User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics
McMaster, W H
1982-05-07
The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.
NASA Astrophysics Data System (ADS)
Stockton, Gregory R.
2011-05-01
Over the last 10 years, very large government, military, and commercial computer and data center operators have spent millions of dollars trying to optimally cool data centers as each rack has begun to consume as much as 10 times more power than just a few years ago. In fact, the maximum amount of data computation in a computer center is becoming limited by the amount of available power, space and cooling capacity at some data centers. Tens of millions of dollars and megawatts of power are being annually spent to keep data centers cool. The cooling and air flows dynamically change away from any predicted 3-D computational fluid dynamic modeling during construction and as time goes by, and the efficiency and effectiveness of the actual cooling rapidly departs even farther from predicted models. By using 3-D infrared (IR) thermal mapping and other techniques to calibrate and refine the computational fluid dynamic modeling and make appropriate corrections and repairs, the required power for data centers can be dramatically reduced which reduces costs and also improves reliability.
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine
2014-01-01
The aim of this study is to investigate the use of computational fluid dynamics (CFD) to predict the solid separation efficiency of a hydrodynamic separator. The numerical difficulty concerns the discretization of the geometry to simulate both the global behavior and the local phenomena that occur near the screen. In this context, a CFD multiscale approach was used: a global model (at the scale of the device) is used to observe the hydrodynamic behavior within the device; a local model (portion of the screen) is used to determine the local phenomena that occur near the screen. The Eulerian-Lagrangian approach was used to model the particle trajectories in both models. The global model shows the influence of the particles' characteristics on the trapping efficiency. A high density favors the sedimentation. In contrast, particles with small densities (1,040 kg/m(3)) are steered by the hydrodynamic behavior and can potentially be trapped by the separator. The use of the local model allows us to observe the particle trajectories near the screen. A comparison between two types of screens (perforated plate vs expanded metal) highlights the turbulent effects created by the shape of the screen. PMID:24622557
Computational 3D fluid-structure interaction for the aortic valve
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Chen, Ye; Sun, Wei
2015-11-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems. A typical example is the heart valves. Accurate and efficient numerical approaches for modeling such systems are still lacking. In this work, we report a successful case of combining an immersed-boundary flow solver with a nonlinear finite-element solid-dynamics solver, both in-house programs, specifically for three-dimensional simulations. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-dynamics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We have performed several benchmarking cases to validate the FSI solver. Application to the native aortic valve will be demonstrated. Supported by the NSF grant (CBET-1066962).
Users manual for CAFE-3D : a computational fluid dynamics fire code.
Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma
2005-03-01
The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2003-05-12
This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.
Saho, Tatsunori; Onishi, Hideo
2015-07-01
In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms. PMID:25911446
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.
2006-07-01
The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model
TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro
Trent, Dr.D.S.; Eyler, Dr.L.L.
1991-04-01
TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.
Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico
2015-01-01
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288
NASA Astrophysics Data System (ADS)
Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying
2012-09-01
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
Neidlin, Michael; Steinseifer, Ulrich; Kaufmann, Tim A S
2014-06-01
Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated. The parameters of the baroreflex mechanism can reproduce normotensive, hypertensive and impaired autoregulation behavior. Further on, the proposed model can mimic the effects of anesthetic agents and other factors controlling dynamic CA. The CFD simulations deliver similar results of static and dynamic CBF as the 0-D control circuit. This study shows the feasibility of a multiscale 0-D/3-D approach to include patient-specific cerebral autoregulation into CFD studies. PMID:24746017
ICEd-ALE Treatment of 3-D Fluid Flow.
1999-09-13
Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Fast 3D fluid registration of brain magnetic resonance images
NASA Astrophysics Data System (ADS)
Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.
2008-03-01
Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.
Aerofoil characteristics from 3D CFD rotor computations
NASA Astrophysics Data System (ADS)
Johansen, Jeppe; Sørensen, Niels N.
2004-10-01
This article describes a method for extracting aerofoil characteristics from 3D computational fluid dynamics (CFD) rotor computations. Based on the knowledge of the detailed flow in the rotor plane, the average sectional axial induction is determined for each wind speed. Based on this, the local angle of attack is determined when knowing the rotational speed and the local blade twist angle. The local aerofoil characteristics, i.e. Cl and Cd, are then computed from the forces acting on the blade. The extracted Cl and Cd are used in a standard blade element momentum (BEM) code, where no corrections are made for the rotational augmentation of forces or for the tip effect, since these are directly included in the aerofoil characteristics. Three stall-regulated wind turbine rotors are used as test cases. The computed mechanical power is overpredicted at high wind speeds using steady Reynolds-averaged Navier-Stokes computations, but using advanced turbulence models, e.g. detached eddy simulation, or a transition prediction model improves the computations. The agreement between the mechanical power (or low-speed shaft torque) predicted by CFD and BEM is good, even though a small but consistent difference in induction prediction is present. With the proposed method and a sufficiently accurate CFD computation it is possible to obtain aerofoil characteristics from a given wind turbine design without using empirical stall corrections models. Alternatively, new correction models can be derived using the extracted aerofoil characteristics. Copyright
CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D
NASA Astrophysics Data System (ADS)
Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.
2015-08-01
Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under
Computational 3-D inversion for seismic exploration
Gavrilov, E.M.; Forslund, D.W.; Fehler, M.C.
1997-10-01
This is the final report of a four-month, Laboratory Directed Research and Development (LDRD) project carried out at the Los Alamos National Laboratory (LANL). There is a great need for a new and effective technology with a wide scope of industrial applications to investigate media internal properties of which can be explored only from the backscattered data. The project was dedicated to the development of a three-dimensional computational inversion tool for seismic exploration. The new computational concept of the inversion algorithm was suggested. The goal of the project was to prove the concept and the practical validity of the algorithm for petroleum exploration.
NASA Astrophysics Data System (ADS)
Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.
2016-03-01
Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.
NASA Astrophysics Data System (ADS)
Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.
2016-06-01
Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.
Computational modeling of RNA 3D structures and interactions.
Dawson, Wayne K; Bujnicki, Janusz M
2016-04-01
RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764
Parallel algorithm for computing 3-D reachable workspaces
NASA Astrophysics Data System (ADS)
Alameldin, Tarek K.; Sobh, Tarek M.
1992-03-01
The problem of computing the 3-D workspace for redundant articulated chains has applications in a variety of fields such as robotics, computer aided design, and computer graphics. The computational complexity of the workspace problem is at least NP-hard. The recent advent of parallel computers has made practical solutions for the workspace problem possible. Parallel algorithms for computing the 3-D workspace for redundant articulated chains with joint limits are presented. The first phase of these algorithms computes workspace points in parallel. The second phase uses workspace points that are computed in the first phase and fits a 3-D surface around the volume that encompasses the workspace points. The second phase also maps the 3- D points into slices, uses region filling to detect the holes and voids in the workspace, extracts the workspace boundary points by testing the neighboring cells, and tiles the consecutive contours with triangles. The proposed algorithms are efficient for computing the 3-D reachable workspace for articulated linkages, not only those with redundant degrees of freedom but also those with joint limits.
ERIC Educational Resources Information Center
Matsuda, Hiroshi; Shindo, Yoshiaki
2006-01-01
The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…
The 3-D inelastic analyses for computational structural mechanics
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1989-01-01
The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.
FUN3D and CFL3D Computations for the First High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.
2011-01-01
Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.
Computations of Emissions Using a 3-D Combustor Program
NASA Technical Reports Server (NTRS)
Srivatsa, S. K.
1983-01-01
A general 3-D combustor performance program developed by Garrett was extended to predict soot and NOx emissions. The soot formation and oxidation rates were computed by quasi-global models, taking into account the influence of turbulence. Radiation heat transfer was computed by the six-flux radiation mode. The radiation properties include the influence of CO2 and H2O in addition to soot. NOx emissions were computed from a global four-step hydrocarbon oxidation scheme and a set of rate-controlled reactions involving radicals and nitrogen oxides.
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
Advanced computational tools for 3-D seismic analysis
Barhen, J.; Glover, C.W.; Protopopescu, V.A.
1996-06-01
The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.
Majority logic gate for 3D magnetic computing.
Eichwald, Irina; Breitkreutz, Stephan; Ziemys, Grazvydas; Csaba, György; Porod, Wolfgang; Becherer, Markus
2014-08-22
For decades now, microelectronic circuits have been exclusively built from transistors. An alternative way is to use nano-scaled magnets for the realization of digital circuits. This technology, known as nanomagnetic logic (NML), may offer significant improvements in terms of power consumption and integration densities. Further advantages of NML are: non-volatility, radiation hardness, and operation at room temperature. Recent research focuses on the three-dimensional (3D) integration of nanomagnets. Here we show, for the first time, a 3D programmable magnetic logic gate. Its computing operation is based on physically field-interacting nanometer-scaled magnets arranged in a 3D manner. The magnets possess a bistable magnetization state representing the Boolean logic states '0' and '1.' Magneto-optical and magnetic force microscopy measurements prove the correct operation of the gate over many computing cycles. Furthermore, micromagnetic simulations confirm the correct functionality of the gate even for a size in the nanometer-domain. The presented device demonstrates the potential of NML for three-dimensional digital computing, enabling the highest integration densities. PMID:25073985
Majority logic gate for 3D magnetic computing
NASA Astrophysics Data System (ADS)
Eichwald, Irina; Breitkreutz, Stephan; Ziemys, Grazvydas; Csaba, György; Porod, Wolfgang; Becherer, Markus
2014-08-01
For decades now, microelectronic circuits have been exclusively built from transistors. An alternative way is to use nano-scaled magnets for the realization of digital circuits. This technology, known as nanomagnetic logic (NML), may offer significant improvements in terms of power consumption and integration densities. Further advantages of NML are: non-volatility, radiation hardness, and operation at room temperature. Recent research focuses on the three-dimensional (3D) integration of nanomagnets. Here we show, for the first time, a 3D programmable magnetic logic gate. Its computing operation is based on physically field-interacting nanometer-scaled magnets arranged in a 3D manner. The magnets possess a bistable magnetization state representing the Boolean logic states ‘0’ and ‘1.’ Magneto-optical and magnetic force microscopy measurements prove the correct operation of the gate over many computing cycles. Furthermore, micromagnetic simulations confirm the correct functionality of the gate even for a size in the nanometer-domain. The presented device demonstrates the potential of NML for three-dimensional digital computing, enabling the highest integration densities.
2-D and 3-D computations of curved accelerator magnets
Turner, L.R.
1991-01-01
In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.
GPU-Based Visualization of 3D Fluid Interfaces using Level Set Methods
NASA Astrophysics Data System (ADS)
Kadlec, B. J.
2009-12-01
We model a simple 3D fluid-interface problem using the level set method and visualize the interface as a dynamic surface. Level set methods allow implicit handling of complex topologies deformed by evolutions where sharp changes and cusps are present without destroying the representation. We present a highly optimized visualization and computation algorithm that is implemented in CUDA to run on the NVIDIA GeForce 295 GTX. CUDA is a general purpose parallel computing architecture that allows the NVIDIA GPU to be treated like a data parallel supercomputer in order to solve many computational problems in a fraction of the time required on a CPU. CUDA is compared to the new OpenCL™ (Open Computing Language), which is designed to run on heterogeneous computing environments but does not take advantage of low-level features in NVIDIA hardware that provide significant speedups. Therefore, our technique is implemented using CUDA and results are compared to a single CPU implementation to show the benefits of using the GPU and CUDA for visualizing fluid-interface problems. We solve a 1024^3 problem and experience significant speedup using the NVIDIA GeForce 295 GTX. Implementation details for mapping the problem to the GPU architecture are described as well as discussion on porting the technique to heterogeneous devices (AMD, Intel, IBM) using OpenCL. The results present a new interactive system for computing and visualizing the evolution of fluid interface problems on the GPU.
3D seismic imaging on massively parallel computers
Womble, D.E.; Ober, C.C.; Oldfield, R.
1997-02-01
The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.
Chhabra, Avneesh; Nordeck, Shaun; Wadhwa, Vibhor; Madhavapeddi, Sai; Robertson, William J
2015-01-01
Femoroacetabular impingement is uncommonly associated with a large rim fragment of bone along the superolateral acetabulum. We report an unusual case of femoroacetabular impingement (FAI) with chronic acetabular rim fracture. Radiographic, 3D computed tomography, 3D magnetic resonance imaging and arthroscopy correlation is presented with discussion of relative advantages and disadvantages of various modalities in the context of FAI. PMID:26191497
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of computational fluid dynamics (CFD) activities at the Langley Research Center is given. The role of supercomputers in CFD research, algorithm development, multigrid approaches to computational fluid flows, aerodynamics computer programs, computational grid generation, turbulence research, and studies of rarefied gas flows are among the topics that are briefly surveyed.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Computing Radiative Transfer in a 3D Medium
NASA Technical Reports Server (NTRS)
Von Allmen, Paul; Lee, Seungwon
2012-01-01
A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.
A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows
NASA Astrophysics Data System (ADS)
Xiao, Feng
1999-11-01
A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows.
3D Fluid-Structure Modeling of a Monofin
NASA Astrophysics Data System (ADS)
Monier, L.; Razafimahery, F.; Rakotomanana, L.
2010-10-01
The purpose of this paper is to develop a numerical modelisation for the behaviour of a monofin. We have developped a fluid struture model simulating the movement of a fin in a swimming pool. We first present the geometry and the equations and then proceed to different numerical experiments in order to validate the model.
3D ultrasound computer tomography: update from a clinical study
NASA Astrophysics Data System (ADS)
Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.
2016-04-01
Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.
Santee, G.E. Jr.; Chang, F.H.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Belytschko, T.B.
1982-11-01
This report, the third in a series of reports for RP-1065, describes the final step in the stepwise approach for developing the three-dimensional, nonlinear, fluid-structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The final step in the methodology implements enhancements and special modifications to the STEALTH 3D computer program and the WHAMSE 3D computer program. After describing the enhancements, the individual and the coupled computer programs are assessed by comparing calculational results with either analytical solutions or with experimental data. The coupled 3D STEALTH/WHAMSE computer program is then applied to the simulation of HDR Test V31.1 to further assess the program and to investigate the role that fluid-structure interaction plays in the hydrodynamic loading of reactor internals during subcooled blowdown.
Computational approaches to 3D modeling of RNA.
Laing, Christian; Schlick, Tamar
2010-07-21
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research. PMID:21399271
3D two-fluid simulations of turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin M.
The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the
Computational Fluid Dynamics Library
2005-03-04
CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation lawsmore » is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.« less
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-10
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2010-01-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the
3D finite-difference seismic migration with parallel computers
Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.
1998-11-01
The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.
Glasses for 3D ultrasound computer tomography: phase compensation
NASA Astrophysics Data System (ADS)
Zapf, M.; Hopp, T.; Ruiter, N. V.
2016-03-01
Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.
Computing 3D head orientation from a monocular image sequence
NASA Astrophysics Data System (ADS)
Horprasert, Thanarat; Yacoob, Yaser; Davis, Larry S.
1997-02-01
An approach for estimating 3D head orientation in a monocular image sequence is proposed. The approach employs recently developed image-based parameterized tracking for face and face features to locate the area in which a sub- pixel parameterized shape estimation of the eye's boundary is performed. This involves tracking of five points (four at the eye corners and the fifth is the tip of the nose). We describe an approach that relies on the coarse structure of the face to compute orientation relative to the camera plane. Our approach employs projective invariance of the cross-ratios of the eye corners and anthropometric statistics to estimate the head yaw, roll and pitch. Analytical and experimental results are reported.
Parallelization of ARC3D with Computer-Aided Tools
NASA Technical Reports Server (NTRS)
Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.
Software-based geometry operations for 3D computer graphics
NASA Astrophysics Data System (ADS)
Sima, Mihai; Iancu, Daniel; Glossner, John; Schulte, Michael; Mamidi, Suman
2006-02-01
In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-point representation in graphics applications on embedded devices where performance is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes (current PDA's are 640 × 480 (VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the exception of rigid body rotation).
Protein 3D Structure Computed from Evolutionary Sequence Variation
Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2011-01-01
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein
Computational and methodological developments towards 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.
2010-12-01
Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion
Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.
Xu, Yufan; Wang, Xiaohong
2015-08-01
Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques. PMID:25727058
3D Vectorial Time Domain Computational Integrated Photonics
Kallman, J S; Bond, T C; Koning, J M; Stowell, M L
2007-02-16
The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip
Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.
2016-01-01
This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
NASA Astrophysics Data System (ADS)
Atkinson, C.; Buchmann, N. A.; Soria, J.
2013-11-01
Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Astrophysics Data System (ADS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Parallel computation of 3-D Navier-Stokes flowfields for supersonic vehicles
NASA Technical Reports Server (NTRS)
Ryan, James S.; Weeratunga, Sisira
1993-01-01
Multidisciplinary design optimization of aircraft will require unprecedented capabilities of both analysis software and computer hardware. The speed and accuracy of the analysis will depend heavily on the computational fluid dynamics (CFD) module which is used. A new CFD module has been developed to combine the robust accuracy of conventional codes with the ability to run on parallel architectures. This is achieved by parallelizing the ARC3D algorithm, a central-differenced Navier-Stokes method, on the Intel iPSC/860. The computed solutions are identical to those from conventional machines. Computational speed on 64 processors is comparable to the rate on one Cray Y-MP processor and will increase as new generations of parallel computers become available.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
Computational fluid dynamic control
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Deabreu-Garcia, Alex
1989-01-01
A general technique is presented for modeling fluid, or gas, dynamic systems specifically for the development of control systems. The numerical methods which are generally used in computational fluid dynamics are borrowed to create either continuous-time or discrete-time models of the particular fluid system. The resulting equations can be either left in a nonlinear form, or easily linearized about an operating point. As there are typically very many states in these systems, the usual linear model reduction methods can be used on them to allow a low-order controller to be designed. A simple example is given which typifies many internal flow control problems. The resulting control is termed computational fluid dynamic control.
3D-printed soft microrobot for swimming in biological fluids.
Qiu, Tian; Palagi, Stefano; Fischer, Peer
2015-08-01
Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable micro-swimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids. PMID:26737396
Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images
NASA Astrophysics Data System (ADS)
Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald
2003-05-01
Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.
Computed 3D visualisation of an extinct cephalopod using computer tomographs
NASA Astrophysics Data System (ADS)
Lukeneder, Alexander
2012-08-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.
Computed 3D visualisation of an extinct cephalopod using computer tomographs
Lukeneder, Alexander
2012-01-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976
Computed 3D visualisation of an extinct cephalopod using computer tomographs.
Lukeneder, Alexander
2012-08-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976
Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.
Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark
2016-01-01
Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460
Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid
Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark
2016-01-01
Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460
Fluids escape in subduction zones: new constraints from 3-D microtomography data
NASA Astrophysics Data System (ADS)
Le Roux, V.; Gaetani, G. A.; Slaugenwhite, J.; Miller, K.
2013-12-01
Large amounts of H2O are carried into trenches via subduction of the sediments, basaltic crust and uppermost mantle that make up the oceanic lithosphere. A major question is how much of this subducted H2O is released into the overlying mantle wedge, promoting melting, and how much is carried deeper into the mantle. This depends, at least in part, on whether H2O is able to form an interconnected network among the mineral grains that make up the rock down to very low fluid fractions. In order to achieve connectivity and allow the fluid phase to escape, a minimum amount of fluid (critical porosity) is required when dihedral angles are more than 60 degrees. We investigated the distribution of seawater in simplified sediment analogs (i.e. quartz for siliceous sediments; calcite for carbonate sediments), in natural clays (kaolinite and montmorillonite) and in bulk eclogite. Experiments were performed in a piston-cylinder apparatus at 2 GPa and 650°C. Fluid fractions ranged from ~10% to ~1% to determine the porosity at which connectivity of the seawater network is lost for each rock type. We used synchrotron X-ray microtomographic techniques (at Argonne National Laboratory, IL) to obtain 3-D images of the pore space network in order to constrain the grain scale distribution of fluids in a subducted slab. This nondestructive 3-D imaging technique has a spatial resolution of 0.7 μm and provides quantitative information on geometrical parameters of fluid topology, such as porosity, dihedral angle distribution, fluid channel sizes and connectivity. The geometrical parameters were extracted using the VSG Avizo software. This study lays the groundwork for determining the 3-D grain scale distribution of fluids in a range of subducted lithologies. Results from this study provide important new insights into the amount of fluid that can be transported into the deep mantle by subduction.
Learning Projectile Motion with the Computer Game ``Scorched 3D``
NASA Astrophysics Data System (ADS)
Jurcevic, John S.
2008-01-01
For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.
Computation of optimized arrays for 3-D electrical imaging surveys
NASA Astrophysics Data System (ADS)
Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.
2014-12-01
3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.
NASA Astrophysics Data System (ADS)
Chung, T. J.
2002-03-01
Computational fluid dynamics (CFD) techniques are used to study and solve complex fluid flow and heat transfer problems. This comprehensive text ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It discusses and illustrates the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods, with step-by-step hand calculations. Chapters go on to examine structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners--particularly in mechanical, aerospace, chemical, and civil engineering--will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.
Implementation Of True 3D Cursors In Computer Graphics
NASA Astrophysics Data System (ADS)
Butts, David R.; McAllister, David F.
1988-06-01
The advances in stereoscopic image display techniques have shown an increased need for real-time interaction with the three-dimensional image. We have developed a prototype real-time stereoscopic cursor to investigate this interaction. The results have pointed out areas where hardware speeds are a limiting factor, as well as areas where various methodologies cause perceptual difficulties. This paper addresses the psychological and perceptual anomalies involved in stereo image techniques, cursor generation and motion, and the use of the device as a 3D drawing and depth measuring tool.
Computational study of 3-D Benard convection with gravitational modulation
NASA Technical Reports Server (NTRS)
Biringen, S.; Peltier, L. J.
1989-01-01
In this numerical study the effects of a modulated gravitational field on three-dimensional Rayleigh-Benard convection with heating from above or from below is investigated. The full, nonlinear, time-dependent, Boussinesq Navier-Stokes equations and the energy equation are solved by a semiimplicit, pseudo-spectral procedure. This study has been motivated by the need to better understand the effects of vibration (G-Jitter) on fluids systems especially in the low gravity environment.
Computational fluid dynamics research
NASA Technical Reports Server (NTRS)
Chandra, Suresh; Jones, Kenneth; Hassan, Hassan; Mcrae, David Scott
1992-01-01
The focus of research in the computational fluid dynamics (CFD) area is two fold: (1) to develop new approaches for turbulence modeling so that high speed compressible flows can be studied for applications to entry and re-entry flows; and (2) to perform research to improve CFD algorithm accuracy and efficiency for high speed flows. Research activities, faculty and student participation, publications, and financial information are outlined.
Conservation of Fluid Mass and Energy by RELAP5-3D during a SBLOCA
Cliff B. Davis
2009-08-01
Mass and energy balances were performed to check the accuracy of RELAP5-3D’s solution during a loss-of-coolant accident initiated by a small break in a typical pressurized water reactor. Mass and energy balances were performed for the combined liquid and gas phases and the gas phase by itself. The analysis showed that RELAP5-3D adequately conserved mass and energy for the combined fluid and the gas phase.
Navier-Stokes Neutral and Plasma Fluid Modelling in 3D
Riemann, J; Borchardt, M; Schneider, R; Mutzke, A; Rognlien, T; Umansky, M
2004-05-17
The 3D finite volume transport code BoRiS is applied to a system of coupled plasma and neutral fluid equations in a slab. Demonstrating easy implementation of new equations, a new parallel BoRiS version is tested on three different models for the neutral fluid - diffusive, parallel Navier-Stokes and full Navier-Stokes - and the results are compared to each other. Typical effects like density enhancement by ionization of recycled neutrals in front of a target plate can be seen and differences are linked to the neutral models in use.
North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects
NASA Astrophysics Data System (ADS)
Li, Hong-lin; He, Tao; Spence, George D.
2014-01-01
The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.
Efficient sensitivity computations in 3D air quality models
NASA Astrophysics Data System (ADS)
Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis
2005-04-01
The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).
The 3d International Workshop on Computational Electronics
NASA Astrophysics Data System (ADS)
Goodnick, Stephen M.
1994-09-01
The Third International Workshop on Computational Electronics (IWCE) was held at the Benson Hotel in downtown Portland, Oregon, on May 18, 19, and 20, 1994. The workshop was devoted to a broad range of topics in computational electronics related to the simulation of electronic transport in semiconductors and semiconductor devices, particularly those which use large computational resources. The workshop was supported by the National Science Foundation (NSF), the Office of Naval Research and the Army Research Office, as well as local support from the Oregon Joint Graduate Schools of Engineering and the Oregon Center for Advanced Technology Education. There were over 100 participants in the Portland workshop, of which more than one quarter represented research groups outside of the United States from Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the United Kingdom. There were a total 81 papers presented at the workshop, 9 invited talks, 26 oral presentations and 46 poster presentations. The emphasis of the contributions reflected the interdisciplinary nature of computational electronics with researchers from the Chemistry, Computer Science, Mathematics, Engineering, and Physics communities participating in the workshop.
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Computational 3-D Model of the Human Respiratory System
We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...
NASA Astrophysics Data System (ADS)
Pallozzi Lavorante, Luca; Dirk Ebert, Hans
2008-07-01
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Uchida, Masafumi
2014-04-01
A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989
Fluid flow pathways study from the 3D seismic data offshore southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, L.; Chi, W. C.; Chiang, H. T.; Lin, S.
2014-12-01
3D seismic reflection data provide detailed information on the physical properties of the crust, which can be used for hydrocarbon exploration. Recently, scientists from Taiwan and Germany are collaborating on a project to use a portable 3D seismic system, called P-Cable, to study gas hydrates offshore southwest Taiwan. We have collected 3 cubes, covering the active and passive margins. At these three sites, there is a wide-spread bottom-simulating reflector (BSR). We use the BSR to study the shallow thermal structures of these prospect sites, and use the temperature field information to study fluid migration patterns. We have also done in-situ heat flow measurements, and found similar results, showing focused fluid flow migrations in some pathways. Some of the high temperature fields also correlate with gas chimneys found through seismic attribute analyses. Preliminary results show that there might be active fluid migration above the BSR in the gas hydrate stability zone. In September and October of 2014, we will collect additional P-Cable datasets to be incorporated into this study. Such results will be used to evaluate some proposed sites for future drilling programs.
Computer-generated hologram for 3D scene from multi-view images
NASA Astrophysics Data System (ADS)
Chang, Eun-Young; Kang, Yun-Suk; Moon, KyungAe; Ho, Yo-Sung; Kim, Jinwoong
2013-05-01
Recently, the computer generated hologram (CGH) calculated from real existing objects is more actively investigated to support holographic video and TV applications. In this paper, we propose a method of generating a hologram of the natural 3-D scene from multi-view images in order to provide motion parallax viewing with a suitable navigation range. After a unified 3-D point source set describing the captured 3-D scene is obtained from multi-view images, a hologram pattern supporting motion-parallax is calculated from the set using a point-based CGH method. We confirmed that 3-D scenes are faithfully reconstructed using numerical reconstruction.
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Jardin, Stephen C.; Igochine, Valentin; Guenter, Sibylle; Hoelzl, Matthias; ASDEX Upgrade Team
2014-10-01
We study sawtooth reconnection in ASDEX Upgrade tokamak plasmas by means of 3D non-linear two-fluid MHD simulations in toroidal geometry using the high-order finite element code M3D-C1. Parameters and equilibrium of the simulations are based on typical sawtoothing ASDEX Upgrade discharges. The simulation results are compared to features of the experimental observations such as the sawtooth crash time and frequency, the evolution of the safety factor profile and the 3D evolution of the temperature. 2D ECE imaging measurements during sawtooth crashes in ASDEX Upgrade indicate that the heat is transported out of the core through a narrow poloidally localized region. We investigate if incomplete sawtooth reconnection can be seen in the simulations which is suggested by soft X-ray tomography measurements in ASDEX Upgrade showing that an (m = 1, n = 1) perturbation is typically observed to survive the sawtooth crash and approximately maintain its radial position.
The spine in 3D. Computed tomographic reformation from 2D axial sections.
Virapongse, C; Gmitro, A; Sarwar, M
1986-01-01
A new program (3D83, General Electric) was used to reformat three-dimensional (3D) images from two-dimensional (2D) computed tomographic axial scans in 18 patients who had routine scans of the spine. The 3D spine images were extremely true to life and could be rotated around all three principle axes (constituting a movie), so that an illusion of head-motion parallax was created. The benefit of 3D reformation with this program is primarily for preoperative planning. It appears that 3D can also effectively determine the patency of foraminal stenosis by reformatting in hemisections. Currently this program is subject to several drawbacks that require user interaction and long reconstruction time. With further improvement, 3D reformation will find increasing clinical applicability. PMID:3787319
Computational fluid dynamic applications
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
3D topographic correction of the BSR heat flow and detection of focused fluid flow
NASA Astrophysics Data System (ADS)
He, Tao; Li, Hong-Lin; Zou, Chang-Chun
2014-06-01
The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
How effective can optical-CT 3D dosimetry be without refractive fluid matching?
NASA Astrophysics Data System (ADS)
Rankine, L.; Oldham
2013-06-01
Achieving accurate optical CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Software has been developed to simulate optical CT 3D dosimetry for a range of scanning configurations including parallel-beam, point and converging light sources. For each configuration the efficacy of 3 refractive media were investigated: air, water, and a fluid closely matched to Presage (RI = 1.00, 1.33 and 1.49 respectively). The results revealed that the useable radius of the dosimeter (i.e. where data was within 2% of truth) reduced to 68% for water-matching, and 31% for dry-scanning in air. Point source incident ray geometry produced slightly more favourable results, although variation between the three geometries was relatively small. The required detector size however, increased by a factor six for dry-scanning, introducing cost penalties. For applications where dose information is not required in the periphery, some dry and low-viscous matching configurations may be feasible.
3D Global Two-Fluid Simulations of Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett; Ricci, Paolo
2012-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the physics of instabilities that arise in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. The LAPD, with its wide range of tunable parameters and device configurations, is ideally suited for studying space and laboratory plasmas. Moreover, the highly detailed and reproducible measurements of the LAPD lend themselves amicably to comparisons with simulations. Ongoing modeling is done using a modified version of the Global Braginskii Solver (GBS) [1] that models the plasma from source to edge region in a fully 3D two-fluid code. The reduced Braginskii equations are solved on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping and are parallelized on Dartmouth's Discovery cluster. Recent progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and it is now possible to vary the potential on the front and side walls. Preliminary results, seen from the density and temperature profiles, show that the low frequency Kelvin Helmholtz instability still dominates the turbulence in the device.[4pt] [1] B. Rogers and P. Ricci. Phys. Rev. Lett. 104:225002, 2010
Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J
2015-11-01
We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed. PMID:26486364
Code verification for unsteady 3-D fluid-solid interaction problems
NASA Astrophysics Data System (ADS)
Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique
2015-12-01
This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.
NASA Astrophysics Data System (ADS)
Huang, Sujuan; Wang, Duocheng; He, Chao
2012-11-01
A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.
3D visualization of deformation structures and potential fluid pathways at the Grimsel Test Site
NASA Astrophysics Data System (ADS)
Schneeberger, Raphael; Kober, Florian; Berger, Alfons; Spillmann, Thomas; Herwegh, Marco
2015-04-01
Knowledge on the ability of fluids to infiltrate subsurface rocks is of major importance for underground constructions, geothermal or radioactive waste disposal projects. In this study, we focus on the characterization of water infiltration pathways, their 3D geometries and origins. Based on surface and subsurface mapping in combination with drill core data, we developed by the use of MoveTM (Midland Valley Exploration Ltd.) a 3D structural model of the Grimsel Test Site (GTS). GTS is an underground laboratory operated by NAGRA, the Swiss organisation responsible for the management of nuclear waste. It is located within a suite of post-Variscan magmatic bodies comprising former granitic and granodioritic melts, which are dissected by mafic and aplitic dikes. During Alpine orogeny, the suite was tectonically overprinted within two stages of ductile deformation (Wehrens et al., in prep.) followed by brittle overprint of some of the shear zones during the retrograde exhumation history. It is this brittle deformation, which controls today's water infiltration network. However, the associated fractures, cataclasites and fault gouges are controlled themselves by aforementioned pre-existing mechanical discontinuities, whose origin ranges back as far as to the magmatic stage. For example, two sets of vertically oriented mafic dikes (E-W and NW-SE striking) and compositional heterogeneities induced by magmatic segregation processes in the plutonic host rocks served as nucleation sites for Alpine strain localization. Subsequently, NE-SW, E-W and NW-SE striking ductile shear zones were formed, in combination with high temperature fracturing while dissecting the host rocks in a complex 3D pattern (Wehrens et al, in prep.). Whether the ductile shear zones have been subjected to brittle reactivation and can serve as infiltration pathways or not, depends strongly on their orientations with respect to the principal stress field. Especially where deformation structures intersect
High-Resolution 3D Seismic Imaging of Fluid Flow Anomalies in the Southwest Barents Sea
NASA Astrophysics Data System (ADS)
Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Assad, M.; Stokke, H. H.
2014-12-01
Fluid flow features imaged as gas flares in the water column, pockmarks and mud volcanoes on the seabed, and high-amplitude cross-cutting reflections and bright spots in the sub-surface are abundant in the SW Barents Sea offshore northern Norway. This region is covered by extensive conventional 2D and 3D deep penetration seismic reflection data and multibeam bathymetry. High-resolution 3D P-Cable seismic data have been acquired in the SW Barents Sea over the past few years to image the uppermost ca. 500 m of the sub-surface. The P-Cable system consist of 12 to 16 short streamers (25 m) that are towed on a cross-cable perpendicular to the vessel's steaming direction. This configuration allows for acquisition of seismic data with high trace density, typically with 6 m in-line separation. The vertical resolution is a good as 1-2 m using conventional site survey air gun configurations. The sedimentary succession in the SW Barents Sea consists of upper Paleozoic evaporites overlaid by Mesozoic and Cenozoic clastic sediments. There are several organic-rich intervals in the sequence, including Paleozoic coals and Triassic and Jurassic marine source rocks that are locally in the oil or gas maturation windows. Glacial erosion has locally removed kilometer thick Cenozoic and Mesozoic successions, leaving the Mesozoic and Paleozoic strata in shallow sub-surface. The new high-resolution 3D surveys have targeted shallow fluid anomalies in the subsurface. These are imaged as high-amplitude reflections in fault blocks and structural highs, locally cross-cutting well-defined Mesozoic reflections. Commonly, disturbed reflections are present in overlying sequences, or high-amplitude reflections are imaged in the glacial overburden sediments. Locally, hundreds of pockmarks are imaged by the seafloor reflection. The deep cross-cutting reflections are interpreted as hydrocarbon accumulations that locally migrate towards the surface. The fluids are stored in shallow gas pockets or
Nanoscale 3D distribution of low melt and fluid fractions in mantle rocks
NASA Astrophysics Data System (ADS)
Gardes, Emmanuel; Morales, Luiz; Heinrich, Wilhelm; Sifre, David; Hashim, Leila; Gaillard, Fabrice; Katharina, Marquardt
2016-04-01
The presence of melts or fluids in the intergranular medium of rocks strongly influences their bulk physico-chemical properties (e.g. mass transport and chemical reactivity, electrical conductivity, seismic wave velocity, etc). Actually, the effects can be so large that only small melt or fluid fractions must sometimes be involved for explaining mantle geophysical discontinuities and anomalies. The investigation of the distribution of such small fractions in the intergranular medium of mantle rocks is therefore crucial for relating them to bulk and large scale properties. However, it involves submicrometric structures which are hardly characterizable using conventional techniques. Here we present how the FIB-SEM-STEM microscope can be used to produce 3D imaging at unequalled resolution. We show that low melt and fluid fractions can form films as thin as 20 nm at olivine grain boundaries, and that they can modify the physico-chemical properties of mantle rocks by orders of magnitude. The fine relationships between films at grain boundaries, tubules at triple junctions and pockets at grain corners can be explored, and appear to be complex and to differ from usual visions.
Time- and Computation-Efficient Calibration of MEMS 3D Accelerometers and Gyroscopes
Stančin, Sara; Tomažič, Sašo
2014-01-01
We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations. PMID:25123469
NASA Astrophysics Data System (ADS)
Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.
2015-12-01
Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.
Computing 3-D structure of rigid objects using stereo and motion
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1987-01-01
Work performed as a step toward an intelligent automatic machine vision system for 3-D imaging is discussed. The problem considered is the quantitative 3-D reconstruction of rigid objects. Motion and stereo are the two clues considered in this system. The system basically consists of three processes: the low level process to extract image features, the middle level process to establish the correspondence in the stereo (spatial) and motion (temporal) modalities, and the high level process to compute the 3-D coordinates of the corner points by integrating the spatial and temporal correspondences.
Fluid force and static symmetry breaking modes of 3D bluff bodies.
NASA Astrophysics Data System (ADS)
Cadot, Olivier; Evrard, Antoine; DFA Team
2015-11-01
A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.
Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea
NASA Astrophysics Data System (ADS)
Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten
2015-12-01
The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.
3D hybrid simulations with gyrokinetic particle ions and fluid electrons
Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.
1998-12-31
The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.
Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs
NASA Astrophysics Data System (ADS)
De Vylder, Jonas; Philips, Wilfried
2011-02-01
This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.
Variable Quality Compression of Fluid Dynamical Data Sets Using a 3D DCT Technique
NASA Astrophysics Data System (ADS)
Loddoch, A.; Schmalzl, J.
2005-12-01
In this work we present a data compression scheme that is especially suited for the compression of data sets resulting from computational fluid dynamics (CFD). By adopting the concept of the JPEG compression standard and extending the approach of Schmalzl (Schmalzl, J. Using standard image compression algorithms to store data from computational fluid dynamics. Computers and Geosciences, 29, 10211031, 2003) we employ a three-dimensional discrete cosine transform of the data. The resulting frequency components are rearranged, quantized and finally stored using Huffman-encoding and standard variable length integer codes. The compression ratio and also the introduced loss of accuracy can be adjusted by means of two compression parameters to give the desired compression profile. Using the proposed technique compression ratios of more than 60:1 are possible with an mean error of the compressed data of less than 0.1%.
High-resolution 3D seismic data characterize fluid flow systems in the SW Barents Sea
NASA Astrophysics Data System (ADS)
Bünz, Stefan; Mienert, Jürgen; Rajan, Anupama
2010-05-01
The flow of fluids through marine sediments is one of the most dominant and pervasive processes in continental margins. These processes control the evolution of a sedimentary basin and its seafloor environment, and have implications for hydrocarbon exploration and seabed ecosystems. Many seep sites at the seafloor are associated with large but complex faunal communities that have received significant attention in recent years. However, there is a need for a better understanding of the driving mechanism of fluid flow in various geological settings, the accumulation of fluids in the subsurface and their focused flow through conduits and/or faults to the seabed. The Barents Sea is a large hydrocarbon-prone basin of the Norwegian Arctic region. A significant portion of the hydrocarbons has leaked or migrated into the shallow subsurface and is now trapped in gas-hydrate and shallow-gas reservoirs. Furthermore, there are few places in the Barents Sea, where methane gas is leaking from the seafloor into the oceanosphere. Accumulations of free gas in the shallow subsurface are considered a geohazard. They constitute a risk for safe drilling operations and they may pose a threat to global climate if the seal that is trapping them is breached. P-Cable 3D high-resolution seismic data from the Ringvassøya Fault Complex and the Polheim Sub-Platform provide new and detailed insight into fluid flow controls and accumulation mechanisms. The data shows a wide variety of fluid flow features, mostly in the form of pockmarks, bright spots, wipe-out zones or vertical zones of disturbed reflectivity. Fluids migrate by both diapiric mechanism and channelized along sedimentary layers. Glacigenic sediments generally form a strong boundary for fluid flow in the very shallow section. However, we can recognize pockmarks not only at the seafloor but also at one subsurface layer approximately 50 m below sea floor indicating a former venting period in the SW Barents Sea. At few locations high
3-D field computation: The near-triumph of commerical codes
Turner, L.R.
1995-07-01
In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems
NASA Astrophysics Data System (ADS)
Kim, Chul; Rassau, Alex; Lachowicz, Stefan; Lee, Mike Myung-Ok; Eshraghian, Kamran
2006-12-01
This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D) vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch) through an indium bump interconnection array (IBIA). The configurable array processor (CAP) is an array of heterogeneous processing elements (PEs), while the intelligent configurable switch (ICS) comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA) controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.
A new 3D computational model for shaped charge jet breakup
Zernow, L.; Chapyak, E.J.; Mosso, S.J.
1996-09-01
This paper reviews prior 1D and 2D axisymmetric, analytical and computational studies, as well as empirical studies of the shaped charge jet particulation problem and discusses their associated insights and problems. It proposes a new 3D computational model of the particulation process, based upon a simplified version of the observed counter-rotating, double helical surface perturbations, found on softly recovered shaped charge jet particles, from both copper and tantalum jets. This 3D approach contrasts with the random, axisymmetric surface perturbations which have previously been used, to try to infer the observed length distribution of jet particles, on the basis of the most unstable wavelength concept, which leads to the expectation of a continuous distribution of particle lengths. The 3D model, by its very nature, leads to a non-random, periodic distribution of potential initial necking loci, on alternate sides of the stretching jet. This in turn infers a potentially periodic, overlapping, multi-modal distribution of associated jet particle lengths. Since it is unlikely that all potential initial necking sites will be activated simultaneously, the 3D model also suggests that longer jet particles containing partial, but unseparated necks, should be observed fairly often. The computational analysis is in its very early stages and the problems involved in inserting the two helical grooves and in defining the initial conditions and boundary conditions for the computation will be discussed. Available initial results from the 3D computation will be discussed and interpreted.
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron
2012-01-01
Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V; Pieper, Steve; Kikinis, Ron
2012-11-01
Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future
Computing elastic moduli on 3-D X-ray computed tomography image stacks
NASA Astrophysics Data System (ADS)
Garboczi, E. J.; Kushch, V. I.
2015-03-01
A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90
Meta!Blast computer game: a pipeline from science to 3D art to education
NASA Astrophysics Data System (ADS)
Schneller, William; Campbell, P. J.; Bassham, Diane; Wurtele, Eve Syrkin
2012-03-01
Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell.
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1994-01-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Visualization of unsteady computational fluid dynamics
NASA Astrophysics Data System (ADS)
Haimes, Robert
1994-11-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Computer generated holograms of 3D objects with reduced number of projections
NASA Astrophysics Data System (ADS)
Huang, Su-juan; Liu, Dao-jin; Zhao, Jing-jing
2010-11-01
A new method for synthesizing computer-generated holograms of 3D objects has been proposed with reduced number of projections. According to the principles of paraboloid of revolution in 3D Fourier space, spectra information of 3D objects is gathered from projection images. We record a series of real projection images of 3D objects under incoherent white-light illumination by circular scanning method, and synthesize interpolated projection images by motion estimation and compensation between adjacent real projection images, then extract the spectra information of the 3D objects from all projection images in circle form. Because of quantization error, information extraction in two circles form is better than in single circle. Finally hologram is encoded based on computer-generated holography using a conjugate-symmetric extension. Our method significantly reduces the number of required real projections without increasing much of the computing time of the hologram and degrading the reconstructed image. Numerical reconstruction of the hologram shows good results.
Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses
NASA Technical Reports Server (NTRS)
Batina, John T.
2005-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.
NASA Astrophysics Data System (ADS)
Tang, H. S.; Qu, K.; Wu, X. G.
2014-09-01
It is now becoming important to develop our capabilities to simulate coastal ocean flows involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales. This paper presents a hybrid modeling system for such simulation. The system consists of a fully three dimensional (3D) fluid dynamics model and a geophysical fluid dynamics model, which couple with each other in two-way and march in time simultaneously. Particularly, in the hybrid system, the solver for incompressible flow on overset meshes (SIFOM) resolves fully 3D small-scale local flow phenomena, while the unstructured grid finite volume coastal ocean model (FVCOM) captures large-scale background flows. The integration of the two models are realized via domain decomposition implemented with an overset grid method. Numerical experiments on performance of the system in resolving flow patterns and solution convergence rate show that the SIFOM-FVCOM system works as intended, and its solutions compare reasonably with data obtained with measurements and other computational approaches. Its unparalleled capabilities to predict multiphysics and multiscale phenomena with high-fidelity are demonstrated by three typical applications that are beyond the reach of other currently existing models. It is anticipated that the SIFOM-FVCOM system will serve as a new platform to study many emerging coastal ocean problems.
Computational methods for constructing protein structure models from 3D electron microscopy maps
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-01-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504
Efficient curve-skeleton computation for the analysis of biomedical 3d images - biomed 2010.
Brun, Francesco; Dreossi, Diego
2010-01-01
Advances in three dimensional (3D) biomedical imaging techniques, such as magnetic resonance (MR) and computed tomography (CT), make it easy to reconstruct high quality 3D models of portions of human body and other biological specimens. A major challenge lies in the quantitative analysis of the resulting models thus allowing a more comprehensive characterization of the object under investigation. An interesting approach is based on curve-skeleton (or medial axis) extraction, which gives basic information concerning the topology and the geometry. Curve-skeletons have been applied in the analysis of vascular networks and the diagnosis of tracheal stenoses as well as a 3D flight path in virtual endoscopy. However curve-skeleton computation is a crucial task. An effective skeletonization algorithm was introduced by N. Cornea in [1] but it lacks in computational performances. Thanks to the advances in imaging techniques the resolution of 3D images is increasing more and more, therefore there is the need for efficient algorithms in order to analyze significant Volumes of Interest (VOIs). In the present paper an improved skeletonization algorithm based on the idea proposed in [1] is presented. A computational comparison between the original and the proposed method is also reported. The obtained results show that the proposed method allows a significant computational improvement making more appealing the adoption of the skeleton representation in biomedical image analysis applications. PMID:20467122
Visualization of unsteady computational fluid dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1995-01-01
The current computing environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the required computation bandwidth for CFD calculations of transient problems. Work is in progress on a set of software tools designed specifically to address visualizing 3D unsteady CFD results in these super-computer-like environments. The visualization is concurrently executed with the CFD solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task to allow execution across a network of workstation(s) and compute servers. In this computing model, the network is almost always the bottleneck so much of the effort involved techniques to reduce the size of the data transferred between machines.
Visualization of unsteady computational fluid dynamics
NASA Astrophysics Data System (ADS)
Haimes, Robert
1995-10-01
The current computing environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the required computation bandwidth for CFD calculations of transient problems. Work is in progress on a set of software tools designed specifically to address visualizing 3D unsteady CFD results in these super-computer-like environments. The visualization is concurrently executed with the CFD solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task to allow execution across a network of workstation(s) and compute servers. In this computing model, the network is almost always the bottleneck so much of the effort involved techniques to reduce the size of the data transferred between machines.
Computer-Assisted Hepatocellular Carcinoma Ablation Planning Based on 3-D Ultrasound Imaging.
Li, Kai; Su, Zhongzhen; Xu, Erjiao; Guan, Peishan; Li, Liu-Jun; Zheng, Rongqin
2016-08-01
To evaluate computer-assisted hepatocellular carcinoma (HCC) ablation planning based on 3-D ultrasound, 3-D ultrasound images of 60 HCC lesions from 58 patients were obtained and transferred to a research toolkit. Compared with virtual manual ablation planning (MAP), virtual computer-assisted ablation planning (CAP) consumed less time and needle insertion numbers and exhibited a higher rate of complete tumor coverage and lower rate of critical structure injury. In MAP, junior operators used less time, but had more critical structure injury than senior operators. For large lesions, CAP performed better than MAP. For lesions near critical structures, CAP resulted in better outcomes than MAP. Compared with MAP, CAP based on 3-D ultrasound imaging was more effective and achieved a higher rate of complete tumor coverage and a lower rate of critical structure injury; it is especially useful for junior operators and with large lesions, and lesions near critical structures. PMID:27126243
Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS
1999-05-01
EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less
3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials
NASA Astrophysics Data System (ADS)
Tuller, M.; Kulkarni, R.; Fink, W.
2011-12-01
Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.
PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain
NASA Astrophysics Data System (ADS)
Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.
2009-12-01
A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007
ERIC Educational Resources Information Center
Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art
2010-01-01
This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…
Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...
The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention
ERIC Educational Resources Information Center
Elangovan, Tavasuria; Ismail, Zurida
2014-01-01
A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…
3D image fusion and guidance for computer-assisted bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, W. E.; Rai, L.; Merritt, S. A.; Lu, K.; Linger, N. T.; Yu, K. C.
2005-11-01
The standard procedure for diagnosing lung cancer involves two stages. First, the physician evaluates a high-resolution three-dimensional (3D) computed-tomography (CT) chest image to produce a procedure plan. Next, the physician performs bronchoscopy on the patient, which involves navigating the the bronchoscope through the airways to planned biopsy sites. Unfortunately, the physician has no link between the 3D CT image data and the live video stream provided during bronchoscopy. In addition, these data sources differ greatly in what they physically give, and no true 3D planning tools exist for planning and guiding procedures. This makes it difficult for the physician to translate a CT-based procedure plan to the video domain of the bronchoscope. Thus, the physician must essentially perform biopsy blindly, and the skill levels between different physicians differ greatly. We describe a system that enables direct 3D CT-based procedure planning and provides direct 3D guidance during bronchoscopy. 3D CT-based information on biopsy sites is provided interactively as the physician moves the bronchoscope. Moreover, graphical information through a live fusion of the 3D CT data and bronchoscopic video is provided during the procedure. This information is coupled with a series of computer-graphics tools to give the physician a greatly augmented reality of the patient's interior anatomy during a procedure. Through a series of controlled tests and studies with human lung-cancer patients, we have found that the system not only reduces the variation in skill level between different physicians, but also increases biopsy success rate.
NASA Astrophysics Data System (ADS)
Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso
2016-02-01
Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Pan, D.
1986-01-01
This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders. PMID:20714011
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
Application of the ASP3D Computer Program to Unsteady Aerodynamic and Aeroelastic Analyses
NASA Technical Reports Server (NTRS)
Batina, John T.
2006-01-01
A new computer program has been developed called ASP3D (Advanced Small Perturbation - 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The paper presents unsteady aerodynamic and aeroelastic applications of ASP3D to assess the time dependent capability and demonstrate various features of the code.
Organ printing: computer-aided jet-based 3D tissue engineering.
Mironov, Vladimir; Boland, Thomas; Trusk, Thomas; Forgacs, Gabor; Markwald, Roger R
2003-04-01
Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly. PMID:12679063
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.
1995-08-01
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.
Synesthetic art through 3-D projection: The requirements of a computer-based supermedium
NASA Technical Reports Server (NTRS)
Mallary, Robert
1989-01-01
A computer-based form of multimedia art is proposed that uses the computer to fuse aspects of painting, sculpture, dance, music, film, and other media into a one-to-one synthesia of image and sound for spatially synchronous 3-D projection. Called synesthetic art, this conversion of many varied media into an aesthetically unitary experience determines the character and requirements of the system and its software. During the start-up phase, computer stereographic systems are unsuitable for software development. Eventually, a new type of illusory-projective supermedium will be required to achieve the needed combination of large-format projection and convincing real life presence, and to handle the vast amount of 3-D visual and acoustic information required. The influence of the concept on the author's research and creative work is illustrated through two examples.
NASA Astrophysics Data System (ADS)
McNally, James G.
1994-09-01
How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the
3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth
NASA Astrophysics Data System (ADS)
Demina, S. E.; Kalaev, V. V.
2011-04-01
In the present work, 3D features of melt convection during sapphire growth of 100 mm diameter Cz and of 200 mm diameter Ky crystals are studied. The approach accounting for radiative heat exchange with absorption and a specular reflection in the crystal, which we applied in 2D modeling [1-3], has been extended to 3D computational domains and coupled to 3D heat transfer in the melt, crystal, and crucible. 3D melt unsteady convection together with crystallization front formation are taken into account within the Direct Numerical Simulation (DNS) approach. Results of 3D modeling are discussed in detail and quantitatively compared to the previously reported data of 2D modeling and experiments [2,3]. It has been found that the features of unsteady melt convection during the "before seeding", "seeding", and "shouldering" growth stages are quite different from each other, which necessitates a flexible control of the radial and vertical temperature gradients in the crucible to provide optimal conditions for stable growth of high quality sapphire crystals.
Analysis of 3-D images of dental imprints using computer vision
NASA Astrophysics Data System (ADS)
Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis
1992-05-01
This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.
Computer animation challenges for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine
2012-07-01
Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki
Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.
Visualization of anthropometric measures of workers in computer 3D modeling of work place.
Mijović, B; Ujević, D; Baksa, S
2001-12-01
In this work, 3D visualization of a work place by means of a computer-made 3D-machine model and computer animation of a worker have been performed. By visualization of 3D characters in inverse kinematic and dynamic relation with the operating part of a machine, the biomechanic characteristics of worker's body have been determined. The dimensions of a machine have been determined by an inspection of technical documentation as well as by direct measurements and recordings of the machine by camera. On the basis of measured body height of workers all relevant anthropometric measures have been determined by a computer program developed by the authors. By knowing the anthropometric measures, the vision fields and the scope zones while forming work places, exact postures of workers while performing technological procedures were determined. The minimal and maximal rotation angles and the translation of upper and lower arm which are basis for the analysis of worker burdening were analyzed. The dimensions of the seized space of a body are obtained by computer anthropometric analysis of movement, e.g. range of arms, position of legs, head, back. The influence of forming of a work place on correct postures of workers during work has been reconsidered and thus the consumption of energy and fatigue can be reduced to a minimum. PMID:11811295
User's guide to the NOZL3D and NOZLIC computer programs
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes
NASA Astrophysics Data System (ADS)
Jofre, Lluís; Borrell, Ricard; Lehmkuhl, Oriol; Oliva, Assensi
2015-02-01
Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to ∼12× with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Computed Tomography and its Application for the 3D Characterization of Coarse Grained Meteorites
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Engel, H. P.; Carpenter, P. K.
2004-01-01
With judicious selection of parameters, computed tomography can provide high precision density data. Such data can lead to a non-destructive determination of the phases and phase distribution within large solid objects. Of particular interest is the structure of the Mundrabilla meteorite, which has 25 volumes, percent of a sulfide within a metallic meteorite. 3D digital imaging has enabled a quantitative evaluation of the distribution and contiguity of the phases to be determined.
Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark
2015-01-01
Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is
Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark
2015-05-15
Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1993-01-01
Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.
Modeling tumor/polyp/lesion structure in 3D for computer-aided diagnosis in colonoscopy
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Wang, Yuan-Fang
2010-02-01
We describe a software system for building three-dimensional (3D) models from colonoscopic videos. The system is end-to-end in the sense that it takes as input raw image frames-shot during a colon exam-and produces the 3D structure of objects of interest (OOI), such as tumors, polyps, and lesions. We use the structure-from-motion (SfM) approach in computer vision which analyzes an image sequence in which camera's position and aim vary relative to the OOI. The varying pose of the camera relative to the OOI induces the motion-parallax effect which allows 3D depth of the OOI to be inferred. Unlike the traditional SfM system pipeline, our software system contains many check-and-balance mechanisms to ensure robustness, and the analysis from earlier stages of the pipeline is used to guide the later processing stages to better handle challenging medical data. The constructed 3D models allow the pathology (growth and change in both structure and appearance) to be monitored over time.
3D animation of facial plastic surgery based on computer graphics
NASA Astrophysics Data System (ADS)
Zhang, Zonghua; Zhao, Yan
2013-12-01
More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.
Computer assisted 3D pre-operative planning tool for femur fracture orthopedic surgery
NASA Astrophysics Data System (ADS)
Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang
2010-02-01
Femur shaft fractures are caused by high impact injuries and can affect gait functionality if not treated correctly. Until recently, the pre-operative planning for femur fractures has relied on two-dimensional (2D) radiographs, light boxes, tracing paper, and transparent bone templates. The recent availability of digital radiographic equipment has to some extent improved the workflow for preoperative planning. Nevertheless, imaging is still in 2D X-rays and planning/simulation tools to support fragment manipulation and implant selection are still not available. Direct three-dimensional (3D) imaging modalities such as Computed Tomography (CT) are also still restricted to a minority of complex orthopedic procedures. This paper proposes a software tool which allows orthopedic surgeons to visualize, diagnose, plan and simulate femur shaft fracture reduction procedures in 3D. The tool utilizes frontal and lateral 2D radiographs to model the fracture surface, separate a generic bone into the two fractured fragments, identify the pose of each fragment, and automatically customize the shape of the bone. The use of 3D imaging allows full spatial inspection of the fracture providing different views through the manipulation of the interactively reconstructed 3D model, and ultimately better pre-operative planning.
CELSS-3D: a broad computer model simulating a controlled ecological life support system.
Schneegurt, M A; Sherman, L A
1997-01-01
CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449
Full 3-D OCT-based pseudophakic custom computer eye model.
Sun, M; Pérez-Merino, P; Martinez-Enriquez, E; Velasco-Ocana, M; Marcos, S
2016-03-01
We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608
Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.
2000-01-01
Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.
Nguyen, B.T.; Hutchinson, S.A.
1995-07-01
The upwind leapfrog scheme for electromagnetic scattering is briefly described. Its application to the 3D Maxwell`s time domain equations is shown in detail. The scheme`s use of upwind characteristic variables and a narrow stencil result in a smaller demand in communication overhead, making it ideal for implementation on distributed memory parallel computers. The algorithm`s implementation on two message passing computers, a 1024-processor nCUBE 2 and a 1840-processor Intel Paragon, is described. Performance evaluation demonstrates that the scheme performs well with both good scaling qualities and high efficiencies on these machines.
Full 3-D OCT-based pseudophakic custom computer eye model
Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.
2016-01-01
We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608
Meir, Arie; Rubinsky, Boris
2009-01-01
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236
Meir, Arie; Rubinsky, Boris
2009-01-01
Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people. PMID:19936236
Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois
2015-12-18
Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. PMID:26615711
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
A hybrid method for the computation of quasi-3D seismograms.
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2013-04-01
The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these
New solutions and applications of 3D computer tomography image processing
NASA Astrophysics Data System (ADS)
Effenberger, Ira; Kroll, Julia; Verl, Alexander
2008-02-01
As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.
Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B
2016-07-01
RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735
Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model
NASA Astrophysics Data System (ADS)
Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.
2008-11-01
Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.
Effect of Random Geometric Uncertainty on the Computational Design of a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, C. R.; Newman, P. A.; Hou, G. J.-W.
2002-01-01
The effect of geometric uncertainty due to statistically independent, random, normally distributed shape parameters is demonstrated in the computational design of a 3-D flexible wing. A first-order second-moment statistical approximation method is used to propagate the assumed input uncertainty through coupled Euler CFD aerodynamic / finite element structural codes for both analysis and sensitivity analysis. First-order sensitivity derivatives obtained by automatic differentiation are used in the input uncertainty propagation. These propagated uncertainties are then used to perform a robust design of a simple 3-D flexible wing at supercritical flow conditions. The effect of the random input uncertainties is shown by comparison with conventional deterministic design results. Sample results are shown for wing planform, airfoil section, and structural sizing variables.
Implementation of a 3D mixing layer code on parallel computers
NASA Technical Reports Server (NTRS)
Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.
1995-01-01
This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.
Analysis of the formation and evolution of vortex rings in non Newtonian fluids using 3D PTV
NASA Astrophysics Data System (ADS)
Bajpayee, Abhishek; Techet, Alexandra
2013-11-01
Formation and evolution of vortex rings have been studied for a long time but mostly only in Newtonian fluids. However, many fluids in nature and in the industry such as blood, crude oil, etc., exhibit non Newtonian characteristics. Palacios-Morales and Zenit recently studied the formation of vortex rings in shear thinning liquids for the first time using 2D PIV and compared experimental findings with theoretical predictions. The authors recently demonstrated the applicability of Light Field (LF) imaging to conduct 3D Particle Tracking Velocimetry (PTV) to study densely seeded flow fields and their evolution over time using synthetic data. LF based 3D PTV is now used to quantitatively study vortex rings created in Glycerin based on multiple parameters and the results are compared with previous findings. ONR (Grant #N00014-12-1-0787, Dr. Steven Russell), Naval Engineering Education Center.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
3D object optonumerical acquisition methods for CAD/CAM and computer graphics systems
NASA Astrophysics Data System (ADS)
Sitnik, Robert; Kujawinska, Malgorzata; Pawlowski, Michal E.; Woznicki, Jerzy M.
1999-08-01
The creation of a virtual object for CAD/CAM and computer graphics on the base of data gathered by full-field optical measurement of 3D object is presented. The experimental co- ordinates are alternatively obtained by combined fringe projection/photogrammetry based system or fringe projection/virtual markers setup. The new and fully automatic procedure which process the cloud of measured points into triangular mesh accepted by CAD/CAM and computer graphics systems is presented. Its applicability for various classes of objects is tested including the error analysis of virtual objects generated. The usefulness of the method is proved by applying the virtual object in rapid prototyping system and in computer graphics environment.
NASA Technical Reports Server (NTRS)
Mangalgiri, P. D.; Prabhakaran, R.
1986-01-01
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.
3D cephalometric analysis obtained from computed tomography. Review of the literature
Rossini, Giulia; Cavallini, Costanza; Cassetta, Michele; Barbato, Ersilia
2012-01-01
Summary Introduction The aim of this systematic review is to estimate accuracy and reproducibility of craniometric measurements and reliability of landmarks identified with computed tomography (CT) techniques in 3D cephalometric analysis. Methods Computerized and manual searches were conducted up to 2011 for studies that addressed these objectives. The selection criteria were: (1) the use of human specimen; (2) the comparison between 2D and 3D cephalometric analysis; (3) the assessment of accuracy, reproducibility of measurements and reliability of landmark identification with CT images compared with two-dimensional conventional radiographs. The Cochrane Handbook for Systematic Reviews of Interventions was used as the guideline for this article. Results Twenty-seven articles met the inclusion criteria. Most of them demonstrated high measurements accuracy and reproducibility, and landmarks reliability, but their cephalometric analysis methodology varied widely. Conclusion These differencies among the studies in making measurements don’t permit a direct comparison between them. The future developments in the knowledge of these techniques should provide a standardized method to conduct the 3D CT cephalometric analysis. PMID:22545187
Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences
NASA Astrophysics Data System (ADS)
Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.
2015-03-01
3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.
Bernard, Dominique . E-mail: bernard@icmcb.u-bordeaux.fr; Gendron, Damien; Heintz, Jean-Marc; Bordere, Sylvie; Etourneau, Jean
2005-01-03
X-ray computed microtomography (XCMT) has been applied to ceramic samples of different materials to visualise, for the first time at this scale, real 3D microstructural evolutions during sintering. Using this technique, it has been possible to follow the whole sintering process of the same grains set. Two materials have been studied; a glass powder heat treated at 700 deg. C and a crystallised lithium borate (Li{sub 6}Gd(BO{sub 3}){sub 3}) powder heat treated at 720 deg. C. XCMT measurements have been done after different sintering times. For each material, a sub-volume was individualised and localised on the successive recordings and its 3D images numerically reconstructed. Description of the three-dimensional microstructures evolution is proposed. From the 3D experimental data, quantitative evolutions of parameters such as porosity and neck size are presented for the glass sample. Possibilities offered by this technique to study complex sintering processes, as for lithium borate, are illustrated.
Traveltime computation and imaging from rugged topography in 3D TTI media
NASA Astrophysics Data System (ADS)
Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao
2014-02-01
Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.
SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.
2008-12-01
Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.
Hybrid system of optics and computer for 3-D object recognition
NASA Astrophysics Data System (ADS)
Li, Qun Z.; Miao, Peng C.; He, Anzhi
1992-03-01
In this paper, a hybrid system of optics and computer for 3D object recognition is presented. The system consists of a Twyman-Green interferometer, a He-Ne laser, a computer, a TV camera, and an image processor. The structured light produced by a Twyman-Green interferometer is split in and illuminates objects in two directions at the same time. Moire contour is formed on the surface of object. In order to delete unwanted patterns in moire contour, we don't utilize the moire contour on the surface of object. We place a TV camera in the middle of the angle between two illuminating directions and take two groups of deformed fringes on the surface of objects. Two groups of deformed fringes are processed using the digital image processing system controlled and operated by XOR logic in the computer, moire fringes are then extracted from the complicated environment. 3D coordinates of points of the object are obtained after moire fringe is followed, and points belonging to the same fringe are given the same altitude. The object is described by its projected drawings in three coordinate planes. The projected drawings in three coordinate planes of the known objects are stored in the library of judgment. The object can be recognized by inquiring the library of judgment.
Radial subsampling for fast cost function computation in intensity-based 3D image registration
NASA Astrophysics Data System (ADS)
Boettger, Thomas; Wolf, Ivo; Meinzer, Hans-Peter; Celi, Juan Carlos
2007-03-01
Image registration is always a trade-off between accuracy and speed. Looking towards clinical scenarios the time for bringing two or more images into registration should be around a few seconds only. We present a new scheme for subsampling 3D-image data to allow for efficient computation of cost functions in intensity-based image registration. Starting from an arbitrary center point voxels are sampled along scan lines which do radially extend from the center point. We analyzed the characteristics of different cost functions computed on the sub-sampled data and compared them to known cost functions with respect to local optima. Results show the cost functions are smooth and give high peaks at the expected optima. Furthermore we investigated capture range of cost functions computed under the new subsampling scheme. Capture range was remarkably better for the new scheme compared to metrics using all voxels or different subsampling schemes and high registration accuracy was achieved as well. The most important result is the improvement in terms of speed making this scheme very interesting for clinical scenarios. We conclude using the new subsampling scheme intensity-based 3D image registration can be performed much faster than using other approaches while maintaining high accuracy. A variety of different extensions of the new approach is conceivable, e.g. non-regular distribution of the scan lines or not to let the scan lines start from a center point only, but from the surface of an organ model for example.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Topological evolutionary computing in the optimal design of 2D and 3D structures
NASA Astrophysics Data System (ADS)
Burczynski, T.; Poteralski, A.; Szczepanik, M.
2007-10-01
An application of evolutionary algorithms and the finite-element method to the topology optimization of 2D structures (plane stress, bending plates, and shells) and 3D structures is described. The basis of the topological evolutionary optimization is the direct control of the density material distribution (or thickness for 2D structures) by the evolutionary algorithm. The structures are optimized for stress, mass, and compliance criteria. The numerical examples demonstrate that this method is an effective technique for solving problems in computer-aided optimal design.
Computing 3-D steady supersonic flow via a new Lagrangian approach
NASA Technical Reports Server (NTRS)
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
NASA Astrophysics Data System (ADS)
Lee, H.; Min, D.; Lim, S.; Yang, J.; Kwon, B.; Yoo, H.
2009-12-01
In a conventional marine seismic data analysis, pressure data have been usually interpreted on the basis of acoustic wave equation. The acoustic wave equation, however, only deals with P-wave propagation, and it cannot correctly describe the wave propagation in acoustic-elastic (fluid-solid) coupled media. Recently, in 4C OBC survey (4-component ocean bottom cable), it is possible to acquire both pressure and 3-component displacements (measured at the sea-bottom). Combining pressure and displacement data allows us to interpret subsurface structures more accurately. In order to accurately simulate wave propagation in fluid-solid coupled media, we need an acoustic-elastic coupled modeling algorithm, which deals with displacements in elastic region and pressure in acoustic region. For waveform inversion and reverse-time migration that require a great number of forward modeling, it is essential to develop an efficient scheme that reduces computing time and computer core memory. In this study, we present a 3D time-domain acoustic-elastic coupled modeling algorithm on the basis of the cell-based finite difference method. The cell-based method has proven to properly describe the free-surface boundary, which indicates that it will also properly describe the fluid-solid interface boundaries. In the acoustic-elastic coupled modeling, we first compose cell-based finite differences individually for the 3D acoustic and elastic media, and then combine the differences using the fluid-solid interface boundary conditions. Considering that the 2D acoustic-elastic coupled modeling algorithm gives numerical solutions comparable to analytic solutions, we expect that the 3D acoustic-elastic coupled modeling will correctly describe wave propagation in the fluid-solid coupled media. We apply our algorithm to 3D horizontal two- and three-layer models. Numerical experiments show that the cell-based coupled modeling algorithm properly describes S- and converted waves as well as P-waves. The
Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate
2013-01-01
Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. PMID:23349117
3D virtual human atria: A computational platform for studying clinical atrial fibrillation.
Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui
2011-10-01
Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi
3D modeling method for computer animate based on modified weak structured light method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2010-11-01
A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Patel, Smita; Cascade, Philip N.; Sahiner, Berkman; Wei, Jun; Ge, Jun; Kazerooni, Ella A.
2006-03-01
Automatic and accurate segmentation of the pulmonary vessels in 3D computed tomographic angiographic images (CTPA) is an essential step for computerized detection of pulmonary embolism (PE) because PEs only occur inside the pulmonary arteries. We are developing an automated method to segment the pulmonary vessels in 3D CTPA images. The lung region is first extracted using thresholding and morphological operations. 3D multiscale filters in combination with a newly developed response function derived from the eigenvalues of Hessian matrices are used to enhance all vascular structures including the vessel bifurcations and suppress non-vessel structures such as the lymphoid tissues surrounding the vessels. At each scale, a volume of interest (VOI) containing the response function value at each voxel is defined. The voxels with a high response indicate that there is an enhanced vessel whose size matches the given filter scale. A hierarchical expectation-maximization (EM) estimation is then applied to the VOI to segment the vessel by extracting the high response voxels at this single scale. The vessel tree is finally reconstructed by combining the segmented vessels at all scales based on a "connected component" analysis. Two experienced thoracic radiologists provided the gold standard of pulmonary arteries by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. Two CTPA cases containing PEs were used to evaluate the performance. One of these two cases also contained other lung diseases. The accuracy of vessel tree segmentation was evaluated by the percentage of the "gold standard" vessel center points overlapping with the segmented vessels. The result shows that 97.3% (1868/1920) and 92.0% (2277/2476) of the manually marked center points overlapped with the segmented vessels for the cases without and with other lung disease, respectively. The results demonstrate that vessel segmentation using our method is
Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour
Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola
2016-01-01
Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non
Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.
Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola
2016-01-01
Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non
3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process.
Cardea, S; Baldino, L; Scognamiglio, M; Reverchon, E
2014-04-01
The emerging next generation of engineered tissues is based on the development of loaded scaffolds containing bioactive molecules in order to control the cellular function or to interact on the surrounding tissues. Indeed, implantation of engineered biomaterials might cause local inflammation because of the host's immune response; thereby, the use of anti-inflammatory agents, whether steroidal or nonsteroidal is required. One of the most important stages of tissue engineering is the design and the generation of a porous 3D structure, with high porosity, high interconnectivity and homogenous morphology. Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds, but they suffer several limitations. In this study, for the first time, the possibility of generating 3D polymeric scaffolds loaded with an active compound by supercritical freeze extraction process is evaluated; this innovative process combines the advantages of the thermally induced phase separation process and of the supercritical carbon dioxide drying. Poly-L-lactid acid/ibuprofen composite scaffolds characterized by a 3D geometry, micrometric cellular structures and wrinkled pores walls have been obtained; moreover, homogeneous drug distribution and controlled release of the active principle have been assured. PMID:24366467
FaceWarehouse: a 3D facial expression database for visual computing.
Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun
2014-03-01
We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24434222
High performance computing approaches for 3D reconstruction of complex biological specimens.
da Silva, M Laura; Roca-Piera, Javier; Fernández, José-Jesús
2010-01-01
Knowledge of the structure of specimens is crucial to determine the role that they play in cellular and molecular biology. To yield the three-dimensional (3D) reconstruction by means of tomographic reconstruction algorithms, we need the use of large projection images and high processing time. Therefore, we propose the use of the high performance computing (HPC) to cope with the huge computational demands of this problem. We have implemented a HPC strategy where the distribution of tasks follows the master-slave paradigm. The master processor distributes a slab of slices, a piece of the final 3D structure to reconstruct, among the slave processors and receives reconstructed slices of the volume. We have evaluated the performance of our HPC approach using different sizes of the slab. We have observed that it is possible to find out an optimal size of the slab for the number of processor used that minimize communications time while maintaining a reasonable grain of parallelism to be exploited by the set of processors. PMID:20865517
Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization
ERIC Educational Resources Information Center
Katsio-Loudis, Petros; Jones, Millie
2015-01-01
Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…
A review of automated image understanding within 3D baggage computed tomography security screening.
Mouton, Andre; Breckon, Toby P
2015-01-01
Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT. PMID:26409422
A new 3-D integral code for computation of accelerator magnets
Turner, L.R.; Kettunen, L.
1991-01-01
For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?
Martin, James E.; Solis, Kyle Jameson
2015-08-01
Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.
The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon
ERIC Educational Resources Information Center
Kucukozer, Huseyin
2008-01-01
In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…
A brain-computer interface method combined with eye tracking for 3D interaction.
Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung
2010-07-15
With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI. PMID:20580646
Computer modeling of 3D structures of cytochrome P450s.
Chang, Y T; Stiffelman, O B; Loew, G H
1996-01-01
The understanding of structure-function relationship of enzymes requires detailed information of their three-dimensional structure. Protein structure determination by X-ray and NMR methods, the two most frequently used experimental procedures, are often difficult and time-consuming. Thus computer modeling of protein structures has become an increasingly active and attractive option for obtaining predictive models of three-dimensional protein structures. Specifically, for the ubiquitous metabolizing heme proteins, the cytochrome P450s, the X-ray structures of four isozymes of bacterial origin, P450cam, P450terp, P450BM-3 and P450eryF have now been determined. However, attempts to obtain the structure of mammalian forms by experimental means have thus far not been successful. Thus, there have been numerous attempts to construct models of mammalian P450s using homology modeling methods in which the known structures have been used to various extents and in various strategies to build models of P450 isozymes. In this paper, we review these efforts and then describe a strategy for structure building and assessment of 3D models of P450s recently developed in our laboratory that corrects many of the weaknesses in the previous procedures. The results are 3D models that for the first time are stable to unconstrained molecular dynamics simulations. The use of this method is demonstrated by the construction and validation of a 3D model for rabbit liver microsomal P450 isozyme 2B4, responsible for the oxidative metabolism of diverse xenobiotics including widely used inhalation anesthetics. Using this 2B4 model, the substrate access channel, substrate binding site and plausible surface regions for binding with P450 redox partners were identified. PMID:9010606
An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid
NASA Astrophysics Data System (ADS)
Borrelli, A.; Giantesio, G.; Patria, M. C.
2015-01-01
The influence of a non-uniform external magnetic field on the steady three dimensional stagnation-point flow of a micropolar fluid over a rigid uncharged dielectric at rest is studied. The total magnetic field is parallel to the velocity at infinity. It is proved that this flow is possible only in the axisymmetric case. The governing nonlinear partial differential equations are reduced to a system of ordinary differential equations by a similarity transformation, before being solved numerically. The effects of the governing parameters on the fluid flow and on the magnetic field are illustrated graphically and discussed.
NASA Astrophysics Data System (ADS)
Panitsa, E.; Rosenwald, J. C.; Kappas, C.
1998-10-01
Detailed quality control (QC) protocols are a necessity for modern radiotherapy departments. The established QC protocols for treatment planning systems (TPS) do not include recommendations on the advanced features of three-dimensional (3D) treatment planning, like the dose volume histograms (DVH). In this study, a test protocol for DVH characteristics was developed. The protocol assesses the consistency of the DVH computation to the dose distribution calculated by the same TPS by comparing DVH parameters with values obtained by the isodose distributions. The computation parameters (such as the dimension of the computation grid) that are applied to the TPS during the tests are not fixed but set by the user as if the test represents a typical clinical case. Six commercial TPS were examined with this protocol within the frame of the EC project Dynarad (Biomed I). The results of the intercomparison prove the consistency of the DVH results to the isodose values for most of the examined TPS. However, special attention should be paid when working with cases of adverse conditions such as high dose gradient regions. In these cases, higher errors are derived, especially when an insufficient number of dose calculation points are used for the DVH computation.
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
NASA Astrophysics Data System (ADS)
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
e-LEA3D: a computational-aided drug design web server
Douguet, Dominique
2010-01-01
e-LEA3D web server integrates three complementary tools to perform computer-aided drug design based on molecular fragments. In drug discovery projects, there is a considerable interest in identifying novel and diverse molecular scaffolds to enhance chances of success. The de novo drug design tool is used to invent new ligands to optimize a user-specified scoring function. The composite scoring function includes both structure- and ligand-based evaluations. The de novo approach is an alternative to a blind virtual screening of large compound collections. A heuristic based on a genetic algorithm rapidly finds which fragments or combination of fragments fit a QSAR model or the binding site of a protein. While the approach is ideally suited for scaffold-hopping, this module also allows a scan for possible substituents to a user-specified scaffold. The second tool offers a traditional virtual screening and filtering of an uploaded library of compounds. The third module addresses the combinatorial library design that is based on a user-drawn scaffold and reactants coming, for example, from a chemical supplier. The e-LEA3D server is available at: http://bioinfo.ipmc.cnrs.fr/lea.html. PMID:20444867
3D robust Chan-Vese model for industrial computed tomography volume data segmentation
NASA Astrophysics Data System (ADS)
Liu, Linghui; Zeng, Li; Luan, Xiao
2013-11-01
Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.
FaceWarehouse: A 3D Facial Expression Database for Visual Computing.
Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun
2013-10-25
We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Microsoft's Kinect system to capture 150 individuals from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions. For every raw data record, a set of facial feature points on the color image such as eye corners and mouth contour are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-three tensor to build a bilinear face model with two attributes, identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24166613
NASA Astrophysics Data System (ADS)
Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.
2009-02-01
Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.
X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution
Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Karvinen, P.; Färm, Elina; Härkönen, Emma; Ritala, Mikko; Menzel, A.; Raabe, J.; Bunk, O.
2014-01-01
X-ray ptychography is a scanning variant of coherent diffractive imaging with the ability to image large fields of view at high resolution. It further allows imaging of non-isolated specimens and can produce quantitative mapping of the electron density distribution in 3D when combined with computed tomography. The method does not require imaging lenses, which makes it dose efficient and suitable to multi-keV X-rays, where efficient photon counting, pixelated detectors are available. Here we present the first highly resolved quantitative X-ray ptychographic tomography of an extended object yielding 16 nm isotropic 3D resolution recorded at 2 Å wavelength. This first-of-its-kind demonstration paves the way for ptychographic X-ray tomography to become a promising method for X-ray imaging of representative sample volumes at unmatched resolution, opening tremendous potential for characterizing samples in materials science and biology by filling the resolution gap between electron microscopy and other X-ray imaging techniques. PMID:24457289
Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.
2011-06-01
High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2015-01-01
Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L
A comparative study for 2D and 3D computer-aided diagnosis methods for solitary pulmonary nodules.
Yeh, Chinson; Wang, Jen-Feng; Wu, Ming-Ting; Yen, Chen-Wen; Nagurka, Mark L; Lin, Chen-Liang
2008-06-01
Many computer-aided diagnosis (CAD) methods, including 2D and 3D approaches, have been proposed for solitary pulmonary nodules (SPNs). However, the detection and diagnosis of SPNs remain challenging in many clinical circumstances. One goal of this work is to investigate the relative diagnostic accuracy of 2D and 3D methods. An additional goal is to develop a two-stage approach that combines the simplicity of 2D and the accuracy of 3D methods. The experimental results show statistically significant differences between the diagnostic accuracy of 2D and 3D methods. The results also show that with a very minor drop in diagnostic performance the two-stage approach can significantly reduce the number of nodules needed to be processed by the 3D method, streamlining the computational demand. PMID:18313899
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1988-01-01
A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.
Hyperspeed data acquisition for 3D computer vision metrology as applied to law enforcement
NASA Astrophysics Data System (ADS)
Altschuler, Bruce R.
1997-02-01
cycling at 1 millisecond, each pattern is projected and recorded in a cycle time of 1/500th second. An entire set of patterns can then be recorded within 1/60th second. This pattern set contains all the information necessary to calculate a 3-D map. The use of hyper-speed parallel video cameras in conjunction with high speed modulators enables video data rate acquisition of all data necessary to calculate numerical digital 3-D metrological surface data. Thus a 3-D video camera can operate at the rate of a conventional 2-D video camera. The speed of actual 3-D output information is a function of the speed of the computer, a parallel processor being preferred for the task. With video rate 3-D data acquisition law enforcement could survey crime scenes, obtain evidence, watch and record people, packages, suitcases, and record disaster scenes very rapidly.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro
2015-03-01
Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability. PMID:25465067
Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors
Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.
1997-12-01
Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
Wang, Yin; Zhang, Jun
2010-10-15
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737
A revised scheme to compute horizontal covariances in an oceanographic 3D-VAR assimilation system
NASA Astrophysics Data System (ADS)
Farina, R.; Dobricic, S.; Storto, A.; Masina, S.; Cuomo, S.
2015-03-01
We propose an improvement of an oceanographic three dimensional variational assimilation scheme (3D-VAR), named OceanVar, by introducing a recursive filter (RF) with the third order of accuracy (3rd-RF), instead of an RF with first order of accuracy (1st-RF), to approximate horizontal Gaussian covariances. An advantage of the proposed scheme is that the CPU's time can be substantially reduced with benefits on the large scale applications. Experiments estimating the impact of 3rd-RF are performed by assimilating oceanographic data in two realistic oceanographic applications. The results evince benefits in terms of assimilation process computational time, accuracy of the Gaussian correlation modeling, and show that the 3rd-RF is a suitable tool for operational data assimilation.
An accurate quadrature technique for the contact boundary in 3D finite element computations
NASA Astrophysics Data System (ADS)
Duong, Thang X.; Sauer, Roger A.
2015-01-01
This paper presents a new numerical integration technique for 3D contact finite element implementations, focusing on a remedy for the inaccurate integration due to discontinuities at the boundary of contact surfaces. The method is based on the adaptive refinement of the integration domain along the boundary of the contact surface, and is accordingly denoted RBQ for refined boundary quadrature. It can be used for common element types of any order, e.g. Lagrange, NURBS, or T-Spline elements. In terms of both computational speed and accuracy, RBQ exhibits great advantages over a naive increase of the number of quadrature points. Also, the RBQ method is shown to remain accurate for large deformations. Furthermore, since the sharp boundary of the contact surface is determined, it can be used for various purposes like the accurate post-processing of the contact pressure. Several examples are presented to illustrate the new technique.
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.
Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa
2013-12-01
The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime
Prodanović, M; Lindquist, W B; Seright, R S
2006-06-01
Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space. PMID:16364351
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-08-01
A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.
Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing
Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E.; Pilleul, Frank; Beuf, Olivier
2013-01-01
An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today. PMID:27006915
Automated Lung Segmentation and Image Quality Assessment for Clinical 3-D/4-D-Computed Tomography
Li, Guang
2014-01-01
4-D-computed tomography (4DCT) provides not only a new dimension of patient-specific information for radiation therapy planning and treatment, but also a challenging scale of data volume to process and analyze. Manual analysis using existing 3-D tools is unable to keep up with vastly increased 4-D data volume, automated processing and analysis are thus needed to process 4DCT data effectively and efficiently. In this paper, we applied ideas and algorithms from image/signal processing, computer vision, and machine learning to 4DCT lung data so that lungs can be reliably segmented in a fully automated manner, lung features can be visualized and measured on the fly via user interactions, and data quality classifications can be computed in a robust manner. Comparisons of our results with an established treatment planning system and calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-based quality measure-delivered performances closely emulating human experts. Three machine learners are inspected to justify the viability of machine learning techniques used to robustly identify data quality of 4DCT images in the scalable manner. The resultant system provides a toolkit that speeds up 4-D tasks in the clinic and facilitates clinical research to improve current clinical practice. PMID:25621194
Visualization of Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient
On the 3D Steady Flow of a Second Grade Fluid Past an Obstacle
NASA Astrophysics Data System (ADS)
Konieczny, Paweł; Kreml, Ondřej
2012-06-01
We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in Koch (Quad Mat 15:59-122, 2004) and properties of solutions to steady transport equation to get up to arbitrarily small ɛ the same decay as the Oseen fundamental solution.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding
NASA Astrophysics Data System (ADS)
Courtois, Mickael; Carin, Muriel; Le Masson, Philippe; Gaied, Sadok; Balabane, Mikhaël
2016-04-01
During the past few years, numerous sophisticated models have been proposed to predict in a self-consistent way the dynamics of the keyhole, together with the melt pool and vapor jet. However, these models are only partially compared to experimental data, so the reliability of these models is questionable. The present paper aims to propose a more complete experimental set-up in order to validate the most relevant results calculated by these models. A complete heat transfer and fluid flow three-dimensional (3D) model is first proposed in order to describe laser welding in keyhole regimes. The interface is tracked with a level set method and fluid flows are calculated in liquid and gas. The mechanisms of recoil pressure and keyhole creation are highlighted in a fusion line configuration chosen as a reference. Moreover, a complete validation of the model is proposed with guidelines on the variables to observe. Numerous comparisons with dedicated experiments (thermocouples, pyrometry, high-speed camera) are proposed to estimate the validity of the model. In addition to traditional geometric measurements, the main variables calculated, temperatures, and velocities in the melt pool are at the center of this work. The goal is to propose a reference validation for complex 3D models proposed over the last few years.
Internal waves patterns in the wake of a 3D body towed in a two-layer fluid
NASA Astrophysics Data System (ADS)
Lacaze, Laurent; Mercier, Matthieu; Thual, Olivier; Paci, Alexandre
2014-11-01
Stratified flows over obstacles are important features in meteorology and oceanography. The characterization of these flows is crucial in order to propose models of geophysical processes such as mixing and ocean circulation or orographic drag in the atmosphere. For some specific stratification profiles, the energy of internal waves generated by the obstacle can be trapped at a given depth, at the base of the oceanic mixing layer or at the top of the atmospheric boundary layer for instance. This scenario can be modelled by a two-layer stratified fluid for which gravity waves spread at the interface between the two layers. The work presented here focuses on a two-layer flow over a 3D obstacle, or equivalently, an obstacle towed in a fluid at rest. Experiments performed both in the large-scale flume of CNRM-GAME Toulouse (METEO-FRANCE & CNRS) and in a smaller tank apparatus, are presented with a specific attention on the measurement of the 3D wave patterns. A non-hydrostatic linear analysis is used to describe the observed wave patterns. The experiments highlight the strong influence of the Froude number on the generated waves. More specifically, we investigate the nature of the wake angle obtained from the wave pattern, and discuss a transition from Kelvin to Mach angle.
Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review.
Howarth, Peter A
2011-03-01
The visual stimulus provided by a 3-D stereoscopic display differs from that of the real world because the image provided to each eye is produced on a flat surface. The distance from the screen to the eye remains fixed, providing a single focal distance, but the introduction of disparity between the images allows objects to be located geometrically in front of, or behind, the screen. Unlike in the real world, the stimulus to accommodation and the stimulus to convergence do not match. Although this mismatch is used positively in some forms of Orthoptic treatment, a number of authors have suggested that it could negatively lead to the development of asthenopic symptoms. From knowledge of the zone of clear, comfortable, single binocular vision one can predict that, for people with normal binocular vision, adverse symptoms will not be present if the discrepancy is small, but are likely if it is large, and that what constitutes 'large' and 'small' are idiosyncratic to the individual. The accommodation-convergence mismatch is not, however, the only difference between the natural and the artificial stimuli. In the former case, an object located in front of, or behind, a fixated object will not only be perceived as double if the images fall outside Panum's fusional areas, but it will also be defocused and blurred. In the latter case, however, it is usual for the producers of cinema, TV or computer game content to provide an image that is in focus over the whole of the display, and as a consequence diplopic images will be sharply in focus. The size of Panum's fusional area is spatial frequency-dependent, and because of this the high spatial frequencies present in the diplopic 3-D image will provide a different stimulus to the fusion system from that found naturally. PMID:21309798
Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.
Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard
2011-12-01
Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization. PMID:22034338
Trelease, R B
1996-01-01
Advances in computer visualization and user interface technologies have enabled development of "virtual reality" programs that allow users to perceive and to interact with objects in artificial three-dimensional environments. Such technologies were used to create an image database and program for studying the human skull, a specimen that has become increasingly expensive and scarce. Stereoscopic image pairs of a museum-quality skull were digitized from multiple views. For each view, the stereo pairs were interlaced into a single, field-sequential stereoscopic picture using an image processing program. The resulting interlaced image files are organized in an interactive multimedia program. At run-time, gray-scale 3-D images are displayed on a large-screen computer monitor and observed through liquid-crystal shutter goggles. Users can then control the program and change views with a mouse and cursor to point-and-click on screen-level control words ("buttons"). For each view of the skull, an ID control button can be used to overlay pointers and captions for important structures. Pointing and clicking on "hidden buttons" overlying certain structures triggers digitized audio spoken word descriptions or mini lectures. PMID:8793223
A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.
2015-12-01
Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.
NASA Astrophysics Data System (ADS)
Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye
2015-11-01
In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.
2015-06-01
We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Pan, Yijie; Han, Jian; Hu, Bin; Wang, Yongtian
2013-12-01
The real-time holographic display encounters heavy computational load of computer-generated holograms and precisely intensity modulation of 3D images reconstructed by phase-only holograms. In this study, we demonstrate a method for reducing memory usage and modulating the intensity in 3D holographic display. The proposed method can eliminate the redundant information of holograms by employing the non-uniform sampling technique. By combining with the novel look-up table method, 70% reduction in the storage amount can be reached. The gray-scale modulation of 3D images reconstructed by phase-only holograms can be extended either. We perform both numerical simulations and optical experiments to verify the practicability of this method, and the results match well with each other. It is believed that the proposed method can be used in 3D dynamic holographic display and design of the diffractive phase elements.
NASA Astrophysics Data System (ADS)
Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo
2012-02-01
As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.
Advances in computational fluid dynamics solvers for modern computing environments
NASA Astrophysics Data System (ADS)
Hertenstein, Daniel; Humphrey, John R.; Paolini, Aaron L.; Kelmelis, Eric J.
2013-05-01
EM Photonics has been investigating the application of massively multicore processors to a key problem area: Computational Fluid Dynamics (CFD). While the capabilities of CFD solvers have continually increased and improved to support features such as moving bodies and adjoint-based mesh adaptation, the software architecture has often lagged behind. This has led to poor scaling as core counts reach the tens of thousands. In the modern High Performance Computing (HPC) world, clusters with hundreds of thousands of cores are becoming the standard. In addition, accelerator devices such as NVIDIA GPUs and Intel Xeon Phi are being installed in many new systems. It is important for CFD solvers to take advantage of the new hardware as the computations involved are well suited for the massively multicore architecture. In our work, we demonstrate that new features in NVIDIA GPUs are able to empower existing CFD solvers by example using AVUS, a CFD solver developed by the Air Force Research Labratory (AFRL) and the Volcanic Ash Advisory Center (VAAC). The effort has resulted in increased performance and scalability without sacrificing accuracy. There are many well-known codes in the CFD space that can benefit from this work, such as FUN3D, OVERFLOW, and TetrUSS. Such codes are widely used in the commercial, government, and defense sectors.
NASA Astrophysics Data System (ADS)
Xu, Chicheng; Torres-Verdín, Carlos
2013-12-01
A computer algorithm is implemented to construct 3D cubic pore networks that simultaneously honor nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) measurements on core samples. The algorithm uses discretized pore-body size distributions from NMR and pore-throat size versus incremental pore-volume fraction information from MICP as initial inputs. Both pore-throat radius distribution and body-throat correlation are iteratively refined to match percolation-simulated primary drainage capillary pressure with MICP data. It outputs a pore-throat radius distribution which is not directly measurable with either NMR or MICP. In addition, quasi-static fluid distribution and single-phase connectivity are quantified at each capillary pressure stage. NMR measurements on desaturating core samples are simulated from the quantitative fluid distribution in a gas-displacing-water drainage process and are verified with laboratory measurements. We invoke effective medium theory to quantify the single-phase connectivity in two-phase flow by simulating percolation in equivalent sub-pore-networks that consider the remaining fluid phase as solid cementation. Primary drainage relative permeability curves quantified from fluid distribution and phase connectivity show petrophysical consistency after applying a hydrated-water saturation correction. Core measurements of tight-gas sandstone samples from the Cotton Valley formation, East Texas, are used to verify the new algorithm.
Three-fluid, 3D MHD solar wind modeling with turbulence transport and eddy viscosity
NASA Astrophysics Data System (ADS)
Usmanov, A. V.; Goldstein, M. L.; Matthaeus, W. H.
2014-12-01
We present results from a three-fluid, fully three-dimensional MHD solar wind model that includes turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a co-moving system of three species: the solar wind protons, electrons, and interstellar pickup protons. Separate energy equations are employed for each species. We obtain numerical solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations in the region from 0.3 to 100 AU. The integrated system of equations includes the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including turbulence parameters, throughout the heliosphere. The model results are compared with observations on WIND, Ulysses and Voyager 2 spacecraft. This work is partially supported by LWS and Heliophysics Grand Challenges programs.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Error propagation in the computation of volumes in 3D city models with the Monte Carlo method
NASA Astrophysics Data System (ADS)
Biljecki, F.; Ledoux, H.; Stoter, J.
2014-11-01
This paper describes the analysis of the propagation of positional uncertainty in 3D city models to the uncertainty in the computation of their volumes. Current work related to error propagation in GIS is limited to 2D data and 2D GIS operations, especially of rasters. In this research we have (1) developed two engines, one that generates random 3D buildings in CityGML in multiple LODs, and one that simulates acquisition errors to the geometry; (2) performed an error propagation analysis on volume computation based on the Monte Carlo method; and (3) worked towards establishing a framework for investigating error propagation in 3D GIS. The results of the experiments show that a comparatively small error in the geometry of a 3D city model may cause significant discrepancies in the computation of its volume. This has consequences for several applications, such as in estimation of energy demand and property taxes. The contribution of this work is twofold: this is the first error propagation analysis in 3D city modelling, and the novel approach and the engines that we have created can be used for analysing most of 3D GIS operations, supporting related research efforts in the future.
Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma
2015-10-01
To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P < 0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P < 0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.
GBM Volumetry using the 3D Slicer Medical Image Computing Platform
Egger, Jan; Kapur, Tina; Fedorov, Andriy; Pieper, Steve; Miller, James V.; Veeraraghavan, Harini; Freisleben, Bernd; Golby, Alexandra J.; Nimsky, Christopher; Kikinis, Ron
2013-01-01
Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm. PMID:23455483
High resolution 3D imaging of bump-bonds by means of synchrotron radiation computed laminography
NASA Astrophysics Data System (ADS)
Cecilia, A.; Hamann, E.; Koenig, T.; Xu, F.; Cheng, Y.; Helfen, L.; Ruat, M.; Scheel, M.; Zuber, M.; Baumbach, T.; Fauler, A.; Fiederle, M.
2013-12-01
During the flip-chip bonding process of a semiconductor sensor onto readout electronics, a formation of defects may take place, like solder joint displacements, voids, cracks, pores and bridges. This may result in blind spots on the detector, which are insensitive to photons and thus reduce the detector performance. In this work, the flip-chip interconnections of selected CdTe and GaAs Medipix detectors were investigated by synchrotron radiation computed laminography at a micrometer scale. The analysis of the volume rendering proved the presence of voids in the CdTe sensor flip-chip interconnections, with sizes between 3 μm and 9 μm. These voids can be harmful for the long term use of the device, because their presence weakens the adhesive strength between a contact and the readout electronics. Consequently, their formation needs to be avoided. The GaAs Medipix detectors investigated include two sensors that were produced with different flip-chip methods. The comparison of the 3D renderings of the bump-bond interconnections in the two GaAs sensors demonstrated the presence of a misalignment in the range of 5-12 μm between pixel passivation and bump-bonds in the detector produced with an older technique. In contrast to this, no misalignment was observed for the most recently produced detector. The only remarkable observation is the presence of ``satellites'' of solder that do not compromise the detector operation.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling
Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future
Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.
Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future
Research on Computational Fluid Dynamics and Turbulence
NASA Technical Reports Server (NTRS)
1986-01-01
Preconditioning matrices for Chebyshev derivative operators in several space dimensions; the Jacobi matrix technique in computational fluid dynamics; and Chebyshev techniques for periodic problems are discussed.
Kent, J C; Eaton, A R
1982-03-01
A new technique has been developed for studies of fluid motion within the cylinder of a reciprocating piston engine during the air induction process. Helium-filled bubbles, serving as neutrally buoyant flow tracer particles, enter the cylinder along with the inducted air charge. The bubble motion is recorded by stereo cine photography through the transparent cylinder of a specially designed research engine. Quantitative data on the 3-D velocity field generated during induction is obtained from frame-to-frame analysis of the stereo images, taking into account refraction of the rays due to the transparent cylinder. Other applications for which this technique appears suitable include measurements of velocity fields within intake ports and flow-field dynamics within intake manifolds of multicylinder engines. PMID:20372559
NASA Astrophysics Data System (ADS)
Chatelin, Robin; Poncet, Philippe
2014-07-01
Particle methods are very convenient to compute transport equations in fluid mechanics as their computational cost is linear and they are not limited by convection stability conditions. To achieve large 3D computations the method must be coupled to efficient algorithms for velocity computations, including a good treatment of non-homogeneities and complex moving geometries. The Penalization method enables to consider moving bodies interaction by adding a term in the conservation of momentum equation. This work introduces a new computational algorithm to solve implicitly in the same step the Penalization term and the Laplace operators, since explicit computations are limited by stability issues, especially at low Reynolds number. This computational algorithm is based on the Sherman-Morrison-Woodbury formula coupled to a GMRES iterative method to reduce the computations to a sequence of Poisson problems: this allows to formulate a penalized Poisson equation as a large perturbation of a standard Poisson, by means of algebraic relations. A direct consequence is the possibility to use fast solvers based on Fast Fourier Transforms for this problem with good efficiency from both the computational and the memory consumption point of views, since these solvers are recursive and they do not perform any matrix assembling. The resulting fluid mechanics computations are very fast and they consume a small amount of memory, compared to a reference solver or a linear system resolution. The present applications focus mainly on a coupling between transport equation and 3D Stokes equations, for studying biological organisms motion in a highly viscous flows with variable viscosity.
Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.
2012-07-01
Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.
Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography.
Steininger, P; Neuner, M; Weichenberger, H; Sharp, G C; Winey, B; Kametriser, G; Sedlmayer, F; Deutschmann, H
2012-07-01
Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription. PMID:22705709
Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)
Prabha, H.; Marleau, G.
2012-07-01
For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.
NASA Astrophysics Data System (ADS)
Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.
2016-03-01
This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.
NASA Astrophysics Data System (ADS)
Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph
2016-03-01
A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.
3D printing of preclinical X-ray computed tomographic data sets.
Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew
2013-01-01
Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages. PMID:23542702
Peluso, G; Bosello, S L; Gremese, E; Mirone, L; Di Gregorio, F; Di Molfetta, V; Pirronti, T; Ferraccioli, G
2015-07-01
Three-dimensional (3D) volumetric ultrasonography (US) is an interesting tool that could improve the traditional approach to musculoskeletal US in rheumatology, due to its virtual operator independence and reduced examination time. The aim of this study was to investigate the performance of 3DUS in the detection of bone erosions in hand and wrist joints of early rheumatoid arthritis (ERA) patients, with computed tomography (CT) as the reference method. Twenty ERA patients without erosions on standard radiography of hands and wrists underwent 3DUS and CT evaluation of eleven joints: radiocarpal, intercarpal, ulnocarpal, second to fifth metacarpo-phalangeal (MCP), and second to fifth proximal interphalangeal (PIP) joints of dominant hand. Eleven (55.0%) patients were erosive with CT and ten of them were erosive also at 3DUS evaluation. In five patients, 3DUS identified cortical breaks that were not erosions at CT evaluation. Considering CT as the gold standard to identify erosive patients, the 3DUS sensitivity, specificity, PPV, and NPV were 0.9, 0.55, 0.71, and 0.83, respectively. A total of 32 erosions were detected with CT, 15 of them were also observed at the same sites with 3DUS, whereas 17 were not seen on 3DUS evaluation. The majority of these 3DUS false-negative erosions were in the wrist joints. Furthermore, 18 erosions recorded by 3DUS were false positive. The majority of these 3DUS false-positive erosions were located at PIP joints. This study underlines the limits of 3DUS in detecting individual bone erosion, mostly at the wrist, despite the good sensitivity in identifying erosive patients. PMID:26091903
Yu, Yingjie; Zhang, Qi; Buscaglia, Jonathan; Chang, Chung-Chueh; Liu, Ying; Yang, Zhenhua; Guo, Yichen; Wang, Yantian; Levon, Kalle; Rafailovich, Miriam
2016-07-21
In this study, a sensitive, yet robust, biosensing system with real-time electrochemical readout was developed. The biosensor system was applied to the detection of carcinoembryonic antigen (CEA), which is a common marker for many cancers such as pancreatic, breast, and colon cancer. Real time detection of CEA during a medical procedure can be used to make critical decisions regarding further surgical intervention. CEA was templated on gold surface (RMS roughness ∼3-4 nm) coated with a hydrophilic self-assembled monolayer (SAM) on the working electrode of an open circuit potentiometric network. The subsequent removal of template CEA makes the biosensor capable of CEA detection based on its specific structure and conformation. The molecular imprinting (MI) biosensor was further calibrated using the potentiometric responses in solutions with known CEA concentrations and a detection limit of 0.5 ng ml(-1) was achieved. Potentiometric sensing was then applied to pancreatic cyst fluid samples obtained from 18 patients when the cyst fluid was also evaluated using ELISA in a certified pathology laboratory. Excellent agreement was obtained between the quantitation of CEA obtained by both the ELISA and MI biosensor detection for CEA. A 3-D MI model, using the natural rms roughness of PVD gold layers, is presented to explain the high degree of sensitivity and linearity observed in those experiments. PMID:27193921
ERIC Educational Resources Information Center
Gales, Larry
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printed plot displays. The displays…
ERIC Educational Resources Information Center
Gales, Larry
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three dimensional hidden…
ERIC Educational Resources Information Center
Gales, Larry
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three-dimensional hidden…
ERIC Educational Resources Information Center
Gales, Larry
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays…
DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER
Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...
Effective Permeability of Fractured Rocks by Analytical Methods: A 3D Computational Study
NASA Astrophysics Data System (ADS)
Sævik, P. N.; Berre, I.; Jakobsen, M.; Lien, M.
2013-12-01
Analytical upscaling methods have been proposed in the literature to predict the effective hydraulic permeability of a fractured rock from its micro-scale parameters (fracture aperture, fracture orientation, fracture content, etc.). In this presentation, we put special emphasis on three effective medium methods (the symmetric and asymmetric self-consistent methods, and the differential method), and evaluate their accuracy for a wide range of parameter values. The analytical predictions are computed using our recently developed effective medium formulations, which are specifically adapted for fractured media. Compared to previous formulations, the new expressions have improved numerical stability properties, and require fewer input parameters. To assess their accuracy, the analytical predictions have been compared with 3D finite element simulations. Specifically, we generated realizations of several different fracture geometries, each consisting of 102 fractures within a unit cube. We applied unit potential difference on two opposing sides, and no-flux conditions on the remaining sides. A commercial finite-element solver was used to calculate the mean flux, from which the effective conductivity was found. This process was repeated for fracture densities up to ɛ = 1.0. Also, a wide range of fracture permeabilities was considered, from completely blocking to infinitely permeable fractures. The results were used to determine the range of applicability for each analytical method, which excels in different regions of the parameter space. For blocking fractures, the differential method is very accurate throughout the investigated parameter range. The symmetric self-consistent method also agrees well with the numerical results on sealed fractures, while the asymmetric self-consistent method is more unreliable. For permeable fractures, the performance of the methods depends on the dimensionless quantity λ = (Kfrac a)/(r Kmat ), describing the contrast between fracture and
Stull, Kyra E; Tise, Meredith L; Ali, Zabiullah; Fowler, David R
2014-05-01
Forensic pathologists commonly use computed tomography (CT) images to assist in determining the cause and manner of death as well as for mass disaster operations. Even though the design of the CT machine does not inherently produce distortion, most techniques within anthropology rely on metric variables, thus concern exists regarding the accuracy of CT images reflecting an object's true dimensions. Numerous researchers have attempted to validate the use of CT images, however the comparisons have only been conducted on limited elements and/or comparisons were between measurements taken from a dry element and measurements taken from the 3D-CT image of the same dry element. A full-body CT scan was performed prior to autopsy at the Office of the Chief Medical Examiner for the State of Maryland. Following autopsy, the remains were processed to remove all soft tissues and the skeletal elements were subject to an additional CT scan. Percent differences and Bland-Altman plots were used to assess the accuracy between osteometric variables obtained from the dry skeletal elements and from CT images with and without soft tissues. An additional seven crania were scanned, measured by three observers, and the reliability was evaluated by technical error of measurement (TEM) and relative technical error of measurement (%TEM). Average percent differences between the measurements obtained from the three data sources ranged from 1.4% to 2.9%. Bland-Altman plots illustrated the two sets of measurements were generally within 2mm for each comparison between data sources. Intra-observer TEM and %TEM for three observers and all craniometric variables ranged between 0.46mm and 0.77mm and 0.56% and 1.06%, respectively. The three-way inter-observer TEM and %TEM for craniometric variables was 2.6mm and 2.26%, respectively. Variables that yielded high error rates were orbital height, orbital breadth, inter-orbital breadth and parietal chord. Overall, minimal differences were found among the
3D parallel computations of turbofan noise propagation using a spectral element method
NASA Astrophysics Data System (ADS)
Taghaddosi, Farzad
2006-12-01
A three-dimensional code has been developed for the simulation of tone noise generated by turbofan engine inlets using computational aeroacoustics. The governing equations are the linearized Euler equations, which are further simplified to a set of equations in terms of acoustic potential, using the irrotational flow assumption, and subsequently solved in the frequency domain. Due to the special nature of acoustic wave propagation, the spatial discretization is performed using a spectral element method, where a tensor product of the nth-degree polynomials based on Chebyshev orthogonal functions is used to approximate variations within hexahedral elements. Non-reflecting boundary conditions are imposed at the far-field using a damping layer concept. This is done by augmenting the continuity equation with an additional term without modifying the governing equations as in PML methods. Solution of the linear system of equations for the acoustic problem is based on the Schur complement method, which is a nonoverlapping domain decomposition technique. The Schur matrix is first solved using a matrix-free iterative method, whose convergence is accelerated with a novel local preconditioner. The solution in the entire domain is then obtained by finding solutions in smaller subdomains. The 3D code also contains a mean flow solver based on the full potential equation in order to take into account the effects of flow variations around the nacelle on the scattering of the radiated sound field. All aspects of numerical simulations, including building and assembling the coefficient matrices, implementation of the Schur complement method, and solution of the system of equations for both the acoustic and mean flow problems are performed on multiprocessors in parallel using the resources of the CLUMEQ Supercomputer Center. A large number of test cases are presented, ranging in size from 100 000-2 000 000 unknowns for which, depending on the size of the problem, between 8-48 CPU's are
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
Using Computers in Fluids Engineering Education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1998-01-01
Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.
An IPOT meshless method using DC PSE approximation for fluid flow equations in 2D and 3D geometries
NASA Astrophysics Data System (ADS)
Bourantas, G. C.; Loukopoulos, V. C.; Skouras, E. D.; Burganos, V. N.; Nikiforidis, G. C.
2016-06-01
Navier-Stokes (N-S) equations, in their primitive variable (u-v-p) formulation, are numerically solved using the Implicit Potential (IPOT) numerical scheme in the context of strong form Meshless Point Collocation (MPC) method. The unknown field functions are computed using the Discretization Correction Particle Strength Exchange (DC PSE) approximation method. The latter makes use of discrete moment conditions to derive the operator kernels, which leads to low condition number for the moment matrix compared to other meshless interpolation methods and increased stability for the numerical solution. The proposed meshless scheme is applied on 2D and 3D spatial domains, using uniform or irregular set of nodes to represent the domain. The numerical results obtained are compared against those obtained using well-established methods.
NASA Astrophysics Data System (ADS)
Dégi, Júlia; Török, Kálmán; Németh, Bianca; Rhede, Dieter; Takács, Ágnes; Habler, Gerlinde; Abart, Rainer
2016-04-01
Complex kelyphitic rims after garnet were studied in a lower crustal mafic granulite xenolith from the Bakony-Balaton Highland Volcanic Field, W-Hungary. The xenolith is dominated by a garnet granulite mineral assemblage equilibrated at 900 ° C, 1.4 GPa within the overthickened orogenic root of the Alps. Garnet breakdown was initiated during the extension of the Pannonian Basin and remained continuous until the xenoliths reached the surface. This resulted in the formation of various microstructural domains within the kelyphitic rims which were distinguished to three main types: fine-grained symplectites, recrystallized symplectites and cyrstallized melts. Fine-grained symplectites are the products of isochemical breakdown of garnet to pure anorthite, Al-orthopyroxene and hercynitic spinel. Nanoscale topography built up by curved chains of humps on the garnet surface showing regular spatial distribution is observed at the reaction front in 3D reconstructions. These patterns follow the contours of anorthites nucleating at the reaction front. This suggests that diffusion-controlled material transfer in solid state together with surface energy minimization determines symplectite microstructure. The latter leads to continuous isochemical coarsening getting further from the reaction front. Slight increase of Na and Ti-content in fine-grained symplectites is associated with sudden changes in 3D microstructure reflecting the effect of aquaeous fluids infiltrating to the reaction rim. A similar aquaeous fluid may have induced the formation of nearly isochemical melting and in situ recrystallization of the symplectites to form recrystallized symplectites. Some of these remained pristine, while some experienced ductile deformation and re-melting due to a reaction with an external melt in the lower crust. Well-crystallized melt pockets consisting of complexly zoned pyroxene, spinel and plagioclase grains were formed around 1000 ° C in this stage. Following this, interaction
Computational Graph Model for 3D Cells Tracking in Zebra Fish Datasets
NASA Astrophysics Data System (ADS)
Zhang, Lelin; Xiong, Hongkai; Zhao, Yang; Zhang, Kai; Zhou, Xiaobo
2007-11-01
This paper leads to a novel technique for tracking and identification of zebra-fish cells in 3D image sequences, extending graph-based multi-objects tracking algorithm to 3D applications. As raised in previous work of 2D graph-based method, separated cells are modeled as vertices that connected by edges. Then the tracking work is simplified to that of vertices matching between graphs generated from consecutive frames. Graph-based tracking is composed of three steps: graph generation, initial source vertices selection and graph saturation. To satisfy demands in this work separated cell records are segmented from original datasets using 3D level-set algorithms. Besides, advancements are achieved in each of the step including graph regulations, multi restrictions on source vertices and enhanced flow quantifications. Those strategies make a good compensation for graph-based multi-objects tracking method in 2D space. Experiments are carried out in 3D datasets sampled from zebra fish, results of which shows that this enhanced method could be potentially applied to tracking of objects with diverse features.
NASA Technical Reports Server (NTRS)
Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel L.
2014-01-01
In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.
NASA Technical Reports Server (NTRS)
Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel
2014-01-01
In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.
TBIEM3D: A Computer Program for Predicting Ducted Fan Engine Noise. Version 1.1
NASA Technical Reports Server (NTRS)
Dunn, M. H.
1997-01-01
This document describes the usage of the ducted fan noise prediction program TBIEM3D (Thin duct - Boundary Integral Equation Method - 3 Dimensional). A scattering approach is adopted in which the acoustic pressure field is split into known incident and unknown scattered parts. The scattering of fan-generated noise by a finite length circular cylinder in a uniform flow field is considered. The fan noise is modeled by a collection of spinning point thrust dipoles. The program, based on a Boundary Integral Equation Method (BIEM), calculates circumferential modal coefficients of the acoustic pressure at user-specified field locations. The duct interior can be of the hard wall type or lined. The duct liner is axisymmetric, locally reactive, and can be uniform or axially segmented. TBIEM3D is written in the FORTRAN programming language. Input to TBIEM3D is minimal and consists of geometric and kinematic parameters. Discretization and numerical parameters are determined automatically by the code. Several examples are presented to demonstrate TBIEM3D capabilities.
Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.
2014-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.
NASA Astrophysics Data System (ADS)
Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.
1999-10-01
This paper reports the use of a new holographic measurement system in the study of 3D surface displacements. Although equally applicable to fluid and solid mechanics, the aim of this report is to demonstrate the system's use in quantitative surface displacement measurements with a classical cantilever experiment, using a continuous-wave diode-pumped YAG laser system. The reported results exhibit an accuracy corresponding to other interferometric systems, but with a much larger displacement range. The measurement system employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex correlation rather than 2D real correlation, thereby offering a direct method for measuring 3D displacement in 3D space. FInally, with the novel use of an optical fiber to probe the recorded holographic image space, it is found to be a simple matter to directly obtain 3D displacement measurements at precisely known surface locations.
NASA Astrophysics Data System (ADS)
Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan
2015-01-01
We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.
Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan
2009-01-01
We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC
NASA Astrophysics Data System (ADS)
Chan, Victor S. S.; Barnhart, Donald H.; Halliwell, Neil A.; Coupland, Jeremy M.
1999-10-01
A new holographic technique has been developed to measure displacement in solid and fluid mechanics. The method uses double exposure holograms of large numerical aperture to record the light scattered from a solid surface or seeding particles that are assumed to follow the fluid motion. Analysis of the resulting hologram is performed in a piece- wise fashion through spatial correlation of the field that passes through a sampling aperture placed in the real image. In this way it is possible to map 3D displacement of an irregular surface or map the movement of seeding throughout an extended volume of fluid. This paper discusses the cancellation of gross aberrations using a phase conjugate holographic optical element to generate a converging reference wave. Seeded flow or solid surfaces recorded with this reference wave geometry can be reconstructed efficiently using a fiber-optic probe. In addition to aberration cancelling the technique allows a method of image shifting to be introduced thus resolving the direction of the flow or surface displacement.
NASA Astrophysics Data System (ADS)
Shalbaf, Farzaneh; Dokos, Socrates; Lovell, Nigel H.; Turuwhenua, Jason; Vaghefi, Ehsan
2015-12-01
Retinal prosthesis has been proposed to restore vision for those suffering from the retinal pathologies that mainly affect the photoreceptors layer but keep the inner retina intact. Prior to costly risky experimental studies computational modelling of the retina will help to optimize the device parameters and enhance the outcomes. Here, we developed an anatomically detailed computational model of the retina based on OCT data sets. The consecutive OCT images of individual were subsequently segmented to provide a 3D representation of retina in the form of finite elements. Thereafter, the electrical properties of the retina were modelled by implementing partial differential equation on the 3D mesh. Different electrode configurations, that is bipolar and hexapolar configurations, were implemented and the results were compared with the previous computational and experimental studies. Furthermore, the possible effects of the curvature of retinal layers on the current steering through the retina were proposed and linked to the clinical observations.
Remote Visualization and Remote Collaboration On Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).
NASA Astrophysics Data System (ADS)
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-02-01
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.
Li, Yunfeng; Pizlo, Zygmunt; Steinman, Robert M
2009-05-01
Human beings perceive 3D shapes veridically, but the underlying mechanisms remain unknown. The problem of producing veridical shape percepts is computationally difficult because the 3D shapes have to be recovered from 2D retinal images. This paper describes a new model, based on a regularization approach, that does this very well. It uses a new simplicity principle composed of four shape constraints: viz., symmetry, planarity, maximum compactness and minimum surface. Maximum compactness and minimum surface have never been used before. The model was tested with random symmetrical polyhedra. It recovered their 3D shapes from a single randomly-chosen 2D image. Neither learning, nor depth perception, was required. The effectiveness of the maximum compactness and the minimum surface constraints were measured by how well the aspect ratio of the 3D shapes was recovered. These constraints were effective; they recovered the aspect ratio of the 3D shapes very well. Aspect ratios recovered by the model were compared to aspect ratios adjusted by four human observers. They also adjusted aspect ratios very well. In those rare cases, in which the human observers showed large errors in adjusted aspect ratios, their errors were very similar to the errors made by the model. PMID:18621410
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-01-01
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries. PMID:26899876
NASA Astrophysics Data System (ADS)
Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.
2016-03-01
Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.
Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo
2016-01-01
Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries. PMID:26899876
Arachchi, Shanika; Pitto, Rocco P.; Anderson, Iain A.
2015-01-01
Background Computational models in the form of finite element analysis technique that incorporates bone remodeling theories along with DEXA scans has been extensively used in predicting bone remodeling patterns around the implant. However, majority of such studies used generic models. Therefore, the aim of this study is to develop patient-specific finite element models of total hip replacement patients using their quantitative computed tomography (QCT) scans and accurately analyse bone remodelling patterns after total hip arthroplasty (THA). Methods Patient-specific finite element models have been generated using the patients’ QCT scans from a previous clinical follow-up study. The femur was divided into five regions in proximal-distal direction and then further divided into four quadrants for detailed analysis of bone remodeling patterns. Two types of analysis were performed—inter-patient and intra patient to compare them and then the resulting bone remodeling patterns were quantitatively analyzed. Results Our results show that cortical bone density decrease is higher in diaphyseal region over time and the cancellous bone density decreases significantly in metaphyseal region over time. In metaphyseal region, posterior-medial (P-M) quadrant showed high bone loss while diaphyseal regions show high bone loss in anterior-lateral (A-L) quadrant. Conclusions Our study demonstrated that combining QCT with 3D patient-specific models has the ability of monitoring bone density change patterns after THA in much finer details. Future studies include using these findings for the development of a bone remodelling algorithm capable of predicting surgical outcomes for THA patients. PMID:26435921
Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation
Mourad, Raphaël; Cuvier, Olivier
2016-01-01
Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237
Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John
2016-01-01
Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266
A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery
Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John
2016-01-01
Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266
A visual probe localization and calibration system for cost-effective computer-aided 3D ultrasound.
Ali, Aziah; Logeswaran, Rajasvaran
2007-08-01
The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera. PMID:17126314
NASA Astrophysics Data System (ADS)
Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.
2008-03-01
We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.
Fluid dynamics computer programs for NERVA turbopump
NASA Technical Reports Server (NTRS)
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion
NASA Technical Reports Server (NTRS)
Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.
2011-01-01
A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.
Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations
NASA Technical Reports Server (NTRS)
Noyes, Matthew A.
2013-01-01
This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-03-01
Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.
NASA Astrophysics Data System (ADS)
Zwolinski, A.; Jarzemski, M.
2015-04-01
The paper regards specific context of public spaces in "shadow" of tall buildings located in European cities. Majority of tall buildings in European cities were built in last 15 years. Tall buildings appear mainly in city centres, directly at important public spaces being viable environment for inhabitants with variety of public functions (open spaces, green areas, recreation places, shops, services etc.). All these amenities and services are under direct impact of extensive shading coming from the tall buildings. The paper focuses on analyses and representation of impact of shading from tall buildings on various public spaces in cities using 3D city models. Computer environment of 3D city models in cityGML standard uses 3D LiDAR data as one of data types for definition of 3D cities. The structure of cityGML allows analytic applications using existing computer tools, as well as developing new techniques to estimate extent of shading coming from high-risers, affecting life in public spaces. These measurable shading parameters in specific time are crucial for proper functioning, viability and attractiveness of public spaces - finally it is extremely important for location of tall buildings at main public spaces in cities. The paper explores impact of shading from tall buildings in different spatial contexts on the background of using cityGML models based on core LIDAR data to support controlled urban development in sense of viable public spaces. The article is prepared within research project 2TaLL: Application of 3D Virtual City Models in Urban Analyses of Tall Buildings, realized as a part of Polish-Norway Grants.
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices. PMID:26183963
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, Donna; Bannister, Stephen
2015-05-01
We obtain 3-D Vp and Vp/Vs from 8 to 70 km depth along the northern Hikurangi subduction zone, New Zealand, where the downdip limit of interseismic coupling is shallower than 15 km, and where both large shallow slow-slip events (SSEs) and small deep SSEs have been observed. Onshore-offshore marine-seismic data were incorporated, which greatly improved constraint of shallow velocities and the plate interface (PI) zone velocity structure. We also selected 2600 spatially distributed earthquakes, including seismic data from the upgraded permanent seismometer network, as well as seismic data from temporary networks deployed in 1993-1994, 2001 and 2011-2012. Our method used earthquake differential times and receiver differential times with gradational inversions. The results show extensive regions of subducted sediment, but with major variations along strike. Above the shallow PI (less than 20 km depth) and north of Gisborne there is a 70-km-long zone of high Vp/Vs and low Vp, which is interpreted as subducted sediment with high fluid-pressure. Subducted sediment is also observed at shallower depth offshore in seismic reflection data, in the vicinity of the shallow SSEs. The SSE patch with highest slip occurs where a zone of high seismicity connects the high Vp/Vs upper oceanic crust to the slab upper mantle such that the oceanic crust may serve as a reservoir below the SSE slip zone and enhance dilatant strengthening. In deeper zones, where the PI is 25-45 km depth, there are northern and central zones of thick low Vp, low Qp material related to underplated sediments, which are uplifting the Raukumara and Kaimanawa Ranges. Small deep (25-45 km) SSEs are related to the central deep underplated sediment zone, but no SSEs have been observed in the northern underplated zone.
Computational fluid dynamics on a massively parallel computer
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon
1989-01-01
A finite difference code was implemented for the compressible Navier-Stokes equations on the Connection Machine, a massively parallel computer. The code is based on the ARC2D/ARC3D program and uses the implicit factored algorithm of Beam and Warming. The codes uses odd-even elimination to solve linear systems. Timings and computation rates are given for the code, and a comparison is made with a Cray XMP.
Fabrication of computationally designed scaffolds by low temperature 3D printing.
Castilho, Miguel; Dias, Marta; Gbureck, Uwe; Groll, Jürgen; Fernandes, Paulo; Pires, Inês; Gouveia, Barbara; Rodrigues, Jorge; Vorndran, Elke
2013-09-01
The development of artificial bone substitutes that mimic the properties of bone and simultaneously promote the desired tissue regeneration is a current issue in bone tissue engineering research. An approach to create scaffolds with such characteristics is based on the combination of novel design and additive manufacturing processes. The objective of this work is to characterize the microstructural and the mechanical properties of scaffolds developed by coupling both topology optimization and a low temperature 3D printing process. The scaffold design was obtained using a topology optimization approach to maximize the permeability with constraints on the mechanical properties. This procedure was studied to be suitable for the fabrication of a cage prototype for tibial tuberosity advancement application, which is one of the most recent and promising techniques to treat cruciate ligament rupture in dogs. The microstructural and mechanical properties of the scaffolds manufactured by reacting α/β-tricalcium phosphate with diluted phosphoric acid were then assessed experimentally and the scaffolds strength reliability was determined. The results demonstrate that the low temperature 3D printing process is a reliable option to create synthetic scaffolds with tailored properties, and when coupled with topology optimization design it can be a powerful tool for the fabrication of patient-specific bone implants. PMID:23887064
Computation of elastic properties of 3D digital cores from the Longmaxi shale
NASA Astrophysics Data System (ADS)
Zhang, Wen-Hui; Fu, Li-Yun; Zhang, Yan; Jin, Wei-Jun
2016-06-01
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA
Carbajo, Juan J; Qualls, A L
2008-01-01
The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the
NASA Astrophysics Data System (ADS)
Hu, Bin; Kieweg, Sarah
2010-11-01
Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.
NASA Astrophysics Data System (ADS)
Morgan, J. P.; Hasenclever, J.; Shi, C.
2009-12-01
Computational studies of mantle convection face large challenges to obtain fast and accurate solutions for variable viscosity 3d flow. Recently we have been using parallel (MPI-based) MATLAB to more thoroughly explore possible pitfalls and algorithmic improvements to current ‘best-practice’ variable viscosity Stokes and D’Arcy flow solvers. Here we focus on study of finite-element solvers based on a decomposition of the equations for incompressible Stokes flow: Ku + Gp = f and G’u = 0 (K-velocity stiffness matrix, G-discretized gradient operator, G’=transpose(G)-discretized divergence operator) into a single equation for pressure Sp==G’K^-1Gp =G’K^-1f, in which the velocity is also updated as part of each pressure iteration. The outer pressure iteration is solved with preconditioned conjugate gradients (CG) (Maday and Patera, 1989), with a multigrid-preconditioned CG solver for the z=K^-1 (Gq) step of each pressure iteration. One fairly well-known pitfall (Fortin, 1985) is that constant-pressure elements can generate a spurious non-zero flow under a constant body force within non-rectangular geometries. We found a new pitfall when using an iterative method to solve the Kz=y operation in evaluating each G’K^-1Gq product -- even if the residual of the outer pressure equation converges to zero, the discrete divergence of this equation does not correspondingly converge; the error in the incompressibility depends on roughly the square of the tolerance used to solve each Kz=y velocity-like subproblem. Our current best recipe is: (1) Use flexible CG (cf. Notay, 2001) to solve the outer pressure problem. This is analogous to GMRES for a symmetric positive definite problem. It allows use of numerically unsymmetric and/or inexact preconditioners with CG. (2) In this outer-iteration, use an ‘alpha-bar’ technique to find the appropriate magnitude alpha to change the solution in each search direction. This improvement allows a similar iterative tolerance of
CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries
Sedmik, Rene; Tajmar, Martin
2007-01-30
The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 {mu}m where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force.
Coupling 2-D cylindrical and 3-D x-y-z transport computations
Abu-Shumays, I.K.; Yehnert, C.E.; Pitcairn, T.N.
1998-06-30
This paper describes a new two-dimensional (2-D) cylindrical geometry to three-dimensional (3-D) rectangular x-y-z splice option for multi-dimensional discrete ordinates solutions to the neutron (photon) transport equation. Of particular interest are the simple transformations developed and applied in order to carry out the required spatial and angular interpolations. The spatial interpolations are linear and equivalent to those applied elsewhere. The angular interpolations are based on a high order spherical harmonics representation of the angular flux. Advantages of the current angular interpolations over previous work are discussed. An application to an intricate streaming problem is provided to demonstrate the advantages of the new method for efficient and accurate prediction of particle behavior in complex geometries.
CFL3D: Its History and Some Recent Applications
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Biedron, R. T.; Thomas, J. L.
1997-01-01
The history of the Computational Fluids Laboratory -3D (CFL3D) Navier-Stokes computer code is discussed and a comprehensive reference list is given. Three recent advanced applications are presented (1) Wing with partial-spanflap, (2) F/A-18 with forebody control strake, and (3) Noise predictions for an advanced ducted propeller turbomachinery flow.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
NASA Astrophysics Data System (ADS)
Tao, W. Q.; Cheng, Y. P.; Lee, T. S.
2007-11-01
In this paper, a numerical investigation is performed for three-stage heat exchangers with plain plate fins and slit fins respectively, with a three-dimensional laminar conjugated model. The tubes are arranged in a staggered way, and heat conduction in fins is considered. In order to save the computer resource and speed up the numerical simulation, the numerical modeling is carried out stage by stage. In order to avoid the large pressure drop penalty in enhancing heat transfer, a slit fin is presented with the strip arrangement of “front coarse and rear dense” along the flow direction. The numerical simulation shows that, compared to the plain plate fin heat exchanger, the increase in the heat transfer in the slit fin heat exchanger is higher than that of the pressure drop, which proves the excellent performance of this slit fin. The fluid flow and heat transfer performance along the stages is also provided.
ERIC Educational Resources Information Center
Sykes, Edward R.
2007-01-01
Student retention in Computer Science is becoming a serious concern among Educators in many colleges and universities. Most institutions currently face a significant drop in enrollment in Computer Science. A number of different tools and strategies have emerged to address this problem (e.g., BlueJ, Karel Robot, etc.). Although these tools help to…
NASA Astrophysics Data System (ADS)
Rinaldi, Renaud G.; Blacklock, Matthew; Bale, Hrishikesh; Begley, Matthew R.; Cox, Brian N.
2012-08-01
Recent work presented a Monte Carlo algorithm based on Markov Chain operators for generating replicas of textile composite specimens that possess the same statistical characteristics as specimens imaged using high resolution x-ray computed tomography. That work represented the textile reinforcement by one-dimensional tow loci in three-dimensional space, suitable for use in the Binary Model of textile composites. Here analogous algorithms are used to generate solid, three-dimensional (3D) tow representations, to provide geometrical models for more detailed failure analyses. The algorithms for generating 3D models are divided into those that refer to the topology of the textile and those that deal with its geometry. The topological rules carry all the information that distinguishes textiles with different interlacing patterns (weaves, braids, etc.) and provide instructions for resolving interpenetrations or ordering errors among tows. They also simplify writing a single computer program that can accept input data for generic textile cases. The geometrical rules adjust the shape and smoothness of the generated virtual specimens to match data from imaged specimens. The virtual specimen generator is illustrated using data for an angle interlock weave, a common 3D textile architecture.
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.
NASA Astrophysics Data System (ADS)
Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.
2015-12-01
This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.
NASA Astrophysics Data System (ADS)
Zhang, Mian; Huang, Cheng-li
2012-08-01
Generalized spherical harmonics (GSH) are usually applied on the problems where the Earth model is elliptical and elastic stress tensor is involved in, as stress tensor can’t be represented in vector spherical harmonics. However, the divergence of the te ns or and a vector dot - product with the tensor are only needed on computation rotation modes of the Earth which can be written in the vector spherical harmonics. We extend the equations on the spherical Earth to asymmetric 3D model by means of linear operator method. This method doesn’t use the complicated generalized spherical harmonics nor Wigner 3 - j symbol. As a validation of this method, the practical calculation of rotational modes of 3D Earth will be made and discussed.
Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display
NASA Astrophysics Data System (ADS)
Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Bove, V. Michael; Smalley, Daniel
2016-03-01
Waveguide holography refers to the use of holographic techniques for the control of guided-wave light in integrated optical devices (e.g., off-plane grating couplers and in-plane distributed Bragg gratings for guided-wave optical filtering). Off-plane computer-generated waveguide holography (CGWH) has also been employed in the generation of simple field distributions for image display. We have previously depicted the design and fabrication of a binary-phase CGWH operating in the Raman-Nath regime for the purposes of near-to-eye 3-D display and as a precursor to a dynamic, transparent flat-panel guided-wave holographic video display. In this paper, we describe design algorithms and fabrication techniques for multilevel phase CGWHs for near-to-eye 3-D display.
Kaga, Akimune; Murotsuki, Jun; Kamimura, Miki; Kimura, Masato; Saito-Hakoda, Akiko; Kanno, Junko; Hoshi, Kazuhiko; Kure, Shigeo; Fujiwara, Ikuma
2015-05-01
Achondroplasia and Down syndrome are relatively common conditions individually. But co-occurrence of both conditions in the same patient is rare and there have been no reports of fetal analysis of this condition by prenatal sonographic and three-dimensional (3-D) helical computed tomography (CT). Prenatal sonographic findings seen in persons with Down syndrome, such as a thickened nuchal fold, cardiac defects, and echogenic bowel were not found in the patient. A prenatal 3-D helical CT revealed a large head with frontal bossing, metaphyseal flaring of the long bones, and small iliac wings, which suggested achondroplasia. In a case with combination of achondroplasia and Down syndrome, it may be difficult to diagnose the co-occurrence prenatally without typical markers of Down syndrome. PMID:25385298
Guyomarc'h, Pierre; Dutailly, Bruno; Charton, Jérôme; Santos, Frédéric; Desbarats, Pascal; Coqueugniot, Hélène
2014-11-01
This study presents Anthropological Facial Approximation in Three Dimensions (AFA3D), a new computerized method for estimating face shape based on computed tomography (CT) scans of 500 French individuals. Facial soft tissue depths are estimated based on age, sex, corpulence, and craniometrics, and projected using reference planes to obtain the global facial appearance. Position and shape of the eyes, nose, mouth, and ears are inferred from cranial landmarks through geometric morphometrics. The 100 estimated cutaneous landmarks are then used to warp a generic face to the target facial approximation. A validation by re-sampling on a subsample demonstrated an average accuracy of c. 4 mm for the overall face. The resulting approximation is an objective probable facial shape, but is also synthetic (i.e., without texture), and therefore needs to be enhanced artistically prior to its use in forensic cases. AFA3D, integrated in the TIVMI software, is available freely for further testing. PMID:25088006
NASA Astrophysics Data System (ADS)
Rudolph, Tobias; Ebert, Lars; Kowal, Jens
2006-03-01
Supporting surgeons in performing minimally invasive surgeries can be considered as one of the major goals of computer assisted surgery. Excellent intraoperative visualization is a prerequisite to achieve this aim. The Siremobil Iso-C 3D has become a widely used imaging device, which, in combination with a navigation system, enables the surgeon to directly navigate within the acquired 3D image volume without any extra registration steps. However, the image quality is rather low compared to a CT scan and the volume size (approx. 12 cm 3) limits its application. A regularly used alternative in computer assisted orthopedic surgery is to use of a preoperatively acquired CT scan to visualize the operating field. But, the additional registration step, necessary in order to use CT stacks for navigation is quite invasive. Therefore the objective of this work is to develop a noninvasive registration technique. In this article a solution is being proposed that registers a preoperatively acquired CT scan to the intraoperatively acquired Iso-C 3D image volume, thereby registering the CT to the tracked anatomy. The procedure aligns both image volumes by maximizing the mutual information, an algorithm that has already been applied to similar registration problems and demonstrated good results. Furthermore the accuracy of such a registration method was investigated in a clinical setup, integrating a navigated Iso-C 3D in combination with an tracking system. Initial tests based on cadaveric animal bone resulted in an accuracy ranging from 0.63mm to 1.55mm mean error.
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon
1989-01-01
The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.
NASA Astrophysics Data System (ADS)
Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Huang, Nancy
2006-05-01
The Florida Institute for Nuclear Detection and Security (FINDS) is currently working on the design and evaluation of a prototype neutron detector array that may be used for parcel screening systems and homeland security applications. In order to maximize neutron detector response over a wide spectrum of energies, moderator materials of different compositions and amounts are required, and can be optimized through 3-D discrete ordinates and Monte Carlo model simulations verified through measurement. Pu-Be sources can be used as didactic source materials to augment the design, optimization, and construction of detector arrays with proper characterization via transport analysis. To perform the assessments of the Pu-Be Source Capsule, 3-D radiation transport computations are used, including Monte Carlo (MCNP5) and deterministic (PENTRAN) methodologies. In establishing source geometry, we based our model on available source schematic data. Because both the MCNP5 and PENTRAN codes begin with source neutrons, exothermic (α,n) reactions are modeled using the SCALE5 code from ORNL to define the energy spectrum and the decay of the source. We combined our computational results with experimental data to fully validate our computational schemes, tools and models. Results from our computational models will then be used with experiment to generate a mosaic of the radiation spectrum. Finally, we discuss follow-up studies that highlight response optimization efforts in designing, building, and testing an array of detectors with varying moderators/thicknesses tagged to specific responses predicted using 3-D radiation transport models to augment special nuclear materials detection.
A 3-D Admittance-Level Computational Model of a Rat Hippocampus for Improving Prosthetic Design
Gilbert, Andrew; Loizos, Kyle; RamRakhyani, Anil Kumar; Hendrickson, Phillip; Lazzi, Gianluca; Berger, Theodore W.
2016-01-01
Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern. This paper describes the creation and implementation of an anatomically correct 3D model of the hippocampus to simulate the electric field patterns and axonal activation from electrical stimulation due to an implanted electrode array. The activating function was applied to the voltage results to determine the firing patterns in possible axon locations within the CA1. PMID:26736751
Geometric Neural Computing for 2D Contour and 3D Surface Reconstruction
NASA Astrophysics Data System (ADS)
Rivera-Rovelo, Jorge; Bayro-Corrochano, Eduardo; Dillmann, Ruediger
In this work we present an algorithm to approximate the surface of 2D or 3D objects combining concepts from geometric algebra and artificial neural networks. Our approach is based on the self-organized neural network called Growing Neural Gas (GNG), incorporating versors of the geometric algebra in its neural units; such versors are the transformations that will be determined during the training stage and then applied to a point to approximate the surface of the object. We also incorporate the information given by the generalized gradient vector flow to select automatically the input patterns, and also in the learning stage in order to improve the performance of the net. Several examples using medical images are presented, as well as images of automatic visual inspection. We compared the results obtained using snakes against the GSOM incorporating the gradient information and using versors. Such results confirm that our approach is very promising. As a second application, a kind of morphing or registration procedure is shown; namely the algorithm can be used when transforming one model at time t 1 into another at time t 2. We include also examples applying the same procedure, now extended to models based on spheres.
A 3-D admittance-level computational model of a rat hippocampus for improving prosthetic design.
Gilbert, Andrew; Loizos, Kyle; RamRakhyani, Anil Kumar; Hendrickson, Phillip; Lazzi, Gianluca; Berger, Theodore W
2015-01-01
Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern. This paper describes the creation and implementation of an anatomically correct 3D model of the hippocampus to simulate the electric field patterns and axonal activation from electrical stimulation due to an implanted electrode array. The activating function was applied to the voltage results to determine the firing patterns in possible axon locations within the CA1. PMID:26736751
A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution
Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe
2015-01-01
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615
Boudon, Frédéric; Chopard, Jérôme; Ali, Olivier; Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe
2015-01-01
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615
NASA Astrophysics Data System (ADS)
Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.
1999-10-01
This paper introduces a new approach to 3D displacement and velocity measurements that unifies the disciplines of holographic interferometry and holographic particle image velocimetry (HPIV). Equally applicable to fluid and solid mechanics, the overall system enables quantitative displacement measurements between two holographically recorded events from either particle or surface scattering sites, working with both pulsed and continuous-wave laser systems. The resulting measurements exhibit an accuracy corresponding to interferometric system, but with a dynamic range found with PIV systems. Most importantly, this paper introduces the novel use of an optical fiber to specify the measurement points, remove optical aberrations of windows, and eliminate directional ambiguity. An optical fiber is used to probe the recorded holographic image space at each 3D measurement point in order to extract the 3D displacement vectors. This fiber system also employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex optical correlation rather than 2D real digital correlation. It is therefore a simple matter to directly obtain 3D displacement and velocity measurements at precisely known 3D locations in the object space. By correlating both the amplitude and phase information in the holographic image, this system can measure spatial distributions of displacements even when the presence of severe aberrations preclude the detection of sharp images.
Computational fluid dynamics - The coming revolution
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.
1982-01-01
The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.
A note on problems in 3D boundary layer computations in streamline coordinates
NASA Astrophysics Data System (ADS)
Scholtysik, M.; Bettelini, M.; Fanneløp, T. K.
1994-01-01
Turbulent boundary layers with convergent and divergent external streamlines over a flat plate in the neighbourhood of a plane of symmetry have been computed using a finite-difference method based on streamline coordinates. While the results for the divergent case are generally satisfactory, error growth has been observed for the convergent flowfield. This is most pronounced near the lateral boundary of the computational domain, but also occurs in the plane of symmetry. As an ad-hoc engineering solution, a modified and more restrictive definition of the domain of dependence is proposed, which eliminates the part of the computational domain where the largest error growth occurs. The observed tendency to instability in the convergent case is confirmed by a simplified stability analysis after von Neumann of the uncoupled governing equations.
Nonlinear, nonlaminar - 3D computation of electron motion through the output cavity of a klystron.
NASA Technical Reports Server (NTRS)
Albers, L. U.; Kosmahl, H. G.
1971-01-01
The accurate computation is discussed of electron motion throughout the output cavity of a klystron amplifier. The assumptions are defined whereon the computation is based, and the equations of motion are reviewed, along with the space charge fields derived from a Green's function potential of a solid cylinder. The integration process is then examined with special attention to its most difficult and important aspect - namely, the accurate treatment of the dynamic effect of space charge forces on the motion of individual cell rings of equal volume and charge. The correct treatment is demonstrated upon four specific examples, and a few comments are given on the results obtained.-
COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.
Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F
2015-01-01
A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The
Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed
Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li
2008-05-15
Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.
Computational fluid dynamics - A personal view
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.
1989-01-01
This paper provides a personal view of computational fluid dynamics. The main theme is divided into two categories - one dealing with algorithms and engineering applications and the other with scientific investigations. The former category may be termed computational aerodynamics, with the objective of providing reliable aerodynamic or engineering predictions. The latter category is essentially basic research, where the algorithmic tools are used to unravel and elucidate fluid-dynamic phenomena hard to obtain in a laboratory. A critique of the numerical solution techniques for both compressible and incompressible flows is included. The discussion on scientific investigations deals in particular with transition and turbulence.
A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images
NASA Astrophysics Data System (ADS)
Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.
2016-03-01
Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.
ERIC Educational Resources Information Center
Smith, Dennie; McLaughlin, Tim; Brown, Irving
2012-01-01
This study explored computer animation vignettes as a replacement for live-action video scenarios of classroom behavior situations previously used as an instructional resource in teacher education courses in classroom management strategies. The focus of the research was to determine if the embedded behavioral information perceived in a live-action…
Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus
NASA Astrophysics Data System (ADS)
Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen
2010-01-01
The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.
Kressler, Bryan; Spincemaille, Pascal; Prince, Martin R; Wang, Yi
2006-09-01
Time-resolved 3D MRI with high spatial and temporal resolution can be achieved using spiral sampling and sliding-window reconstruction. Image reconstruction is computationally intensive because of the need for data regridding, a large number of temporal phases, and multiple RF receiver coils. Inhomogeneity blurring correction for spiral sampling further increases the computational work load by an order of magnitude, hindering the clinical utility of spiral trajectories. In this work the reconstruction time is reduced by a factor of >40 compared to reconstruction using a single processor. This is achieved by using a cluster of 32 commercial off-the-shelf computers, commodity networking hardware, and readily available software. The reconstruction system is demonstrated for time-resolved spiral contrast-enhanced (CE) peripheral MR angiography (MRA), and a reduction of reconstruction time from 80 min to 1.8 min is achieved. PMID:16892189
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent
2012-02-01
Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2015-08-01
AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.
Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong
2014-09-10
The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects. PMID:25133309
On the computation of long period seismograms in a 3-D earth using normal mode based approximations
NASA Astrophysics Data System (ADS)
Romanowicz, Barbara A.; Panning, Mark P.; Gung, Yuancheng; Capdeville, Yann
2008-11-01
Tomographic inversions for large-scale structure of the earth's mantle involve a forward modelling step of wave propagation through 3-D heterogeneity. Until now, most investigators have worked in the framework of the simplest theoretical assumptions, namely the infinite frequency `ray theory' in the case of body wave traveltime inversions, or the `path-average' approximation (PAVA) to normal mode perturbation theory, in the case of surface waves and long-period waveforms. As interest is shifting to mapping shorter wavelength structures, the need for a more accurate theoretical account of the interaction of seismic waves with mantle heterogeneity, coupled with improvements in path coverage, has been realized. Here we discuss different levels of approximations used in the context of normal mode perturbation theory, when modelling time domain seismic waveforms. We compare the performance of asymptotic approximations, which collapse the effects of 3-D structure onto the great circle vertical plane: the 1-D PAVA and a 2-D approximation called non-linear asymptotic coupling theory (NACT), which both are zeroth order asymptotic approximations. We then discuss how off-vertical plane effects can be introduced using higher order asymptotics. These computationally efficient approximations are compared to the linear Born formalism (BORN), which computes scattering integrals over the entire surface of the sphere. We point out some limitations of this linear formalism in the case of spatially extended anomalies, and show how that can be remedied through the introduction of a non-linear term (NBORN). All these approximations are referenced to a precise 3-D numerical computation afforded by the spectral element method. We discuss simple geometries, and explore a range of sizes of anomalies compared to the wavelength of the seismic waves considered, thus illustrating the range of validity and limitations of the various approximations considered.
NASA Astrophysics Data System (ADS)
Kapitza, H.; Eppel, D.
1987-02-01
A conjugate gradient method for solving a 3-D Poisson equation in Cartesian unequally spaced coordinates is tested in concurrence to standard iterative methods. It is found that the tested algorithm is far superior to Red-Black-SOR with optimal parameter. In the conjugate gradient method no relaxation parameter is needed, and there are no restrictions on the number of gridpoints in the three directions. The iteration routine is vectorizable to a large extent by the compiler of a CYBER 205 without any special preparations. Utilizing some special features of vector computers it is completely vectorizable with only minor changes in the code.
A 3D Model to Compute Lightning and HIRF Coupling Effects on Avionic Equipment of an Aircraft
NASA Astrophysics Data System (ADS)
Perrin, E.; Tristant, F.; Guiffaut, C.; Terrade, F.; Reineix, A.
2012-05-01
This paper describes the 3D FDTD model of an aircraft developed to compute the lightning and HIRF (High Intentity Radiated Fields) coupling effects on avionic equipment and all the wire harness associated. This virtual prototype aims at assisting the aircraft manufacturer during the lightning and HIRF certification processes. The model presented here permits to cover a frequency range from lightning spectrum to the low frequency HIRF domain, i.e. 0 to 100 MHz. Moreover, the entire aircraft, including the frame, the skin, the wire harness and the equipment are taken into account in only one model. Results obtained are compared to measurements on a real aircraft.
Three-Dimensional Computational Fluid Dynamics
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
A 3D-PNS computer code for the calculation of supersonic combusting flows
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit; Northam, G. Burton
1988-01-01
A computer code has been developed based on the three-dimensional parabolized Navier-Stokes (PNS) equations which govern the supersonic combusting flow of the hydrogen-air system. The finite difference algorithm employed was a hybrid of the Schiff-Steger algorithm and the Vigneron, et al., algorithm which is fully implicit and fully coupled. The combustion of hydrogen and air was modeled by the finite-rate two-step combustion model of Rogers-Chinitz. A new dependent variable vector was introduced to simplify the numerical algorithm. Robustness of the algorithm was considerably enhanced by introducing an adjustable parameter. The computer code was used to solve a premixed shock-induced combustion problem and the results were compared with those of a full Navier-Stokes code. Reasonably good agreement was obtained at a fraction of the cost of the full Navier-Stokes procedure.
3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.
2015-01-01
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938
High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation
Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn
2014-11-14
Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.
3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography.
Egan, C K; Jacques, S D M; Wilson, M D; Veale, M C; Seller, P; Beale, A M; Pattrick, R A D; Withers, P J; Cernik, R J
2015-01-01
We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938
Vectorization of computer programs with applications to computational fluid dynamics
NASA Astrophysics Data System (ADS)
Gentzsch, W.
Techniques for adapting serial computer programs to the architecture of modern vector computers are presented and illustrated with examples, mainly from the field of computational fluid dynamics. The limitations of conventional computers are reviewed; the vector computers CRAY-1S and CDC-CYBER 205 are characterized; and chapters are devoted to vectorization of FORTRAN programs, sample-program vectorization on five different vector and parallel-architecture computers, restructuring of basic linear-algebra algorithms, iterative methods, vectorization of simple numerical algorithms, and fluid-dynamics vectorization on CRAY-1 (including an implicit beam and warming scheme, an implicit finite-difference method for laminar boundary-layer equations, the Galerkin method and a direct Monte Carlo simulation). Diagrams, charts, tables, and photographs are provided.
Nonlinear, nonlaminar-3D computation of electron motion through the output cavity of a klystron
NASA Technical Reports Server (NTRS)
Albers, L. U.; Kosmahl, H. G.
1971-01-01
The equations of motion used in the computation are discussed along with the space charge fields and the integration process. The following assumptions were used as a basis for the computation: (1) The beam is divided into N axisymmetric discs of equal charge and each disc into R rings of equal charge. (2) The velocity of each disc, its phase with respect to the gap voltage, and its radius at a specified position in the drift tunnel prior to the interaction gap is known from available large signal one dimensional programs. (3) The fringing rf fields are computed from exact analytical expressions derived from the wave equation assuming a known field shape between the tunnel tips at a radius a. (4) The beam is focused by an axisymmetric magnetic field. Both components of B, that is B sub z and B sub r, are taken into account. (5) Since this integration does not start at the cathode but rather further down the stream prior to entering the output cavity it is assumed that each electron moved along a laminar path from the cathode to the start of integration.
The 3D computation of single-expansion-ramp and scramjet nozzles
NASA Technical Reports Server (NTRS)
Lai, H. T.
1991-01-01
A description of the computations for three-dimensional nonaxisymmetric nozzles and an analysis of the flowfields are presented. Two different types of nozzles are investigated for compressible flows at high Reynolds numbers. These are the single-expansion-ramp and scramjet nozzles. The computation for the single-expansion-ramp nozzle focuses on the condition of low pressure ratio, which requires the simulation for turbulent flow that is not needed at high pressure ratios. The flowfield contains the external quiescent air, and the internal regions of subsonic and low supersonic flows. The second type is the scramjet nozzle, which typically has a very large area ratio and is designed to operate at high speeds and pressure ratios. The freestream external flow has a Mach number of 6, and the internal flow leaving the combustion chamber is at a Mach number of 1.62. The flowfield is mostly supersonic except in the viscous region near walls. The computed results from both cases are compared with experimental data for the surface pressure distributions.
Computation of stationary 3D halo currents in fusion devices with accuracy control
NASA Astrophysics Data System (ADS)
Bettini, Paolo; Specogna, Ruben
2014-09-01
This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.
Computation of stationary 3D halo currents in fusion devices with accuracy control
Bettini, Paolo; Specogna, Ruben
2014-09-15
This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.
Accurate 3-D finite difference computation of traveltimes in strongly heterogeneous media
NASA Astrophysics Data System (ADS)
Noble, M.; Gesret, A.; Belayouni, N.
2014-12-01
Seismic traveltimes and their spatial derivatives are the basis of many imaging methods such as pre-stack depth migration and tomography. A common approach to compute these quantities is to solve the eikonal equation with a finite-difference scheme. If many recently published algorithms for resolving the eikonal equation do now yield fairly accurate traveltimes for most applications, the spatial derivatives of traveltimes remain very approximate. To address this accuracy issue, we develop a new hybrid eikonal solver that combines a spherical approximation when close to the source and a plane wave approximation when far away. This algorithm reproduces properly the spherical behaviour of wave fronts in the vicinity of the source. We implement a combination of 16 local operators that enables us to handle velocity models with sharp vertical and horizontal velocity contrasts. We associate to these local operators a global fast sweeping method to take into account all possible directions of wave propagation. Our formulation allows us to introduce a variable grid spacing in all three directions of space. We demonstrate the efficiency of this algorithm in terms of computational time and the gain in accuracy of the computed traveltimes and their derivatives on several numerical examples.
Application of a distributed network in computational fluid dynamic simulations
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish
1994-01-01
A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.
Immersive visualization for enhanced computational fluid dynamics analysis.
Quam, David J; Gundert, Timothy J; Ellwein, Laura; Larkee, Christopher E; Hayden, Paul; Migrino, Raymond Q; Otake, Hiromasa; LaDisa, John F
2015-03-01
Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE. Versatility of the workflow is highlighted with current clinical sequelae known to be influenced by adverse hemodynamics to illustrate potential clinical utility. PMID:25378201
REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES
This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.
1996-02-01
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.
Computer-generated 3D ultrasound images of the carotid artery
NASA Technical Reports Server (NTRS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
1989-01-01
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
NASA Technical Reports Server (NTRS)
Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)
2002-01-01
Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.
NASA Astrophysics Data System (ADS)
Hu, X.; Zhang, Y.
2007-05-01
The Weather Research and Forecast/Chemistry Model (WRF/Chem) that simulates chemistry simultaneously with meteorology has recently been developed for real-time forecasting by the U.S. National Center for Atmospheric Research (NCAR) and National Oceanic & Atmospheric Administration (NOAA). As one of the six air quality models, WRF/Chem with a modal aerosol module has been applied for ozone and PM2.5 ensemble forecasts over eastern North America as part of the 2004 New England Air Quality Study (NEAQS) program (NEAQS-2004). Significant differences exist in the partitioning of volatile species (e.g., ammonium and nitrate) simulated by the six models. Model biases are partially attributed to the equilibrium assumption used in the gas/particles mass transfer approach in some models. Development of a more accurate, yet computationally- efficient gas/particle mass transfer approach for three-dimensional (3-D) applications, in particular, real-time forecasting, is therefore warranted. Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been implemented into WRF/Chem (referred to as WRF/Chem-MADRID). WRF/Chem-MADRID offers three gas/particle partitioning treatments: equilibrium, kinetic, and hybrid approaches. The equilibrium approach is computationally-efficient and commonly used in 3-D air quality models but less accurate under certain conditions (e.g., in the presence of coarse, reactive particles such as PM containing sea-salts in the coastal areas). The kinetic approach is accurate but computationally-expensive, limiting its 3-D applications. The hybrid approach attempts to provide a compromise between merits and drawbacks of the two approaches by treating fine PM (typically < ~ 1 μm) with the equilibrium approach and coarse PM with the kinetic approach. A computationally-efficient kinetic gas/particle mass transfer approach in MADRID has recently been developed for 3-D applications based on an Analytical Predictor of Condensation (referred
Computational fluid dynamics in oil burner design
Butcher, T.A.
1997-09-01
In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.
Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation
Tang, Lei; van de Ven, Anne L.; Guo, Dongmin; Andasari, Vivi; Cristini, Vittorio; Li, King C.; Zhou, Xiaobo
2014-01-01
Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. PMID:24404145
Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography.
Conroy, G C; Vannier, M W; Tobias, P V
1990-02-16
The earliest hominid from South Africa, Australopithecus africanus, is known from only six specimens in which accurate assessment of endocranial capacity and cranial venous outflow pattern can be obtained. This places a severe limit on a number of hypotheses concerning early hominid evolution, particularly those involving brain-body size relationships and adaptations of the circulatory system to evolving upright posture. Advances in high-resolution two- and three-dimensional computed tomography (CT) now allow the inclusion of another important specimen to this list, MLD 37/38 from Makapansgat. A new computer imaging technique is described that "reconstructs" the missing portions of the endocranial cavity in order to determine endocranial capacity. In addition, CT evaluation allows assessment of cranial venous outflow pattern even in cases where the endocranial cavity is completely filled with stone matrix. Results show that endocranial capacity in this specimen is less than originally proposed and also support the view that gracile and robust australopithecines evolved different cranial venous outflow patterns in response to upright postures. PMID:2305255
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
Hemmati, Hamidreza; Kamli-Asl, Alireza; Talebpour, Alireza; Shirani, Shapour
2015-12-01
The atherosclerosis disease is one of the major causes of the death in the world. Atherosclerosis refers to the hardening and narrowing of the arteries by plaques. Carotid stenosis is a narrowing or constriction of carotid artery lumen usually caused by atherosclerosis. Carotid artery stenosis can increase risk of brain stroke. Contrast-enhanced Computed Tomography Angiography (CTA) is a minimally invasive method for imaging and quantification of the carotid plaques. Manual segmentation of carotid lumen in CTA images is a tedious and time consuming procedure which is subjected to observer variability. As a result, there is a strong and growing demand for developing computer-aided carotid segmentation procedures. In this study, a novel method is presented for carotid artery lumen segmentation in CTA data. First, the mean shift smoothing is used for uniformity enhancement of gray levels. Then with the help of three seed points, the centerlines of the arteries are extracted by a 3D Hessian based fast marching shortest path algorithm. Finally, a 3D Level set function is performed for segmentation. Results on 14 CTA volumes data show 85% of Dice similarity and 0.42 mm of mean absolute surface distance measures. Evaluation shows that the proposed method requires minimal user intervention, low dependence to gray levels changes in artery path, resistance to extreme changes in carotid diameter and carotid branch locations. The proposed method has high accuracy and can be used in qualitative and quantitative evaluation. PMID:26429385
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Performance Modeling for 3D Visualization in a Heterogeneous Computing Environment
Bowman, Ian; Shalf, John; Ma, Kwan-Liu; Bethel, Wes
2004-06-30
The visualization of large, remotely located data sets necessitates the development of a distributed computing pipeline in order to reduce the data, in stages, to a manageable size. The required baseline infrastructure for launching such a distributed pipeline is becoming available, but few services support even marginally optimal resource selection and partitioning of the data analysis workflow. We explore a methodology for building a model of overall application performance using a composition of the analytic models of individual components that comprise the pipeline. The analytic models are shown to be accurate on a testbed of distributed heterogeneous systems. The prediction methodology will form the foundation of a more robust resource management service for future Grid-based visualization applications.
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A
2013-01-01
Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1992-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.
Combining high-performance computing and networking for advanced 3-D cardiac imaging.
Santarelli, M F; Positano, V; Landini, L
2000-03-01
This paper deals with the integration of a powerful parallel computer-based image analysis and visualization system for cardiology into a hospital information system. Further services are remote access to the hospital Web server through an internet network. The visualization system includes dynamic three-dimensional representation of two types of medical images (e.g., magnetic resonance and nuclear medicine) as well as two images in the same modality (e.g., basal versus stress images). A series of software tools for quantitative image analysis developed for supporting diagnosis of cardiac disease are also available, including automated image segmentation and quantitative time evaluation of left ventricular volumes and related indices during cardiac cycle, myocardial mass, and myocardial perfusion indices. The system has been tested both at a specialized cardiologic center and for remote consultation in diagnosis of cardiac disease by using anatomical and perfusion magnetic resonance images. PMID:10761775
A Coriolis Demonstration Using a 3-D Interactive Computer Model of a Physical Demonstration
NASA Astrophysics Data System (ADS)
Urbano, L.; Houghton, J.
2005-12-01
The coriolis effect can be a difficult concept, particularly for large classes where the effectiveness of physical demonstrations is limited by visibility. We developed a fully interactive computer visualization aimed at introductory undergraduate and pre-college students based on the physical demonstration of a marble rolling across a turntable. The marble's velocity, turntable angular velocity and direction, and friction between the marble and the surface can be controlled to allow significant instructional flexibility. Pre and post-demonstration surveys indicate that the coriolis model helped students better understand the concept. This program is written in the free, open-source Python programming language, specifically with the VPython module, which makes three-dimensional, physically-based, real-time visualizations efficiently programmable for geoscience demonstrations by non-professional programmers.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2016-01-01
This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2014-01-01
This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.
2015-01-01
This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
NASA Astrophysics Data System (ADS)
Lahiri, Sivaji; Mamtani, Manish A.
2016-07-01
In this study, orientations of 157 quartz veins occurring in metabasalts of the Gadag region (Dharwar craton, southern India) are used to plot the 3-D Mohr stress circle, which provides information about relative stress/fluid pressure (Pf) conditions, as well as stress state during Pf fluctuation. To scale the 3-D Mohr circle, vein orientation data are integrated with (a) available estimates from fluid inclusions of highest recorded Pf (390 MPa) and lowest recorded Pf (50 MPa) and (b) intrinsic rupture criterion that empirically quantify rock properties. Based on the scaled 3-D Mohr circle, the absolute magnitudes of the three principal stresses are quantified for high and low Pf. Of 157 veins investigated here, 14 veins are identified as having favourable orientation for dilation at high as well as low Pf. These 14 veins have a mean strike of 150°, which is similar to the orientation of the gold-bearing quartz lodes reported in the region. The effective normal stress (σ‧n = σn-Pf) prevalent during dilation of fracture/fabric anisotropy with 150° strike is calculated to be -11.5 MPa at high Pf, and -1.0 MPa at low Pf. Thus, it is interpreted that in the Gadag region, a change in σ‧n of 10.5 MPa prevailed during Pf fluctuation and associated separation of gold from the fluid.
NASA Astrophysics Data System (ADS)
Madiedo, J. M.
2012-09-01
Documentaries related to Astronomy and Planetary Sciences are a common and very attractive way to promote the interest of the public in these areas. These educational tools can get benefit from new advanced computer animation software and 3D technologies, as these allow making these documentaries even more attractive. However, special care must be taken in order to guarantee that the information contained in them is serious and objective. In this sense, an additional value is given when the footage is produced by the own researchers. With this aim, a new documentary produced and directed by Prof. Madiedo has been developed. The documentary, which has been entirely developed by means of advanced computer animation tools, is dedicated to several aspects of Meteor Science and Meteoritics. The main features of this outreach and education initiative are exposed here.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
A 3-D Computational Model of Cell Rolling Under Shear Flow
NASA Astrophysics Data System (ADS)
Jadhav, Sameer; Eggleton, Charles; Konstantopoulos, Konstantinos
2004-11-01
Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for the aforementioned differences, we developed a three-dimensional computational model based on the immersed boundary method which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The bond lifetime, number of receptor-ligand bonds and the contact area between cell and substrate decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.
Kang, Soojin; Chwodhury, Tanmoy; Moon, Il Joon; Hong, Sung Hwa; Yang, Hyejin; Won, Jong Ho; Woo, Jihwan
2015-01-01
A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance. PMID:25755675
Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography
Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung
2016-01-01
With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434
2015-01-01
A cochlear implant (CI) is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF) response to either a single pulse or low- (250 pulses/s) and high-rate (5,000 pulses/s) pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance. PMID:25755675
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2004-01-01
In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Large-scale computer-generated absorption holograms of 3D objects: II. Practical methodology
NASA Astrophysics Data System (ADS)
Phillips, Nicholas J.; Cameron, Colin D.; Dodd, Adrian K.; Payne, Douglas A.; Sheerin, David T.; Slinger, Christopher W.
1999-03-01
As a support to the advances in theoretical understanding and computational methods, we describe a new laser plotter technique that enables, in principle, an unlimited size of pixel array to be plotted efficiently with a rigorous estimate of duration of the plot run time. Developments in laser plotter design are presented that allow the formation of pixellated holographic structures of high precision (c. 1 - 10 micron pixel dia.) with an accompanying high pixel count (e.g. at least up to, and beyond, 104 per side within a square array). The case of absorption holograms offers an easy route to a good quality result. We can then exploit the many tricks of amplitude holography borrowed from lithographic and holographic experience using ultra-fine grain silver halide materials. The problem of exposure quantization and linearization is addressed in a pragmatic fashion. The central issue of why such holograms can tolerate intrinsic diffraction artifacts within each pixel is considered along with the exposure level quantization -- it is difficult to print individual pixels within which the optical density is clinically uniform. We cannot over-estimate the reliability difficulties that can arise in a system designed to print massive arrays of pixels in a serial fashion. The electronic testing involved has to be associated with error-free repeatability and high accompanying switching speeds. This may look easy but it is the major issue that distinguishes serially printed digital holography from the simple one-step parallel process of forming the ordinary hologram.
Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling
NASA Astrophysics Data System (ADS)
Rosenwaks, Salman; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.
2015-10-01
We report on recent progress on our three-dimensional computational fluid dynamics (3D CFD) modeling of supersonic diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium. For a supersonic Cs DPAL with laser section geometry and resonator parameters similar to those of the 1-kW flowing-gas subsonic Cs DPAL [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] the maximum achievable output power, ~ 7 kW, is 25% higher than that achievable in the subsonic case. Comparison between semi-analytical and 3D CFD models for Cs shows that the latter predicts much higher maximum achievable output power than the former. Optimization of the laser parameters using 3D CFD modeling shows that very high power and optical-to-optical efficiency, 35 kW and 82%, respectively, can be achieved in a Cs supersonic device pumped by a collimated cylindrical (0.5 cm diameter) beam. Application of end- or transverse-pumping by collimated rectangular (large cross section ~ 2 - 4 cm2) beam makes it possible to obtain even higher output power, > 250 kW, for ~ 350 kW pumping power. The main processes limiting the power of Cs supersonic DPAL are saturation of the D2 transition and large ~ 40% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligibly small. For supersonic K DPAL both gas heating and ionization effects are shown to be unimportant and the maximum achievable power, ~ 40 kW and 350 kW, for pumping by ~ 100 kW cylindrical and ~ 700 kW rectangular beam, respectively, are higher than those achievable in the Cs supersonic laser. The power achieved in the supersonic K DPAL is two times higher than for the subsonic version with the same resonator and K density at the gas inlet, the maximum optical-to-optical efficiency being 82%.
Yang, Chun; Tang, Dalin; Atluri, Satya
2011-01-01
Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression
Computational Fluid Dynamics Symposium on Aeropropulsion
NASA Technical Reports Server (NTRS)
1991-01-01
Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.
Computational fluid dynamics symposium on aeropropulsion
Not Available
1991-01-01
Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.
Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics
NASA Astrophysics Data System (ADS)
Kordy, Michal Adam
The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the
NASA Astrophysics Data System (ADS)
Huerta, N. J.; Murphy, M. A.; Natarajan, V.; Weber, G.; Hamann, B.; Sumner, D. Y.
2005-12-01
Three-dimensional visualization of intricate microbial structures in rocks is essential to understand the growth of ancient microbial communities. We have imaged and reconstructed the three-dimensional morphology of 2.5-2.6 billion year old intricate microbialites preserved in carbonate using both serial sectioning and neutron computed tomography (NCT). Reconstruction techniques vary with data type and sample preservation. NCT is a non-destructive technique for imaging organic-containing samples with sufficiently high hydrogen concentrations. The resolution of reconstruction is finer than 500 microns. We reconstructed microbialites preserved as organic inclusions in calcite using NCT. Reconstructions are interpreted using volume rendering, segmentation, and an interactive Matlab/visualization environment. Visualizations demonstrate the intricacy of the structures. Noise currently limits automatic growth surface extraction, but growth of structures can be qualitatively evaluated. One of the largest obstacles to date is efficient manipulation of large data sets. Our current visualization approach always renders the supplied data set at full resolution, which requires down-sampling of datasets larger than 256 pixels3 (acquired volume data consists of up to 2048 pixels3) to isolate regions of interest and extract important features. We are exploring the use of multi-resolution techniques that store a dataset at different levels of detail and chose an appropriate resolution during user-interaction. Such an approach will allow us to visualize raw data at full resolution. Serial sectioning and scanning successive horizons provides reconstructions of samples lacking sufficient hydrogen for NCT. This technique destroys the sample and has a lower resolution than NCT. However, intricate networks of microbial laminae surrounded by cement-filled voids can be characterized using this technique. After microbial surfaces are manually interpreted on slices, the images lack noise
A fully 3D approach for metal artifact reduction in computed tomography
Kratz, Baerbel; Weyers, Imke; Buzug, Thorsten M.
2012-11-15
Purpose: In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. Methods: The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results: Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Doulamis, Nikolaos D; Doulamis, Anastasios D; Panagakis, Athanasios; Dolkas, Konstantinos; Varvarigou, Theodora A; Varvarigos, Emmanuel
2004-04-01
Implementation of a commercial application to a grid infrastructure introduces new challenges in managing the quality-of-service (QoS) requirements, most stem from the fact that negotiation on QoS between the user and the service provider should strictly be satisfied. An interesting commercial application with a wide impact on a variety of fields, which can benefit from the computational grid technologies, is three-dimensional (3-D) rendering. In order to implement, however, 3-D rendering to a grid infrastructure, we should develop appropriate scheduling and resource allocation mechanisms so that the negotiated (QoS) requirements are met. Efficient scheduling schemes require modeling and prediction of rendering workload. In this paper workload prediction is addressed based on a combined fuzzy classification and neural network model. Initially, appropriate descriptors are extracted to represent the synthetic world. The descriptors are obtained by parsing RIB formatted files, which provides a general structure for describing computer-generated images. Fuzzy classification is used for organizing rendering descriptor so that a reliable representation is accomplished which increases the prediction accuracy. Neural network performs workload prediction by modeling the nonlinear input-output relationship between rendering descriptors and the respective computational complexity. To increase prediction accuracy, a constructive algorithm is adopted in this paper to train the neural network so that network weights and size are simultaneously estimated. Then, a grid scheduler scheme is proposed to estimate the queuing order that the tasks should be executed and the most appopriate processor assignment so that the demanded QoS are satisfied as much as possible. A fair scheduling policy is considered as the most appropriate. Experimental results on a real grid infrastructure are presented to illustrate the efficiency of the proposed workload prediction--scheduling algorithm
A Generalized Fluid Formulation for Turbomachinery Computations
NASA Technical Reports Server (NTRS)
Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.
2003-01-01
A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.
Spectral Methods for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zang, T. A.; Streett, C. L.; Hussaini, M. Y.
1994-01-01
As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral
NASA Astrophysics Data System (ADS)
Reichelt, Stephan; Leister, Norbert
2013-02-01
In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
Computational Fluid Dynamics - Applications in Manufacturing Processes
NASA Astrophysics Data System (ADS)
Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance
2012-11-01
A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.
Computational fluid dynamics in cardiovascular disease.
Lee, Byoung-Kwon
2011-08-01
Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.
NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.
Nourian, Pirouz; Gonçalves, Romulo; Zlatanova, Sisi; Ohori, Ken Arroyo; Vu Vo, Anh
2016-01-01
Voxel representations have been used for years in scientific computation and medical imaging. The main focus of our research is to provide easy access to methods for making large-scale voxel models of built environment for environmental modelling studies while ensuring they are spatially correct, meaning they correctly represent topological and semantic relations among objects. In this article, we present algorithms that generate voxels (volumetric pixels) out of point cloud, curve, or surface objects. The algorithms for voxelization of surfaces and curves are a customization of the topological voxelization approach [1]; we additionally provide an extension of this method for voxelization of point clouds. The developed software has the following advantages:•It provides easy management of connectivity levels in the resulting voxels.•It is not dependant on any external library except for primitive types and constructs; therefore, it is easy to integrate them in any application.•One of the algorithms is implemented in C++ and C for platform independence and efficiency. PMID:27408832
A 3D Computational fluid dynamics model validation for candidate molybdenum-99 target geometry
NASA Astrophysics Data System (ADS)
Zheng, Lin; Dale, Greg; Vorobieff, Peter
2014-11-01
Molybdenum-99 (99Mo) is the parent product of technetium-99m (99mTc), a radioisotope used in approximately 50,000 medical diagnostic tests per day in the U.S. The primary uses of this product include detection of heart disease, cancer, study of organ structure and function, and other applications. The US Department of Energy seeks new methods for generating 99Mo without the use of highly enriched uranium, to eliminate proliferation issues and provide a domestic supply of 99mTc for medical imaging. For this project, electron accelerating technology is used by sending an electron beam through a series of 100Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature dictated by the tensile stress limit of the wall material. To maintain the required temperature range, helium gas is used as a cooling agent that flows through narrow channels between the target disks. In our numerical study, we investigate the cooling performance on a series of new geometry designs of the cooling channel. This research is supported by Los Alamos National Laboratory.
The use of computers for instruction in fluid dynamics
NASA Technical Reports Server (NTRS)
Watson, Val
1987-01-01
Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
NASA Astrophysics Data System (ADS)
Degerman, J.; Winterfors, E.; Faijerson, J.; Gustavsson, T.
2007-02-01
This paper describes a computational model for image formation of in-vitro adult hippocampal progenitor (AHP) cells, in bright-field time-lapse microscopy. Although this microscopymodality barely generates sufficient contrast for imaging translucent cells, we show that by using a stack of defocused image slices it is possible to extract position and shape of spherically shaped specimens, such as the AHP cells. This inverse problem was solved by modeling the physical objects and image formation system, and using an iterative nonlinear optimization algorithm to minimize the difference between the reconstructed and measured image stack. By assuming that the position and shape of the cells do not change significantly between two time instances, we can optimize these parameters using the previous time instance in a Bayesian estimation approach. The 3D reconstruction algorithm settings, such as focal sampling distance, and PSF, were calibrated using latex spheres of known size and refractive index. By using the residual between reconstructed and measured image intensities, we computed a peak signal-to-noise ratio (PSNR) to 28 dB for the sphere stack. A biological specimen analysis was done using an AHP cell, where reconstruction PSNR was 28 dB as well. The cell was immuno-histochemically stained and scanned in a confocal microscope, in order to compare our cell model to a ground truth. After convergence the modelled cell volume had an error of less than one percent.
NASA Astrophysics Data System (ADS)
Petersen, C.; Buenz, S.; Hustoft, S.; Mienert, J.
2007-12-01
High-resolution seismic data were acquired using the 3D seismic P-Cable system of the University of Tromsoe to investigate how the fluid flow penetrates gas hydrate systems of the Vestnesa Ridge. The ridge represents a current-controlled sediment drift on the continental margin offshore western Svalbard. The survey area is located at the northwestern part of the Vestnesa Ridge and centered at the ridge crest that resembles an anticline in a water depth of 1250-1320 m. The seafloor morphology at the crest is characterized by an abundance of pockmarks with a diameter between 50-500 m indicating recent fluid flow activity. Since the area is within the gas hydrate stability zone (GHSZ), it is an ideal site to understand where and how fluids escape through a hydrated sediment drift. 35 reflection seismic profiles with a spacing of about 40-60 m were shot resulting in a seismic cube covering an area of approximately 22 km2. In addition, regional single channel streamer (SCS) seismic lines were acquired across the ridge perpendicular to the crest to connect the 3D area with the regional structural setting. The seismic data provide images of the subsurface to about 500 ms TWT (two-way time) below the seafloor (bsf), where gas accumulations cause acoustic attenuations that hinder deeper acoustic signal penetration. The well-stratified sediments exhibit a bottom simulating reflector (BSR) at about 200 ms TWT bsf at the base of the GHSZ. The BSR is difficult to identify due to the stratification, but it is accompanied by the onset of an ubiquitous band of strong reflectivity indicating free gas accumulation zones beneath the GHSZ. Fluid flow activity is evident from a link between gas accumulations (bright spots), gas wipeouts and disturbed reflectivity in the seismic data. These features are observed not only beneath the pockmark structures, but also in the sediment without seafloor expressions of fluid venting. The fluid source might be related to deep tectonic processes at
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi
2012-07-01
Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.
NASA Astrophysics Data System (ADS)
Bustamante, Miguel D.
2014-11-01
We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.
Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A
2011-11-04
The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related
A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath
NASA Astrophysics Data System (ADS)
Matveichev, A.; Jardy, A.; Bellot, J. P.
2016-07-01
In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.
Two-phase computational fluid dynamics
Rothe, P.H.
1991-07-26
The results of the project illustrate the feasibility of multiphase computerized fluid dynamics (CFD) software. Existing CFD software is capable of simulating particle fields, certain droplet fields, and certain free surface flows, and does so routinely in engineering applications. Stratified flows can be addressed by a multiphase CFD code, once one is developed with suitable capabilities. The groundwork for such a code has been laid. Calculations performed for stratified flows demonstrate the accuracy achievable and the convergence of the methodology. Extension of the stratified flow methodology to other segregated flows such as slug or annular faces no inherent limits. The research has commercial application in the development of multiphase CFD computer programs.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.
Fluid Dynamics of Competitive Swimming: A Computational Study
NASA Astrophysics Data System (ADS)
Mittal, Rajat; Loebbeck, Alfred; Singh, Hersh; Mark, Russell; Wei, Timothy
2004-11-01
The dolphin kick is an important component in competitive swimming and is used extensively by swimmers immediately following the starting dive as well as after turns. In this stroke, the swimmer swims about three feet under the water surface and the stroke is executed by performing an undulating wave-like motion of the body that is quite similar to the anguilliform propulsion mode in fish. Despite the relatively simple kinematics of this stoke, considerable variability in style and performance is observed even among Olympic level swimmers. Motivated by this, a joint experimental-numerical study has been initiated to examine the fluid-dynamics of this stroke. The current presentation will describe the computational portion of this study. The computations employ a sharp interface immersed boundary method (IBM) which allows us to simulate flows with complex moving boudnaries on stationary Cartesian grids. 3D body scans of male and female Olympic swimmers have been obtained and these are used in conjuction with high speed videos to recreate a realistic dolphin kick for the IBM solver. Preliminary results from these computations will be presented.
Shuttle rocket booster computational fluid dynamics
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.
Computational fluid dynamics of reaction injection moulding
NASA Astrophysics Data System (ADS)
Mateus, Artur; Mitchell, Geoffrey; Bártolo, Paulo
2012-09-01
The modern approach to the development of moulds for injection moulding (Reaction Injection Moulding - RIM, Thermoplastic Injection Moulding - TIM and others) differs from the conventional approach based exclusively on the designer's experience and hypotheses. The increasingly complexityof moulds and the requirement by the clients for the improvement of their quality, shorter delivery times, and lower prices, demand the development of novel approaches to developed optimal moulds and moulded parts. The development of more accurate computational tools is fundamental to optimize both, the injection mouldingprocesses and the design, quality and durability of the moulds. This paper focuses on the RIM process proposing a novel thermo-rheo-kinetic model. The proposed model was implemented in generalpurpose Computational Fluid Dynamics (CFD) software. The model enables to accurately describe both flow and curing stages. Simulation results were validated against experimental results.
Mukerji, S.
1997-12-31
Although the equations governing turbulent fluid flow, the Navier-Stokes (N.S.) equations, have been known for well over a century and there is a clear technological necessity in obtaining solutions to these equations, turbulence remains one of the principal unsolved problems in physics today. It is still not possible to make accurate quantitative predictions about turbulent flows without relying heavily on empirical data. In principle, it is possible to obtain turbulent solutions from a direct numerical simulation (DNS) of the N.-S. equations. The author first provides a brief introduction to the dynamics of turbulent flows. The N.-S. equations which govern fluid flow, are described thereafter. Then he gives a brief overview of DNS calculations and where they stand at present. He next introduces the two most popular approaches for doing turbulent computations currently in use, namely, the Reynolds averaging of the N.-S. equations (RANS) and large-eddy simulation (LES). Approximations, often ad hoc ones, are present in these methods because use is made of heuristic models for turbulence quantities (the Reynolds stresses) which are otherwise unknown. They then introduce a new computational method called additive turbulent decomposition (ATD), the small-scale version of which is the topic of this research. The rest of the thesis is organized as follows. In Chapter 2 he describes the ATD procedure in greater detail; how dependent variables are split and the decomposition into large- and small-scale sets of equations. In Chapter 3 the spectral projection of the small-scale momentum equations are derived in detail. In Chapter 4 results of the computations with the small-scale ATD equations are presented. In Chapter 5 he describes the data-fitting procedure which can be used to directly specify the parameters of a chaotic-map turbulence model.
Not Available
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structure response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
NASA Astrophysics Data System (ADS)
Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali
2015-01-01
In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.
Arrigoni, Chiara; Bongio, Matilde; Talò, Giuseppe; Bersini, Simone; Enomoto, Junko; Fukuda, Junji; Moretti, Matteo
2016-07-01
A major challenge in the development of clinically relevant 3D tissue constructs is the formation of vascular networks for oxygenation, nutrient supply, and waste removal. To this end, this study implements a multimodal approach for the promotion of vessel-like structures formation in stiff fibrin hydrogels. Computational simulations have been performed to identify the easiest microchanneled configuration assuring normoxic conditions throughout thick cylindrical hydrogels (8 mm height, 6 mm ∅), showing that in our configuration a minimum of three microchannels (600 μm ∅), placed in a non-planar disposition, is required. Using small hydrogel bricks with oxygen distribution equal to the microchanneled configuration, this study demonstrates that among different culture conditions, co-culture of mesenchymal and endothelial cells supplemented with ANG-1 and VEGF leads to the most developed vascular network. Microchanneled hydrogels have been then cultured in the same conditions both statically and in a bioreactor for 7 d. Unexpectedly, the combination between shear forces and normoxic conditions is unable to promote microvascular networks formation in three-channeled hydrogels. Differently, application of either shear forces or normoxic conditions alone results in microvessels outgrowth. These results suggest that to induce angiogenesis in engineered constructs, complex interactions between several biochemical and biophysical parameters have to be modulated. PMID:27191352
McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.
2015-01-01
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432
McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S
2015-01-01
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432
NASA Astrophysics Data System (ADS)
Lin, Chia-Wen; Jang, Jiin-Yuh
2005-05-01
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.
NASA Astrophysics Data System (ADS)
Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.
2015-08-01
Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
Yoon, Kyunghwan; Ko, Young Bae; Suh, Dae Chul
2013-01-01
We investigate the potentials and limitations of computational fluid dynamics (CFD) analysis of patient specific models from 3D angiographies. There are many technical problems in acquisition of proper vascular models, in pre-processing for making 2D surface and 3D volume meshes and also in post-processing steps for display the CFD analysis. We hope that our study could serves as a technical reference to validating other tools and CFD results. PMID:24024073
NASA Astrophysics Data System (ADS)
Harp, D. R.; Pawar, R.
2014-12-01
Depleted oil and gas reserves have abandoned wellbore densities up to 10 per square kilometer (Crow, 2010). These locations are considered to have favorable geological structure and properties for CO2 sequestration. To understand the risk of CO2 leakage along these abandoned wellbores requires the simulation of a comprehensive set of realizations encompassing the potential scenarios. The simulations must capture transient, 3D, multi-phase effects (i.e. supercritical, liquid, and gas CO2 phases along with liquid reservoir and aquifer fluids), and include capillary and buoyant flow. Performing a large number of these simulations becomes computationally burdensome. In order to reduce this computational burden, regression approaches have been used to develop computationally efficient reduced order models to try to capture the general trends of the simulations. In these approaches, model inputs and outputs are collected from the transient simulations at each time step. Recognizing that many of the inputs to the regression approach come from time series (i.e. pressures and CO2 saturations) and that all of the outputs are time series (i.e. CO2 and brine flow rates), we develop a time-series matching approach. In this approach, CO2 and brine flow rate time series are estimated given input time series and parameters by averaging the flow rates of the collected simulations weighted by the similarity of their input time series and parameter. Similarity of both time series and parameters is calculated by the Euclidean distance. Euclidean distances are converted to a generalized likelihood metric, and used to weight the flow-rate time-series averages. We present a comparison of this time series matching approach to the MARS algorithm.
Verification and Validation in Computational Fluid Dynamics
OBERKAMPF, WILLIAM L.; TRUCANO, TIMOTHY G.
2002-03-01
Verification and validation (V and V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V and V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V and V, and develops a number of extensions to existing ideas. The review of the development of V and V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V and V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized.
High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys
Kastner, Johann; Harrer, Bernhard; Degischer, H. Peter
2011-01-15
X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.
Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L
2016-02-01
The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth. PMID:26758425
Utilizing parallel optimization in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Kokkolaras, Michael
1998-12-01
General problems of interest in computational fluid dynamics are investigated by means of optimization. Specifically, in the first part of the dissertation, a method of optimal incremental function approximation is developed for the adaptive solution of differential equations. Various concepts and ideas utilized by numerical techniques employed in computational mechanics and artificial neural networks (e.g. function approximation and error minimization, variational principles and weighted residuals, and adaptive grid optimization) are combined to formulate the proposed method. The basis functions and associated coefficients of a series expansion, representing the solution, are optimally selected by a parallel direct search technique at each step of the algorithm according to appropriate criteria; the solution is built sequentially. In this manner, the proposed method is adaptive in nature, although a grid is neither built nor adapted in the traditional sense using a-posteriori error estimates. Variational principles are utilized for the definition of the objective function to be extremized in the associated optimization problems, ensuring that the problem is well-posed. Complicated data structures and expensive remeshing algorithms and systems solvers are avoided. Computational efficiency is increased by using low-order basis functions and concurrent computing. Numerical results and convergence rates are reported for a range of steady-state problems, including linear and nonlinear differential equations associated with general boundary conditions, and illustrate the potential of the proposed method. Fluid dynamics applications are emphasized. Conclusions are drawn by discussing the method's limitations, advantages, and possible extensions. The second part of the dissertation is concerned with the optimization of the viscous-inviscid-interaction (VII) mechanism in an airfoil flow analysis code. The VII mechanism is based on the concept of a transpiration velocity
NASA Astrophysics Data System (ADS)
Tarplee, Mark F. V.; van der Meer, Jaap J. M.; Davis, Graham R.
2011-11-01
X-ray computed microtomography (μCT), a non-destructive analytical technique, was used to create volumetric three-dimensional (3D) models representing the internal composition and structure of undisturbed pro- and subglacial soft sediment sample plugs for the purposes of identifying and analysing kinematic indicators. The technique is introduced and a methodology is presented addressing specific issues relating to the investigation of unlithified, polymineralic sediments. Six samples were selected based on their proximity to 'type' brittle and ductile deformation structures, or because of their perceived suitability for successful application of the technique. Analysis of a proglacial 'ideal' specimen permitted the 3D geometry of a suite of micro-faults and folds to be investigated and the strain history of the sample reconstructed. The poor contrast achieved in scanning a diamicton of glaciomarine origin is attributable to overconsolidation under normal loading, the sediment demonstrated to have undergone subsequent subglacial deformation. Another overconsolidated diamicton contains an extensive, small scale (<20 μm) network of fractures delineating a 'marble-bed' structure, hitherto unknown at this scale. A volcanic lithic clast contrasts well with the surrounding matrix in a 'lodgement' till sample containing μCT (void) and thin-section evidence of clast ploughing. Initial ductile deformation was followed by dewatering of the matrix, which led to brittle failure and subsequent emplacement. Compelling evidence of clast rotation is located in the top of another sample, μCT analysis revealing that the grain has a proximal décollement surface orientated parallel to the plane of shear. The lenticular morphology of the rotational structure defined suggests an unequal distribution of forces along two of the principal stress axes. The excellent contrast between erratics contained within a sample and the enclosing till highlight the considerable potential of the
Kipp, K.L.
1987-01-01
The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the
Mattei, Alexandra L; Riccio, Mark L; Avila, Frank W; Wolfner, Mariana F
2015-07-01
Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female's circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female's reproductive physiology. PMID:26041806
Mattei, Alexandra L.; Riccio, Mark L.; Avila, Frank W.; Wolfner, Mariana F.
2015-01-01
Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female’s circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female’s reproductive physiology. PMID:26041806
The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Maras, Piotr
2015-01-01
The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.
NASA Astrophysics Data System (ADS)
Kawata, Yoshiyuki; Koizumi, Kohei
2014-10-01
The demand of 3D city modeling has been increasing in many applications such as urban planing, computer gaming with realistic city environment, car navigation system with showing 3D city map, virtual city tourism inviting future visitors to a virtual city walkthrough and others. We proposed a simple method for reconstructing a 3D urban landscape from airborne LiDAR point cloud data. The automatic reconstruction method of a 3D urban landscape was implemented by the integration of all connected regions, which were extracted and extruded from the altitude mask images. These mask images were generated from the gray scale LiDAR image by the altitude threshold ranges. In this study we demonstrated successfully in the case of Kanazawa city center scene by applying the proposed method to the airborne LiDAR point cloud data.
Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali
2015-01-13
In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.
Barqawi, Albaha B; Lu, Li; Crawford, E David; Fenster, Aaron; Werahera, Priya N; Kumar, Dinesh; Miller, Steve; Suri, Jasjit S
2007-01-01
estimation of prostate capsule volume via segmentation of the prostate from 3-D ultrasound volumetric ultrasound images is a valuable clinical tool, especially during biopsy. Normally, a physician traces the boundaries of the prostate manually, but this process is tedious, laborious, and subject to errors. The prostate capsule edge is computed using three different strategies: (a) least square approach, (b) level set approach, and (c) Discrete Dynamic Contour approach. (a) In the least square method, edge points are defined by searching for the optimal edge based on the average signal characteristics. These edge points constitute an initial curve which is later refined; (b) Level set approach. The images are modeled as piece-wise constant, and the energy functional is defined and minimized. This method is also automated; and (c) The Discrete Dynamic Contour (DDC). A trained user selects several points in the first image and an initial contour is obtained by a model based initialization. Based on this initialization condition, the contour is deformed automatically to better fit the image. This method is semi-automatic. The three methods were tested on database consisting of 15 prostate phantom volumes acquired using a Philips ultrasound machine using an end-fire TRUS. The ground truth (GT) is developed by tracing the boundary of prostate on a slice-by-slice basis. The mean volumes using the least square, level set and DDC techniques were 15.84 cc, 15.55 cc and 16.33 cc, respectively. We validated the methods by calculating the volume with GT and we got an average volume of 15. PMID:18002081
Parameswaran, Harikrishnan; Majumdar, Arnab; Suki, Béla
2011-04-01
Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process. PMID:21533072
NASA Astrophysics Data System (ADS)
Ramachandran, K.
2011-12-01
Three dimensional velocity models constructed through seismic tomography are seldom digitally processed further for imaging structural features. A study conducted to evaluate the potential for imaging subsurface discontinuities in horizontal and vertical direction from three dimensional velocity models using image processing/computer vision techniques has provided significant results. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity model has an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. However, results from the analysis of the 3-D velocity model from northern Cascadia using Roberts, Prewitt, Sobel, and Canny operators show that subsurface faults that are not clearly interpretable from velocity model plots can be identified through this approach. This analysis resulted in inferring the locations of Tacoma Fault, Seattle Fault, Southern Whidbey Island Fault, and Darrington Devils Mountain fault much clearly. The Coast Range Boundary Fault, previously hypothesized on the basis of sedimentological and tectonic observations is inferred clearly from processed images. Many of the fault locations so imaged correlate with earthquake hypocenters indicating their seismogenic nature.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Domain decomposition methods in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Gropp, William D.; Keyes, David E.
1992-01-01
The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.
Domain decomposition methods in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Gropp, William D.; Keyes, David E.
1991-01-01
The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.
Computational fluid dynamics of airfoils and wings
NASA Technical Reports Server (NTRS)
Garabedian, P.; Mcfadden, G.
1982-01-01
It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.
Nonlinear Fluid Computations in a Distributed Environment
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.; Smith, Merritt H.
1995-01-01
The performance of a loosely and tightly-coupled workstation cluster is compared against a conventional vector supercomputer for the solution the Reynolds- averaged Navier-Stokes equations. The application geometries include a transonic airfoil, a tiltrotor wing/fuselage, and a wing/body/empennage/nacelle transport. Decomposition is of the manager-worker type, with solution of one grid zone per worker process coupled using the PVM message passing library. Task allocation is determined by grid size and processor speed, subject to available memory penalties. Each fluid zone is computed using an implicit diagonal scheme in an overset mesh framework, while relative body motion is accomplished using an additional worker process to re-establish grid communication.
Lectures series in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1987-01-01
The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
Domain decomposition algorithms and computation fluid dynamics
NASA Technical Reports Server (NTRS)
Chan, Tony F.
1988-01-01
In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Computational Fluid Dynamics of rising droplets
Wagner, Matthew; Francois, Marianne M.
2012-09-05
The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Volumetric visualization of 3D data
NASA Technical Reports Server (NTRS)
Russell, Gregory; Miles, Richard
1989-01-01
In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.
Verification and validation in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Oberkampf, William L.; Trucano, Timothy G.
2002-04-01
Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different
Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano
2013-01-01
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID
NASA Astrophysics Data System (ADS)
Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.
2015-12-01
X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.