a few minutes. The major differences between current thiol-vinyl gelation and prior visible light mediated photopolymerization are that: (1) the co-initiator triethanolamine (TEOA) used in the previous systems was replaced with multifunctional thiols and (2) mixed-mode polymerized gels contain less network heterogeneity. The gelation kinetics and gel properties at the same PEG macromer concentration could be tuned by changing the identity of vinyl groups and di-thiol cross-linkers, as well as concentration of cross-linker and NVP. Specifically, acrylate-modified PEG afforded the fastest gelation rate, followed by acrylamide and methacrylate-functionalized PEG. Increasing NVP concentration also accelerated gelation and led to a higher network cross-linking density. Further, increasing di-thiol peptide concentration in the gel formulation increased hydrogel swelling and decreased gel stiffness. Due to the formation of thiol-ether-ester bonds following thiol-acrylate reaction, the gels degraded hydrolytically following a pseudo first order degradation kinetics. Degradation rate was controlled by adjusting thiol or NVP content in the polymer precursor solution. The cytocompatibility and utility of this hydrogel system were evaluated using in situ encapsulation of human mesenchymal stem cells (hMSC). Encapsulated h

  10. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  11. Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture.

    PubMed

    Yildiz-Ozturk, Ece; Gulce-Iz, Sultan; Anil, Muge; Yesil-Celiktas, Ozlem

    2017-04-01

    Two dimensional (2D) cell culture systems lack the ability to mimic in vivo conditions resulting in limitations for preclinical cell-based drug and toxicity screening assays and modelling tumor biology. Alternatively, 3D cell culture systems mimic the specificity of native tissue with better physiological integrity. In this regard, microfluidic chips have gained wide applicability for in vitro 3D cancer cell studies. The aim of this research was to develop a 3D biomimetic model comprising culture of breast cancer cells in butterfly-shaped microchip to determine the cytotoxicity of carnosic acid and doxorubicin on both estrogen dependent (MCF-7) and independent (MDA-MB231) breast cancer cells along with healthy mammary epithelial cells (MCF-10A) in 2D, 3D Matrigel™ and butterfly-shaped microchip environment. According to the developed mimetic model, carnosic acid exhibited a higher cytotoxicity towards MDA-MB 231, while doxorubicin was more effective against MCF-7. Although the cell viabilities were higher in comparison to 2D and 3D cell culture systems, the responses of the investigated molecules were different in the microchips based on the molecular weight and structural complexity indicating the importance of biomimicry in a physiologically relevant matrix.

  12. Hematopoietic Stem and Progenitor Cell Expansion in Contact with Mesenchymal Stromal Cells in a Hanging Drop Model Uncovers Disadvantages of 3D Culture

    PubMed Central

    Schmal, Olga; Seifert, Jan; Schäffer, Tilman E.; Walter, Christina B.; Aicher, Wilhelm K.; Klein, Gerd

    2016-01-01

    Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard. PMID:26839560

  13. A 3-D airway epithelial cell and macrophage co-culture system to study Rhodococcus equi infection.

    PubMed

    Schwab, Ute; Caldwell, Shannon; Matychak, Mary-Beth; Felippe, Julia

    2013-07-15

    We developed a 3-D equine bronchial epithelial cell (BEC) culture that fully differentiates into ciliary beating and mucus producing cells. Using this system, we evaluated how mucus affects the phagocytic activity of macrophages. Adult horse monocyte-derived macrophages were incubated with Rhodococcus equi for 4h either in the mucus layer of in vitro generated airway epithelium or on collagen coated membranes. Using light and electron microscopy, we noted that the number of macrophages with intracellular bacteria, and the number of intracellular bacteria per macrophage were lower in the presence of mucus. TNFα measurements revealed that the presence of BECs promoted TNFα production by R. equi-infected macrophages; a decrease in TLR-2 (involved in R. equi recognition) and an increase in EGF-R (involved in mucin production) mRNA expression were also noted. Interestingly, when foal macrophages were added to foal BECs, we made the opposite observation, i.e. many macrophages were loaded with R. equi. Our in vitro bronchial system shows great potential for the identification of mechanisms how BECs and mucus play a role in phagocyte activation and bacterial clearance. Further studies using this system will show whether the airway environment in the foal responds differently to R. equi infection.

  14. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.

    PubMed

    Yoshii, Yukie; Waki, Atsuo; Yoshida, Kaori; Kakezuka, Anna; Kobayashi, Maki; Namiki, Hideo; Kuroda, Yusei; Kiyono, Yasushi; Yoshii, Hiroshi; Furukawa, Takako; Asai, Tatsuya; Okazawa, Hidehiko; Gelovani, Juri G; Fujibayashi, Yasuhisa

    2011-09-01

    Two-dimensional (2D) cell cultures are essential for drug development and tumor research. However, the limitations of 2D cultures are widely recognized, and a better technique is needed. Recent studies have indicated that a strong physical contact between cells and 2D substrates induces cellular characteristics that differ from those of tumors growing in vivo. 3D cell cultures using various substrates are then developing; nevertheless, conventional approaches have failed in maintenance of cellular proliferation and viability, uniformity, reproducibility, and/or simplicity of these assays. Here, we developed a 3D culture system with inorganic nanoscale scaffolding using nanoimprinting technology (nano-culture plates), which reproduced the characteristics of tumor cells growing in vivo. Diminished cell-to-substrate physical contact facilitated spontaneous tumor cell migration, intercellular adhesion, and multi-cellular 3D-spheroid formation while maintaining cellular proliferation and viability. The resulting multi-cellular spheroids formed hypoxic core regions similar to tumors growing in vivo. This technology allows creating uniform and highly-reproducible 3D cultures, which is easily applicable for microscopic and spectrophotometric assays, which can be used for high-throughput/high-content screening of anticancer drugs and should accelerate discovery of more effective anticancer therapies.

  15. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    PubMed

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors.

  16. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-04

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies.

  17. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  18. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  19. Antitumor activity of amidino-substituted benzimidazole and benzimidazo[1,2-a]quinoline derivatives tested in 2D and 3D cell culture systems.

    PubMed

    Brajša, Karmen; Vujasinović, Ines; Jelić, Dubravko; Trzun, Marija; Zlatar, Ivo; Karminski-Zamola, Grace; Hranjec, Marijana

    2016-12-01

    Due to a poor clinical predictive power of 2D cell cultures, standard tool for in vitro assays in drug discovery process, there is increasing interest in developing 3D in vitro cell cultures, biologically relevant assay feasible for the development of robust preclinical anti-cancer drug screening platforms. Herein, we tested amidino-substituted benzimidazoles and benzimidazo[1,2-a]quinolines as a small platform for comparison of antitumor activity in 2D and 3D cell culture systems and correlation with structure-activity relationship. 3D cell culture method was applied on a human cancer breast (SK-BR-3, MDA-MB-231, T-47D) and pancreatic cancer cells (MIA PaCa-2, PANC-1). Results obtained in 2D and 3D models were highly comparable, but in some cases we have observed significant disagreement indicating that some prominent compounds can be discarded in early phase of researching because of compounds with false positive result. To confirm which of cell culture systems is more accurate, in vivo profiling is needed.

  20. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.

    PubMed

    Mabry, Kelly M; Payne, Samuel Z; Anseth, Kristi S

    2016-01-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis. To better understand and quantify how microenvironmental cues influence VIC phenotype and myofibroblast activation, we compared expression profiles of VICs cultured on poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. In general, VICs cultured in hydrogel matrices had lower levels of activation (<10%), similar to levels seen in healthy valve tissue, while VICs cultured on TCPS were ∼75% activated myofibroblasts. VICs cultured on TCPS also exhibited a higher magnitude of perturbations in gene expression than soft hydrogel cultures when compared to the native phenotype. Using peptide-modified PEG gels, VICs were seeded on (2D), as well as encapsulated in (3D), matrices of the same composition and modulus. Despite similar levels of activation, VICs cultured in 2D had distinct variations in transcriptional profiles compared to those in 3D hydrogels. Genes related to cell structure and motility were particularly affected by the dimensionality of the culture platform, with higher expression levels in 2D than in 3D. These results indicate that dimensionality may play a significant role in dictating cell phenotype (e.g., through differences in polarity, diffusion of soluble signals), and emphasize the importance of using multiple metrics when characterizing cell phenotype.

  1. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel.

    PubMed

    Lin, Yu-Fen; Nagasawa, Hatsumi; Peng, Yuanlin; Chuang, Eric Y; Bedford, Joel S

    2009-06-01

    It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.

  2. Estimation of bisphenol A-Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests.

    PubMed

    Lee, Dong Woo; Oh, Woo-Yeon; Yi, Sang Hyun; Ku, Bosung; Lee, Moo-Yeal; Cho, Yoon Hee; Yang, Mihi

    2016-09-30

    Bisphenol A (BPA) has been widely used for manufacturing polycarbonate plastics and epoxy resins and has been extensively tested in animals to predict human toxicity. In order to reduce the use of animals for toxicity assessment and provide further accurate information on BPA toxicity in humans, we encapsulated Hep3B human hepatoma cells in alginate and cultured them in three dimensions (3D) on a micropillar chip coupled to a panel of metabolic enzymes on a microwell chip. As a result, we were able to assess the toxicity of BPA under various metabolic enzyme conditions using a high-throughput and micro assay; sample volumes were nearly 2,000 times less than that required for a 96-well plate. We applied a total of 28 different enzymes to each chip, including 10 cytochrome P450s (CYP450s), 10 UDP-glycosyltransferases (UGTs), 3 sulfotransferases (SULTs), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase 2 (ALDH2). Phase I enzyme mixtures, phase II enzyme mixtures, and a combination of phase I and phase II enzymes were also applied to the chip. BPA toxicity was higher in samples containing CYP2E1 than controls, which contained no enzymes (IC50, 184±16μM and 270±25.8μM, respectively, p<0.01). However, BPA-induced toxicity was alleviated in the presence of ADH (IC50, 337±17.9μM), ALDH2 (335±13.9μM), and SULT1E1 (318±17.7μM) (p<0.05). CYP2E1-mediated cytotoxicity was confirmed by quantifying unmetabolized BPA using HPLC/FD. Therefore, we suggest the present micropillar/microwell chip platform as an effective alternative to animal testing for estimating BPA toxicity via human metabolic systems.

  3. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    PubMed

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  4. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  5. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System

    DTIC Science & Technology

    2015-04-01

    After 6 hours, slides were rinsed and labeled with phalloidin conjugated to Alexa 568 (Life Technologies ). Cells were imaged with an Olympus FV300...osteoblasts were first removed from the matrix decellularized with deoxycholate. The cells on matrix grown with 52 pg/ml estradiol, the normal...focal adhesion kinase (FAK). Therefore we examined FAK plaque formation in BRMS1 cells cultured on MC3T3E-1 osteoblasts cultured in the bioreactor with

  6. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture.

    PubMed

    Ingeson-Carlsson, Camilla; Martinez-Monleon, Angela; Nilsson, Mikael

    2015-11-01

    Tumor microenvironment influences targeted drug therapy. In this study we compared drug responses to RAF and MEK inhibitors on tumor cell migration in 2D and 3D culture of BRAF(V600E) mutant cell lines derived from human papillary (BCPAP) and anaplastic (SW1736) thyroid carcinomas. Scratch wounding was compared to a double-layered collagen gel model developed for analysis of directed tumor cell invasion during prolonged culture. In BCPAP both PLX4720 and U0126 inhibited growth and migration in 2D and decreased tumor cell survival in 3D. In SW1736 drugs had no effect on migration in 2D but decreased invasion in 3D, however this related to reduced growth. Dual inhibition of BRAF(V600E) and MEK reduced but did not prevent SW1736 invasion although rebound phosphorylation of ERK in response to PLX4720 was blocked by U0126. These findings indicate that anti-tumor drug effects in vitro differ depending on culture conditions (2D vs. 3D) and that the invasive features of anaplastic thyroid cancer depend on non-MEK mechanism(s).

  7. Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

    PubMed Central

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi

  8. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    PubMed

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-07-10

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an

  9. Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.

    PubMed

    Leclerc, Eric; Kimura, Keiichi; Shinohara, Marie; Danoy, Mathieu; Le Gall, Morgane; Kido, Taketomo; Miyajima, Atsushi; Fujii, Teruo; Sakai, Yasuyuki

    2017-01-01

    We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.

  10. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

    PubMed

    Truong, Vinh X; Hun, Michael L; Li, Fanyi; Chidgey, Ann P; Forsythe, John S

    2016-07-21

    Hydrogels prepared from naturally derived gelatin can provide a suitable environment for cell attachment and growth, making them favourable materials in tissue engineering. However, physically crosslinked gelatin hydrogels are not stable under physiological conditions while chemical crosslinking of gelatin by radical polymerization may be harmful to cells. In this study, we attached the norbornene functional group to gelatin, which was subsequently crosslinked with a polyethylene glycol (PEG) linker via the nitrile oxide-norbornene click reaction. The rapid crosslinking process allows the hydrogel to be formed within minutes of mixing the polymer solutions under physiological conditions, allowing the gels to be used as injectable materials. The hydrogels properties including mechanical strength, swelling and degradation, can be tuned by changing either the ratio of the reacting groups or the total concentration of the polymer precursors. Murine embryonic fibroblastic cells cultured in soft gels (2 wt% of gelatin and 1 wt% of PEG linker) demonstrated high cell viability as well as similar phenotypic profiles (PDGFRα and MTS15) to Matrigel cultures over 5 days. Thymic epithelial cell and fibroblast co-cultures produced epithelial colonies in these gels following 7 days incubation. These studies demonstrate that gelatin based hydrogels, prepared using "click" crosslinking, provide a robust cell culture platform with retained benefits of the gelatin material, and are therefore suitable for use in various tissue engineering applications.

  11. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells.

    PubMed

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.

  12. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells

    PubMed Central

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  13. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    PubMed

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements.

  14. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects.

  15. Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer.

    PubMed

    Augustine, Tanya N; Dix-Peek, Thérèse; Duarte, Raquel; Candy, Geoffrey P

    2015-11-01

    Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines.

  16. Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues.

    PubMed

    Qian, Zuoming; Mordovanakis, Aghapi; Schoenly, Joshua E; Covarrubias, Andrés; Feng, Yuanfeng; Lilge, Lothar; Marjoribanks, Robin S

    2013-12-13

    A 3D living-cell culture in hydrogel has been developed as a standardized low-tensile-strength tissue proxy for study of ultrafast, pulsetrain-burst laser-tissue interactions. The hydrogel is permeable to fluorescent biomarkers and optically transparent, allowing viable and necrotic cells to be imaged in 3D by confocal microscopy. Good cell-viability allowed us to distinguish between typical cell mortality and delayed subcellular tissue damage (e.g., apoptosis and DNA repair complex formation), caused by laser irradiation. The range of necrosis depended on laser intensity, but not on pulsetrain-burst duration. DNA double-strand breaks were quantified, giving a preliminary upper limit for genetic damage following laser treatment.

  17. Optimization of high grade glioma cell culture from surgical specimens for use in clinically relevant animal models and 3D immunochemistry.

    PubMed

    Hasselbach, Laura A; Irtenkauf, Susan M; Lemke, Nancy W; Nelson, Kevin K; Berezovsky, Artem D; Carlton, Enoch T; Transou, Andrea D; Mikkelsen, Tom; deCarvalho, Ana C

    2014-01-07

    Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated into single cells, we use the neurosphere assay as an enrichment method for cells presenting cancer stem cell phenotype, including expression of neural stem cell markers, long term self-renewal in vitro, and the ability to form orthotopic xenograft tumors. This method has been previously proposed, and is now in use by several investigators. Based on our experience of dissociating and culturing 125 glioblastoma specimens, we arrived at the detailed protocol we present here, suitable for routine neurosphere culturing of high grade astrocytomas and large scale expansion of tumorigenic cells for preclinical studies. We report on the efficiency of successful long term cultures using this protocol and suggest affordable alternatives for culturing dissociated glioblastoma cells that fail to grow as neurospheres. We also describe in detail a protocol for preserving the neurospheres 3D architecture for immunohistochemistry. Cell cultures enriched in CSCs, capable of generating orthotopic xenograft models that preserve the molecular signatures and heterogeneity of GBMs, are becoming increasingly popular for the study of the biology of GBMs and for the improved design of preclinical testing of potential therapies.

  18. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.

    PubMed

    Liu, Yunxiao; Chan-Park, Mary B

    2010-02-01

    Many synthetic hydrogels for cell encapsulation have hitherto been based on polyethylene glycol which is non-natural, non-biodegradable and only terminal-functionalizable, all of which are drawbacks for tissue engineering or cell delivery. The polysaccharide dextran is also highly hydrophilic but biodegradable and pendant-functionalizable and more closely resembles glycosaminoglycans to mimic the natural extracellular matrix. This study reports synthesis of a methacrylate and lysine functionalized dextran and development of hydrogel composite systems based on this material and methacrylamide modified gelatin. The mechanical stiffness and degree of swelling of the hydrogels were varied by manipulation of the degree of functionalization of dextran and gelatin and concentration/composition of precursor solution. Human umbilical artery smooth muscle cells (SMCs) were encapsulated inside hydrogels during gel hardening with photopolymerization. Rapid cell spreading, extensive cellular network formation and high SMC proliferation occurred within softer hydrogels (with shear storage moduli ranging from 898 to 3124Pa). The encapsulated SMCs appear to be relatively contractile in the initial culture than on tissue culture polystyrene dish due to physical constraint imposed by the hydrogels but they become more synthetic with time possibly due to the inability of cells to reach confluence inside these cell-mediated degradable hydrogels. From the impressive cell proliferation and network formation, these new hydrogels combining polysaccharide and protein derivatives appear to be excellent candidates for further development as bioactive scaffolds for use in vascular tissue engineering and regeneration.

  19. Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk-Fibrin Scaffolds Supports Vascularization.

    PubMed

    Samal, Juhi; Weinandy, Stefan; Weinandy, Agnieszka; Helmedag, Marius; Rongen, Lisanne; Hermanns-Sachweh, Benita; Kundu, Subhas C; Jockenhoevel, Stefan

    2015-10-01

    A successful strategy to enhance the in vivo survival of engineered tissues would be to prevascularize them. In this study, fabricated silk fibroin scaffolds from mulberry and non-mulberry silkworms are investigated and compared for supporting the co-culture of human umbilical vein endothelial cells and human foreskin fibroblasts. Scaffolds are cytocompatible and when combined with fibrin gel support capillary-like structure formation. Density and interconnectivity of the formed structures are found to be better in mulberry scaffolds. ELISA shows that levels of vascular endothelial growth factor (VEGF) released in co-cultures with fibrin gel are significantly higher than in co-cultures without fibrin gel. RT PCR shows an increase in VEGFR2 expression in mulberry scaffolds indicating these scaffolds combined with fibrin provide a suitable microenvironment for the development of capillary-like structures.

  20. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  1. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules

    PubMed Central

    Yu, Jianhua; Lu, Xiongbin; Zynger, Debra L.; He, Xiaoming

    2015-01-01

    Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells that are reported to be responsible for cancer resistance and metastasis associated with conventional cancer therapies. Therefore, effective enrichment/culture of CSCs is of importance to both the understanding and treatment of cancer. However, it usually takes approximately 10 days for the widely used conventional approach to enrich CSCs through the formation of CSC-containing aggregates. Here we report the time can be shortened to 2 days while obtaining prostate CSC-containing aggregates with better quality based on the expression of surface receptor markers, dye exclusion, gene and protein expression, and in vivo tumorigenicity. This is achieved by encapsulating and culturing human prostate cancer cells in the miniaturized 3D liquid core of microcapsules with an alginate hydrogel shell. The miniaturized 3D culture in core–shell microcapsules is an effective strategy for enriching/culturing CSCs in vitro to facilitate cancer research and therapy development. PMID:24952981

  2. AlgiMatrix™-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research.

    PubMed

    Godugu, Chandraiah; Singh, Mandip

    2016-01-01

    Routinely used two-dimensional cell culture-based models often fail while translating the observations into in vivo models. This setback is more common in cancer research, due to several reasons. The extracellular matrix and cell-to-cell interactions are not present in two-dimensional (2D) cell culture models. Diffusion of drug molecules into cancer cells is hindered by barriers of extracellular components in in vivo conditions, these barriers are absent in 2D cell culture models. To better mimic or simulate the in vivo conditions present in tumors, the current study used the alginate based three-dimensional cell culture (AlgiMatrix™) model, which resembles close to the in vivo tumor models. The current study explains the detailed protocols involved in AlgiMatrix™ based in vitro non-small-cell lung cancer (NSCLC) models. The suitability of this model was studied by evaluating, cytotoxicity, apoptosis, and penetration of nanoparticles into the in vitro tumor spheroids. This study also demonstrated the effect of EphA2 receptor targeted docetaxel-loaded nanoparticles on MDA-MB-468 TNBC cell lines. The methods section is subdivided into three subsections such as (1) preparation of AlgiMatrix™-based 3D in vitro tumor models and cytotoxicity assays, (2) free drug and nanoparticle uptake into spheroid studies, and (3) western blot, IHC, and RT-PCR studies.

  3. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  4. Real architecture For 3D Tissue (RAFT™) culture system improves viability and maintains insulin and glucagon production of mouse pancreatic islet cells.

    PubMed

    Szebeni, Gabor J; Tancos, Zsuzsanna; Feher, Liliana Z; Alfoldi, Robert; Kobolak, Julianna; Dinnyes, Andras; Puskas, Laszlo G

    2017-04-01

    There is an unmet medical need for the improvement of pancreatic islet maintenance in culture. Due to restricted donor availability it is essential to ameliorate islet viability and graft engraftment. The aim of this study was to compare the standard tissue culture techniques with the advanced Real Architecture For 3D Tissue (RAFT™) culture system in terms of viability and hormone production. Here, we first report that islets embedded in RAFT™ collagen type I advanced tissue culture system maintain their tissue integrity better than in monolayer and suspension cultures. The Calcein violet assay and Annexin V/propidium-iodide staining show higher cell viability in the RAFT™ culture system. Quantitative real-time PCR data showed that RAFT™ increases insulin expression after 18 days in culture compared to traditional methods. Enhanced insulin and glucagon production was further verified by immunofluorescent staining in a time-course manner. These results indicate that RAFT™ tissue culture platform can be a promising tool to maintain pancreatic islet spheroid integrity and culture islets for downstream high throughput pharmacological studies ex vivo.

  5. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  6. Inverse-power-law behavior of cellular motility reveals stromal–epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy

    PubMed Central

    Oldenburg, Amy L.; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M.; Troester, Melissa A.

    2015-01-01

    The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (p<0.001) and negatively (p<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT. PMID:26973862

  7. Quantifying modes of 3D cell migration

    PubMed Central

    Driscoll, Meghan K.; Danuser, Gaudenz

    2015-01-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  8. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates.

  9. Evaluation of Metabolomic Changes as a Biomarker of Chondrogenic Differentiation in 3D-cultured Human Mesenchymal Stem Cells Using Proton (1H) Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Jang, Moo-Young; Chun, Song-I; Mun, Chi-Woong; Hong, Kwan Soo; Shin, Jung-Woog

    2013-01-01

    Purpose The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy. Materials and Methods hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra. Results During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs. Conclusions In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation. PMID:24205199

  10. An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold.

    PubMed

    Govoni, Marco; Lotti, Fabrizio; Biagiotti, Luigi; Lannocca, Maurizio; Pasquinelli, Gianandrea; Valente, Sabrina; Muscari, Claudio; Bonafè, Francesca; Caldarera, Claudio M; Guarnieri, Carlo; Cavalcanti, Silvio; Giordano, Emanuele

    2014-10-01

    Much evidence in the literature demonstrates the effect of cyclic mechanical stretch in maintaining, or addressing, a muscle phenotype. Such results were obtained using several technical approaches, useful for the experimental collection of proofs of principle but probably unsuitable for application in clinical regenerative medicine. Here we aimed to design a reliable innovative bioreactor, acting as a stand-alone cell culture incubator, easy to operate and effective in addressing mesenchymal stem cells (MSCs) seeded onto a 3D bioreabsorbable scaffold, towards a muscle phenotype via the transfer of a controlled and highly-reproducible cyclic deformation. Electron microscopy, immunohistochemistry and biochemical analysis of the obtained pseudotissue constructs showed that cells 'trained' over 1 week: (a) displayed multilayer organization and invaded the 3D mesh of the scaffold; and (b) expressed typical markers of muscle cells. This effect was due only to physical stimulation of the cells, without the need of any other chemical or genetic manipulation. This device is thus proposed as a prototypal instrument to obtain pseudotissue constructs to test in cardiovascular regenerative medicine, using good manufacturing procedures.

  11. Feasibility of using sodium chloride as a tracer for the characterization of the distribution of matter in complex multi-compartment 3D bioreactors for stem cell culture.

    PubMed

    Gerlach, Jörg C; Witaschek, Tom; Strobel, Catrin; Brayfield, Candace A; Bornemann, Reinhard; Catapano, Gerardo; Zeilinger, Katrin

    2010-06-01

    The experimental characterization of the distribution of matter in complex multi-compartment three-dimensional membrane bioreactors for human cell culture is complicated by tracer interactions with the membranes and other bioreactor constituents. This is due to the fact that membranes with a high specific surface area often feature a hydrophobic chemical backbone that may adsorb tracers often used to this purpose, such as proteins and dyes. Membrane selectivity, and its worsening caused by protein adsorption, may also hinder tracer transfer across neighboring compartments, thus preventing effective characterization of the distribution of matter in the whole bioreactor. Tracer experiments with sodium chloride (NaCl) may overcome some of these limitations and be effectively used to characterize the distribution of matter in complex 3D multi-compartments membrane bioreactors for stem cell culture. NaCl freely permeates most used membranes, it does not adsorb on uncharged membranes, and its concentration may be accurately measured in terms of solution conductivity. In this preliminary study, the feasibility of complex multi-compartment membrane bioreactors was investigated with a NaCl concentration pulse challenge to characterize how their distribution of matter changes when they are operated under different conditions. In particular, bioreactors consisting of three different membrane types stacked on top of one another to form a 3D network were characterized under different feed conditions.

  12. Effects of cell type and configuration on anabolic and catabolic activity in 3D co‐culture of mesenchymal stem cells and nucleus pulposus cells

    PubMed Central

    Ouyang, Ann; Cerchiari, Alec E.; Tang, Xinyan; Liebenberg, Ellen; Alliston, Tamara; Gartner, Zev J.

    2016-01-01

    ABSTRACT Tissue engineering constructs to treat intervertebral disc degeneration must adapt to the hypoxic and inflammatory degenerative disc microenvironment. The objective of this study was to determine the effects of two key design factors, cell type and cell configuration, on the regenerative potential of nucleus pulposus cell (NPC) and mesenchymal stem cell (MSC) constructs. Anabolic and catabolic activity was quantified in constructs of varying cell type (NPCs, MSCs, and a 50:50 co‐culture) and varying configuration (individual cells and micropellets). Anabolic and catabolic outcomes were both dependent on cell type. Gene expression of Agg and Col2A1, glycosaminoglycan (GAG) content, and aggrecan immunohistochemistry (IHC), were significantly higher in NPC‐only and co‐culture groups than in MSC‐only groups, with NPC‐only groups exhibiting the highest anabolic gene expression levels. However, NPC‐only constructs also responded to inflammation and hypoxia with significant upregulation of catabolic genes (MMP‐1, MMP‐9, MMP‐13, and ADAMTS‐5). MSC‐only groups were unaffected by degenerative media conditions, and co‐culture with MSCs modulated catabolic induction of the NPCs. Culturing cells in a micropellet configuration dramatically reduced catabolic induction in co‐culture and NPC‐only groups. Co‐culture micropellets, which take advantage of both cell type and configuration effects, had the most immunomodulatory response, with a significant decrease in MMP‐13 and ADAMTS‐5 expression in hypoxic and inflammatory media conditions. Co‐culture micropellets were also found to self‐organize into bilaminar formations with an MSC core and NPC outer layer. Further understanding of these cell type and configuration effects can improve tissue engineering designs. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:61–73, 2017. PMID

  13. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    SciTech Connect

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  14. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System

    DTIC Science & Technology

    2015-12-01

    Proliferation depended on prostaglandin, (PGE2) production. Chronic oxidative stress of the ECM with H2O2 did not affect cancer cell growth . However...modification of the composition and structure of the ECM, and how cytokines and growth factors affect the cancer cells. The goal was to modify the composition... growth of the cancer cells. In order to determine how an ECM, formed under estrogen deprivation, would affect the growth of cancer cells, murine

  15. Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease.

    PubMed

    Eetezadi, Sina; De Souza, Raquel; Vythilingam, Mirugashini; Lessa Cataldi, Rodrigo; Allen, Christine

    2015-11-02

    Current chemotherapy strategies for second-line treatment of relapsed ovarian cancer are unable to effectively treat residual disease post-cytoreduction. The findings presented herein suggest that tissue penetration of drug is not only an issue for large, unresectable tumors, but also for invisible, microscopic lesions. The present study sought to investigate the potential of a block copolymer micelle (BCM) formulation, which may reduce toxicities of doxorubicin (DOX) in a similar way to pegylated liposomal doxorubicin (PLD, Doxil/Caelyx), while enhancing penetration into tumor tissue and improving intratumoral availability of drug. To achieve this goal, 50 nm-sized BCMs capable of high DOX encapsulation (BCM-DOX) at drug levels ranging from 2 to 7.6 mg/mL were formulated using an ultrafiltration technique. BCM-DOX was evaluated in 2D and 3D cell culture of the human ovarian cancer cell lines HEYA8, OV-90, and SKOV3. Additionally, the current study examines the impact of mild hyperthermia (MHT) on the cytotoxicity of DOX. The BCM-DOX formulation fulfilled the goal of controlling drug release while providing up to 9-fold greater cell monolayer cytotoxicity in comparison to PLD. In 3D cell culture, using multicellular tumor spheroids (MCTS) as a model of residual disease postsurgery, BCM-DOX achieved the benefits of an extended release formulation of DOX and resulted in improvements in drug accumulation over PLD, while yielding drug levels approaching that achievable by exposure to DOX alone. In comparison to PLD, this translated into superior MCTS growth inhibition in the short term and comparable inhibition in the long term. Overall, although MHT appeared to enhance drug accumulation in HEYA8 MCTS treated with BCM-DOX and DOX alone in the short term, improved growth inhibition of MCTS by MHT was not observed after 48 h of drug treatment. Evaluation of BCM-DOX in comparison to PLD as well as the effects of MHT is warranted in vivo.

  16. Disruption of 3D MCF-12A Breast Cell Cultures by Estrogens – An In Vitro Model for ER-Mediated Changes Indicative of Hormonal Carcinogenesis

    PubMed Central

    Marchese, Stephanie; Silva, Elisabete

    2012-01-01

    Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular

  17. Analysis of the effects of stromal cells on the migration of lymphocytes into and through inflamed tissue using 3-D culture models.

    PubMed

    Jeffery, Hannah C; Buckley, Christopher D; Moss, Paul; Rainger, G Ed; Nash, Gerard B; McGettrick, Helen M

    2013-12-31

    Stromal cells may regulate the recruitment and behaviour of leukocytes during an inflammatory response, potentially through interaction with the endothelial cells (EC) and the leukocytes themselves. Here we describe new in vitro methodologies to characterise the effects of stromal cells on the migration of lymphocytes through endothelium and its underlying matrix. Three-dimensional tissue-like constructs were created in which EC were cultured above a stromal layer incorporating fibroblasts either as a monolayer on a porous filter or dispersed within a matrix of collagen type 1. A major advantage of these constructs is that they enable each step in leukocyte migration to be analysed in sequence (migration through EC and then stroma), as would occur in vivo. Migrated cells can also be retrieved from the constructs to identify which subsets traffic more effectively and how their functional responses evolve during migration. We found that culture of EC with dermal fibroblasts promoted lymphocyte transendothelial migration but not onward transit through matrix. A critical factor influencing the effect of fibroblasts on recruitment proved to be their proximity to the EC, with direct contact tending to disrupt migration. Comparison of the different approaches indicates that choice of an appropriate 3-D model enables the steps in lymphocyte entry into tissue to be studied in sequence, the regulatory mechanism to be dissected, and the effects of changes in stroma to be investigated.

  18. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  19. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.

    PubMed

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  20. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    PubMed Central

    Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565

  1. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions.

    PubMed

    Petropolis, Debora B; Rodrigues, Juliany C F; Viana, Nathan B; Pontes, Bruno; Pereira, Camila F A; Silva-Filho, Fernando C

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited "freeze and run" migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular "home"-macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.

  2. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  3. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  4. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells

    PubMed Central

    Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena

    2016-01-01

    One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes. PMID:27765913

  5. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  6. Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis.

    PubMed

    Ukaji, Tamami; Lin, Yinzhi; Okada, Shoshiro; Umezawa, Kazuo

    2017-02-08

    The three-dimensional (3D) culture of cancer cells provides an environmental condition closely related to the condition in vivo. It would especially be an ideal model for the early phase of metastasis, including the detachment and invasion of cancer cells from the primary tumor. In one hand, dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, is known to inhibit cancer progression and late phase metastasis in animal experiments. In the present research, we studied the inhibitory activity on the 3D invasion of breast carcinoma cells. Breast carcinoma MDA-MB-231 cells showed the most active invasion from spheroid among the cell lines tested. DHMEQ inhibited the 3D invasion of cells at the 3D-nontoxic concentrations. The PCR array analysis using RNA isolated from the 3D on-top cultured cells indicated that matrix metalloproteinase (MMP)-2 expression is lowered by DHMEQ. Knockdown of MMP-2 and an MMP inhibitor, GM6001, both inhibited the invasion. DHMEQ was shown to inhibit the promoter activity of MMP-2 in the reporter assay. Thus, DHMEQ was shown to inhibit NF-κB/MMP-2-dependent cellular invasion in 3D-cultured MDA-MB-231 cells, suggesting that DHMEQ would inhibit the early phase of metastasis.

  7. Filling gaps in cultural heritage documentation by 3D photography

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    This contribution promotes 3D photography as an important tool to obtain objective object information. Keeping mainly in mind World Heritage documentation as well as Heritage protection, it is another intention of this paper, to stimulate the interest in applications of 3D photography for professionals as well as for amateurs. In addition this is also an activity report of the international CIPA task group 3. The main part of this paper starts with "Digging the treasure of existing international 3D photography". This does not only belong to tangible but also to intangible Cultural Heritage. 3D photography clearly supports the recording, the visualization, the preservation and the restoration of architectural and archaeological objects. Therefore the use of 3D photography in C.H. should increase on an international level. The presented samples in 3D represent a voluminous, almost partly "forgotten treasure" of international archives for 3D photography. The next chapter is on "Promoting new 3D photography in Cultural Heritage". Though 3D photographs are a well-established basic photographic and photogrammetric tool, even suited to provide "near real" documentation, they are still a matter of research and improvement. Beside the use of 3D cameras even single lenses cameras are very much suited for photographic 3D documentation purposes in Cultural Heritage. Currently at the Faculty of Civil Engineering of the University of Applied Sciences Magdeburg-Stendal, low altitude aerial photography is exposed from a maximum height of 13m, using a hand hold carbon telescope rod. The use of this "huge selfie stick" is also an (international) recommendation, to expose high resolution 3D photography of monuments under expedition conditions. In addition to the carbon rod recently a captive balloon and a hexacopter UAV- platform is in use, mainly to take better synoptically (extremely low altitude, ground truth) aerial photography. Additional experiments with respect to "easy

  8. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    NASA Astrophysics Data System (ADS)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  9. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Liau, Jiun-Jia

    2013-10-15

    The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold.

  10. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  11. Cancer Cytokines and the Relevance of 3D Cultures for Studying those Implicated in Human Cancers.

    PubMed

    Maddaly, Ravi; Subramaniyan, Aishwarya; Balasubramanian, Harini

    2017-03-06

    Cancers are complex conditions and involving several factors for oncogenesis and progression. Of the various factors influencing the physiology of cancers, cytokines are known to play significant roles as mediators of functions. Intricate cytokine networks have been identified in cancers and interest in cytokines associated with cancers has been gaining ground. Of late, some of these cytokines are even identified as potential targets for cancer therapy apart from a few others such as IL-6 being identified as markers for disease prognosis. Of the major contributors to cancer research, cancer cell lines occupy the top slot as the most widely used material in vitro. In vitro cell cultures have seen significant evolution by the introduction of 3 dimensional (3D) culture systems. 3D cell cultures are now widely accepted as excellent material for cancer research which surpasses the traditional monolayer cultures. Cancer research has benefitted from 3D cell cultures for understanding the various hallmarks of cancers. However, the potential of these culture systems are still unexploited for cancer cytokine research compared to the other aspects of cancers such as gene expression changes, drug-induced toxicity, morphology, angiogenesis and invasion. Considering the importance of cancer cytokines, 3D cell cultures can be better utilized in understanding their roles and functions. Some of the possibilities where 3D cell cultures can contribute to cancer cytokine research arise from the distinct morphology of the tumor spheroids, the extracellular matrix (ECM), and the spontaneous occurrence of nutrient and oxygen gradients. Also, the 3D culture models enable one to co-culture different types of cells as a simulation of in vivo conditions, enhancing their utility to study cancer cytokines. We review here the cancer associated cytokines the contributions of 3D cancer cell cultures for studying cancer cytokines. This article is protected by copyright. All rights reserved.

  12. Cell proliferation and migration in silk fibroin 3D scaffolds.

    PubMed

    Mandal, Biman B; Kundu, Subhas C

    2009-05-01

    Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200-250microm diameter were formed by slow cooling at temperatures of -20 and -80 degrees C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at -196 degrees C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.

  13. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  14. 3D arrays for high throughput assay of cell migration and electrotaxis.

    PubMed

    Zhao, Sanjun; Gao, Runchi; Devreotes, Peter N; Mogilner, Alex; Zhao, Min

    2013-09-01

    Cell behaviour in 3D environments can be significantly different from those in 2D cultures. With many different 3D matrices being developed and many experimental modalities used to modulate cell behaviour in 3D, it is necessary to develop high throughput techniques to study behaviour in 3D. We report on a 3D array on slide and have adapted this to our electrotaxis chamber, thereby offering a novel approach to quantify cellular responses to electric fields (EFs) in 3D conditions, in different matrices, with different strains of cells, under various field strengths. These developments used Dictyostelium cells to illustrate possible applications and limitations.

  15. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    SciTech Connect

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan; Avery, Vicky M.

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  16. Exploring Cultural Heritage Resources in a 3d Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.

    2012-06-01

    Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.

  17. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2016-09-19

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2016.

  18. Macrophage-Secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways.

    PubMed

    Li, Ran; Hebert, Jess D; Lee, Tara A; Xing, Hao; Boussommier-Calleja, Alexandra; Hynes, Richard O; Lauffenburger, Douglas A; Kamm, Roger D

    2017-01-15

    The ability of a cancer cell to migrate through the dense extracellular matrix within and surrounding the solid tumor is a critical determinant of metastasis. Macrophages enhance invasion and metastasis in the tumor microenvironment, but the basis for their effects is not fully understood. Using a microfluidic 3D cell migration assay, we found that the presence of macrophages enhanced the speed and persistence of cancer cell migration through a 3D extracellular matrix in a matrix metalloproteinases (MMP)-dependent fashion. Mechanistic investigations revealed that macrophage-released TNFα and TGFβ1 mediated the observed behaviors by two distinct pathways. These factors synergistically enhanced migration persistence through a synergistic induction of NF-κB-dependent MMP1 expression in cancer cells. In contrast, macrophage-released TGFβ1 enhanced migration speed primarily by inducing MT1-MMP expression. Taken together, our results reveal new insights into how macrophages enhance cancer cell metastasis, and they identify TNFα and TGFβ1 dual blockade as an antimetastatic strategy in solid tumors. Cancer Res; 77(2); 279-90. ©2016 AACR.

  19. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  20. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  1. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  2. Traditional Chinese medicine herbal mixture LQ arrests FUCCI-expressing HeLa cells in G₀/G₁ phase in 2D plastic, 2.5D Matrigel, and 3D Gelfoam culture visualized with FUCCI imaging.

    PubMed

    Zhang, Lei; Wu, Chengyu; Bouvet, Michael; Yano, Shuya; Hoffman, Robert M

    2015-03-10

    We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G₂/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G₀/G₁ (>90%) after 72 hours. After treatment with paclitaxel (0.01 μm), for 72 hours, 95% of the cells were in S/G₂/M. In 2.5D Matrigel culture, the colonies in the untreated control group had 40% of the cells in S/G₂/M. LQ arrested the cells in G₀/G₁ after 72 hours. Paclitaxel arrested almost all the cells in S/G₂/M after 72 hours. In 3D Gelfoam culture, the untreated control culture had approximately 45% of cells in G₂/M. In contrast, the LQ-treated cells were mostly in G₀/G₁ phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G₂/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time.

  3. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model.

    PubMed

    Astashkina, Anna I; Jones, Clint F; Thiagarajan, Giridhar; Kurtzeborn, Kristen; Ghandehari, Hamid; Brooks, Benjamin D; Grainger, David W

    2014-08-01

    Nanocarriers and nanoparticles remain an intense pharmaceutical and medical imaging technology interest. Their entry into clinical use is hampered by the lack of reliable in vitro models that accurately predict in vivo toxicity. This study evaluates a 3-D kidney organoid proximal tubule culture to assess in vitro toxicity of the hydroxylated generation-5 PAMAM dendrimer (G5-OH) compared to previously published preclinical in vivo rodent nephrotoxicity data. 3-D kidney proximal tubule cultures were created using isolated murine proximal tubule fractions suspended in a biomedical grade hyaluronic acid-based hydrogel. Toxicity in these cultures to neutral G5-OH dendrimer nanoparticles and gold nanoparticles in vitro was assessed using clinical biomarker generation. Neutral PAMAM nanoparticle dendrimers elicit in vivo-relevant kidney biomarkers and cell viability in a 3-D kidney organoid culture that closely reflect toxicity markers reported in vivo in rodent nephrotoxicity models exposed to this same nanoparticle.

  4. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM

    PubMed Central

    Chennell, George; Willows, Robin J. W.; Warren, Sean C.; Carling, David; French, Paul M. W.; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  5. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

    PubMed

    Emont, Margo P; Yu, Hui; Jun, Heejin; Hong, Xiaowei; Maganti, Nenita; Stegemann, Jan P; Wu, Jun

    2015-12-01

    It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation.

  6. The effect of light-emitting diode irradiation at different wavelengths on calcification of osteoblast-like cells in 3D culture.

    PubMed

    Chintavalakorn, Rochaya; Tanglitanont, Tatsanee; Khantachawana, Anak; Viravaidya-Pasuwat, Kwanchanok; Santiwong, Peerapong

    2015-08-01

    This study aimed to investigate the effect of four different light-emitting diode (LED) wavelengths on calcification and proliferation of osteoblast-like cells in vitro. MC3T3-E1 cells were seeded within three-dimensional collagen scaffolds and irradiated daily by LED light with peak emission wavelengths of 630-, 680-, 760- and 830-nm at constant fluency of 3.1 J/cm(2) (irradiance intensity 2 mW/cm(2)). Cultures were measured for calcium content at day 0, 7, 14, 21, 28, 35 and 42. The significant enhancement in calcium content was observed at the early stage of culture (days 7 and 14) (p<;0.05). After that, the calcium content of irradiated groups was similar to that of the controls group. This suggests the transient effect of light irradiation on osteoblastic cell calcification. Only 680-nm irradiated samples revealed a significant enhancement of calcium content until the late stages of culture (from days 21 to 42) (p<;0.001). The cyclin D mRNA expression that was investigated 3 hours after stimulation at day3 also show that the 680-nm LED irradiation can enhance cyclin D expression more than others. For enhancing bone mineralization, LED irradiation at the 680-nm is more effective than those at 630-, 760- and 830-nm. Further studies should be investigated in order to obtain the most effective parameters of LLLI on bone regeneration in clinical setting.

  7. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  8. Colony-forming progenitor cells in the postnatal mouse liver and pancreas give rise to morphologically distinct insulin-expressing colonies in 3D cultures.

    PubMed

    Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A; Riggs, Arthur D; Ku, Hsun Teresa

    2014-01-01

    In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed "Dark" colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133⁺CD49f(low)CD107b(low) phenotype, while pancreatic CFU-Dark are CD133⁻. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth.

  9. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  10. Embedding Knowledge in 3D Data Frameworks in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Coughenour, C. M.; Vincent, M. L.; de Kramer, M.; Senecal, S.; Fritsch, D.; Flores Gutirrez, M.; Lopez-Menchero Bendicho, V. M.; Ioannides, M.

    2015-08-01

    At present, where 3D modeling and visualisation in cultural heritage are concerned, an object's documentation lacks its interconnected memory provided by multidisciplinary examination and linked data. As the layers of paint, wood, and brick recount a structure's physical properties, the intangible, such as the forms of worship through song, dance, burning incense, and oral traditions, contributes to the greater story of its cultural heritage import. Furthermore, as an object or structure evolves through time, external political, religious, or environmental forces can affect it as well. As tangible and intangible entities associated with the structure transform, its narrative becomes dynamic and difficult to easily record. The Initial Training Network for Digital Cultural Heritage (ITN-DCH), a Marie Curie Actions project under the EU 7th Framework Programme, seeks to challenge this complexity by developing a novel methodology capable of offering such a holistic framework. With the integration of digitisation, conservation, linked data, and retrieval systems for DCH, the nature of investigation and dissemination will be augmented significantly. Examples of utilisating and evaluating this framework will range from a UNESCOWorld Heritage site, the Byzantine church of Panagia Forviotissa Asinou in the Troodos Mountains of Cyprus, to various religious icons and a monument located at the Monastery of Saint Neophytos. The application of this effort to the Asinou church, representing the first case study of the ITN-DCH project, is used as a template example in order to assess the technical challenges involved in the creation of such a framework.

  11. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.

  12. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  13. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  14. Myosin IIA dependent retrograde flow drives 3D cell migration.

    PubMed

    Shih, Wenting; Yamada, Soichiro

    2010-04-21

    Epithelial cell migration is an essential part of embryogenesis and tissue regeneration, yet their migration is least understood. Using our three-dimensional (3D) motility analysis, migrating epithelial cells formed an atypical polarized cell shape with the nucleus leading the cell front and a contractile cell rear. Migrating epithelial cells exerted traction forces to deform both the anterior and posterior extracellular matrix toward the cell body. The cell leading edge exhibited a myosin II-dependent retrograde flow with the magnitude and direction consistent with surrounding network deformation. Interestingly, on a two-dimensional substrate, myosin IIA-deficient cells migrated faster than wild-type cells, but in a 3D gel, these myosin IIA-deficient cells were unpolarized and immobile. In contrast, the migration rates of myosin IIB-deficient cells were similar to wild-type cells. Therefore, myosin IIA, not myosin IIB, is required for 3D epithelial cell migration.

  15. Cyto-3D-print to attach mitotic cells.

    PubMed

    Castroagudin, Michelle R; Zhai, Yujia; Li, Zhi; Marnell, Michael G; Glavy, Joseph S

    2016-08-01

    The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal.

  16. Modeling cell migration in 3D: Status and challenges.

    PubMed

    Rangarajan, Rajagopal; Zaman, Muhammad H

    2008-01-01

    Cell migration is a multi-scale process that integrates signaling, mechanics and biochemical reaction kinetics. Various mathematical models accurately predict cell migration on 2D surfaces, but are unable to capture the complexities of 3D migration. Additionally, quantitative 3D cell migration models have been few and far between. In this review we look and characterize various mathematical models available in literature to predict cell migration in 3D matrices and analyze their strengths and possible changes to these models that could improve their predictive capabilities.

  17. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  18. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis

    PubMed Central

    Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635

  19. Screening for Stromal and Matrix Effects in 3D Microenvironments of Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Montanez-Sauri, Sara I.

    Breast cancer progression ensures through the acquisition of genetic mutations, the uncontrollable growth of cells, and their progression to invasion. Studies have shown that the surrounding three-dimensional (3D) microenvironment can also influence breast cancer cell progression by controlling the morphology, differentiation, proliferation, and migration of cells. However, most of the currently available in vitro screening platforms are based on the two-dimensional (2D) culture of cells, and do not provide cells with the complex 3D microenvironment that exists in vivo. Therefore, there is a need for more biologically relevant in vitro platforms to help decipher the complexity of the microenvironment and its influence in breast cancer. In this dissertation we present an automated microfluidic platform that allows to efficiently screen for the effect of multiple matrix and stromal microenvironment in 3D cultures of breast cancer cells. Several extracellular matrix (ECM) compositions and stromal cells are included in the 3D microenvironments to examine their influence on breast cancer cell behavior. The screening results suggest that collagen gels with fibronectin might be influencing paracrine signals between breast cancer cells and stromal cells. The ability of the platform to culture and treat cells in 3D microenvironments offers a powerful screening tool for the identification of compounds and interactions using more in vivo-like 3D microenvironments. The identification of these mechanisms will increase our current understanding of breast cancer, and will aid in the identification of potential therapeutics.

  20. 3D Culture as a Clinically Relevant Model for Personalized Medicine.

    PubMed

    Fong, Eliza Li Shan; Toh, Tan Boon; Yu, Hanry; Chow, Edward Kai-Hua

    2017-03-01

    Advances in understanding many of the fundamental mechanisms of cancer progression have led to the development of molecular targeted therapies. While molecular targeted therapeutics continue to improve the outcome for cancer patients, tumor heterogeneity among patients, as well as intratumoral heterogeneity, limits the efficacy of these drugs to specific patient subtypes, as well as contributes to relapse. Thus, there is a need for a more personalized approach toward drug development and diagnosis that takes into account the diversity of cancer patients, as well as the complex milieu of tumor cells within a single patient. Three-dimensional (3D) culture systems paired with patient-derived xenografts or patient-derived organoids may provide a more clinically relevant system to address issues presented by personalized or precision medical approaches. In this review, we cover the current methods available for applying 3D culture systems toward personalized cancer research and drug development, as well as key challenges that must be addressed in order to fully realize the potential of 3D patient-derived culture systems for cancer drug development. Greater implementation of 3D patient-derived culture systems in the cancer research field should accelerate the development of truly personalized medical therapies for cancer patients.

  1. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  2. 3D printing of biomimetic microstructures for cancer cell migration.

    PubMed

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2014-02-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.

  3. 3D printing of biomimetic microstructures for cancer cell migration

    PubMed Central

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2013-01-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies PMID:24150602

  4. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    SciTech Connect

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore, using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  5. Individual versus collective fibroblast spreading and migration: regulation by matrix composition in 3D culture.

    PubMed

    Miron-Mendoza, Miguel; Lin, Xihui; Ma, Lisha; Ririe, Peter; Petroll, W Matthew

    2012-06-01

    Extracellular matrix (ECM) supplies both physical and chemical signals to cells and provides a substrate through which fibroblasts migrate during wound repair. To directly assess how ECM composition regulates this process, we used a nested 3D matrix model in which cell-populated collagen buttons were embedded in cell-free collagen or fibrin matrices. Time-lapse microscopy was used to record the dynamic pattern of cell migration into the outer matrices, and 3D confocal imaging was used to assess cell connectivity and cytoskeletal organization. Corneal fibroblasts stimulated with PDGF migrated more rapidly into collagen as compared to fibrin. In addition, the pattern of fibroblast migration into fibrin and collagen ECMs was strikingly different. Corneal fibroblasts migrating into collagen matrices developed dendritic processes and moved independently, whereas cells migrating into fibrin matrices had a more fusiform morphology and formed an interconnected meshwork. A similar pattern was observed when using dermal fibroblasts, suggesting that this response is not unique to corneal cells. We next cultured corneal fibroblasts within and on top of standard collagen and fibrin matrices to assess the impact of ECM composition on the cell spreading response. Similar differences in cell morphology and connectivity were observed – cells remained separated on collagen but coalesced into clusters on fibrin. Cadherin was localized to junctions between interconnected cells, whereas fibronectin was present both between cells and at the tips of extending cell processes. Cells on fibrin matrices also developed more prominent stress fibers than those on collagen matrices. Importantly, these spreading and migration patterns were consistently observed on both rigid and compliant substrates, thus differences in ECM mechanical stiffness were not the underlying cause. Overall, these results demonstrate for the first time that ECM protein composition alone (collagen vs. fibrin) can induce

  6. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.

  7. Characteristics of tumor and host cells in 3-D simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Chopra, V.; Dinh, T.; Wood, T.; Pellis, N.; Hannigan, E.

    Co-cultures of three-dimensional (3-D) constructs of one cell type with dispersed cells of a second cell type in low-shear rotating suspension cultures in simulated microgravity environment have been used to investigate invasive properties of normal and malignant cell types. We have shown that the epithelial and endothelial cells undergo a switch in characteristics when grown in an in vitro 3-D environment, that mimics the in vivo host environment as compared with conventional two-dimensional (2-D) monolayer cultures. Histological preparations and immunohistochemical staining procedures of cocultured harvests demonstrated various markers of interest: like collagen vimentin, mucin, elastin, fibrin, fibrinogen, cytokeratin, adhesion molecules and various angiogenic factors by tumor cells from gynecological cancer patients along with fibroblasts, endothelial cells and patient-derived mononuclear cells (n=8). The growth rate was enhanced 10-15 folds by 3-D cocultures of patient-derived cells as compared with 2-D monolayer cultures and 3-D monocultures. The production of interleukin-2, interleukin-6, interleukin -8, vascular endothelial cell growth factor, basic fibroblast growth factor, and angiogenin was studied by using ELISA and RT- PCR. Human umbilical vein-derived endothelial cell (HUVEC) were used to study the mitogenic response of the conditioned medium collected from 3-D monocultures and cocultures during proliferation and migration assays. The conditioned medium collected from 3-D cocultures of cancer cells also 1) increased the expression of message levels of vascular endothelial growth factor and its receptor flt-1 and KDR was observed by HUVEC, and 2) increased the expression of intracellular and vascular cell adhesion molecules on the surface of HUVEC, when measured by using Live cell ELISA assays and immunofluorescent staining as compared with 3-D monocultures of normal epithelial cells. There was an increase in production of 1) enzymatic activity that

  8. 3D Models of the NCI60 Cell Lines for Screening Oncology Compounds.

    PubMed

    Selby, Mike; Delosh, Rene; Laudeman, Julie; Ogle, Chad; Reinhart, Russell; Silvers, Thomas; Lawrence, Scott; Kinders, Robert; Parchment, Ralph; Teicher, Beverly A; Evans, David M

    2017-03-01

    The NCI60 cell line panel screen includes 60 human tumor cell lines derived from nine tumor types that has been used over the past 20+ years to screen small molecules, biologics, and natural products for activity. Cells in monolayer culture in 96-well plates are exposed to compounds for 48 h, and Sulforhodamine B is used to determine cell viability. Data analysis tools such as COMPARE allow classification of compounds based on the pattern of cell line response. However, many compounds highly active in monolayer cell culture fail to show efficacy in vivo. Therefore, we explored 3D culture of the NCI60 panel as a strategy to improve the predictive accuracy of the screen. 3D cultures more closely resemble tumors than monolayer cultures with tighter cell-cell contact and nutrient and oxygen gradients between the periphery and the center. We optimized the NCI60 cell line panel for generating 3D spheroids of a prespecified diameter (300-500 µm) in ultra-low attachment (ULA) plates. Spheroids were classified into four categories based on imaging, and concentration response of select agents in 2D and 3D models is presented.

  9. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures.

    PubMed

    Uhl, Franziska E; Vierkotten, Sarah; Wagner, Darcy E; Burgstaller, Gerald; Costa, Rita; Koch, Ina; Lindner, Michael; Meiners, Silke; Eickelberg, Oliver; Königshoff, Melanie

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a progressive loss of lung tissue. Inducing repair processes within the adult diseased lung is of major interest and Wnt/β-catenin signalling represents a promising target for lung repair. However, the translation of novel therapeutic targets from model systems into clinical use remains a major challenge.We generated murine and patient-derived three-dimensional (3D) ex vivo lung tissue cultures (LTCs), which closely mimic the 3D lung microenvironment in vivo. Using two well-known glycogen synthase kinase-3β inhibitors, lithium chloride (LiCl) and CHIR 99021 (CT), we determined Wnt/β-catenin-driven lung repair processes in high spatiotemporal resolution using quantitative PCR, Western blotting, ELISA, (immuno)histological assessment, and four-dimensional confocal live tissue imaging.Viable 3D-LTCs exhibited preserved lung structure and function for up to 5 days. We demonstrate successful Wnt/β-catenin signal activation in murine and patient-derived 3D-LTCs from COPD patients. Wnt/β-catenin signalling led to increased alveolar epithelial cell marker expression, decreased matrix metalloproteinase-12 expression, as well as altered macrophage activity and elastin remodelling. Importantly, induction of surfactant protein C significantly correlated with disease stage (per cent predicted forced expiratory volume in 1 s) in patient-derived 3D-LTCs.Patient-derived 3D-LTCs represent a valuable tool to analyse potential targets and drugs for lung repair. Enhanced Wnt/β-catenin signalling attenuated pathological features of patient-derived COPD 3D-LTCs.

  10. Adipose tissue-derived stem cells display a proangiogenic phenotype on 3D scaffolds.

    PubMed

    Neofytou, Evgenios A; Chang, Edwin; Patlola, Bhagat; Joubert, Lydia-Marie; Rajadas, Jayakumar; Gambhir, Sanjiv S; Cheng, Zhen; Robbins, Robert C; Beygui, Ramin E

    2011-09-01

    Ischemic heart disease is the leading cause of death worldwide. Recent studies suggest that adipose tissue-derived stem cells (ASCs) can be used as a potential source for cardiovascular tissue engineering due to their ability to differentiate along the cardiovascular lineage and to adopt a proangiogenic phenotype. To understand better ASCs' biology, we used a novel 3D culture device. ASCs' and b.END-3 endothelial cell proliferation, migration, and vessel morphogenesis were significantly enhanced compared to 2D culturing techniques. ASCs were isolated from inguinal fat pads of 6-week-old GFP+/BLI+ mice. Early passage ASCs cells (P3-P4), PKH26-labeled murine b.END-3 cells or a co-culture of ASCs and b.END-3 cells were seeded at a density of 1 × 10(5) on three different surface configurations: (a) a 2D surface of tissue culture plastic, (b) Matrigel, and (c) a highly porous 3D scaffold fabricated from inert polystyrene. VEGF expression, cell proliferation, and tubulization, were assessed using optical microscopy, fluorescence microscopy, 3D confocal microscopy, and SEM imaging (n = 6). Increased VEGF levels were seen in conditioned media harvested from co-cultures of ASCs and b.END-3 on either Matrigel or a 3D matrix. Fluorescence, confocal, SEM, bioluminescence revealed improved cell, proliferation, and tubule formation for cells seeded on the 3D polystyrene matrix. Collectively, these data demonstrate that co-culturing ASCs with endothelial cells in a 3D matrix environment enable us to generate prevascularized tissue-engineered constructs. This can potentially help us to surpass the tissue thickness limitations faced by the tissue engineering community today.

  11. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  12. Micro-well arrays for 3D shape control and high resolution analysis of single cells.

    PubMed

    Ochsner, Mirjam; Dusseiller, Marc R; Grandin, H Michelle; Luna-Morris, Sheila; Textor, Marcus; Vogel, Viola; Smith, Michael L

    2007-08-01

    In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.

  13. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.

  14. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing.

  15. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines

    PubMed Central

    van Wenum, Martien; Adam, Aziza A.A.; Hakvoort, Theodorus B.M.; Hendriks, Erik J.; Shevchenko, Valery; van Gulik, Thomas M.; Chamuleau, Robert A.F.M.; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application. PMID:27489500

  16. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  17. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  18. Influence of scaffold design on 3D printed cell constructs.

    PubMed

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  19. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    PubMed

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  20. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  1. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  2. Grid cells in 3-D: Reconciling data and models.

    PubMed

    Horiuchi, Timothy K; Moss, Cynthia F

    2015-12-01

    It is well documented that place cells and grid cells in echolocating bats show properties similar to those described in rodents, and yet, continuous theta-frequency oscillations, proposed to play a central role in grid/place cell formation, are not present in bat recordings. These comparative neurophysiological data have raised many questions about the role of theta-frequency oscillations in spatial memory and navigation. Additionally, spatial navigation in three-dimensions poses new challenges for the representation of space in neural models. Inspired by the literature on space representation in the echolocating bat, we have developed a nonoscillatory model of 3-D grid cell creation that shares many of the features of existing oscillatory-interference models. We discuss the model in the context of current knowledge of 3-D space representation and highlight directions for future research.

  3. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models

    PubMed Central

    Sung, Kyung Eun; Su, Xiaojing; Berthier, Erwin; Pehlke, Carolyn; Friedl, Andreas; Beebe, David J.

    2013-01-01

    The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models. PMID:24124550

  4. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  5. Engineering a 3D microfluidic culture platform for tumor-treating field application

    PubMed Central

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  6. Engineering a 3D microfluidic culture platform for tumor-treating field application

    NASA Astrophysics Data System (ADS)

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-05-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.

  7. A biofidelic 3D culture model to study the development of brain cellular systems.

    PubMed

    Ren, M; Du, C; Herrero Acero, E; Tang-Schomer, M D; Özkucur, N

    2016-04-26

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems.

  8. A biofidelic 3D culture model to study the development of brain cellular systems

    PubMed Central

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  9. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering.

    PubMed

    Navran, Stephen

    2008-01-01

    The practice of cell culture has been virtually unchanged for 100 years. Until recently, life scientists have had to content themselves with two-dimensional cell culture technology. Clearly, living creatures are not constructed in two dimensions and thus it has become widely recognized that in vitro culture systems must become three dimensional to correctly model in vivo biology. Attempts to modify conventional 2-D culture technology to accommodate 3-D cell growth such as embedding cells in extracellular matrix have demonstrated the superiority of concept. Nevertheless, there are serious drawbacks to this approach including limited mass transport and lack of scalability. Recently, a new cell culture technology developed at NASA to study the effects of microgravity on cells has emerged to solve many of the problems of 3-D cell culture. The technology, the Rotating Wall Vessel (RWV) is a single axis clinostat consisting of a fluid-filled, cylindrical, horizontally rotating culture vessel. Cells placed in this environment are suspended by the resolution of the gravitational, centrifugal and Coriolis forces with extremely low mechanical shear. These conditions, which have been called "low shear modeled microgravity", enable cells to assemble into tissue-like aggregates with high mass transport of nutrients, oxygen and wastes. Examples of the use of the RWV for basic cell biology research and tissue engineering applications are discussed.

  10. Protrusive waves guide 3D cell migration along nanofibers

    PubMed Central

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander

    2015-01-01

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933

  11. Protrusive waves guide 3D cell migration along nanofibers.

    PubMed

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander; Ladoux, Benoit; Gauthier, Nils C

    2015-11-09

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions.

  12. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    PubMed

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  13. Role of dynamin in elongated cell migration in a 3D matrix.

    PubMed

    Lees, Justin G; Gorgani, Nick N; Ammit, Alaina J; McCluskey, Adam; Robinson, Phillip J; O'Neill, Geraldine M

    2015-03-01

    The use of 3-dimensional (3D) collagen gels has yielded new insights into the migratory behaviour of cancer cells. While the large GTPase dynamin has emerged as an important regulator of cancer cell migration and invasion under 2D conditions, its role in 3D migration is unclear. We have used a potent dynamin modulator, a bis-tyrphostin derivative, Ryngo® 1-23, to investigate the role of dynamin in 3D migration in 3 different cell lines. The compound specifically inhibits persistent, elongated 3D migration in U87MG and SMA-560 cells. Treated U87MG cells adopt a rounded morphology that is not due to apoptosis, loss of matrix metalloprotease activity or inhibition of clathrin-mediated endocytosis. Given that Ryngo 1-23 is known to regulate dynamin oligomerisation and actin dynamics at the leading edge, we analysed actin filament distribution. Ryngo 1-23 induced a switch in actin filament organization in 3D cultures resulting in the generation of multiple short actin-rich microspikes. Correlated with the change in actin filament distribution, cells displayed reduced collagen gel contraction. Since acto-myosin force transmission to the extra-cellular matrix underpins persistent, elongated migration, our results suggest that Ryngo 1-23 modulates this process in 3D migration via dynamin-mediated regulation of acto-myosin force transmission to the extra-cellular matrix.

  14. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    PubMed

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  15. 3D visualization of membrane failures in fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  16. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  17. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  18. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    PubMed

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  19. 3D cancer cell migration in a confined matrix

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  20. Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments

    PubMed Central

    Welf, Erik S.; Driscoll, Meghan K.; Dean, Kevin M.; Schäfer, Claudia; Chu, Jun; Davidson, Michael W.; Lin, Michael Z.; Danuser, Gaudenz; Fiolka, Reto

    2016-01-01

    The microenvironment determines cell behavior, but the underlying molecular mechanisms are poorly understood because quantitative studies of cell signaling and behavior have been challenging due to insufficient spatial and/or temporal resolution and limitations on microenvironmental control. Here we introduce microenvironmental selective plane illumination microscopy (meSPIM) for imaging and quantification of intracellular signaling and submicrometer cellular structures as well as large-scale cell morphological and environmental features. We demonstrate the utility of this approach by showing that the mechanical properties of the microenvironment regulate the transition of melanoma cells from actin-driven protrusion to blebbing, and we present tools to quantify how cells manipulate individual collagen fibers. We leverage the nearly isotropic resolution of meSPIM to quantify the local concentration of actin and phosphatidylinositol 3-kinase signaling on the surfaces of cells deep within 3D collagen matrices and track the many small membrane protrusions that appear in these more physiologically relevant environments. PMID:26906741

  1. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future.

  2. Polychromatic light-induced osteogenic activity in 2D and 3D cultures.

    PubMed

    Ülker, Nazife; Çakmak, Anıl S; Kiremitçi, Arlin S; Gümüşderelioğlu, Menemşe

    2016-11-01

    Photobiomodulation (PBM) has been applied to manipulate cellular responses by using monochromatic light in different wavelengths from ultraviolet (UV) to infrared (IR) region. Until now, an effective wavelength has not been revealed to induce proliferation and/or differentiation of cells. Therefore, in the presented study, we decided to use a specially designed plasma arc light source providing wavelengths between 590 and 1500 nm in order to investigate its biomodulatory effects on chitosan scaffold-supported three-dimensional (3D) cell cultures. For comparison, two-dimensional (2D) cell cultures were also carried out in tissue-culture polystyrene dishes (TCPS). The results showed that light-induced temperature rise did not affect cells when the distance between the light source and the cells was 10 cm and the frequency of administration was daily. Moreover, light was applied for 5 and 10 min to the cells in TCPS and in chitosan scaffold groups, respectively. Cell culture studies under static conditions indicated that polychromatic light significantly stimulated bone nodule formation via the prolonged cell survival and stimulated differentiation of MC3T3-E1 preosteoblastic cells in both TCPS and chitosan scaffold groups. In conclusion, specially designed plasma arc light source used in this study induces formation of bone tissue and so, this light source is proposed as an appropriate system for in vitro bone tissue engineering applications. Statistical analyses were performed with one-way ANOVA by using GraphPad Instat software and standard deviations were calculated by using data of three parallel samples for each group.

  3. 3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product.

    PubMed

    Iskandar, Anita R; Mathis, Carole; Martin, Florian; Leroy, Patrice; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Trivedi, Keyur; Grandolfo, Davide; Cabanski, Maciej; Guedj, Emmanuel; Merg, Celine; Frentzel, Stefan; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-01-01

    In vitro toxicology approaches have evolved from a focus on molecular changes within a cell to understanding of toxicity-related mechanisms in systems that can mimic the in vivo environment. The recent development of three dimensional (3-D) organotypic nasal epithelial culture models offers a physiologically robust system for studying the effects of exposure through inhalation. Exposure to cigarette smoke (CS) is associated with nasal inflammation; thus, the nasal epithelium is relevant for evaluating the pathophysiological impact of CS exposure. The present study investigated further the application of in vitro human 3-D nasal epithelial culture models for toxicological assessment of inhalation exposure. Aligned with 3Rs strategy, this study aimed to explore the relevance of a human 3-D nasal culture model to assess the toxicological impact of aerosols generated from a candidate modified risk tobacco product (cMRTP), the Tobacco Heating System (THS) 2.2, as compared with smoke generated from reference cigarette 3R4F. A series of experimental repetitions, where multiple concentrations of THS2.2 aerosol and 3R4F smoke were applied, were conducted to obtain reproducible measurements to understand the cellular/molecular changes that occur following exposure. In agreement with "Toxicity Testing in the 21st Century - a Vision and a Strategy", this study implemented a systems toxicology approach and found that for all tested concentrations the impact of 3R4F smoke was substantially greater than that of THS2.2 aerosol in terms of cytotoxicity levels, alterations in tissue morphology, secretion of pro-inflammatory mediators, impaired ciliary function, and increased perturbed transcriptomes and miRNA expression profiles.

  4. Vinculin Regulates Directionality and Cell Polarity in 2D, 3D Matrix and 3D Microtrack Migration.

    PubMed

    Rahman, Aniqua; Carey, Shawn P; Kraning-Rush, Casey M; Goldblatt, Zachary E; Bordeleau, Francois; Lampi, Marsha C; Lin, Deanna Y; García, Andrés J; Reinhart-King, Cynthia A

    2016-03-09

    During metastasis, cells can use proteolytic activity to form tube-like "microtracks" within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro 3D micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Since focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on 2D substrates and in 3D uniform collagen matrices, indicated by reduced speed, shorter net displacement and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for Focal Adhesion Kinase (FAK) activation in 3D as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks, but not on 2D substrates, and accordingly, FAK inhibition halts cell migration in 3D microtracks. Together, these data indicate that vinculin plays a key role in polarization during migration.

  5. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  6. Controlled architectural and chemotactic studies of 3D cell migration.

    PubMed

    Tayalia, Prakriti; Mazur, Eric; Mooney, David J

    2011-04-01

    Chemotaxis plays a critical role in tissue development and wound repair, and is widely studied using ex vivo model systems in applications such as immunotherapy. However, typical chemotactic models employ 2D systems that are less physiologically relevant or use end-point assays, that reveal little about the stepwise dynamics of the migration process. To overcome these limitations, we developed a new model system using microfabrication techniques, sustained drug delivery approaches, and theoretical modeling of chemotactic agent diffusion. This model system allows us to study the effects of 3D architecture and chemotactic agent gradient on immune cell migration in real time. We find that dendritic cell migration is characterized by a strong interplay between matrix architecture and chemotactic gradients, and migration is also influenced dramatically by the cell activation state. Our results indicate that Lipopolysaccharide-activated dendritic cells studied in a traditional transwell system actually exhibit anomalous migration behavior. Such a 3D ex vivo system lends itself for analyzing cell migratory behavior in response to single or multiple competitive cues and could prove useful in vaccine development.

  7. A novel mechanotactic 3D modeling of cell morphology

    NASA Astrophysics Data System (ADS)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  8. Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells

    PubMed Central

    Liang, Jun; Susan Sun, Xiuzhi; Yang, Zhilong; Cao, Shuai

    2017-01-01

    Development of a biomimetic 3D culture system for drug screening is necessary to fully understand the in vivo environment. Previously, a self-assembling peptide hydrogel has been reported; the hydrogel exhibited physiological properties superior to a 3D cell culture matrix. In this work, further research using H9e hydrogel with HeLa cells was carried out considering H9e hydrogel’s interaction with camptothecin, a hydrophobic drug. According to AFM images, a PGworks solution triggered H9e hydrogel fiber aggregation and forms a 3D matrix suitable for cell culture. Dynamic rheological studies showed that camptothecin was encapsulated within the hydrogel network concurrently with peptide self-assembly without permanently destroying the hydrogel’s architecture and remodeling ability. Fluorescence measurement indicated negligible interaction between the fluorophore part of camptothecin and the hydrogel, especially at concentration 0.25 and 0.5 wt%. Using a dialysis method, we found that H9e hydrogel could not significantly inhibit the diffusion of camptothecin encapsulated inside the hydrogel matrix. In the cell culture experiment, HeLa cells were simultaneously embedded in the H9e hydrogel with the initialization of hydrogelation. Most importantly, cell viability data after camptothecin treatment showed responses that were drug-dose dependent but unaffected by the H9e hydrogel concentration, indicating that the hydrogel did not inhibit the drug. PMID:28145436

  9. Automatic 3D Cell Analysis in High-Throughput Microarray Using Micropillar and Microwell Chips.

    PubMed

    Lee, Dong Woo; Lee, Moo-Yeal; Ku, Bosung; Nam, Do-Hyun

    2015-10-01

    Area-based and intensity-based 3D cell viability measurement methods are compared in high-throughput screening in order to analyze their effects on the assay results (doubling time and IC50) and their repeatability. Many other 3D cell-based high-throughput screening platforms had been previously introduced, but these had not clearly addressed the effects of the two methods on the assay results and assay repeatability. In this study, the optimal way to analyze 3D cultured cells is achieved by comparing day-to-day data of doubling times and IC50 values obtained from the two methods. In experiments, the U251 cell line is grown in chips. The doubling time, based on the area of the 3D cells, was 27.8 ± 1.8 h (standard deviation: 6.6%) and 27.8 ± 3.8 h (standard deviation: 13.7%) based on the intensity of the 3D cells. The doubling time calculated by area shows a smaller standard deviation than one calculated by intensity. IC50 values calculated by both methods are very similar. The standard deviations of IC50 values for the two methods were within ± 3-fold. The IC50 variations of the 12 compounds were similar regardless of the viability measurement methods and were highly related to the shape of the dose-response curves.

  10. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology

    PubMed Central

    Shao, Yue; Sang, Jianming; Fu, Jianping

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network – with transcriptional coactivators YAP and TAZ at the center stage – that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D. PMID:25818411

  11. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs.

    PubMed

    Chen, Lei; Xiao, Zhifeng; Meng, Yue; Zhao, Yannan; Han, Jin; Su, Guannan; Chen, Bing; Dai, Jianwu

    2012-02-01

    Three-dimensional (3D) culture could partially simulate in vivo conditions. In this work, we developed a 3D collagen scaffold to investigate cellular properties of MCF-7 cells. The porous scaffolds not only induced the diversification of cell morphologies but also extended cell proliferation. The expression of pro-angiogenic growth factors and the transcriptions of matrix metalloproteinases (MMPs) were significantly increased in cells cultured in 3D collagen scaffolds. In addition, 3D collagen scaffolds could generate a cell population with the properties of cancer stem cells (CSCs). The upregulation of EMT markers and the downregulation of the epithelial cell marker were observed in cells cultured in collagen scaffolds. The expression of stem cell markers, including OCT4A and SOX2, and breast cancer stem cell signatures, including SOX4, JAG1 and CD49F, was significantly unregulated in 3D collagen scaffolds. The proportion of cells with CSC-like CD44(+)/CD24(-/low) phenotype was notably increased. High-level expression of CSC-associated properties of MCF-7 cells cultured in 3D was further confirmed by high tumorigenicity in vivo. Moreover, xenografts with 3D cells formed larger tumors. The properties of MCF-7 cells in 3D may have partially simulated their in vivo behaviors. Thus, 3D collagen scaffolds might provide a useful platform for anti-cancer therapeutics and CSC research.

  12. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems.

    PubMed

    Altmann, Brigitte; Welle, Alexander; Giselbrecht, Stefan; Truckenmüller, Roman; Gottwald, Eric

    2009-12-31

    One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a "sleeping beauty" until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated.

  13. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems

    PubMed Central

    Altmann, Brigitte; Welle, Alexander; Giselbrecht, Stefan; Truckenmüller, Roman; Gottwald, Eric

    2009-01-01

    One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a “sleeping beauty” until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated. PMID:21607106

  14. 3D-printed external light trap for solar cells.

    PubMed

    van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel

    2016-05-01

    We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

  15. XBP1-LOX Axis is critical in ER stress-induced growth of lung adenocarcinoma in 3D culture

    PubMed Central

    Yang, Yi; Cheng, Bai-Jun; Jian, Hong; Chen, Zhi-Wei; Zhao, Yi; Yu, Yong-Feng; Li, Zi-Ming; Liao, Mei-Lin; Lu, Shun

    2017-01-01

    Rapid growth of tumor cells needs to consume large amounts of oxygen and glucose, due to lack of blood supply within the tumor, cells live in an environment that lack of oxygen and nutrients. This environment results in endoplasmic reticulum (ER) stress and activates the UPR (unfolded protein response). More and more evidence suggests UPR provides a growth signal pathway required for tumor growth. In the present study, we investigated the relationship between XBP1, one transcription factor in UPR, and the expression of LOX. We found that ER stress induces high expression of XBP1, one transcription factor in UPR, in both 2D culture and 3D culture; but only promotes growth of lung adenocarcinoma cells in in vitro 3D culture other than 2D culture. In 3D culture, we further showed that knockdown XBP1 expression can block Tm/Tg-induced cell growth. LOX genes may be key downstream effector of XBP1. Knockdown LOX expression can partially block XBP1-induced cell growth. Then we showed XBP1 suppressed by RNA interference (RNAi) can reduce the expression of LOX. For the first time, it is being shown that XBP1 can regulate the expression of LOX to promote cell growth.

  16. Innovative approaches to establish and characterize primary cultures: an ex vivo 3D system and the zebrafish model

    PubMed Central

    Liverani, Chiara; La Manna, Federico; Groenewoud, Arwin; Mercatali, Laura; Van Der Pluijm, Gabri; Pieri, Federica; Cavaliere, Davide; De Vita, Alessandro; Spadazzi, Chiara; Miserocchi, Giacomo; Bongiovanni, Alberto; Recine, Federica; Riva, Nada; Amadori, Dino; Tasciotti, Ennio; Snaar-Jagalska, Ewa

    2017-01-01

    ABSTRACT Patient-derived specimens are an invaluable resource to investigate tumor biology. However, in vivo studies on primary cultures are often limited by the small amount of material available, while conventional in vitro systems might alter the features and behavior that characterize cancer cells. We present our data obtained on primary dedifferentiated liposarcoma cells cultured in a 3D scaffold-based system and injected into a zebrafish model. Primary cells were characterized in vitro for their morphological features, sensitivity to drugs and biomarker expression, and in vivo for their engraftment and invasiveness abilities. The 3D culture showed a higher enrichment in cancer cells than the standard monolayer culture and a better preservation of liposarcoma-associated markers. We also successfully grafted primary cells into zebrafish, showing their local migratory and invasive abilities. Our work provides proof of concept of the ability of 3D cultures to maintain the original phenotype of ex vivo cells, and highlights the potential of the zebrafish model to provide a versatile in vivo system for studies with limited biological material. Such models could be used in translational research studies for biomolecular analyses, drug screenings and tumor aggressiveness assays. PMID:27895047

  17. Collective Motion of Mammalian Cell Cohorts in 3D

    PubMed Central

    Sharma, Yasha; Vargas, Diego A.; Pegoraro, Adrian F.; Lepzelter, David; Weitz, David A.; Zaman, Muhammad H

    2016-01-01

    Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts composed of 3–31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system. PMID:26549557

  18. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture

    PubMed Central

    DeJonge, Rachel E.; Liu, Xiao-Ping; Deig, Christopher R.; Heller, Stefan; Koehler, Karl R.; Hashino, Eri

    2016-01-01

    Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles—a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo. PMID:27607106

  19. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    PubMed

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  20. 3D motion analysis of keratin filaments in living cells

    NASA Astrophysics Data System (ADS)

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf; Aach, Til

    2010-03-01

    We present a novel and efficient approach for 3D motion estimation of keratin intermediate filaments in vitro. Keratin filaments are elastic cables forming a complex scaffolding within epithelial cells. To understand the mechanisms of filament formation and network organisation under physiological and pathological conditions, quantitative measurements of dynamic network alterations are essential. Therefore we acquired time-lapse series of 3D images using a confocal laser scanning microscope. Based on these image series, we show that a dense vector field can be computed such that the displacements from one frame to the next can be determined. Our method is based on a two-step registration process: First, a rigid pre-registration is applied in order to compensate for possible global cell movement. This step enables the subsequent nonrigid registration to capture only the sought local deformations of the filaments. As the transformation model of the deformable registration algorithm is based on Free Form Deformations, it is well suited for modeling filament network dynamics. The optimization is performed using efficient linear programming techniques such that the huge amount of image data of a time series can be efficiently processed. The evaluation of our results illustrates the potential of our approach.

  1. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    PubMed

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  2. 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study.

    PubMed

    Zhou, Xuan; Zhu, Wei; Nowicki, Margaret; Miao, Shida; Cui, Haitao; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-11-09

    Metastasis is one of the deadliest consequences of breast cancer, with bone being one of the primary sites of occurrence. Insufficient 3D biomimetic models currently exist to replicate this process in vitro. In this study, we developed a biomimetic bone matrix using 3D bioprinting technology to investigate the interaction between breast cancer (BrCa) cells and bone stromal cells (fetal osteoblasts and human bone marrow mesenchymal stem cells (MSCs)). A tabletop stereolithography 3D bioprinter was employed to fabricate a series of bone matrices consisting of osteoblasts or MSCs encapsulated in gelatin methacrylate (GelMA) hydrogel with nanocrystalline hydroxyapatite (nHA). When BrCa cells were introduced into the stromal cell-laden bioprinted matrices, we found that the growth of BrCa cells was enhanced by the presence of osteoblasts or MSCs, whereas the proliferation of the osteoblasts or MSCs was inhibited by the BrCa cells. The BrCa cells co-cultured with MSCs or osteoblasts presented increased vascular endothelial growth factor (VEGF) secretion in comparison to that of monocultured BrCa cells. Additionally, the alkaline phosphatase activity of MSCs or osteoblasts was reduced after BrCa cell co-culture. These results demonstrate that the 3D bioprinted matrix, with BrCa cells and bone stromal cells, provides a suitable model with which to study the interactive effects of cells in the context of an artificial bone microenvironment and thus may serve as a valuable tool for the investigation of postmetastatic breast cancer progression in bone.

  3. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    PubMed Central

    Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J.

    2014-01-01

    Introduction Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Results Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. Summary We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance. PMID:25222612

  4. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.

    PubMed

    Haessler, Ulrike; Teo, Jeremy C M; Foretay, Didier; Renaud, Philippe; Swartz, Melody A

    2012-04-01

    The migration of cells such as leukocytes, tumor cells, and fibroblasts through 3D matrices is critical for regulating homeostasis and immunity and for driving pathogenesis. Interstitial flow through the extracellular matrix, which can substantially increase during inflammation and in the tumor microenvironment, can influence cell migration in multiple ways. Leukocytes and tumor cells are heterogeneous in their migration responses to flow, yet most 3D migration studies use endpoint measurements representing average characteristics. Here we present a robust new microfluidic device for 3D culture with live imaging under well-controlled flow conditions, along with a comparison of analytical methods for describing the migration behavior of heterogeneous cell populations. We then use the model to provide new insight on how interstitial flow affects MDA-MB-231 breast cancer cell invasion, phenomena that are not seen from averaged or endpoint measurements. Specifically, we find that interstitial flow increases the percentage of cells that become migratory, and increases migrational speed in about 20% of the cells. It also increases the migrational persistence of a subpopulation (5-10% of cells) in the positive or negative flow direction. Cells that migrated upstream moved faster but with less directedness, whereas cells that migrated in the direction of flow moved at slower speeds but with higher directedness. These findings demonstrate how fluid flow in the tumor microenvironment can enhance tumor cell invasion by directing a subpopulation of tumor cells in the flow direction; i.e., towards the draining lymphatic vessels, a major route of metastasis.

  5. Large-scale pharmacological profiling of 3D tumor models of cancer cells

    PubMed Central

    Mathews Griner, Lesley A; Zhang, Xiaohu; Guha, Rajarshi; McKnight, Crystal; Goldlust, Ian S; Lal-Nag, Madhu; Wilson, Kelli; Michael, Sam; Titus, Steve; Shinn, Paul; Thomas, Craig J; Ferrer, Marc

    2016-01-01

    The discovery of chemotherapeutic agents for the treatment of cancer commonly uses cell proliferation assays in which cells grow as two-dimensional (2D) monolayers. Compounds identified using 2D monolayer assays often fail to advance during clinical development, most likely because these assays do not reproduce the cellular complexity of tumors and their microenvironment in vivo. The use of three-dimensional (3D) cellular systems have been explored as enabling more predictive in vitro tumor models for drug discovery. To date, small-scale screens have demonstrated that pharmacological responses tend to differ between 2D and 3D cancer cell growth models. However, the limited scope of screens using 3D models has not provided a clear delineation of the cellular pathways and processes that differentially regulate cell survival and death in the different in vitro tumor models. Here we sought to further understand the differences in pharmacological responses between cancer tumor cells grown in different conditions by profiling a large collection of 1912 chemotherapeutic agents. We compared pharmacological responses obtained from cells cultured in traditional 2D monolayer conditions with those responses obtained from cells forming spheres versus cells already in 3D spheres. The target annotation of the compound library screened enabled the identification of those key cellular pathways and processes that when modulated by drugs induced cell death in all growth conditions or selectively in the different cell growth models. In addition, we also show that many of the compounds targeting these key cellular functions can be combined to produce synergistic cytotoxic effects, which in many cases differ in the magnitude of their synergism depending on the cellular model and cell type. The results from this work provide a high-throughput screening framework to profile the responses of drugs both as single agents and in pairwise combinations in 3D sphere models of cancer cells. PMID

  6. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  7. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I).

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Blatz, Veronika; Jäckh, Christine; Freytag, Eva-Maria; Fabian, Eric; Landsiedel, Robert; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing.

  8. Quasi-horizontal circulation cells in 3D seawater intrusion

    USGS Publications Warehouse

    Abarca, E.; Carrera, J.; Sanchez-Vila, X.; Voss, C.I.

    2007-01-01

    The seawater intrusion process is characterized by the difference in freshwater and seawater density that causes freshwater to float on seawater. Many confined aquifers have a large horizontal extension with respect to thickness. In these cases, while buoyancy acts in the vertical direction, flow is confined between the upper and bottom boundaries and the effect of gravity is controlled by variations of aquifer elevation. Therefore, the effective gravity is controlled by the slope and the shape of the aquifer boundaries. Variability in the topography of the aquifer boundaries is one case where 3D analysis is necessary. In this work, density-dependent flow processes caused by 3D aquifer geometry are studied numerically and specifically, considering a lateral slope of the aquifer boundaries. Sub-horizontal circulation cells are formed in the saltwater entering the aquifer. The penetration of the saltwater can be quantified by a dimensionless buoyancy number that measures the lateral slope of the aquifer relative to freshwater flux. The penetration of the seawater intrusion wedge is controlled more by this slope than by the aquifer thickness and dispersivity. Thus, the slope must be taken into account in order to accurately evaluate seawater intrusion. ?? 2007 Elsevier B.V. All rights reserved.

  9. 3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells.

    PubMed

    Mazzini, Giuliano; Carpignano, Francesca; Surdo, Salvatore; Aredia, Francesca; Panini, Nicolò; Torchio, Martina; Erba, Eugenio; Danova, Marco; Scovassi, Anna Ivana; Barillaro, Giuseppe; Merlo, Sabina

    2015-10-01

    In this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS. Quantitative image analyses of several fluorescence microscopy fields of silicon samples were performed for automatic cell recognition and count, in order to quantify the fraction of cells inside the gaps, with respect to the total number of cells in the examined field. Our results show that higher fractions of cells in the gaps are obtained with more aggressive cell lines, thus supporting in a quantitative way the observation that the behavior of tumor cells on the 3D-SMS depends on their aggressiveness level.

  10. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  11. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.

    PubMed

    Song, Jiwon; Millman, Jeffrey R

    2016-12-01

    Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.

  12. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    NASA Astrophysics Data System (ADS)

    Ranjan Gartia, Manas; Hsiao, Austin; Sivaguru, Mayandi; Chen, Yi; Logan Liu, G.

    2011-09-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  13. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  14. a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums

    NASA Astrophysics Data System (ADS)

    Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.

    2012-07-01

    Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.

  15. An approach to quantifying 3D responses of cells to extreme strain

    PubMed Central

    Li, Yuhui; Huang, Guoyou; Li, Moxiao; Wang, Lin; Elson, Elliot L.; Jian Lu, Tian; Genin, Guy M.; Xu, Feng

    2016-01-01

    The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells. PMID:26887698

  16. BIOCOMPATIBILITY OF A SYNTHETIC EXTRACELLULAR MATRIX ON IMMORTALIZED VOCAL FOLD FIBROBLASTS IN 3D CULTURE

    PubMed Central

    Chen, Xia

    2010-01-01

    In order to promote wound repair and induce tissue regeneration, an engineered hyaluronan (HA) hydrogel – Carbylan GSX, which contains di(thiopropionyl) bishydrazide-modified hyaluronic acid (HA-DTPH), di(thiopropionyl) bishydrazide-modified gelatin (Gtn-DTPH) and polyethylene glycol diacrylate (PEGDA), has been developed for extracellular matrix (ECM) defects of the superficial and middle layers of the lamina propria. The purpose of this study was to evaluate the biocompatibility of Carbylan GSX in a previously established immortalized human vocal fold fibroblast (hVFF) cell line prior to human clinical trials. Immortalized hVFF proliferation, viability, apoptosis and transcript analysis for both ECM constituents and inflammatory markers were measured for two-dimensional and three-dimensional culture conditions. There were no significant differences in morphology, cell marker protein expression, proliferation, viability and apoptosis of hVFF cultured with Carbylan GSX compared to Matrigel, a commercial 3D control, after one week. Gene expression levels for fibromodulin, TGF-β1, and TNF-α were similar between Carbylan GSX and Matrigel. Fibronectin, hyaluronidase 1 and COX2 expression levels were induced by Carbylan GSX; whereas IL6, IL8. COL1 and hyaluronic acid synthase 3 expression levels were decreased by Carbylan GSX. This investigation demonstrates that Carbylan GSX may serve as a natural biomaterial for tissue engineering of human vocal folds. PMID:20109588

  17. Radiation Quality Effects on Transcriptome Profiles in 3-D Cultures After Charged Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kidane, Yared H.; Huff, Janice L.

    2014-01-01

    In this work, we evaluated the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Current risk models for assessment of space radiation-induced cancer have large uncertainties because the models for adverse health effects following radiation exposure are founded on epidemiological analyses of human populations exposed to low-LET radiation. Reducing these uncertainties requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. In order to better quantify these radiation quality effects in biological systems, we are utilizing novel 3-D organotypic human tissue models for space radiation research. These models hold promise for risk assessment as they provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information.

  18. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications.

    PubMed

    Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E; Richardson, Paul G; Munshi, Nikhil C; Dorfman, David M; Anderson, Kenneth C

    2016-11-22

    Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM.

  19. A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications

    PubMed Central

    Jakubikova, Jana; Cholujova, Danka; Hideshima, Teru; Gronesova, Paulina; Soltysova, Andrea; Harada, Takeshi; Joo, Jungnam; Kong, Sun-Young; Szalat, Raphael E.; Richardson, Paul G.; Munshi, Nikhil C.; Dorfman, David M.; Anderson, Kenneth C.

    2016-01-01

    Specific niches within the tumor bone marrow (BM) microenvironment afford a sanctuary for multiple myeloma (MM) clones due to stromal cell-tumor cell interactions, which confer survival advantage and drug resistance. Defining the sequelae of tumor cell interactions within the MM niches on an individualized basis may provide the rationale for personalized therapies. To mimic the MM niche, we here describe a new 3D co-culture ex-vivo model in which primary MM patient BM cells are co-cultured with mesenchymal stem cells (MSC) in a hydrogel 3D system. In the 3D model, MSC with conserved phenotype (CD73+CD90+CD105+) formed compact clusters with active fibrous connections, and retained lineage differentiation capacity. Extracellular matrix molecules, integrins, and niche related molecules including N-cadherin and CXCL12 are expressed in 3D MSC model. Furthermore, activation of osteogenesis (MMP13, SPP1, ADAMTS4, and MGP genes) and osteoblastogenic differentiation was confirmed in 3D MSC model. Co-culture of patient-derived BM mononuclear cells with either autologous or allogeneic MSC in 3D model increased proliferation of MM cells, CXCR4 expression, and SP cells. We carried out immune profiling to show that distribution of immune cell subsets was similar in 3D and 2D MSC model systems. Importantly, resistance to novel agents (IMiDs, bortezomib, carfilzomib) and conventional agents (doxorubicin, dexamethasone, melphalan) was observed in 3D MSC system, reflective of clinical resistance. This 3D MSC model may therefore allow for studies of MM pathogenesis and drug resistance within the BM niche. Importantly, ongoing prospective trials are evaluating its utility to inform personalized targeted and immune therapy in MM. PMID:27764795

  20. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  1. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  2. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  3. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  4. A 3-D cardiac muscle construct for exploring adult marrow stem cell based myocardial regeneration.

    PubMed

    Valarmathi, Mani T; Goodwin, Richard L; Fuseler, John W; Davis, Jeffrey M; Yost, Michael J; Potts, Jay D

    2010-04-01

    Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen-fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation.

  5. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

    PubMed Central

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G.; Mullins, John J.; Davies, Jamie A.; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells). PMID:28286747

  6. A 3D modeling and measurement system for cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Du, Guoguang; Zhou, Mingquan; Ren, Pu; Shui, Wuyang; Zhou, Pengbo; Wu, Zhongke

    2015-07-01

    Cultural Heritage reflects the human production, life style and environmental conditions of various historical periods. It exists as one of the major national carriers of national history and culture. In order to do better protection and utilization for these cultural heritages, a system of three-dimensional (3D) reconstruction and statistical measurement is proposed in this paper. The system solves the problems of cultural heritage's data storage, measurement and analysis. Firstly, for the high precision modeling and measurement problems, range data registration and integration algorithm used to achieve high precision 3D reconstruction. Secondly, multi-view stereo reconstruction method is used to solve the problem of rapid reconstruction by procedures such as the original image data pre-processing, camera calibration, point cloud modeling. At last, the artifacts' measure underlying database is established by calculating the measurements of the 3D model's surface. These measurements contain Euclidean distance between the points on the surface, geodesic distance between the points, normal and curvature in each point, superficial area of a region, volume of model's part and some other measurements. These measurements provide a basis for carrying out information mining of cultural heritage. The system has been applied to the applications of 3D modeling, data measurement of the Terracotta Warriors relics, Tibetan architecture and some other relics.

  7. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning.

    PubMed

    Occhetta, P; Sadr, N; Piraino, F; Redaelli, A; Moretti, M; Rasponi, M

    2013-09-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells-cells and cells-extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs.

  8. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed

    PubMed Central

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M.; Stopczynski, Nathan; Sousa-Neves, Rui

    2017-01-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the ‘landscape’ using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method. PMID:28280723

  9. 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells.

    PubMed

    Yoshimori, Takashi; Takamatsu, Hiroshi

    2009-02-01

    Cell dehydration during freezing results from an elevated concentration of electrolytes in the extracellular medium that is deeply involved in cellular injury. We undertook real-time threedimensional (3-D) observation of osmotic dehydration of cells, motivated by a comparison of cellular responses between isolated cells in suspension and cultured cells adhering to a surface since several studies have suggested a difference in freeze tolerance between cell suspensions and monolayers. A laser confocal scanner was used with a perfusion microscope to capture sectional images of chloromethylbenzamido (DiI)-stained PC-3 cells that were exposed to an increase in NaCl concentration from 0.15 to 0.5M at 23 degrees C. Change in cell volume was determined from reconstructed 3-D images taken every 2.5s. When cells were exposed to an elevated NaCl concentration, isolated cells contracted and markedly distorted from their original spherical shape. In contrast, adhered cells showed only a reduction in height and kept their basal area constant. Apparent membrane hydraulic conductivity did not vary considerably between isolated and adhered cells, suggesting a negligible effect of the cytoskeletal structure on the rate of water transport. The surface area that contributed to water transport in adhered PC-3 cells was nearly equal to or slightly smaller than that present in isolated cells. Therefore, the similarity in properties and dimensions between isolated and adhered cells indicate that there will be similar extents of dehydration, resulting in a similar degree of supercooling during freezing.

  10. Behaviour of gravisensitive cells on 2D and 3D clinostats

    NASA Astrophysics Data System (ADS)

    Strauch, Sebastian M.; Hemmersbach, Ruth; Seibt, Dieter; Schuber, Marianne; Hader, Donat-P.

    2005-08-01

    2D and 3D clinostats are widely applied to study the influence of simulated microgravity on different kinds of organisms and cell cultures [1]. To critically evaluate the results achieved (functional weightlessness, omnilateral gravistimulation or other side effects such as strong mechanical disturbances) a comparison between the applied simulation methods and real microgravity is necessary. In a first approach, the swimming behavior of Euglena gracilis, a "professional gravi-sensing" unicellular freshwater flagellate, was observed under 2D and 3D clinostat conditions as well as under real microgravity during a TEXUS sounding rocket flight.According to current theory Euglena perceives the gravity vector by stimulation of mechanosensitive channels: the cell mass, which is denser than the surrounding medium, exerts pressure onto the lower membrane and the resulting gated calcium influx modulates the beating pattern of the flagella [4].A changed influence of gravity of the cells can be directly visualized by changes in their orientation with respect to gravity (gravitaxis).

  11. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  12. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.

    PubMed

    Kang, Laura Hockaday; Armstrong, Patrick A; Lee, Lauren Julia; Duan, Bin; Kang, Kevin Heeyong; Butcher, Jonathan Talbot

    2017-02-01

    Photocrosslinking hydrogel technologies are attractive for the biofabrication of cardiovascular soft tissues, but 3D printing success is dependent on multiple variables. In this study we systematically test variables associated with photocrosslinking hydrogels (photoinitiator type, photoinitiator concentration, and light intensity) for their effects on encapsulated cells in an extrusion 3D printable mixture of methacrylated gelatin/poly-ethylene glycol diacrylate/alginate (MEGEL/PEGDA3350/alginate). The fabrication conditions that produced desired hydrogel mechanical properties were compared against those that optimize aortic valve or mesenchymal stem cell viability. In the 3D hydrogel culture environment and fabrication setting studied, Irgacure can increase hydrogel stiffness with a lower proportional decrease in encapsulated cell viability compared to VA086. Human adipose derived mesenchymal stem cells (HADMSC) survived increasing photoinitiator concentrations in photo-encapsulation conditions better than aortic valve interstitial cells (HAVIC) and aortic valve sinus smooth muscle cells (HASSMC). Within the range of photo-encapsulation fabrication conditions tested with MEGEL/PEGDA/alginate (0.25-1.0% w/v VA086, 0.025-0.1% w/v Irgacure 2959, and 365 nm light intensity 2-136 mW/cm(2)), the highest viabilities achieved were 95, 93, and 93% live for HASSMC, HAVIC, and HADMSC respectively. These results identify parameter combinations that optimize cell viability during 3D printing for multiple cell types. These results also indicate that general oxidative stress is higher in photocrosslinking conditions that induce lower cell viability. However, suppressing this increase in intracellular oxidative stress did not improve cell viability, which suggests that other stress mechanisms also contribute.

  13. Development of a 3D co-culture model using human stem ...

    EPA Pesticide Factsheets

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelves, and is regulated by the growth factors EGF and TGFβ, and others, although the complete regulatory mechanism is not understood. Three dimensional (3D) organotypic models allow us to mimic the native architecture of human tissue to facilitate the study of tissue dynamics and their responses to developmental toxicants. Our goal was to develop and characterize a spheroidal model of palatal fusion to investigate the mechanisms regulating fusion with exposure to growth factors and chemicals in the ToxCast program known to disrupt this event. We present a spheroidal model using human umbilical-derived mesenchymal stem cells (hMSC) spheroid cores cultured for 13 days and then coated with MaxGel™ basement membrane and a layer of human progenitor epithelial keratinocytes (hPEK) (hMSC+hPEK spheroids). We characterized the growth, differentiation, proliferation and fusion activity of the model. Spheroid diameter was dependent on hMSC seeding density, size of the seeding wells, time in culture, and type of medium. hMSC spheroid growth was enhanced with osteogenic differentiation medium. Alkaline phosphatase activity in the hMSC spheroid, indicating osteogenic differentiation, increased in inte

  14. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks.

    PubMed

    Rowe, Laura; Almasri, Mahmoud; Lee, Kil; Fogleman, Nick; Brewer, Gregory J; Nam, Yoonkey; Wheeler, Bruce C; Vukasinovic, Jelena; Glezer, Ari; Frazier, A Bruno

    2007-04-01

    This work demonstrated the design, fabrication, packaging, and characterization of an active microscaffold system with fluid perfusion/nutrient delivery functionalities for culturing in vitro neuronal networks from dissociated hippocampal rat pup neurons. The active microscaffold consisted of an 8 x 8 array of hollow, microfabricated, SU-8 towers (1.0 mm or 1.5 mm in height), with integrated, horizontal, SU-8 cross-members that connect adjacent towers, thus forming a 3-D grid that is conducive to branching, growth, and increased network formation of dissociated hippocampal neurons. Each microtower in the microscaffold system contained a hollow channel and multiple fluid ports for media delivery and perfusion of nutrients to the in vitro neuronal network growing within the microscaffold system. Additionally, there were two exposed Au electrodes on the outer wall of each microtower at varying heights (with insulated leads running within the microtower walls), which will later allow for integration of electrical stimulation/recording functionalities into the active microscaffold system. However, characterization of the stimulation/recording electrodes was not included in the scope of this paper. Design, fabrication, fluid packaging, and characterization of the active microscaffold system were performed. Furthermore, use of the active microscaffold system was demonstrated by culturing primary hippocampal embryonic rat pup neurons, and characterizing cell viability within the microscaffold system.

  15. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    PubMed

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry.

  16. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.

    PubMed

    Zheng, Siyang; Lin, Henry K; Lu, Bo; Williams, Anthony; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2011-02-01

    Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

  17. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology

    PubMed Central

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-01-01

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386

  18. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology.

    PubMed

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-06-30

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.

  19. Development of a 3D Tissue Culture-Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases.

    PubMed

    Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S

    2016-10-01

    3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.

  20. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  1. A 3D in situ cell counter reveals that breast tumor cell (MDA-MB-231) proliferation rate is reduced by the collagen matrix density

    PubMed Central

    Bunaciu, Rodica P.; Yen, Andrew; Wu, Mingming

    2015-01-01

    Many cell types require the biophysical and biochemical cues within the 3D extracellular matrix (ECM) to exhibit their true physiologically relevant behavior. As a result, cell culture platforms have been evolving from traditional 2D petri-dish plates into 3D biomatrices, and there is a need for developing analytic tools to characterize 3D cell culture. The existing cell counting method, using a hemocytometer or coulter counter, requires that cells are suspended in fluids prior to counting. This poses a challenge for 3D cell culture as cells are embedded in a 3D biomatrix. We use a facile 3D cell counting method that overcomes this limitation and allows for in situ cell counting in a 3D cell culture using equipment that is commonly available in a biology lab. Using a breast tumor cell line, MDA-MB-231, as a model system, we demonstrated that MDA-MB-231 cells (1) grow slower within a 3D collagen matrix than on a 2D substrate for an extended growth time (a week) with a comparable, initial cell-to-cell distance, (2) their cell growth rate decreases with the increase of collagen concentration, showing a linear growth rate rather than an exponential growth rate. Further work using flow cytometry showed that the observed growth rate reduction was consistent with the retardation of the transition to S (synthesis) phase in the cell cycle. This work demonstrates the validity of the 3D cell counting method and the importance of cell-ECM interactions in cell proliferation. PMID:25683564

  2. The self-organization of grid cells in 3D.

    PubMed

    Stella, Federico; Treves, Alessandro

    2015-03-30

    Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering.

  3. The self-organization of grid cells in 3D

    PubMed Central

    Stella, Federico; Treves, Alessandro

    2015-01-01

    Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. DOI: http://dx.doi.org/10.7554/eLife.05913.001 PMID:25821989

  4. 3D Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels

    PubMed Central

    Scott, Carolyn M.; Forster, Colleen L.; Kokkoli, Efrosini

    2015-01-01

    The design of scaffolds which mimic the stiffness, nanofiber structure, and biochemistry of the native extra-cellular matrix (ECM) has been a major objective for the tissue engineering field. Furthermore, mimicking the innate three dimensional (3D) environment of the ECM has been shown to significantly alter cellular response compared to traditional two dimensional (2D) culture. We report the development of a self-assembling, fibronectin-mimetic, peptide-amphiphile nanofiber scaffold for 3D cell culture. To form such a scaffold, 5 mol% of a bioactive PR_g fibronectin-mimetic peptide-amphiphile was mixed with 95 mol% of a diluent peptide-amphiphile (E2) whose purpose was to neutralize electrostatic interactions, increase the gelation kinetics and promote cell survival. Atomic force microscopy verified the fibrilar structure of the gels and the mechanical properties were characterized for various weight percent (wt%) formulations of the 5 mol% PR_g - 95 mol% E2 peptide-amphiphile mixture. The 0.5 wt% formulations had an elastic modulus of 429.0 ± 21.3 Pa while the 1.0 wt% peptide-amphiphile hydrogels had an elastic modulus of 808.6 ± 38.1 Pa. The presence of entrapped cells in the gels decreased the elastic modulus and the decrease was a function of the cell loading. While both formulations supported cell proliferation, the 0.5 wt% gels supported significantly greater NIH3T3/GFP fibroblast cell proliferation throughout the gels than the 1.0 wt% gels. However, compared to the 0.5 wt% formulations, the 1.0 wt% hydrogels promoted greater increase in mRNA expression and production of fibronectin and type IV collagen ECM proteins. This study suggests that this fibronectin-mimetic scaffold holds great promise in the advance of 3D culture applications and cell therapies. PMID:25970351

  5. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique

    PubMed Central

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-01

    Background/Aims Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. Methods A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. Results The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. Conclusions The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver. PMID:27559001

  6. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  7. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.

    PubMed

    Dziasko, Marc A; Tuft, Stephen J; Daniels, Julie T

    2015-09-01

    Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche.

  8. Performance evaluation of 3D polystyrene 96-well plates with human neural stem cells in a calcium assay.

    PubMed

    Lai, Yinzhi; Kisaalita, William S

    2012-08-01

    In this study, we have generated a high-throughput screening (HTS)-compatible 3D cell culture platform by chemically "welding" polystyrene scaffolds into standard 2D polystyrene 96-well plates. The variability of scaffolds was minimized by introducing automation into the fabrication process. The fabricated 3D cell culture plates were compared with several commercially available 3D cell culture platforms with light and scanning electron microscopy. Voltage-gated calcium channel functionality was used to access the Z' factors of all plates, including a 2D standard plate control. It was found that with the No-Wash Fluo-4 calcium assay and neural progenitor cells, all plates display acceptable Z' factors for use in HTS. The plates with "welded" polystyrene scaffolds have several advantages, such as being versatile and economical, and are ready to use off the shelf. These characteristics are especially desired in HTS preclinical drug discovery applications.

  9. Analysis of Wnt signalling dynamics during colon crypt development in 3D culture

    PubMed Central

    Tan, Chin Wee; Hirokawa, Yumiko; Burgess, Antony W.

    2015-01-01

    Many systems biology studies lack context-relevant data and as a consequence the predictive capabilities can be limited in developing targeted cancer therapeutics. Production of colon crypt in vitro is ideal for studying colon systems biology. This report presents the first production of, to our knowledge, physiologically-shaped, functional colon crypts in vitro (i.e. single crypts with cells expressing Mucin 2 and Chromogranin A). Time-lapsed monitoring of crypt formation revealed an increased frequency of single-crypt formation in the absence of noggin. Using quantitative 3D immunofluorescence of β-catenin and E-cadherin, spatial-temporal dynamics of these proteins in normal colon crypt cells stimulated with Wnt3A or inhibited by cycloheximide has been measured. Colon adenoma cultures established from APCmin/+ mouse have developmental differences and β-catenin spatial localization compared to normal crypts. Quantitative data describing the effects of signalling pathways and proteins dynamics for both normal and adenomatous colon crypts is now within reach to inform a systems approach to colon crypt biology. PMID:26087250

  10. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids

    PubMed Central

    Rane, Tushar D.; Armani, Andrea M.

    2016-01-01

    Nanomaterials can be synthesized from a wide range of material systems in numerous morphologies, creating an extremely diverse portfolio. As result of this tunability, these materials are emerging as a new class of nanotherapeutics and imaging agents. One particularly interesting nanomaterial is the gold nanoparticle. Due to its inherent biocompatibility and tunable photothermal behavior, it has made a rapid transition from the lab setting to in vivo testing. In most nanotherapeutic applications, the efficacy of the agent is directly related to the target of interest. However, the optimization of the AuNP size and shape for efficacy in vitro, prior to testing in in vivo models of a disease, has been largely limited to two dimensional monolayers of cells. Two dimensional cell cultures are unable to reproduce conditions experienced by AuNP in the body. In this article, we systematically investigate the effect of different properties of AuNP on the penetration depth into 3D cell spheroids using two-photon microscopy. The 3D spheroids are formed from the HCT116 cell line, a colorectal carcinoma cell line. In addition to studying different sizes and shapes of AuNPs, we also study the effect of an oligo surface chemistry. There is a significant difference between AuNP uptake profiles in the 2D monolayers of cells as compared to the 3D cell spheroids. Additionally, the range of sizes and shapes studied here also exhibit marked differences in uptake penetration depth and efficacy. Finally, our results demonstrate that two-photon microscopy enables quantitative AuNP localization and concentration data to be obtained at the single spheroid level without fluorescent labeling of the AuNP, thus, providing a viable technique for large scale screening of AuNP properties in 3D cell spheroids as compared to tedious and time consuming techniques like electron microscopy. PMID:27936027

  11. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  12. Fabrication of microfluidic system for the assessment of cell migration on 3D micropatterned substrates.

    PubMed

    Lee, Eun-Joong; Hwang, Chang-Mo; Baek, Dong-Hyun; Lee, Sang-Hoon

    2009-01-01

    Cell migration and proliferation are major process in wound healing, cancer metastasis and organogenesis during development. Many cells are related to recovery process of wound. Especially, fibroblasts act an important role in wound healing. Various cytokines such as platelet derived growth factor (PDGF) can induce fibroblast migration and widely studied to investigate the cell response under controlled cytokine microenvironments during wound healing. In real tissue healing process, cell microenvironments change with tissue types and anatomical characteristics of organs. With microfluidic system, we tried to mimic the natural microenvironment of wound healing, with gradient of PDGF, a fibroblast migration inducing cytokine, and patterned substrate with different orientation to PDGF gradient. Fibroblasts cultured in PDGF gradient micro fluidic chip showed cell migration under various micro environmental gradient conditions. Cells were cultured under PDGF gradient condition and different substrate pattern. Mouse fibroblast L929 cells were cultured in the microfluidic gradient. The results showed that most cells migrated along the substrate topological patterns under high concentration of PDGF. We developed long range sustaining micro fluidic channel and could analyze cell migration along the gradient of PDGF. Also, the cell migration on patterned extracellular environment shows that cells migrate along the extracellular 3D pattern rather than directly along the cytokine gradient when the pattern height is less than 1 microm. In this study, we could demonstrate that the extracellular pattern is more dominant to cell migration in combination with cytokine gradient in the wounded tissue when the environmental cues are 20 microm.

  13. Integrated Data Capturing Requirements for 3d Semantic Modelling of Cultural Heritage: the Inception Protocol

    NASA Astrophysics Data System (ADS)

    Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B.

    2017-02-01

    The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata. In this framework, the ongoing EU funded project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts. In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets.

  14. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells

    PubMed Central

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443

  15. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    SciTech Connect

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  16. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    PubMed

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application.

  17. Concentric gel system to study the biophysical role of matrix microenvironment on 3D cell migration.

    PubMed

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-04-03

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell's mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration.

  18. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    PubMed

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-01-27

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  19. Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions.

    PubMed

    Altmann, Brigitte; Löchner, Anne; Swain, Michael; Kohal, Ralf-Joachim; Giselbrecht, Stefan; Gottwald, Eric; Steinberg, Thorsten; Tomakidi, Pascal

    2014-03-01

    As information on osteoblast mechanosensitivity response to biomechanical cues in three-dimensional (3D) in vitro microenvironments is sparse, the present study compared morphogenesis of primary human alveolar bone osteoblasts (PHABO) under microchip-based 3D-static conditions, and 3D-fluid flow-mediated biomechanical stimulation in perfusion bioreactors. Discrimination of the respective microenvironment by differential morphogenesis was evident from fluid flow-induced PHABO reorganization into rotund bony microtissue, comprising more densely packed multicellular 3D-aggregates, while viability of microtissues was flow rate dependent. Time-lapse microscopy and simple modeling of biomechanical conditions revealed that physiologically relevant fluid flow-mediated PHABO stimulation was associated with formation of mulberry-like PHABO aggregates within the first 24 h. Differential extracellular matrix deposition patterns and gene expression modulation in PHABO aggregates at day 7 further indicates progressive osteoblast differentiation exclusively in perfusion culture-developed bony microtissues. The results of our study strongly suggest PHABO morphogenesis as discriminator of microenvironmental growth conditions, which in case of the microfluidic 3D microchip-bioreactor are substantiated by triggering in vitro bone microtissue formation concomitant with progressive osteoblastic differentiation. Such microtissue outcomes provide unique insight for mechanobiological studies in response to biomechanical fluid flow cues, and clinically appear promising for in vitro PHABO preconditioning, enabling innovative bone augmentation procedures.

  20. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    PubMed Central

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  1. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  2. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC).

    PubMed

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-09-13

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc.

  3. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    SciTech Connect

    Kim, Sun-Ah; Lee, Eun Kyung; Kuh, Hyo-Jeong

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  4. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications.

  5. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  6. Epidermal growth factor improves the migration and contractility of aged fibroblasts cultured on 3D collagen matrices.

    PubMed

    Kim, Daehwan; Kim, So Young; Mun, Seog Kyun; Rhee, Sangmyung; Kim, Beom Joon

    2015-04-01

    Epidermal growth factor (EGF) plays a critical role in fibroblasts by stimulating the production of collagen and supports cell renewal through the interaction between keratinocytes and fibroblasts. It is well known that the contractile activity of fibroblasts is required for the remodeling of the extracellular matrix (ECM), which contributes to skin elasticity. However, the role of EGF in the contraction of aged fibroblasts under 3-dimensional (3D) culture conditions is not yet fully understood. In the present study, we demonstrated that young fibroblasts spread and proliferated more rapidly than aged fibroblasts under 2-dimensional (2D) culture conditions. Cell migration assay using a nested collagen matrix revealed that the migration of young fibroblasts was also greater than that of aged fibroblasts under 3D culture conditions. However, the addition of recombinant human EGF (rhEGF) resulted in the enhanced migration of aged fibroblasts; the migration rate was similar to that of the young fibroblasts. The aged fibroblasts showed decreased cluster formation compared with the young fibroblasts on the collagen matrix, which was improved by the addition of rhEGF. Furthermore, cell contraction assay revealed that the basal contractility of the aged fibroblasts was lower than that of the young fibroblasts; however, following treatment with rhEGF, the contractility was restored to levels similar or even higher to those of the young fibroblasts. Taken together, our results suggest that rhEGF is a potential renewal agent that acts to improve the migration and contraction of aged fibroblasts more efficiently than young fibroblasts under 3D culture conditions; thus, EGF may have valuable regenerative effects on aged skin.

  7. Inspection, 3D modelling, and rapid prototyping of cultural heritage by means of a 3D optical digitiser

    NASA Astrophysics Data System (ADS)

    Docchio, F.; Sansoni, G.; Trebeschi, M.

    2005-06-01

    This paper presents the activity carried out to perform the three-dimensional acquisition of the "Vittoria Alata", a 2m-high, bronze statue, symbol of our City, located at the Civici Musei di Arte e Storia (S. Giulia) of Brescia. The acquisition of the statue has been performed by using a three-dimensional vision system based on active triangulation and on the projection of non-coherent light. This system, called OPL-3D, represents one of the research products of our Laboratory, which has been active for years in the development of techniques and systems for the contactless acquisition of free-form, complex shapes. The study, originally motivated by the need to explore a new hypothesis on the origin of the "Vittoria Alata", led to its complete digitization and description in terms of both polygonal and NURBS-based models. A suite of copies of the whole statue has been obtained in the framework of the collaboration between the City Museum and the EOS Electro Optical Systems GmbH, located in Munich, Germany. As a first step, one 30 cm-high replica of the whole statue has been produced using a low-resolution triangle model of the statue (3.5 millions of triangles). As a second step, two 1:1 scale copies of the statue have been produced. For them, the Laboratory has provided the high resolution STL file (16 millions of triangles). The paper discusses in detail the hardware and the software facilities used to implement the whole process, and gives a comprehensive description of the results.

  8. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  9. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.

  10. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. Filopodia in cell adhesion, 3D migration and cancer cell invasion.

    PubMed

    Jacquemet, Guillaume; Hamidi, Hellyeh; Ivaska, Johanna

    2015-10-01

    This review discusses recent advances in our understanding of the role filopodia and filopodia-like structures in cell adhesion and three dimensional (3D) cell migration both in vitro and in vivo. In particular, we focus on recent advances demonstrating that filopodia are involved in substrate tethering and environment sensing in vivo. We further discuss the emerging role of filopodia and filopodial proteins in tumor dissemination as mounting in vitro, in vivo and clinical evidence suggest that filopodia drive cancer cell invasion and highlight filopodia proteins as attractive therapeutic targets. Finally, we outline outstanding questions that remain to be addressed to elucidate the role of filopodia during 3D cell migration.

  12. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  13. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.

    PubMed

    Dong, Dianyu; Li, Junjie; Cui, Man; Wang, Jinmei; Zhou, Yuhang; Luo, Liu; Wei, Yufei; Ye, Lei; Sun, Hong; Yao, Fanglian

    2016-02-01

    Three-dimensional (3D) cell encapsulation in hydrogel provides superb methods to investigate the biochemical cues in directing cellular fate and behaviors outside the organism, the primary step of which is to establish suitable "blank platform" to mimic and simplify native ECM microenvironment. In this study, zwitterionic starch-based "clickable" hydrogels were fabricated via a "copper- and light- free" Michael-type "thiol-ene" addition reaction between acylated-modified sulfobetaine-derived starch (SB-ST-A) and dithiol-functionalized poly(ethylene glycol) (PEG-SH). By incorporating antifouling SB-ST and PEG, the hydrogel system would be excellently protected from nontarget protein adsorption to act as a "blank platform". The hydrogels could rapidly gel under physiological conditions in less than 7 min. Dynamic rheology experiments suggested the stiffness of the hydrogel was close to the native tissues, and the mechanical properties as well as the gelation times and swelling behaviors could be easily tuned by varying the precursor proportions. The protein and cell adhesion assays demonstrated that the hydrogel surface could effectively resist nonspecific protein and cell adhesion. The degradation study in vitro confirmed that the hydrogel was biodegradable. A549 cells encapsulated in the hydrogel maintained high viability (up to 93%) and started to proliferate in number and extend in morphology after 2 days' culture. These results indicated the hydrogel presented here could be a potential candidate as "blank platform" for 3D cell encapsulation and biochemical cues induced cellular behavior investigation in vitro.

  14. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  15. Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins.

    PubMed

    Richter, Benjamin; Hahn, Vincent; Bertels, Sarah; Claus, Tanja K; Wegener, Martin; Delaittre, Guillaume; Barner-Kowollik, Christopher; Bastmeyer, Martin

    2017-02-01

    The combination of three different photoresists into a single direct laser written 3D microscaffold permits functionalization with two bioactive full-length proteins. The cell-instructive microscaffolds consist of a passivating framework equipped with light activatable constituents featuring distinct protein-binding properties. This allows directed cell attachment of epithelial or fibroblast cells in 3D.

  16. Some Experiences in 3D Laser Scanning for Assisting Restoration and Evaluating Damage in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Fuentes, L. M.; Finat, Javier; Fernández-Martin, J. J.; Martínez, J.; SanJose, J. I.

    The recent incorporation of laser devices provides advanced tools for assisting the conservation and restoration of Cultural Heritage. It is necessary to have as complete as possible understanding of the object state before evaluating or defining the reach of the restoration process. Thus, a special effort is devoted to surveying, measuring and generating a high-resolution 3D model prior to restoration planning. This work presents results of several experiments performed on damaged pieces for evaluation purposes in Cultural Heritage. Some software tools are applied for carving-work analysis, conservation-state monitoring, and simulation of weathering processes for evaluating temporal changes. In all cases considered, a high resolution information capture has been performed with a laser scanner, the Minolta 910. Our approach is flexible enough to be adapted to other kinds of pieces or Cultural Heritage artefacts, in order to provide an assessment for intervention planning in conservation and restoration tasks.

  17. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes.

    PubMed

    Uz, Metin; Büyüköz, Melda; Sharma, Anup D; Sakaguchi, Donald S; Altinkaya, Sacide Alsoy; Mallapragada, Surya K

    2017-02-16

    In this study, gelatin-based 3D conduits with three different microstructures (nanofibrous, macroporous and ladder-like) were fabricated for the first time via combined molding and thermally induced phase separation (TIPS) technique for peripheral nerve regeneration. The effects of conduit microstructure and mechanical properties on the transdifferentiation of bone marrow-derived mesenchymal stem cells (MSCs) into Schwann cell (SC) like phenotypes were examined to help facilitate neuroregeneration and understand material-cell interfaces. Results indicated that 3D macroporous and ladder-like structures enhanced MSC attachment, proliferation and spreading, creating interconnected cellular networks with large numbers of viable cells compared to nanofibrous and 2D-tissue culture plate counterparts. 3D-ladder-like conduit structure with complex modulus of ∼0.4×10(6)Pa and pore size of ∼150μm provided the most favorable microenvironment for MSC transdifferentiation leading to ∼85% immunolabeling of all SC markers. On the other hand, the macroporous conduits with complex modulus of ∼4×10(6)Pa and pore size of ∼100μm showed slightly lower (∼65% for p75, ∼75% for S100 and ∼85% for S100β markers) immunolabeling. Transdifferentiated MSCs within 3D-ladder-like conduits secreted significant amounts (∼2.5pg/mL NGF and ∼0.7pg/mL GDNF per cell) of neurotrophic factors, while MSCs in macroporous conduits released slightly lower (∼1.5pg/mL NGF and 0.7pg/mL GDNF per cell) levels. PC12 cells displayed enhanced neurite outgrowth in media conditioned by conduits with transdifferentiated MSCs. Overall, conduits with macroporous and ladder-like 3D structures are promising platforms in transdifferentiation of MSCs for neuroregeneration and should be further tested in vivo.

  18. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues.

  19. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

    PubMed Central

    Baek, NamHuk; Seo, Ok Won; Kim, MinSung; Hulme, John; An, Seong Soo A

    2016-01-01

    Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR) on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549), muscle (C2C12), prostate (DU145), testis (F9), pituitary epithelial-like (GH3), cervical cancer (HeLa), HeLa contaminant (HEp2), embryo (NIH3T3), embryo (PA317), neuroblastoma (SH-SY5Y), osteosarcoma U2OS, and embryonic kidney cells (293T), were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were halted 3 and 5 days from the start of the treatment in all spheroids. All cell lines maintained their spheroid shape, except SHSY-5, which behaved in an unpredictable manner when exposed to toxic concentrations of DXR. Cytotoxic effects of DXR towards SH-SY5Y seemed to cause degradation of

  20. Scaffolds fabricated by 3D two-photon photopolymerization for live cell studies

    NASA Astrophysics Data System (ADS)

    Teplicky, T.; Cunderlikova, B.; Mateasik, A.; Vincze, A.; Chorvat, D.; Marcek Chorvatova, A.

    2016-12-01

    Design and fabrication of appropriate biocompatible microstructures that ensure fixation and control of experimental conditions for live cell and bacteria observations is an important prerequisite for number of real time experiments. Our approach is to design engineered microfabricated 3D structures for growth of cells in culture without significant modification of their metabolic state. Presented approach is aimed at evaluation of the potential applicability of biocompatible constructs in the biomedical field and thus live cell monitoring in controlled conditions. Design and evaluation of properties of materials and structures with mesoscopic arrangement and their interaction with biological objects is a prerequisite for establishment of physiologically relevant in vitro models of pathologies as well as for development of a new generation of nano / micro / bio-sensors.

  1. Disease Modeling in Stem Cell-Derived 3D Organoid Systems.

    PubMed

    Dutta, Devanjali; Heo, Inha; Clevers, Hans

    2017-03-21

    Organoids are 3D in vitro culture systems derived from self-organizing stem cells. They can recapitulate the in vivo architecture, functionality, and genetic signature of original tissues. Thus, organoid technology has been rapidly applied to understanding stem cell biology, organogenesis, and various human pathologies. The recent development of human patient-derived organoids has enabled disease modeling with precision, highlighting their great potential in biomedical applications, translational medicine, and personalized therapy. In light of recent breakthroughs using organoids, it is only apt that we appreciate the advantages and shortcomings of this technology to exploit its full potential. We discuss recent advances in the application of organoids in studying cancer and hereditary diseases, as well as in the examination of host cell-microorganism interactions.

  2. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

    SciTech Connect

    Foroni, Laura; Vasuri, Francesco; Valente, Sabrina; Gualandi, Chiara; Focarete, Maria Letizia; Caprara, Giacomo; Scandola, Mariastella; D'Errico-Grigioni, Antonia; Pasquinelli, Gianandrea

    2013-06-10

    We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.

  3. Presenting Cultural Heritage Landscapes - from GIS via 3d Models to Interactive Presentation Frameworks

    NASA Astrophysics Data System (ADS)

    Prechtel, N.; Münster, S.; Kröber, C.; Schubert, C.; Schietzold, S.

    2013-07-01

    Two current projects of the authors try to approach cultural heritage landscapes from both cultural sciences and geography through a combination of customised geo-information (GIS) and visualisation/presentation technology. In excess of a mere academic use, easyto- handle virtual 3D web presentations may contribute to knowledge, esteem, commemoration and preservation. The examples relate to pre-historic Scythian burial sites in the South-Siberian Altay Mountains ("Uch Enmek") as well as to a "virtual memorial" of contemporary history ("GEPAM"), a chapter of Jewish prosecution in the "Third Reich", which historically connects the town of Dresden with the Czech Terezin (Theresienstadt). It is common knowledge that a profound understanding of (pre-)historic artefacts and places may reflect a larger environment as well as an individual geographic setting. Coming from this background, the presented projects try to find technical solutions. They start from GIS models and aim at customised interactive presentations of 3D models. In using the latter a widely-spanned public is invited to a land- or townscape of specific cultural importance. The geographic space is thought to work as a door to a repository of educational exhibits under the umbrella of a web application. Within this concept a landscape/townscape also accounts for the time dimension in different scales (time of construction/operation versus actual state, and in sense of a season and time of the day as a principal modulator of visual perception of space).

  4. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.

    PubMed

    Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J

    2017-02-01

    In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers.

  5. Microencapsulation of Neuroblastoma Cells and Mesenchymal Stromal Cells in Collagen Microspheres: A 3D Model for Cancer Cell Niche Study

    PubMed Central

    Yeung, Pan; Sin, Hoi Shun; Chan, Shing; Chan, Godfrey Chi Fung; Chan, Barbara Pui

    2015-01-01

    There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they can better recapitulate the complex in vivo situation. And the fact that the progression and development of tumor are closely associated to its stromal microenvironment has been increasingly recognized. The establishment of such tumor supportive niche is vital in understanding tumor progress and metastasis. The mesenchymal origin of many cells residing in the cancer niche provides the rationale to include MSCs in mimicking the niche in neuroblastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitro model and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted stromal environment. Results showed that the incorporation of MSCs in the model lead to accelerated growth of cancer cells as well as recapitulation of at least partially the tumor microenvironment in vivo. The current study therefore demonstrates the feasibility for the collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer studies. PMID:26657086

  6. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  7. Imaging topological radar for 3D imaging in cultural heritage reproduction and restoration

    NASA Astrophysics Data System (ADS)

    Poggi, Claudio; Guarneri, Massimiliano; Fornetti, Giorgio; Ferri de Collibus, Mario; De Dominicis, Luigi; Paglia, Emiliano; Ricci, Roberto

    2005-10-01

    We present the last results obtained by using our Imaging Topological Radar (ITR), an high resolution laser scanner aimed at reconstruction 3D digital models of real targets, either single objects or complex scenes. The system, based on amplitude modulation ranging technique, enables to obtain simultaneously a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image, with resolution depending mainly on the laser modulation frequency (current best performance are ~100μm). The complete target surface is reconstructed from sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloy, bones) and is suitable of relevant applications in different fields, ranging from industrial machining to medical diagnostics. We present some relevant examples of 3D reconstruction in the heritage field. Such results were obtained during recent campaigns carried out in situ in various Italian historical and archaeological sites (S. Maria Antiqua in Roman Forum, "Grotta dei cervi" Porto Badisco - Lecce, South Italy). The presented 3D models will be used by cultural heritage conservation authorities for restoration purpose and will available on the Internet for remote inspection.

  8. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  9. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  10. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.

    PubMed

    Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül

    2015-01-01

    Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures.

  11. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    SciTech Connect

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving

  12. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.

    PubMed

    Izadifar, Zohreh; Chang, Tuanjie; Kulyk, William; Chen, Xiongbiao; Eames, B Frank

    2016-03-01

    Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted with primary cells from embryonic chick cartilage. During initial two-dimensional culture expansion of these primary cells, two morphologically and molecularly distinct cell populations ("rounded" and "fibroblastic") were isolated. The biological performance of each population was evaluated in 3D hybrid constructs separately. The cell viability, proliferation, and cartilage differentiation were observed at high levels in hybrid constructs of both cell populations, confirming the validity of these 3D bioprinting parameters for effective cartilage tissue engineering. Statistically significant performance variations were observed, however, between the rounded and fibroblastic cell populations. Molecular and morphological data support the notion that such performance differences may be attributed to the relative differentiation state of rounded versus fibroblastic cells (i.e., differentiated chondrocytes vs. chondroprogenitors, respectively), which is a relevant issue for cell-based tissue engineering strategies. Taken together, our study demonstrates that bioprinting 3D hybrid constructs of PCL and cell-impregnated alginate hydrogel is a promising approach for

  13. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  14. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    PubMed

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.

  15. a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Kıvılcım, C. Ö.; Duran, Z.

    2016-06-01

    The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.

  16. The Niha Sites (lebanon) Cultural Landscape: a 3d Model of Sanctuaries and Their Context

    NASA Astrophysics Data System (ADS)

    Yasmine, J.

    2013-07-01

    The paper aims at presenting the historical sites of Niha (Beqaa valley, Lebanon), their cultural values, and the methodology applied in the assessment of these values through the use of 3D modelling. The whole cultural landscape comprises the current village of Niha (altitude 1100 m), the archaeological site of Hosn-Niha (altitude 1350m), and the area located between these two sites. Two rural sanctuaries constitute the major archaeological remains present in the landscape: the first, located in the village of Niha, is composed of two roman temples with various archaeological structures; the second is located at the top of an antique settlement 2,5 km above the village of Niha. This second sanctuary Hosn-Niha, includes two temples, one church, remnants of numerous structures, and remains of an antique village. The cultural and religious values of both these sites are clear. However, questions arise regarding the choice for establishing the sanctuaries in these locations. The aim of the research is to try to understand the reasons for the various settlements in relationship with the topography and the landscape. The methodology applied in the research addresses two levels: a - The landscape level, and b - the built-up archaeology level. The global 3D models of both the landscape and the sanctuaries allow us to understand the various relations between the landscape, the sanctuaries and the various archaeological structures. An assessment of the various cultural resources found around the sanctuaries, while considering the reasons for their specific placement in the landscape can shed light on the reasons of these choices.

  17. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    PubMed

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  18. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    SciTech Connect

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  19. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  20. Comparison of Mesenchymal Stem Cell Source Differentiation Toward Human Pediatric Aortic Valve Interstitial Cells within 3D Engineered Matrices

    PubMed Central

    Duan, Bin; Hockaday, Laura A.; Das, Shoshana; Xu, Charlie

    2015-01-01

    Living tissue-engineered heart valves (TEHV) would be a major benefit for children who require a replacement with the capacity for growth and biological integration. A persistent challenge for TEHV is accessible human cell source(s) that can mimic native valve cell phenotypes and matrix remodeling characteristics that are essential for long-term function. Mesenchymal stem cells derived from bone marrow (BMMSC) or adipose tissue (ADMSC) are intriguing cell sources for TEHV, but they have not been compared with pediatric human aortic valve interstitial cells (pHAVIC) in relevant 3D environments. In this study, we compared the spontaneous and induced multipotency of ADMSC and BMMSC with that of pHAVIC using different induction media within three-dimensional (3D) bioactive hybrid hydrogels with material modulus comparable to that of aortic heart valve leaflets. pHAVIC possessed some multi-lineage differentiation capacity in response to induction media, but limited to the earliest stages and much less potent than either ADMSC or BMMSC. ADMSC expressed cell phenotype markers more similar to pHAVIC when conditioned in basic fibroblast growth factor (bFGF) containing HAVIC growth medium, while BMMSC generally expressed similar extracellular matrix remodeling characteristics to pHAVIC. Finally, we covalently attached bFGF to PEG monoacrylate linkers and further covalently immobilized in the 3D hybrid hydrogels. Immobilized bFGF upregulated vimentin expression and promoted the fibroblastic differentiation of pHAVIC, ADMSC, and BMMSC. These findings suggest that stem cells retain a heightened capacity for osteogenic differentiation in 3D culture, but can be shifted toward fibroblast differentiation through matrix tethering of bFGF. Such a strategy is likely important for utilizing stem cell sources in heart valve tissue engineering applications. PMID:25594437

  1. Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    PubMed Central

    de Barros, Ana Paula D. N.; Takiya, Christina M.; Garzoni, Luciana R.; Leal-Ferreira, Mona Lisa; Dutra, Hélio S.; Chiarini, Luciana B.; Meirelles, Maria Nazareth; Borojevic, Radovan; Rossi, Maria Isabel D.

    2010-01-01

    Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation. PMID:20161704

  2. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels.

    PubMed

    Schultz, Kelly M; Kyburz, Kyle A; Anseth, Kristi S

    2015-07-21

    Biomaterials that mimic aspects of the extracellular matrix by presenting a 3D microenvironment that cells can locally degrade and remodel are finding increased applications as wound-healing matrices, tissue engineering scaffolds, and even substrates for stem cell expansion. In vivo, cells do not simply reside in a static microenvironment, but instead, they dynamically reengineer their surroundings. For example, cells secrete proteases that degrade extracellular components, attach to the matrix through adhesive sites, and can exert traction forces on the local matrix, causing its spatial reorganization. Although biomaterials scaffolds provide initially well-defined microenvironments for 3D culture of cells, less is known about the changes that occur over time, especially local matrix remodeling that can play an integral role in directing cell behavior. Here, we use microrheology as a quantitative tool to characterize dynamic cellular remodeling of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels that degrade in response to cell-secreted matrix metalloproteinases (MMPs). This technique allows measurement of spatial changes in material properties during migration of encapsulated cells and has a sensitivity that identifies regions where cells simply adhere to the matrix, as well as the extent of local cell remodeling of the material through MMP-mediated degradation. Collectively, these microrheological measurements provide insight into microscopic, cellular manipulation of the pericellular region that gives rise to macroscopic tracks created in scaffolds by migrating cells. This quantitative and predictable information should benefit the design of improved biomaterial scaffolds for medically relevant applications.

  3. Directed 3D Cell Alignment and Elongation in Microengineered Hydrogels

    DTIC Science & Technology

    2010-01-01

    Immortalized human liver carcinoma cells (Hep-G2) were maintained in DMEM supplemented with 10% FBS, 1% P/S and were passaged twice per week. 2.4. Prepolymer ... prepolymer (20% (w/v) in DPBS) was used to coat TMSPMA treated glass slides as previously described [28]. 2.5. Cell encapsulation and micropatterning Cell... prepolymer was pipetted between a TMSPMA coated glass slide and an untreated coverslip (18 mm (w) 18 mm (l)), then exposed to 6.9 mW/cm2 UV light

  4. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    PubMed Central

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  5. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.

    PubMed

    Park, Jisun; Lee, Sang Jin; Chung, Solchan; Lee, Jun Hee; Kim, Wan Doo; Lee, Jae Young; Park, Su A

    2017-02-01

    Cell-printing techniques that can construct three-dimensional (3D) structures with biocompatible materials and cells are of great interest for various biomedical applications, such as tissue engineering and drug-screening studies. For successful cell-printing with cells, bioinks are critical for both the processability of printing and the viability of printed cells. However, the influence of composition on 3D bio-printing with cells has not been well explored. In this study, we investigated different compositions of alginate bioinks by varying the concentrations of high molecular weight alginate (High Alg) and low molecular weight alginate (Low Alg). Bioinks of 3wt% alginate containing High Alg alone or a 1:2 (Low Alg:High Alg) composite allowed for the construction of 3D scaffolds with good processability and shapes. Cell-printing with fibroblasts and in vitro culture studies revealed good viability and growth of the printed cells after up to 7days of culture. Bioinks prepared with High and Low Alg at a 2:1 ratio exhibited better cell growth compared with those of other compositions. This study progresses the design and applications of alginate-based bioinks for cell-printing platforms in soft tissue engineering.

  6. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44.

    PubMed

    Wessels, Deborah; Lusche, Daniel F; Voss, Edward; Kuhl, Spencer; Buchele, Emma C; Klemme, Michael R; Russell, Kanoe B; Ambrose, Joseph; Soll, Benjamin A; Bossler, Aaron; Milhem, Mohammed; Goldman, Charles; Soll, David R

    2017-01-01

    Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs.

  7. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44

    PubMed Central

    Voss, Edward; Kuhl, Spencer; Buchele, Emma C.; Klemme, Michael R.; Russell, Kanoe B.; Ambrose, Joseph; Soll, Benjamin A.; Bossler, Aaron; Milhem, Mohammed; Goldman, Charles

    2017-01-01

    Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs. PMID:28264026

  8. Local 3D matrix confinement determines division axis through cell shape.

    PubMed

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-09

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  9. Electric field-controlled directed migration of neural progenitor cells in 2D and 3D environments.

    PubMed

    Meng, Xiaoting; Li, Wenfei; Young, Fraser; Gao, Runchi; Chalmers, Laura; Zhao, Min; Song, Bing

    2012-02-16

    Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system(1,2). These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans(3,4). In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types(5,6), including neural progenitor cells (NPCs)(7,8). Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously(5,11). Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures(9,10). Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.

  10. Spontaneous Electroless Galvanic Cell Deposition of 3D Hierarchical and Interlaced S-M-S Heterostructures.

    PubMed

    Tan, Chuan Fu; Azmansah, Siti Aishah Bte; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    One-pot electroless galvanic cell deposition of a 3D hierarchical semiconductor-metal-semiconductor interlaced nanoarray is demonstrated. The fabricated 3D photoanode deviates from the typical planar geometry, and aims to optimize the effective surface area for light harvesting and long-range charge transfer-collection pathways.

  11. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  12. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    DTIC Science & Technology

    2014-08-01

    remark that more features can be added to the model by augmenting the corresponding free energy . 2.2 Transport equations for biomass Given the...density for component i, i = 1, 2, 3. For incompress- ible materials, we enforce ϕ1 + ϕ2 + ϕ3 = 1. (2) 2.1 Thermodynamic free energy We denote the domain...in which the cell resides together with the buffer fluid as Ω. The free energy of this mixture system is proposed as follows, F = ∫ Ω fdx, (3) where f

  13. N-cadherin as a key regulator of collective cell migration in a 3D environment.

    PubMed

    Shih, Wenting; Yamada, Soichiro

    2012-01-01

    Cell migration is a critical step of normal developmental processes and disease progression. Often, migrating cells interact and maintain contact with neighboring cells. However, the precise roles of cell-cell adhesion in cell migration have thus far been poorly defined. Often in aggressive cancers, N-cadherin is prominently upregulated, yet, these highly motile cells have limited cell-cell adhesion when plated on a stiff 2D substrate. But, the same cells in a 3D matrix migrate as a multicellular cluster. This new observation suggests that N-cadherin-mediated cell-cell adhesion supports cell interactions between migrating cells in a more physiologically relevant 3D matrix, but not on a 2D substrate. While N-cadherin is an integral part of neural synapses, the ectopic expression of N-cadherin in transformed epithelial cells plays an equally important part in initiating pro-migratory signaling, and providing strong yet flexible cell cohesion essential for persistent cell migration in a 3D matrix. The 3D cell migration analysis for studying cell-to-cell interactions exposes the roles of N-cadherin in multicellular migration, and reveals novel insights into cell migration-dependent normal and pathological processes.

  14. Nonpolarized signaling reveals two distinct modes of 3D cell migration.

    PubMed

    Petrie, Ryan J; Gavara, Núria; Chadwick, Richard S; Yamada, Kenneth M

    2012-04-30

    We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.

  15. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons.

    PubMed

    Wardyn, Joanna D; Sanderson, Chris; Swan, Laura E; Stagi, Massimiliano

    2015-08-15

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology.

  16. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons

    PubMed Central

    Wardyn, Joanna D.; Sanderson, Chris; Swan, Laura E.; Stagi, Massimiliano

    2015-01-01

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology. PMID:25962333

  17. Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.

    PubMed

    Li, Gang; Guo, Lei

    2012-01-01

    Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.

  18. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    PubMed

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and

  19. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model

    PubMed Central

    Cavo, Marta; Fato, Marco; Peñuela, Leonardo; Beltrame, Francesco; Raiteri, Roberto; Scaglione, Silvia

    2016-01-01

    Three-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity. The hydrogel elastic modulus (E) was measured via atomic force microscopy (AFM) and a remarkable range (150–4000 kPa) was obtained. A breast cancer cell line, MCF-7, was seeded within the 3D gels, on standard Petri and alginate-coated dishes (2D controls). Cells showed dramatic morphological differences when cultured in 3D versus 2D, exhibiting a flat shape in both 2D conditions, while maintaining a circular, spheroid-organized (cluster) conformation within the gels, similar to those in vivo. Moreover, we observed a strict correlation between cell viability and substrate elasticity; in particular, the number of MCF-7 cells decreased constantly with increasing hydrogel elasticity. Remarkably, the highest cellular proliferation rate, associated with the formation of cell clusters, occurred at two weeks only in the softest hydrogels (E = 150–200 kPa), highlighting the need to adopt more realistic and a priori defined models for in vitro cancer studies. PMID:27734939

  20. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  1. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.

    PubMed

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-11-07

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m(-3) calculated based on the volume of anode material, or 27 W m(-3) based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.

  2. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    PubMed

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-05-24

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm).

  3. PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture

    PubMed Central

    Lovitt, Carrie J.; Avery, Vicky M.

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated. PMID:24278197

  4. 3D cell-printing of large-volume tissues: Application to ear regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byung Soo; Seo, Dong Hwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-01-17

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, humidifier, and Peltier system, which provides a suitable printing environment for production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  5. Label-free optical detection of cells grown in 3D silicon microstructures.

    PubMed

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  6. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    PubMed Central

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering. PMID:12242339

  7. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  8. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture.

    PubMed

    Ye, Lin; Cao, Jie; Chen, Lamei; Geng, Xue; Zhang, Ai-Ying; Guo, Lian-Rui; Gu, Yong-Quan; Feng, Zeng-Guo

    2015-12-01

    A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core. The core-shell structure in the outer layer fibers was observed by transmission electron microscope (TEM). The in vitro release tests exhibited the sustainable release behavior of BSA and VAPG so that they provided a better cell growth environment in the interior of tubular scaffold wall. The in vitro cult