Science.gov

Sample records for 3-d confocal microscopy

  1. Frames-Based Denoising in 3D Confocal Microscopy Imaging.

    PubMed

    Konstantinidis, Ioannis; Santamaria-Pang, Alberto; Kakadiaris, Ioannis

    2005-01-01

    In this paper, we propose a novel denoising method for 3D confocal microscopy data based on robust edge detection. Our approach relies on the construction of a non-separable frame system in 3D that incorporates the Sobel operator in dual spatial directions. This multidirectional set of digital filters is capable of robustly detecting edge information by ensemble thresholding of the filtered data. We demonstrate the application of our method to both synthetic and real confocal microscopy data by comparing it to denoising methods based on separable 3D wavelets and 3D median filtering, and report very encouraging results.

  2. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  3. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  4. Unsupervised noise removal algorithms for 3-D confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Roysam, Badrinath; Bhattacharjya, Anoop K.; Srinivas, Chukka; Szarowski, Donald H.; Turner, James N.

    1992-06-01

    Fast algorithms are presented for effective removal of the noise artifact in 3-D confocal fluorescence microscopy images of extended spatial objects such as neurons. The algorithms are unsupervised in the sense that they automatically estimate and adapt to the spatially and temporally varying noise level in the microscopy data. An important feature of the algorithms is the fact that a 3-D segmentation of the field emerges jointly with the intensity estimate. The role of the segmentation is to limit any smoothing to the interiors of regions and hence avoid the blurring that is associated with conventional noise removal algorithms. Fast computation is achieved by parallel computation methods, rather than by algorithmic or modelling compromises. The noise-removal proceeds iteratively, starting from a set of approximate user- supplied, or default initial guesses of the underlying random process parameters. An expectation maximization algorithm is used to obtain a more precise characterization of these parameters, that are then input to a hierarchical estimation algorithm. This algorithm computes a joint solution of the related problems corresponding to intensity estimation, segmentation, and boundary-surface estimation subject to a combination of stochastic priors and syntactic pattern constraints. Three-dimensional stereoscopic renderings of processed 3-D images of murine hippocampal neurons are presented to demonstrate the effectiveness of the method. The processed images exhibit increased contrast and significant smoothing and reduction of the background intensity while avoiding any blurring of the neuronal structures.

  5. Point scanning confocal microscopy facilitates 3D human hair follicle imaging in tissue sections.

    PubMed

    Kloepper, Jennifer E; Bíró, Tamás; Paus, Ralf; Cseresnyés, Zoltán

    2010-07-01

    Efficiency is a key factor in determining whether a scientific method becomes widely accepted in practical applications. In dermatology, morphological characterisation of intact hair follicles by traditional methods can be rather inefficient. Samples are embedded, sliced, imaged and digitally reconstructed, which can be time-consuming. Confocal microscopy, on the other hand, is more efficient and readily applicable to study intact hair follicles. Modern confocal microscopes deliver and collect light very efficiently and thus allow high spatial resolution imaging of relatively thick samples. In this letter, we report that we successfully imaged entire intact human hair follicles using point scanning confocal microscopy. Light delivery and light-collection were further improved by preparing the samples in 2,2'-Thiodiethanol (TDE), thus reducing refractive index gradients. The relatively short total scan times and the high quality of the acquired 3D images make confocal microscopy a desirable method for studying intact hair follicles under normal and pathological conditions.

  6. Optimum conditions for high-quality 3D reconstruction in confocal scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Taehoon; Kim, Taejoong; Lee, SeungWoo; Gweon, Dae-Gab; Seo, Jungwoo

    2006-02-01

    Confocal Scanning Microscopy (CSM) is very useful to reconstruct 3D image of Bio-cells and the objects that have specification shape in higher axial and lateral resolution and widely used as measurement instrument. A 3D reconstruction is used to visualize confocal images and consists of following processes. The First process is to get 3D data by collecting a series of images at regular focus intervals (Optical Sectioning). The Second process is to fit a curve to a series of 3D data points each pixel. The Third process is to search height information that has maximum value from curve-fitting. However, because of various systematic errors (NOISE) occurred when collecting the information of images through Optical Sectioning and large peak deviation occurred from curve-fitting error, high quality 3D reconstruction is not expected. Also, it takes much time to 3d Reconstruction by using many 3D data in order to acquire high quality and much cost to improve signal-to-noise (SNR) using a higher power laser. So, we are going to define SNR, peak deviation and the order of curve-fitting as important factors and simulate the relation between the factors in order to find a optimum condition for high quality 3D reconstruction in Confoal Scanning Microscopy. If we use optimum condition obtained by this simulation, using a suitable SNR and the suitable number of data and the suitable n-th order curve-fitting, small peak deviation is expected and then, 3D reconstruction of little better quality is expected. Also, it is expected to save.

  7. New data-driven method from 3D confocal microscopy for calculating phytoplankton cell biovolume.

    PubMed

    Roselli, L; Paparella, F; Stanca, E; Basset, A

    2015-06-01

    Confocal laser scanner microscopy coupled with an image analysis system was used to directly determine the shape and calculate the biovolume of phytoplankton organisms by constructing 3D models of cells. The study was performed on Biceratium furca (Ehrenberg) Vanhoeffen, which is one of the most complex-shaped phytoplankton. Traditionally, biovolume is obtained from a standardized set of geometric models based on linear dimensions measured by light microscopy. However, especially in the case of complex-shaped cells, biovolume is affected by very large errors associated with the numerous manual measurements that this entails. We evaluate the accuracy of these traditional methods by comparing the results obtained using geometric models with direct biovolume measurement by image analysis. Our results show cell biovolume measurement based on decomposition into simple geometrical shapes can be highly inaccurate. Although we assume that the most accurate cell shape is obtained by 3D direct biovolume measurement, which is based on voxel counting, the intrinsic uncertainty of this method is explored and assessed. Finally, we implement a data-driven formula-based approach to the calculation of biovolume of this complex-shaped organism. On one hand, the model is obtained from 3D direct calculation. On the other hand, it is based on just two linear dimensions which can easily be measured by hand. This approach has already been used for investigating the complexities of morphology and for determining the 3D structure of cells. It could also represent a novel way to generalize scaling laws for biovolume calculation.

  8. Comparison of 3D Orientation Distribution Functions Measured with Confocal Microscopy and Diffusion MRI

    PubMed Central

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  9. Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Mu, Jian; Machlus, Kellie R.; Wolberg, Alisa S.; Rosen, Elliot D.; Xu, Zhiliang; Alber, Mark S.; Chen, Danny Z.

    2012-02-01

    Fibrin networks are a major component of blood clots that provides structural support to the formation of growing clots. Abnormal fibrin networks that are too rigid or too unstable can promote cardiovascular problems and/or bleeding. However, current biological studies of fibrin networks rarely perform quantitative analysis of their structural properties (e.g., the density of branch points) due to the massive branching structures of the networks. In this paper, we present a new approach for segmenting and analyzing fibrin networks in 3D confocal microscopy images. We first identify the target fibrin network by applying the 3D region growing method with global thresholding. We then produce a one-voxel wide centerline for each fiber segment along which the branch points and other structural information of the network can be obtained. Branch points are identified by a novel approach based on the outer medial axis. Cells within the fibrin network are segmented by a new algorithm that combines cluster detection and surface reconstruction based on the α-shape approach. Our algorithm has been evaluated on computer phantom images of fibrin networks for identifying branch points. Experiments on z-stack images of different types of fibrin networks yielded results that are consistent with biological observations.

  10. Streaming level set algorithm for 3D segmentation of confocal microscopy images.

    PubMed

    Gouaillard, Alexandre; Mosaliganti, Kishore; Gelas, Arnaud; Souhait, Lydie; Obholzer, Nikolaus; Megason, Sean

    2009-01-01

    We present a high performance variant of the popular geodesic active contours which are used for splitting cell clusters in microscopy images. Previously, we implemented a linear pipelined version that incorporates as many cues as possible into developing a suitable level-set speed function so that an evolving contour exactly segments a cell/nuclei blob. We use image gradients, distance maps, multiple channel information and a shape model to drive the evolution. We also developed a dedicated seeding strategy that uses the spatial coherency of the data to generate an over complete set of seeds along with a quality metric which is further used to sort out which seed should be used for a given cell. However, the computational performance of any level-set methodology is quite poor when applied to thousands of 3D data-sets each containing thousands of cells. Those data-sets are common in confocal microscopy. In this work, we explore methods to stream the algorithm in shared memory, multi-core environments. By partitioning the input and output using spatial data structures we insure the spatial coherency needed by our seeding algorithm as well as improve drastically the speed without memory overhead. Our results show speed-ups up to a factor of six.

  11. Jamming of a soft granular system of hollow elastic shells in 3D using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout

    2014-03-01

    We introduce a new system for jammed matter research consisting of monodisperse, fluorescent, hollow deformable shells, dispersed in an index matched solvent. The interesting fact about these elastic shells is that they undergo buckling: in each contact one of the shells receives an indentation from its neighbor under compressive stress. This kind of deformation is different from the soft granular systems experimentally studied so far like photo elastic disks, emulsions and foams, where the particles are flattened in the region of contact and conserve their volume. Using confocal microscopy and image analysis routines (ImageJ software) we identified the 3D position of the particles with sub pixel resolution. The force law to find the contact forces between pairs of particle is derived from the theory of elasticity of thin shells, where force is proportional to the square root of indentation depth. The distribution of normalized contact forces showed a similar trend like other jammed systems with a peak around the mean and a tail that decayed faster than exponential away from jamming threshold. Further, we also investigated the structure of the jammed packings and contact number distribution with distance to jamming.

  12. Confocal laser scanning microscopy and 3-D reconstructions of neuronal structures in human brain cortex.

    PubMed

    Belichenko, P V; Dahlström, A

    1995-09-01

    Human brain material was studied with Lucifer yellow (LY) microinjections, indirect Texas red immunofluorescence, and confocal laser scanning microscopy (CLSM). The scanned images were transferred to a Silicon Graphics (SG) IRIS computer equipped with software for reconstructing the 3-D architecture of cells. By employing dual channel CLSM (Bio-Rad MRC 600), LY-injected cells and Texas red immunofluorescence could be studied simultaneously. Autopsy material with 2- to 48-h postmortem delays (6 control and 2 Rett's syndrome cases) as well as biopsy material (14 cases with therapy-resistant partial epilepsy--TRPE--undergoing neurosurgery) were used. In each specimen, 100-200 pyramidal and nonpyramidal neurons were visualized by LY microinjection. Single neurons were imaged and 2-D reconstructions of each neuron were made using z-projections of serial optical images; 3-D reconstructions and rotations were computed using the SG workstation, with VoxelView software from Vital Images (UK), and stored in a "neuronal library" on laser or magnetic optical disks. In Ret's syndrome cases and in patients with TRPE various abnormalities in the dendritic geometry of pyramidal and nonpyramidal cells have been found. The combination of LY injections with immunofluorescence allows the investigation of transmitter-related substances around the LY-injected cells. Using antibodies to synaptic vesicle proteins, presynaptic elements docking onto individual spines have been demonstrated. This approach may contribute to the understanding of different neurological and psychiatric disorders and may be useful in the Mapping of the Human Brain project. It may also be integrated with functional imaging by PET scan and with the human genome project.

  13. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  14. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  15. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  16. 3D-confocal microscopy for surface analysis of microstructured materials

    NASA Astrophysics Data System (ADS)

    Kagerer, Bernd; Brodmann, Rainer; Valentin, Juergen; Filzek, Jan; Popp, Uwe

    2002-06-01

    The surface of technical materials is playing an ever more important part in modern production processes. However, standard roughness values, which are obtained from a profile, frequently no longer provide sufficient descriptions. What are desired are three-dimensional measurements of surfaces over a macroscopic range with a high degree of vertical and lateral resolution. This has become necessary to be able to describe both deterministic and non-deterministic structures in the same fashion. Due to increased requirements for data and the measuring speed demanded by industry, only optical systems are a possibility. Using the example of tribology, the capability of this technology is shown in this article on the basis of the commercial confocal 3D white light microscope, the NanoFocusTMμSurfTM. On the one hand, the technology and data preparation used are discussed, and on the other, a comparison is drawn with other standard optical measuring methods.

  17. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy.

    PubMed

    Ancin, H; Roysam, B; Dufresne, T E; Chestnut, M M; Ridder, G M; Szarowski, D H; Turner, J N

    1996-11-01

    Automated three-dimensional (3-D) image analysis methods are presented for rapid and effective analysis of populations of fluorescently labeled cells or nuclei in thick tissue sections that have been imaged three dimensionally using a confocal microscope. The methods presented here greatly improve upon our earlier work (Roysam et al.:J Microsc 173: 115-126, 1994). The principal advances reported are: algorithms for efficient data pre-processing and adaptive segmentation, effective handling of image anisotrophy, and fast 3-D morphological algorithms for separating overlapping or connected clusters utilizing image gradient information whenever available. A particular feature of this method is its ability to separate densely packed and connected clusters of cell nuclei. Some of the challenges overcome in this work include the efficient and effective handling of imaging noise, anisotrophy, and large variations in image parameters such as intensity, object size, and shape. The method is able to handle significant inter-cell, intra-cell, inter-image, and intra-image variations. Studies indicate that this method is rapid, robust, and adaptable. Examples were presented to illustrate the applicability of this approach to analyzing images of nuclei from densely packed regions in thick sections of rat liver, and brain that were labeled with a fluorescent Schiff reagent.

  18. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines.

  19. 3D image reconstruction using optical sectioning in confocal scanning microscopy

    NASA Astrophysics Data System (ADS)

    Seo, Jungwoo; Kang, Dong Kyun; Park, Sunglim; Gweon, Dae gab

    2001-10-01

    Confocal scanning microscopy (CSM) has been used in biological application, materials science, semiconductor quality measurement and other non-destructive microscopic application. Small spot of light illuminates a sample, and a small detector that is ideally a point detector collects the reflected or transmitted light having the information of specimen. An image distribution can be reconstructed by a correlation analysis of spots with the high bandwidth. The mechanism for two-dimensional beam scanning and optical sectioning has an important role in CSM as the three-dimensional profiler. The parasitic motion of focus on the detector gives rise to the fatal distortion of an image profile named the extinction effect while using acousto-optical (AO) deflector. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. We propose the progressive methods for the high quality image as the following. At first, for having the corrected image, small spot and long scan range, this paper shows that the optimal design having the multi-objects can be used by choosing the unitary lens device in CSM. At second, in order to compensate for the intensity cancellation at the end profile that may be the cause of waviness for the optical image, this paper shows that it is efficient to schedule the frequency of scan. According to characteristics of the extinction curve and axial/lateral response having the error property, we can define the frequency and sensitivity of as their robustness. Finally, the axial response gives an important motive for the optical section, and the limit of

  20. 3D imaging of lung tissue by confocal microscopy and micro-CT

    NASA Astrophysics Data System (ADS)

    Kriete, Andres; Breithecker, Andreas; Rau, Wigbert D.

    2001-07-01

    Two complementary techniques for the imaging of tissue subunits are discussed. A computer guided light microscopic imaging technique is described first, which confocally resolves thick serial sections axially. The lateral area of interest is increased by scanning a mosaic of images in each plane. Subsequently, all images are fused digitally to form a highly resolved volume exhibiting the fine structure of complete respiratory units of lung. A different technique described is based on microtomography. This method allows to image volumes up to 3x3x3 cm at a resolution of up to 7 microns. Due to the lack of strong density differences, a contrast enhancement procedure is introduced which makes this technique applicable for the imaging of lung tissue. Imaging, visualization and analysis described here are parts of an ongoing project to model structure and to simulate function of tissue subunits and complete organs.

  1. Influences of edges and steep slopes in 3D interference and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Weichang; Hagemeier, Sebastian; Woidt, Carsten; Hillmer, Harmut; Lehmann, Peter

    2016-04-01

    Optical measurement techniques are widely applied in high-resolution contour, topography and roughness measurement. In this context vertical scanning white-light interferometers and confocal microscopes have become mature instruments over the last decades. The accuracy of measurement results is highly related not only to the type and physical properties of the measuring instruments, but also to the measurement object itself. This contribution focuses on measurement effects occurring at edges and height steps using white-light interferometers of different numerical apertures. If the edge is perfectly perpendicular, batwing effects appear at height steps. These batwings show maximum height if the height-to-wavelength-ratio (HWR) is about one forth or three forth, and they disappear if the HWR value is about an integer multiple of one half. The wavelength that is relevant in this context is the effective wavelength, i.e. the center wavelength of the illuminating light multiplied by a correction factor known as the numerical aperture correction. However, in practice the edges are usually not perfectly perpendicular. In this case, the measurement results depend also on the derivative of the surface height function and they may differ from theory and the prediction according to the HWR value. Measurements of such steps show systematical effects depending on the lateral resolution of the instrument. In this context, a Linnik interferometer with a magnification of 100x and NA = 0.9 is used to characterize the three dimensional topography of more or less rectangular calibration specimens and quasi-perpendicular structures produced by the nanoimprint technology. The Linnik interferometer is equipped with LED light sources emitting at different wavelengths, so that the HWR value can be changed. This is possible since the high NA objective lenses show a rather limited depth of focus such that the temporal coherence gating may be replaced by focal gating in this particular

  2. A surface-based 3-D dendritic spine detection approach from confocal microscopy images.

    PubMed

    Li, Qing; Deng, Zhigang

    2012-03-01

    Determining the relationship between the dendritic spine morphology and its functional properties is a fundamental challenge in neurobiology research. In particular, how to accurately and automatically analyse meaningful structural information from a large microscopy image data set is far away from being resolved. As pointed out in existing literature, one remaining challenge in spine detection and segmentation is how to automatically separate touching spines. In this paper, based on various global and local geometric features of the dendrite structure, we propose a novel approach to detect and segment neuronal spines, in particular, a breaking-down and stitching-up algorithm to accurately separate touching spines. Extensive performance comparisons show that our approach is more accurate and robust than two state-of-the-art spine detection and segmentation algorithms.

  3. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  4. A 3D imaging and visualization workflow, using confocal microscopy and advanced image processing for brachyuran crab larvae.

    PubMed

    Kamanli, S A; Kihara, T C; Ball, A D; Morritt, D; Clark, P F

    2017-03-07

    Confocal laser scanning microscopy is an excellent tool for nondestructive imaging of arthropods and can provide detailed information on morphology including fine surface detail. A methodology is presented here for the visualization by confocal microscopy of arthropods, using brachyuran crab zoeal stages as examples and postprocessing techniques derived from micro-CT protocols to improve the final images. This protocol is divided into description of the preprocessing steps (cleaning, staining, digesting and mounting), confocal laser scanning microscopy and data visualization using open-source, freeware programs ImageJ and Drishti. The advantages of using ImageJ to standardize stack data and Drishti for surface rendering are discussed. The methodology has been comprehensively tested using data acquired from all four brands of confocal microscope (Leica, Nikon, Olympus and Zeiss).

  5. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  6. 3-D confocal laser scanning microscopy used in morphometric analysis of rat Purkinje cell dendritic spines after chronic ethanol consumption.

    PubMed

    Wenisch, S; Fortmann, B; Steinmetz, T; Kriete, A; Leiser, R; Bitsch, I

    1998-12-01

    A confocal laser scanning microscope (with a 543 nm laser) was used for imaging rat Purkinje cell dendritic spines at high 3-D resolution. In a nutritionally controlled study of the rat, 5 months of ethanol consumption was demonstrated to alter the spines of Purkinje cell dendrites in rat cerebellum. Intact spines showed significant elongation after ethanol exposure, whereas this neuromorphological alteration could not be detected in controls. Spine elongation could be regarded as compensative growth of spines in search of new synaptic contacts due to alcohol induced cell loss.

  7. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  8. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed.

  9. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  10. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    PubMed

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  11. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  12. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2016-10-05

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys". In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with

  13. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson

  14. Confocal microscopy in microgravity research.

    PubMed

    Goede, A P; Brakenhoff, G J; Woldringh, C L; Aalders, J W; Imhof, J P; van Kralingen, P; Mels, W A; Schreinemakers, P; Zegers, A

    1992-01-01

    We have studied the application and the feasibility of confocal scanning laser microscopy (CSLM) in microgravity research. Its superior spatial resolution and 3D imaging capabilities and its use of light as a probe, render this instrument ideally suited for the study of living biological material on a (sub-)cellular level. In this paper a number of pertinent biological microgravity experiments is listed, concentrating on the direct observation of developing cells and cellular structures under microgravity condition. A conceptual instrument design is also presented, aimed at sounding rocket application followed by Biorack/Biolab application at a later stage.

  15. Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source.

    PubMed

    Betz, Timo; Teipel, Jörn; Koch, Daniel; Härtig, Wolfgang; Guck, Jochen; Käs, Josef; Giessen, Harald

    2005-01-01

    Confocal and multiphoton microscopy are essential tools in modern life sciences. They allow fast and highly resolved imaging of a steadily growing number of fluorescent markers, ranging from fluorescent proteins to quantum dots and other fluorophores, used for the localization of molecules and the quantitative detection of molecular properties within living cells and organisms. Up to now, only one physical limitation seemed to be unavoidable. Both confocal and multiphoton microscopy rely on lasers as excitation sources, and their monochromatic radiation allows only a limited number of simultaneously usable dyes, which depends on the specific number of laser lines available in the used microscope. We have overcome this limitation by successfully replacing all excitation lasers in a standard confocal microscope with pulsed white light ranging from 430 to 1300 nm generated in a tapered silica fiber. With this easily reproducible method, simultaneous confocal and multiphoton microscopy was demonstrated. By developing a coherent and intense laser source with spectral width comparable to a mercury lamp, we provide the flexibility to excite any desired fluorophore combination.

  16. Adaptive-weighted cubic B-spline using lookup tables for fast and efficient axial resampling of 3D confocal microscopy images.

    PubMed

    Indhumathi, C; Cai, Y Y; Guan, Y Q; Opas, M; Zheng, J

    2012-01-01

    Confocal laser scanning microscopy has become a most powerful tool to visualize and analyze the dynamic behavior of cellular molecules. Photobleaching of fluorochromes is a major problem with confocal image acquisition that will lead to intensity attenuation. Photobleaching effect can be reduced by optimizing the collection efficiency of the confocal image by fast z-scanning. However, such images suffer from distortions, particularly in the z dimension, which causes disparities in the x, y, and z directions of the voxels with the original image stacks. As a result, reliable segmentation and feature extraction of these images may be difficult or even impossible. Image interpolation is especially needed for the correction of undersampling artifact in the axial plane of three-dimensional images generated by a confocal microscope to obtain cubic voxels. In this work, we present an adaptive cubic B-spline-based interpolation with the aid of lookup tables by deriving adaptive weights based on local gradients for the sampling nodes in the interpolation formulae. Thus, the proposed method enhances the axial resolution of confocal images by improving the accuracy of the interpolated value simultaneously with great reduction in computational cost. Numerical experimental results confirm the effectiveness of the proposed interpolation approach and demonstrate its superiority both in terms of accuracy and speed compared to other interpolation algorithms.

  17. Overview of confocal microscopy.

    PubMed

    Swaim, William D

    2010-01-01

    Born out of the need to overcome an imaging problem in the 1950s, confocal microscopes today allow researchers to go beyond simple imaging and ask biochemical questions. This chapter provides background information on the development of modern confocal microscopes, their uses and applications. Sample preparation and observation are also discussed. Information is also provided about more advanced applications such as FRAP, FRET and 2-photon imaging. The requirements for setting up a confocal laboratory and the instrumentation needs are also discussed.

  18. Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy.

    PubMed

    Sivaguru, Mayandi; Fried, Glenn; Sivaguru, Barghav S; Sivaguru, Vignesh A; Lu, Xiaochen; Choi, Kyung Hwa; Saif, M Taher A; Lin, Brian; Sadayappan, Sakthivel

    2015-11-01

    The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.

  19. Confocal microscopy and exfoliative cytology

    PubMed Central

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-01-01

    Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a

  20. 3D confocal reconstruction of gene expression in mouse.

    PubMed

    Hecksher-Sørensen, J; Sharpe, J

    2001-01-01

    Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.

  1. Confocal microscopy in transmitted light

    NASA Astrophysics Data System (ADS)

    Dodt, Hans-Ulrich; Becker, Klaus

    2003-10-01

    We developed a confocal microscope for transmitted light to visualize fine details in phase objects like unstained biological specimens. The main difficulty of confocal microscopy in transmission is the alignment of illumination and detector pinholes. This alignment was achieved by using "electronic pinholes" on the detector side. As a first step, we were able to image cells in onion skin at greater depths and with higher resolution than by using conventional microscopy.

  2. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  3. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    PubMed

    Belcher, Claire M; Punyasena, Surangi W; Sivaguru, Mayandi

    2013-01-01

    Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.

  4. Twin-photon confocal microscopy.

    PubMed

    Simon, D S; Sergienko, A V

    2010-10-11

    A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express 18, 9765 (2010)] via the use of photon correlations. Here we achieve similar results in a different manner, introducing a triple-confocal correlated microscope which exploits the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in confocal microscopy.

  5. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  6. Tracking tissue section surfaces for automated 3D confocal cytometry

    NASA Astrophysics Data System (ADS)

    Agustin, Ramses; Price, Jeffrey H.

    2002-05-01

    Three-dimensional cytometry, whereby large volumes of tissue would be measured automatically, requires a computerized method for detecting the upper and lower tissue boundaries. In conventional confocal microscopy, the user interactively sets limits for axial scanning for each field-of-view. Biological specimens vary in section thickness, thereby driving the requirement for setting vertical scan limits. Limits could be set arbitrarily large to ensure the entire tissue is scanned, but automatic surface identification would eliminate storing undue numbers of empty optical sections and forms the basis for incorporating lateral microscope stage motion to collect unlimited numbers of stacks. This walk-away automation of 3D confocal scanning for biological imaging is the first sep towards practical, computerized statistical sampling from arbitrarily large tissue volumes. Preliminary results for automatic tissue surface tracking were obtained for phase-contrast microscopy by measuring focus sharpness (previously used for high-speed autofocus by our group). Measurements were taken from 5X5 fields-of-view from hamster liver sections, varying from five to twenty microns in thickness, then smoothed to lessen variations of in-focus information at each axial position. Because image sharpness (as the power of high spatial frequency components) drops across the axial boundaries of a tissue section, mathematical quantities including the full-width at half-maximum, extrema in the first derivative, and second derivative were used to locate the proximal and distal surfaces of a tissue. Results from these tests were evaluated against manual (i.e., visual) determination of section boundaries.

  7. Note: development of high speed confocal 3D profilometer.

    PubMed

    Ang, Kar Tien; Fang, Zhong Ping; Tay, Arthur

    2014-11-01

    A high-speed confocal 3D profilometer based on the chromatic confocal technology and spinning Nipkow disk technique has been developed and tested. It can measure a whole surface topography by taking only one image that requires less than 0.3 s. Surface height information is retrieved based on the ratios of red, green, and blue color information. A new vector projection technique has developed to enhance the vertical resolution of the measurement. The measurement accuracy of the prototype system has been verified via different test samples.

  8. Optical tweezers for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Meyer zu Hörste, G.; Pilarczyk, G.; Monajembashi, S.; Uhl, V.; Greulich, K. O.

    2000-11-01

    In confocal laser scanning microscopes (CLSMs), lasers can be used for image formation as well as tools for the manipulation of microscopic objects. In the latter case, in addition to the imaging lasers, the light of an extra laser has to be focused into the object plane of the CLSM, for example as optical tweezers. Imaging as well as trapping by optical tweezers can be done using the same objective lens. In this case, z-sectioning for 3D imaging shifts the optical tweezers with the focal plane of the objective along the optical axis, so that a trapped object remains positioned in the focal plane. Consequently, 3D imaging of trapped objects is impossible without further measures. We present an experimental set-up keeping the axial trapping position of the optical tweezers at its intended position whilst the focal plane can be axially shifted over a distance of about 15 μm. It is based on fast-moving correctional optics synchronized with the objective movement. First examples of application are the 3D imaging of chloroplasts of Elodea densa (Canadian waterweed) in a vigorous cytoplasmic streaming and the displacement of zymogen granules in pancreatic cancer cells (AR42 J).

  9. 3D microscopy - new powerful tools in geomaterials characterization

    NASA Astrophysics Data System (ADS)

    Mauko Pranjić, Alenka; Mladenovič, Ana; Turk, Janez; Šajna, Aljoša; Čretnik, Janko

    2016-04-01

    Microtomography (microCT) is becoming more and more widely recognized in geological sciences as a powerful tool for the spatial characterization of rock and other geological materials. Together with 3D image analysis and other complementary techniques, it has the characteristics of an innovative and non-destructive 3D microscopical technique. On the other hand its main disadvantages are low availability (only a few geological laboratories are equipped with high resolution tomographs), the relatively high prices of testing connected with the use of an xray source, technical limitations connected to the resolution and imaging of certain materials, as well as timeconsuming and complex 3D image analysis, necessary for quantification of 3D tomographic data sets. In this work three examples are presented of optimal 3D microscopy analysis of geomaterials in construction such as porosity characterization of impregnated sandstone, aerated concrete and marble prone to bowing. Studies include processes of microCT imaging, 3D data analysis and fitting of data with complementary analysis, such as confocal microscopy, mercury porosimetry, gas sorption, optical/fluorescent microscopy and scanning electron microscopy. Present work has been done in the frame of national research project 3D and 4D microscopy development of new powerful tools in geosciences (ARRS J1-7148) funded by Slovenian Research Agency.

  10. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  11. Automated cellular pathology in noninvasive confocal microscopy

    NASA Astrophysics Data System (ADS)

    Ting, Monica; Krueger, James; Gareau, Daniel

    2014-03-01

    A computer algorithm was developed to automatically identify and count melanocytes and keratinocytes in 3D reflectance confocal microscopy (RCM) images of the skin. Computerized pathology increases our understanding and enables prevention of superficial spreading melanoma (SSM). Machine learning involved looking at the images to measure the size of cells through a 2-D Fourier transform and developing an appropriate mask with the erf() function to model the cells. Implementation involved processing the images to identify cells whose image segments provided the least difference when subtracted from the mask. With further simplification of the algorithm, the program may be directly implemented on the RCM images to indicate the presence of keratinocytes in seconds and to quantify the keratinocytes size in the en face plane as a function of depth. Using this system, the algorithm can identify any irregularities in maturation and differentiation of keratinocytes, thereby signaling the possible presence of cancer.

  12. Confocal Microscopy Of The Eye.

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1989-12-01

    A laser scanning confocal microscope was used to study the structure of human donor eyes and enucleated rabbit eyes. Reflected light confocal images were obtained with a Leitz water immersion objective (50X, NA 1.0). A drop of bicarbonate Ringer's was placed between the objective and the tissue to optically couple the tissue. The confocal microscope was used to image the following objects within the eye: superficial epithelial cells, super basal and basal epithelial cells, basement membrane, stromal nerve plexus, nerve fibers, nuclei and cell bodies of stromal keratocytes, cell processes of stromal keratocytes, Descemet's membrane, and the endothelial cells. In addition, the ocular lens and excised retina were imaged. The confocal microscope produces images of the eye with the following enhanced features: increased lateral resolution, decreased depth of field, and increased contrast of transparent ocular structures. It is concluded that confocal imaging systems are an improvement over traditional optical instruments, and they may develop into a new tool for basic visual science and clinical ophthalmology.

  13. 3D Viscoelastic traction force microscopy.

    PubMed

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  14. Divided-aperture differential confocal fast-imaging microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Qiu, Lirong; Zhao, Xiangye; Zhao, Weiqian

    2017-03-01

    A new method, laser divided-aperture differential confocal microscopy (DDCM), is proposed to achieve high-resolution 3D imaging of microstructures of large-scale sample surfaces. This method uses a divided-aperture confocal structure to significantly improve the axial resolution of confocal microscopy and keep a long working distance simultaneously; uses two radically offset point detectors to achieve differential detection to further improve the axial response sensitivity and realize fast imaging of a large-scale sample surface with a big axial scan-step interval. Theoretical analyses and experimental results show that the DDCM can reach an axial resolution of 5 nm with a 3.1 mm working distance with a 3 times imaging speed of a confocal system with the same resolution.

  15. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  16. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred.

  17. Diffractive elements performance in chromatic confocal microscopy

    NASA Astrophysics Data System (ADS)

    Garzón, J.; Duque, D.; Alean, A.; Toledo, M.; Meneses, J.; Gharbi, T.

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  18. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  19. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NASA Astrophysics Data System (ADS)

    De Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-03-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial resolution and signal-to-noise ratio, are characterized and compared with properties of standard confocal microscopy. The results show that the lateral resolution of RCM is ~170 nm compared to ~240 nm of confocal microscopy for 488 nm excitation and 1.49 NA. As the theory predicts, this improved lateral resolution is independent of the pinhole diameter. In standard confocal microscopy, the same lateral resolution can only be achieved with an almost closed pinhole and, consequently, with a major loss of signal. We show that the sectioning capabilities of the standard confocal microscope are preserved in RCM and that the axial resolution of RCM is slightly better (~15%) than the standard confocal microscope. Furthermore, the signal-to-noise ratio in RCM is a factor of 2 higher than in standard confocal microscopy, also due to the use of highly sensitive modern cameras. In case the pinhole of a confocal microscope is adjusted in such way that the lateral resolution is comparable to that of RCM, the signal-to-noise ratio in RCM is 4 times higher than standard confocal microscopy. Therefore, RCM offers a good alternative to standard confocal microscopy for higher lateral resolution with the main advantage of strongly improved sensitivity.

  20. Confocal multiview light-sheet microscopy

    PubMed Central

    Medeiros, Gustavo de; Norlin, Nils; Gunther, Stefan; Albert, Marvin; Panavaite, Laura; Fiuza, Ulla-Maj; Peri, Francesca; Hiiragi, Takashi; Krzic, Uros; Hufnagel, Lars

    2015-01-01

    Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multiview imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we combine multiview light-sheet imaging with electronic confocal slit detection implemented on modern camera sensors. In addition to improved imaging quality, the electronic confocal slit detection doubles the acquisition speed in multiview setups with two opposing illumination directions allowing simultaneous dual-sided illumination. Confocal multiview light-sheet microscopy eliminates the need for specimen-specific data fusion algorithms, streamlines image post-processing, easing data handling and storage. PMID:26602977

  1. Validation of image processing tools for 3-D fluorescence microscopy.

    PubMed

    Dieterlen, Alain; Xu, Chengqi; Gramain, Marie-Pierre; Haeberlé, Olivier; Colicchio, Bruno; Cudel, Christophe; Jacquey, Serge; Ginglinger, Emanuelle; Jung, Georges; Jeandidier, Eric

    2002-04-01

    3-D optical fluorescent microscopy becomes nowadays an efficient tool for volumic investigation of living biological samples. Using optical sectioning technique, a stack of 2-D images is obtained. However, due to the nature of the system optical transfer function and non-optimal experimental conditions, acquired raw data usually suffer from some distortions. In order to carry out biological analysis, raw data have to be restored by deconvolution. The system identification by the point-spread function is useful to obtain the knowledge of the actual system and experimental parameters, which is necessary to restore raw data. It is furthermore helpful to precise the experimental protocol. In order to facilitate the use of image processing techniques, a multi-platform-compatible software package called VIEW3D has been developed. It integrates a set of tools for the analysis of fluorescence images from 3-D wide-field or confocal microscopy. A number of regularisation parameters for data restoration are determined automatically. Common geometrical measurements and morphological descriptors of fluorescent sites are also implemented to facilitate the characterisation of biological samples. An example of this method concerning cytogenetics is presented.

  2. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  3. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  4. Three dimensional reconstruction of neuron morphology from confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Martinez-Perez, M. Elena

    2010-05-01

    In recent years it has been more common to see 3D visualization of objects applied in many different areas. In neuroscience research, 3D visualization of neurons acquired at different depth views (i.e. image stacks) by means of confocal microscopy are of increase use. However in the best case, these visualizations only help to have a qualitative description of the neuron shape. Since it is well know that neuronal function is intimately related to its morphology. Having a precise characterization of neuronal structures such as axons and dendrites is critical to perform a quantitative analysis and thus it allows to design neuronal functional models based on neuron morphology. Currently there exists different commercial software to reconstruct neuronal arbors, however these processes are labor intensive since in most of the cases they are manually made. In this paper we propose a new software capable to reconstruct 3D neurons from confocal microscopy views in a more efficient way, with minimal user intervention. The propose algorithm is based on finding the tubular structures present in the stack of images using a modify version of the minimal graph cut algorithm. The model is generated from the segmented stack with a modified version of the Marching Cubes algorithm to generate de 3D isosurface. Herein we describe the principles of our 3D segmentation technique and the preliminary results.

  5. Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.; Aziz, David J.; Gmitro, Arthur F.; Kerr, James H.; O'Grady, Terence C.; Goldman, Leon

    1997-10-01

    The use of reflected light confocal microscopy is proposed to rapidly observe unfixed, unstained biopsy specimens of human skin. Reflected light laser scanning confocal microscopy was used to compare a freshly excised, unfixed, unstained biopsy specimen, and in vivo human skin. Optical sections from the ex vivo biopsy specimen of human skin and in vivo human skin were converted to red-green anaglyphs for 3D visualization. Contrast was derived from intrinsic differences in the scattering properties of the organelles and cells within the tissue. Individual cellular layers were observed in both tissues from the surface to the papillary dermis. Confocal microscopy of an unfixed, unstained biopsy specimen showed cells and cell nuclei of the stratum spinosum. Confocal microscopy of in vivo human skin demonstrated optical sectioning through a hair shaft on the upper hand. The combination of reflected light confocal microscopy and 3D visualization with red-green anaglyphs provides a rapid technique for observing fresh biopsies of human skin.

  6. Confocal microscopy of Aspergillus fumigatus keratitis

    PubMed Central

    Avunduk, A M; Beuerman, R W; Varnell, E D; Kaufman, H E

    2003-01-01

    Aim: To use a confocal microscope to characterise the treated and untreated courses of fungal keratitis. Methods: In the first experiment, Aspergillus fumigatus stromal keratitis was produced in both eyes of seven New Zealand white rabbits. In the second experiment, keratitis was induced in right eyes of 20 rabbits. Group 1 rabbits were treated with topical fluconazole, group 2 rabbits received oral fluconazole, and group 3 rabbits were used as controls. The rabbits were examined with a slit lamp and confocal microscope 2, 6, 10, 14, and 20 days after inoculation. The corneal cultures were taken on days 2, 14, and 20 and biopsies were taken on days 2 and 22. Results: On days 14 and 22 confocal microscopy was more sensitive than culture technique in both treated and untreated animals, since not all cases of fungal keratitis can be cultured. Conclusion: This study indicates that confocal microscopy is a rapid and sensitive diagnostic tool for both the early diagnosis and non-invasive follow up of fungal keratitis PMID:12642300

  7. Reflectance Confocal Microscopy in Lentigo Maligna.

    PubMed

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna.

  8. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  9. Estimation of single cell volume from 3D confocal images using automatic data processing

    NASA Astrophysics Data System (ADS)

    Chorvatova, A.; Cagalinec, M.; Mateasik, A.; Chorvat, D., Jr.

    2012-06-01

    Cardiac cells are highly structured with a non-uniform morphology. Although precise estimation of their volume is essential for correct evaluation of hypertrophic changes of the heart, simple and unified techniques that allow determination of the single cardiomyocyte volume with sufficient precision are still limited. Here, we describe a novel approach to assess the cell volume from confocal microscopy 3D images of living cardiac myocytes. We propose a fast procedure based on segementation using active deformable contours. This technique is independent on laser gain and/or pinhole settings and it is also applicable on images of cells stained with low fluorescence markers. Presented approach is a promising new tool to investigate changes in the cell volume during normal, as well as pathological growth, as we demonstrate in the case of cell enlargement during hypertension in rats.

  10. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  11. Near-infrared hyperspectral reflective confocal microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Yunhai; Miao, Xin; Xue, Xiaojun; Xiao, Yun

    2016-10-01

    A Near-Infrared HyperSpectral Reflective Confocal Microscopy (NIHS-RCM) is proposed in order to get high resolution images of deep biological tissues such as skin. The microscopy system uses a super-continuum laser for illumination, an acousto-optic tunable filter (AOTF) for rapid selection of near-infrared spectrum, a resonant galvanometer scanner for high speed imaging (15f/s) and near-infrared avalanche diode as detector. Porcine skin and other experiments show that the microscopy system could get deep tissue images (180 μm), and show the different ingredients of tissue with different wavelength of illumination. The system has the ability of selectively imaging of multiple ingredients at deep tissue which can be used in skin diseases diagnosis and other fields.

  12. Simple buffers for 3D STORM microscopy.

    PubMed

    Olivier, Nicolas; Keller, Debora; Rajan, Vinoth Sundar; Gönczy, Pierre; Manley, Suliana

    2013-06-01

    3D STORM is one of the leading methods for super-resolution imaging, with resolution down to 10 nm in the lateral direction, and 30-50 nm in the axial direction. However, there is one important requirement to perform this type of imaging: making dye molecules blink. This usually relies on the utilization of complex buffers, containing different chemicals and sensitive enzymatic systems, limiting the reproducibility of the method. We report here that the commercial mounting medium Vectashield can be used for STORM of Alexa-647, and yields images comparable or superior to those obtained with more complex buffers, especially for 3D imaging. We expect that this advance will promote the versatile utilization of 3D STORM by removing one of its entry barriers, as well as provide a more reproducible way to compare optical setups and data processing algorithms.

  13. 3D differential phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-03-01

    We demonstrate three-dimensional (3D) optical phase and amplitude reconstruction based on coded source illumination using a programmable LED array. Multiple stacks of images along the optical axis are computed from recorded intensities captured by multiple images under off-axis illumination. Based on the first Born approximation, a linear differential phase contrast (DPC) model is built between 3D complex index of refraction and the intensity stacks. Therefore, 3D volume reconstruction can be achieved via a fast inversion method, without the intermediate 2D phase retrieval step. Our system employs spatially partially coherent illumination, so the transverse resolution achieves twice the NA of coherent systems, while axial resolution is also improved 2× as compared to holographic imaging.

  14. Anal melanosis diagnosed by reflectance confocal microscopy.

    PubMed

    Cinotti, Elisa; Chol, Christelle; Perrot, Jean Luc; Labeille, Bruno; Forest, Fabien; Cambazard, Frédéric

    2014-11-01

    Until now, in vivo reflectance-mode confocal microscopy (IVCM) has been applied only to pigmented lesions of the vulvar and oral mucosa, but not to anal mucosa lesions. We present the first case in which IVCM has been used to diagnose anal melanosis. Clinical and dermoscopic features were of concern while IVCM found the draped pattern already described for genital melanosis. IVCM adds information to the clinical and dermatoscopic examination and allows skin biopsies to be avoided. Further studies are needed to define the IVCM features of anal melanosis and to compare the performance of IVCM with the findings of histological examinations.

  15. Reflectance confocal microscopy features of facial angiofibromas

    PubMed Central

    Millán-Cayetano, José-Francisco; Yélamos, Oriol; Rossi, Anthony M.; Marchetti, Michael A.; Jain, Manu

    2017-01-01

    Facial angiofibromas are benign tumors presenting as firm, dome-shaped, flesh-colored to pink papules, typically on the nose and adjoining central face. Clinically and dermoscopically they can mimic melanocytic nevi or basal cell carcinomas (BCC). Reflectance confocal microscopy (RCM) is a noninvasive imaging tool that is useful in diagnosing melanocytic and non-melanocytic facial lesions. To date no studies have described the RCM features of facial angiofibromas. Herein, we present two cases of facial angiofibromas that were imaged with RCM and revealed tumor island-like structures that mimicked BCC, leading to skin biopsy. PMID:28243496

  16. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  17. 3D differential phase contrast microscopy

    PubMed Central

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-01-01

    We demonstrate 3D phase and absorption recovery from partially coherent intensity images captured with a programmable LED array source. Images are captured through-focus with four different illumination patterns. Using first Born and weak object approximations (WOA), a linear 3D differential phase contrast (DPC) model is derived. The partially coherent transfer functions relate the sample’s complex refractive index distribution to intensity measurements at varying defocus. Volumetric reconstruction is achieved by a global FFT-based method, without an intermediate 2D phase retrieval step. Because the illumination is spatially partially coherent, the transverse resolution of the reconstructed field achieves twice the NA of coherent systems and improved axial resolution. PMID:27867705

  18. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA

    EPA Science Inventory

    Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA?

    Robert M. Zucker

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...

  19. Reflectance Confocal Microscopy for Inflammatory Skin Diseases.

    PubMed

    Agozzino, M; Gonzalez, S; Ardigò, M

    2016-10-01

    In vivo reflectance confocal microscopy (RCM) is a relatively novel non-invasive tool for microscopic evaluation of the skin used prevalently for diagnosis and management of skin tumour. Its axial resolution, its non-invasive and easy clinical application represents the goals for a large diffusion of this technique. During the last 15 years, RCM has been demonstrated to be able to increase the sensibility and sensitivity of dermoscopy in the diagnosis of skin tumours integrating in real time clinic, dermoscopic and microscopic information useful for the definition of malignancy. Despite to date, no large comparative studies on inflammatory skin diseases has been published in the literature, several papers already showed that RCM has a potential for the evaluation of the descriptive features of the most common inflammatory skin diseases as psoriasis, lupus erythematosus, contact dermatitis and others. The aim of the application of this technique in non-neoplastic skin diseases has been prevalently focused on the possibility of clinical diagnosis confirmation, as well as therapeutic management. Moreover, the use of RCM as driver for an optimised skin biopsy has been also followed in order to reduce the number of unsuccessful histopathological examination. In this review article we describe the confocal features of the major groups of inflammatory skin disorders focusing on psoriasiform dermatitis, interface dermatitis and spongiotic dermatitis.

  20. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.

  1. Confocal reference free traction force microscopy

    PubMed Central

    Bergert, Martin; Lendenmann, Tobias; Zündel, Manuel; Ehret, Alexander E.; Panozzo, Daniele; Richner, Patrizia; Kim, David K.; Kress, Stephan J. P.; Norris, David J.; Sorkine-Hornung, Olga; Mazza, Edoardo; Poulikakos, Dimos; Ferrari, Aldo

    2016-01-01

    The mechanical wiring between cells and their surroundings is fundamental to the regulation of complex biological processes during tissue development, repair or pathology. Traction force microscopy (TFM) enables determination of the actuating forces. Despite progress, important limitations with intrusion effects in low resolution 2D pillar-based methods or disruptive intermediate steps of cell removal and substrate relaxation in high-resolution continuum TFM methods need to be overcome. Here we introduce a novel method allowing a one-shot (live) acquisition of continuous in- and out-of-plane traction fields with high sensitivity. The method is based on electrohydrodynamic nanodrip-printing of quantum dots into confocal monocrystalline arrays, rendering individually identifiable point light sources on compliant substrates. We demonstrate the undisrupted reference-free acquisition and quantification of high-resolution continuous force fields, and the simultaneous capability of this method to correlatively overlap traction forces with spatial localization of proteins revealed using immunofluorescence methods. PMID:27681958

  2. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2005-08-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. The operator configures separate channels (laser, filters, detector settings) for each fluorochrome used in a particular experiment. Then, 3-D reconstructions are made from Z-series of confocal images: one series per channel. Channel signal separation is extremely important and measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is then performed to increase resolution. In the 3-D reconstruction program described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationship of 3-D-reconstructed structures with respect to structures seen in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided wherever possible.

  3. 3D super-resolution imaging by localization microscopy.

    PubMed

    Magenau, Astrid; Gaus, Katharina

    2015-01-01

    Fluorescence microscopy is an important tool in all fields of biology to visualize structures and monitor dynamic processes and distributions. Contrary to conventional microscopy techniques such as confocal microscopy, which are limited by their spatial resolution, super-resolution techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) have made it possible to observe and quantify structure and processes on the single molecule level. Here, we describe a method to image and quantify the molecular distribution of membrane-associated proteins in two and three dimensions with nanometer resolution.

  4. Deep stroma investigation by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Valente, Paola; Ardia, Roberta; Buzzonetti, Luca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Menabuoni, Luca

    2015-03-01

    Laser assisted keratoplasty is nowadays largely used to perform minimally invasive surgery and partial thickness keratoplasty [1-3]. The use of the femtosecond laser enables to perform a customized surgery, solving the specific problem of the single patient, designing new graft profiles and partial thickness keratoplasty (PTK). The common characteristics of the PTKs and that make them eligible respect to the standard penetrating keratoplasty, are: the preservation of eyeball integrity, a reduced risk of graft rejection, a controlled postoperative astigmatism. On the other hand, the optimal surgical results after these PTKs are related to a correct comprehension of the deep stroma layers morphology, which can help in the identification of the correct cleavage plane during surgeries. In the last years some studies were published, giving new insights about the posterior stroma morphology in adult subjects [4,5]. In this work we present a study performed on two groups of tissues: one group is from 20 adult subjects aged 59 +/- 18 y.o., and the other group is from 15 young subjects, aged 12+/-5 y.o.. The samples were from tissues not suitable for transplant in patients. Confocal microscopy and Environmental Scanning Electron Microscopy (ESEM) were used for the analysis of the deep stroma. The preliminary results of this analysis show the main differences in between young and adult tissues, enabling to improve the knowledge of the morphology and of the biomechanical properties of human cornea, in order to improve the surgical results in partial thickness keratoplasty.

  5. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  6. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Cremer, Marion; Schermelleh, Lothar

    2013-01-01

    Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

  7. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  8. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  9. Innovative simultaneous confocal full-field 3D surface profilometry for in situ automatic optical inspection (AOI)

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chang, Yi-Wei

    2010-06-01

    Rapid acquisition of surface 3D contour information using optical detection has attracted tremendous interest in the field of automatic optical inspection (AOI) and how to avoid or minimize environmental vibration or disturbance has become a critical issue in in situ inspection. Owing to its high longitudinal measurability and excellent vertical resolution, optical confocal microscopy has become extremely important for surface profilometry. This study presents a novel simultaneous confocal full-field 3D surface profilometer using structured fringe projection. The developed confocal optical system is capable of acquiring multiple images at various object depths to perform surface 3D reconstruction by a single image shot without the need for time-consuming vertical scanning. In this method, four conjugate image-sensing modules are configured at four different designated focusing positions, which are controlled by a specially designed beam-splitting optical module. A focal-depth response (FDR) curve can be established by fitting the four focus measurements obtained from these designated positions to achieve simultaneous confocal vertical scanning. In addition, using the principle of optical grating projection, a structured fringe pattern is generated for lateral scanning to enhance the spatial measurement resolution. To examine the performance of the developed system, an accurate step-height target and some industrial micro semiconductor components were measured. The results show that the depth measurement resolution can reach up to 0.1 µm and the maximum measurement error is within 1.5% of the overall range, indicating both accuracy and repeatability of the proposed confocal measurement approach.

  10. Microscopy in 3D: a biologist’s toolbox

    PubMed Central

    Fischer, Robert S.; Wu, Yicong; Kanchanawong, Pakorn; Shroff, Hari; Waterman, Clare M.

    2012-01-01

    The power of fluorescence microscopy to study cellular structures and macromolecular complexes spans a wide range of size scales, from studies of cell behavior and function in physiological, three-dimensional (3D) environments, to understanding the molecular architecture of organelles. At each length scale, the challenge in 3D imaging is to extract the most spatial and temporal resolution possible while limiting photodamage/bleaching to living cells. A number of advancements in 3D fluorescence microscopy now offer higher resolution, improved speed, and reduced photobleaching relative to traditional point-scanning microscopy methods. Here, we discuss a few specific microscopy modalities that we believe will be particularly advantageous in imaging cells and subcellular structures in physiologically relevant 3D environments. PMID:22047760

  11. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  12. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  13. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  14. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  15. In vivo confocal microscopy of toxic keratopathy

    PubMed Central

    Chen, Y; Le, Q; Hong, J; Gong, L; Xu, J

    2017-01-01

    Purpose To explore the morphological characteristics of toxic keratopathy (TK), which clinically presented as superficial punctate keratopathy (SPK), with the application of in vivo laser-scanning confocal microscopy (LSCM), and evaluate its potential in the early diagnosis of TK. Patients and methods This was a cross-sectional study involving 16 patients with TK and 16 patients with dry eye (DE), demonstrating SPK under slit-lamp observation, and 10 normal eyes were enrolled in the study. All participants underwent history interviews, fluorescein staining, tear film break-up time (BUT) tests, Schirmer tests, and in vivo LSCM. Results The area grading of corneal fluorescein punctate staining was higher in the TK group than the DE group. Measured by in vivo LSCM, superficial epithelial cell density was lower in the TK group than that of DE group. The sub-basal nerve presented lower density and tortuosity in the TK group than the DE group. Most notably, deposits with a snow-like appearance were observed in the epithelium in 12/16 (75.0%) of the TK cases, but none in the DE group (P<0.05). Conclusion The SPK in TK patients was characterized by more widespread punctate staining, a lower density of superficial epithelial cells and sub-basal nerves, and a typical snow-like pattern of deposits in the epithelium by LSCM. These features might facilitate early diagnosis of TK from other disorders manifested as SPK. PMID:27740620

  16. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.

    PubMed

    Duan, Yubo; Chen, Nanguang

    2015-11-15

    Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.

  17. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  18. Microelectrophoresis of Silica Rods Using Confocal Microscopy

    PubMed Central

    2017-01-01

    The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ–1 is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential. PMID:28045541

  19. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  20. Managing multiple image stacks from confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Zerbe, Joerg; Goetze, Christian H.; Zuschratter, Werner

    1999-05-01

    A major goal in neuroanatomy is to obtain precise information about the functional organization of neuronal assemblies and their interconnections. Therefore, the analysis of histological sections frequently requires high resolution images in combination with an overview about the structure. To overcome this conflict we have previously introduced a software for the automatic acquisition of multiple image stacks (3D-MISA) in confocal laser scanning microscopy. Here, we describe a Windows NT based software for fast and easy navigation through the multiple images stacks (MIS-browser), the visualization of individual channels and layers and the selection of user defined subregions. In addition, the MIS browser provides useful tools for the visualization and evaluation of the datavolume, as for instance brightness and contrast corrections of individual layers and channels. Moreover, it includes a maximum intensity projection, panning and zoom in/out functions within selected channels or focal planes (x/y) and tracking along the z-axis. The import module accepts any tiff-format and reconstructs the original image arrangement after the user has defined the sequence of images in x/y and z and the number of channels. The implemented export module allows storage of user defined subregions (new single image stacks) for further 3D-reconstruction and evaluation.

  1. In Vivo Confocal Microscopy in Chloroquine-Induced Keratopathy

    PubMed Central

    Paladini, Iacopo; Menchini, Ugo; Mencucci, Rita

    2013-01-01

    In vivo confocal microscopy is becoming a mandatory examination to study corneal abnormalities such as drug deposits in systemic disease. A female diagnosed with fibromyalgia on systemic chloroquine for 9 months presented for an ophthalmic examination. Confocal microscopy was performed using the Confoscan 4 (Nidek Co. Ltd., Gamagori, Japan) and multiple highly reflective deposits in the epithelial basal cells were found, that were consistent with choloquine. Deposits were also present in the wing cell layer. In the anterior stroma these deposits were rare. Atypically shaped and branched nerves were also present in the anterior stroma. Corneal deposits of chloroquine can be evaluated by confocal microscopy. Confocal microscopy provides information on corneal metabolism and physiology. Chloroquine keratopathy can affect the anterior stroma in addition to the epithelium. PMID:23580857

  2. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  3. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  4. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  5. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms

    PubMed Central

    Bouchard, Matthew B.; Voleti, Venkatakaushik; Mendes, César S.; Lacefield, Clay; Grueber, Wesley B.; Mann, Richard S.; Bruno, Randy M.; Hillman, Elizabeth M. C.

    2014-01-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae. PMID:25663846

  6. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms.

    PubMed

    Bouchard, Matthew B; Voleti, Venkatakaushik; Mendes, César S; Lacefield, Clay; Grueber, Wesley B; Mann, Richard S; Bruno, Randy M; Hillman, Elizabeth M C

    2015-02-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae.

  7. 3D super-resolution microscopy of bacterial division machinery

    NASA Astrophysics Data System (ADS)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.

    2016-08-01

    Super-resolution microscopy is a promising tool for the field of microbiology, as bacteria sizes are comparable to the resolution limit of light microscopy. Bacterial division machinery and FtsZ protein in particular attract much attention of scientists who use different super-resolution microscopy techniques, but most of the available data on FtsZ structures was obtained using two-dimensional (2D) super-resolution microscopy. Using 3D single-molecule localization microscopy (SMLM, namely dSTORM) to visualize FtsZ, we demonstrate that this approach allows more accurate interpretation of super-resolution images and provides new opportunities for the study of complex structures like bacterial divisome.

  8. Automated identification of neurons in 3D confocal datasets from zebrafish brainstem

    PubMed Central

    KAMALI, M.; DAY, L. J.; BROOKS, D. H.; ZHOU, X.; O’MALLEY, D. M.

    2009-01-01

    Summary Many kinds of neuroscience data are being acquired regarding the dynamic behaviour and phenotypic diversity of nerve cells. But as the size, complexity and numbers of 3D neuroanatomical datasets grow ever larger, the need for automated detection and analysis of individual neurons takes on greater importance. We describe here a method that detects and identifies neurons within confocal image stacks acquired from the zebrafish brainstem. The first step is to create a template that incorporates the location of all known neurons within a population – in this case the population of reticulospinal cells. Once created, the template is used in conjunction with a sequence of algorithms to determine the 3D location and identity of all fluorescent neurons in each confocal dataset. After an image registration step, neurons are segmented within the confocal image stack and subsequently localized to specific locations within the brainstem template – in many instances identifying neurons as specific, individual reticulospinal cells. This image-processing sequence is fully automated except for the initial selection of three registration points on a maximum projection image. In analysing confocal image stacks that ranged considerably in image quality, we found that this method correctly identified on average ~80% of the neurons (if we assume that manual detection by experts constitutes ‘ground truth’). Because this identification can be generated approximately 100 times faster than manual identification, it offers a considerable time savings for the investigation of zebrafish reticulospinal neurons. In addition to its cell identification function, this protocol might also be integrated with stereological techniques to enhance quantification of neurons in larger databases. Our focus has been on zebrafish brainstem systems, but the methods described should be applicable to diverse neural architectures including retina, hippocampus and cerebral cortex. PMID:19196418

  9. Super-resolution spinning-disk confocal microscopy using optical photon reassignment.

    PubMed

    Azuma, Takuya; Kei, Takayuki

    2015-06-01

    Spinning-disk confocal microscopy is a proven technology for investigating 3D structures of biological specimens. Here we report a super-resolution method based on spinning-disk confocal microscopy that optically improves lateral resolution by a factor of 1.37 with a single exposure. Moreover, deconvolution yields twofold improvement over the diffraction limit. With the help of newly modified Nipkow disk which comprises pinholes and micro-lenses on the front and back respectively, emitted photons from specimen can be optically reassigned to the most probable locations they originate from. Consequently, the improvement in resolution is achieved preserving inherent sectioning capabilities of confocal microscopy. This extremely simple implementation will enable reliable observations at super high resolution in biomedical routine research.

  10. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  11. Detection limits of confocal surface plasmon microscopy

    PubMed Central

    Pechprasarn, Suejit; Somekh, Michael G.

    2014-01-01

    This paper applies rigorous diffraction theory to evaluate the minimum mass sensitivity of a confocal optical microscope designed to excite and detect surface plasmons operating on a planar metallic substrate. The diffraction model is compared with an intuitive ray picture which gives remarkably similar predictions. The combination of focusing the surface plasmons and accurate phase measurement mean that under favorable but achievable conditions detection of small numbers of molecules is possible, however, we argue that reliable detection of single molecules will benefit from the use of structured surfaces. System configurations needed to optimize performance are discussed. PMID:24940537

  12. Quantitative 3D structured illumination microscopy of nuclear structures.

    PubMed

    Kraus, Felix; Miron, Ezequiel; Demmerle, Justin; Chitiashvili, Tsotne; Budco, Alexei; Alle, Quentin; Matsuda, Atsushi; Leonhardt, Heinrich; Schermelleh, Lothar; Markaki, Yolanda

    2017-05-01

    3D structured illumination microscopy (3D-SIM) is the super-resolution technique of choice for multicolor volumetric imaging. Here we provide a validated sample preparation protocol for labeling nuclei of cultured mammalian cells, image acquisition and registration practices, and downstream image analysis of nuclear structures and epigenetic marks. Using immunostaining and replication labeling combined with image segmentation, centroid mapping and nearest-neighbor analyses in open-source environments, 3D maps of nuclear structures are analyzed in individual cells and normalized to fluorescence standards on the nanometer scale. This protocol fills an unmet need for the application of 3D-SIM to the technically challenging nuclear environment, and subsequent quantitative analysis of 3D nuclear structures and epigenetic modifications. In addition, it establishes practical guidelines and open-source solutions using ImageJ/Fiji and the TANGO plugin for high-quality and routinely comparable data generation in immunostaining experiments that apply across model systems. From sample preparation through image analysis, the protocol can be executed within one week.

  13. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  14. Resolution in 3D in multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Chao, Jerry; Ram, Sripad; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2008-02-01

    Using single molecule microscopy, biological interactions can be imaged and studied at the level of individual biomolecules. When characterizing an imaged biological interaction, the distance separating the two participating biomolecules can provide valuable information. Therefore, the resolvability of an imaging setup is of practical significance in the analysis of the acquired image data. Importantly, the resolvability of the imaging setup needs evaluation in the 3D context, since in general biomolecules reside in 3D space within the cellular environment. We recently introduced an information-theoretic 2D resolution measure which shows that the resolution limit due to Rayleigh's criterion can be overcome. This new result predicts that the resolution of optical microscopes is not limited, but rather can be improved with increased photon counts detected from the single molecules. The 2D result was subsequently extended to the 3D context, and the proposed information-theoretic 3D resolution measure can readily be used to determine the resolvability of a conventional single focal plane imaging setup. Here, we consider the 3D resolution measure for a multifocal plane microscope setup, an imaging system which allows the concurrent imaging of multiple focal planes within a specimen. The technique is useful in applications such as the tracking of subcellular objects in 3D. By comparing their 3D resolution measures, we find a two-plane setup to outperform a comparable conventional single-plane setup in resolvability over a range of axial locations for the single molecule pair. Moreover, we investigate and compare the impact of noise on the resolvability of the two setups.

  15. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo

    2016-09-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.

  16. Visualizing Cochlear Mechanics Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.

    2003-02-01

    The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.

  17. Confocal Microscopy of Jammed Matter: From Elasticity to Granular Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane

    Packings of particles are ubiquitous in nature and are of interest not only to the scientific community but also to the food, pharmaceutical, and oil industries. In this thesis we use confocal microscopy to investigate packing geometry and stress transmission in 3D jammed particulate systems. By introducing weak depletion attraction we probe the accessible phase-space and demonstrate that a microscopic approach to jammed matter gives validity to statistical mechanics framework, which is intriguing because our particles are not thermally activated. We show that the fluctuations of the local packing parameters can be successfully captured by the recently proposed 'granocentric' model, which generates packing statistics according to simple stochastic processes. This model enables us to calculate packing entropy and granular temperature, the so-called 'compactivity', therefore, providing a basis for a statistical mechanics of granular matter. At a jamming transition point at which there are formed just enough number of contacts to guarantee the mechanical stability, theoretical arguments suggest a singularity which gives rise to the surprising scaling behavior of the elastic moduli and the microstructure, as observed in numerical simulations. Since the contact network in 3D is typically hidden from view, experimental test of the scaling law between the coordination number and the applied pressure is lacking in the literature. Our data show corrections to the linear scaling of the pressure with density which takes into account the creation of contacts. Numerical studies of vibrational spectra, in turn, reveal sudden features such as excess of low frequency modes, dependence of mode localization and structure on the pressure. Chapter four describes the first calculation of vibrational density of states from the experimental 3D data and is in qualitative agreement with the analogous computer simulations. We study the configurational role of the pressure and demonstrate

  18. Confocal fluorescence microscopy for detection of cervical preneoplastic lesions

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Fahime; Ward, Rabab K.; Carraro, Anita; Chen, Zhaoyang; van Niekerk, Dirk; MacAulay, Calum; Follen, Michele; Lane, Pierre; Guillaud, Martial

    2015-03-01

    We examined and established the potential of ex-vivo confocal fluorescence microscopy for differentiating between normal cervical tissue, low grade Cervical Intraepithelial Neoplasia (CIN1), and high grade CIN (CIN2 and CIN3). Our objectives were to i) use Quantitative Tissue Phenotype (QTP) analysis to quantify nuclear and cellular morphology and tissue architecture in confocal microscopic images of fresh cervical biopsies and ii) determine the accuracy of high grade CIN detection via confocal microscopy. Cervical biopsy specimens of colposcopically normal and abnormal tissues obtained from 15 patients were evaluated by confocal fluorescence microscopy. Confocal images were analyzed and about 200 morphological and architectural features were calculated at the nuclear, cellular, and tissue level. For the purpose of this study, we used four features to delineate disease grade including nuclear size, cell density, estimated nuclear-cytoplasmic (ENC) ratio, and the average of three nearest Delaunay neighbors distance (3NDND). Our preliminary results showed ENC ratio and 3NDND correlated well with histopathological diagnosis. The Spearman correlation coefficient between each of these two features and the histopathological diagnosis was higher than the correlation coefficient between colposcopic appearance and histopathological diagnosis. Sensitivity and specificity of ENC ratio for detecting high grade CIN were both equal to 100%. QTP analysis of fluorescence confocal images shows the potential to discriminate high grade CIN from low grade CIN and normal tissues. This approach could be used to help clinicians identify HGSILs in clinical settings.

  19. Studies in Confocal Scanning Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Corle, Timothy Richard

    Optical microscopes have been used as measurement tools in many areas of science of the past 300 years. Despite their maturity, there is still active research in the field. In particular the development of confocal scanning optical microscopes (CSOMs) in the 1970's has extended the usefulness of optical microscopes by giving them depth imaging capabilities. In a CSOM a defocused image disappears rather than blurring as it does with a standard microscope. The shallow depth of focus allows structures with a height difference smaller than one wavelength to be imaged independently, and thus quantitative measurements of height can be made. The design and construction of two CSOMs is discussed. The first is a mechanically scanned single pinhole microscope. This instrument was developed as a test bed on which to try out ideas relating to phase contrast imaging. The second is a Nipkow disk based real-time confocal scanning optical microscope (RSOM). These two microscopes were used to investigate the transverse and depth resolution of CSOMs. It is demonstrated that although they do not intrinsically have any better transverse resolution than a standard optical microscope, CSOMs produce a visually sharper image with increased contrast. The depth response of the CSOM is also investigated. A vector theory for the depth response is derived and compared with experimental results. It is shown that previously unexplained asymmetries in the sidelobe structure of this response can be accounted for by aberrations in the microscope objective. Phase contrast images can be generated by periodically defocusing the microscope, either mechanically or electro -optically and detecting a signal at the modulation frequency. A new electro-optic phase contrast microscope is described. The microscope is used to quantitatively measure both the height and width of thin film gratings. The depth response and point spread function of this microscope are also derived. It is shown that the sidelobe

  20. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.

    PubMed

    Yuan, Xiaosong; Trachtenberg, Joshua T; Potter, Steve M; Roysam, Badrinath

    2009-12-01

    This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

  1. Applied 3D printing for microscopy in health science research

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Zareinia, Kourosh; Stys, Peter

    2015-03-01

    The rapid prototyping capability offered by 3D printing is considered advantageous for commercial applications. However, the ability to quickly produce precision custom devices is highly beneficial in the research laboratory setting as well. Biological laboratories require the manipulation and analysis of delicate living samples, thus the ability to create custom holders, support equipment, and adapters allow the extension of existing laboratory machines. Applications include camera adapters and stage sample holders for microscopes, surgical guides for tissue preparation, and small precision tools customized to unique specifications. Where high precision is needed, especially the reproduction of fine features, a printer with a high resolution is needed. However, the introduction of cheaper, lower resolution commercial printers have been shown to be more than adequate for less demanding projects. For direct manipulation of delicate samples, biocompatible raw materials are often required, complicating the printing process. This paper will examine some examples of 3D-printed objects for laboratory use, and provide an overview of the requirements for 3D printing for this application. Materials, printing resolution, production, and ease of use will all be reviewed with an eye to producing better printers and techniques for laboratory applications. Specific case studies will highlight applications for 3D-printed devices in live animal imaging for both microscopy and Magnetic Resonance Imaging.

  2. Diffusion of photoacid generators by laser scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ping L.; Webber, Stephen E.; Mendenhall, J.; Byers, Jeffrey D.; Chao, Keith K.

    1998-06-01

    Diffusion of the photogenerated acid during the period of time between exposure and development can cause contrast loss and ultimately loss of the latent image. This is especially relevant for chemically amplified photoresists that require a post-exposure baking step, which in turn facilitates acid diffusion due to the high temperature normally employed. It is thus important to develop techniques with good spatial resolution to monitor the photogeneration of acid. More precisely, we need techniques that provide two distinct types of information: spatial resolution on various length scales within the surface layer and also sufficient depth resolution so that one can observe the transition from very surface layer to bulk structure in the polymer blend coated on silicon substrate. Herein laser scanning confocal microscopy is used to evaluate the resist for the first time. We report the use of the confocal microscopy to map the pag/dye distribution in PHS matrices, with both reflectance images and fluorescence images. A laser beam is focused onto a small 3D volume element, termed a voxel. It is typically 200 nm X 200 nm laterally and 800 nm axially. The illuminated voxel is viewed such that only signals emanating from this voxel are detected, i.e., signal from outside the probed voxel is not detected. By adjusting the vertical position of the laser focal point, the voxel can be moved to the designated lateral plane to produce an image. Contrast caused by topology difference between the exposed and unexposed area can be eliminated. Bis-p-butylphenyl iodonium triflat (7% of polyhydroxystyrene) is used as photoacid generators. 5% - 18% (by weight, PHS Mn equals 13 k) resist in PGMEA solution is spin cast onto the treated quartz disk with thickness of 1.4 micrometers , 5 micrometers space/10 micrometers pitch chrome mask is used to generate the pattern with mercury DUV illumination. Fluoresceinamine, the pH-sensitive dye, is also used to enhance the contrast of

  3. Resolution improvement by 3D particle averaging in localization microscopy

    NASA Astrophysics Data System (ADS)

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P. J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-03-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on 3D super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision.

  4. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  5. Phase mask optimization for 3D parallax EDF microscopy

    NASA Astrophysics Data System (ADS)

    Beckers, Ingeborg E.; Gierlack, Michael; Höppel, Robert; Landskron, Jürgen

    2014-03-01

    Extended depth-of-field (EDF) microscopy is a well-investigated and very simple method to obtain projection images with an extended depth of focus. Despite its advantages of being a real-time method applicable to any microscopic mode with high lateral resolution that can be simply realized by extending a commercial microscope, the lack of z-correlation is still a problem. In this work we present a combined technique of EDF and stereomicroscopy. By cross-correlation depth information is obtained. Finally, 3D images are reconstructed for best phase masks and simulation results are evaluated experimentally.

  6. MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN

    PubMed Central

    Liu, Lin; Wang, Erkang; Zhang, Xiaoyang; Liang, Wenxuan; Li, Xingde; Xie, Huikai

    2014-01-01

    A fiber-optic 3D confocal scanning microendoscope employing MEMS scanners for both lateral and axial scan was designed and constructed. The MEMS 3D scan engine achieved a lateral scan range of over ± 26° with a 2D MEMS scanning micromirror and a depth scan of over 400 μm with a 1D MEMS tunable microlens. The lateral resolution and axial resolution of this system were experimentally measured as 1.0 μm and 7.0 μm, respectively. 2D and 3D confocal reflectance images of micro-patterns, micro-particles, onion skins and acute rat brain tissue were obtained by this MEMS-based 3D confocal scanning microendoscope. PMID:25013304

  7. Automated 3-D tracking of centrosomes in sequences of confocal image stacks.

    PubMed

    Kerekes, Ryan A; Gleason, Shaun S; Trivedi, Niraj; Solecki, David J

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our average motion estimates agree to within 13% of those computed manually by neurobiologists.

  8. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    SciTech Connect

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; Havrilla, George Joseph

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy and micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.

  9. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  10. Video-rate Scanning Confocal Microscopy and Microendoscopy

    PubMed Central

    Nichols, Alexander J.; Evans, Conor L.

    2011-01-01

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, for example, to study specific cellular targets1, monitor dynamics in living cells2-4, and visualize the three dimensional evolution of entire organisms5,6. Extensions of confocal imaging systems, such as confocal microendoscopes, allow for high-resolution imaging in vivo7 and are currently being applied to disease imaging and diagnosis in clinical settings8,9. Confocal microscopy provides three-dimensional resolution by creating so-called "optical sections" using straightforward geometrical optics. In a standard wide-field microscope, fluorescence generated from a sample is collected by an objective lens and relayed directly to a detector. While acceptable for imaging thin samples, thick samples become blurred by fluorescence generated above and below the objective focal plane. In contrast, confocal microscopy enables virtual, optical sectioning of samples, rejecting out-of-focus light to build high resolution three-dimensional representations of samples. Confocal microscopes achieve this feat by using a confocal aperture in the detection beam path. The fluorescence collected from a sample by the objective is relayed back through the scanning mirrors and through the primary dichroic mirror, a mirror carefully selected to reflect shorter wavelengths such as the laser excitation beam while passing the longer, Stokes-shifted fluorescence emission. This long-wavelength fluorescence signal is then passed to a pair of lenses on either side of a pinhole that is positioned at a plane exactly conjugate with the focal plane of the objective lens. Photons collected from the focal volume of the object are collimated by the objective lens and are focused by the confocal lenses through the pinhole. Fluorescence generated above or below the focal plane will

  11. 3D scanning Hall probe microscopy with 700 nm resolution

    NASA Astrophysics Data System (ADS)

    Dede, M.; Akram, R.; Oral, A.

    2016-10-01

    In this report, we present a three dimensional (3D) imaging of magnetic field vector B → (x,y,z) emanating from the magnetic material surfaces using a scanning Hall probe microscopy (3D-SHPM) down to a 700 nm spatial resolution. The Hall probe is used to measure Bz(x,y) on the specimen surface at different heights with the step size of Δz = 250 nm, as we move away from the surface in z direction, until the field decays to zero. These set of images are then used to get ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y at different z by numerical differentiation. Using the Maxwell's equations in the source free region, Bx(x,y) and By(x,y) can be calculated by integrating ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y in the z direction. Alternatively, the gradients can also be measured in the Hall gradiometer configuration directly. The operation of the 3D-SHPM is demonstrated by imaging Bx(x,y), By(x,y) and Bz(x,y) on a hard disk specimen at a 700 nm resolution, using both of these methods at 77 K. The system is capable of operating from 300 K down to 4 K range.

  12. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  13. Axial resolution of a chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Garzon Reyes, Johnson; Meneses, J.; Plata, Arturo; Tribillon, Gilbert M.; Gharbi, Tijani

    2004-10-01

    An analysis of the axial resolution of a chromatic dispersion confocal microscopy is presented. The system is based on the principle of focus multiplexing by wavelength encoding due to a phase Fresnel lens. The axial resolution is related with the measure of the FWHM value of every spectral response.

  14. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.

    Robert M. Zucker 1 and Jeremy M. Lerner 2,
    1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...

  15. FOOD SURFACE TEXTURE MEASUREMENT USING REFLECTIVE CONFOCAL LASER SCANNING MICROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confocal laser scanning microscopy (CLSM) was used in the reflection mode to characterize the surface texture (roughness) of sliced food surfaces. Sandpapers of grit size between 150 and 600 were used as the height reference to standardize the CLSM hardware settings. Sandpaper particle sizes were v...

  16. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  17. Confocal photoacoustic microscopy using a single multifunctional lens.

    PubMed

    Xi, Lei; Song, Chaolong; Jiang, Huabei

    2014-06-01

    Photoacoustic microscopy (PAM) has remained one of the fastest developing biomedical imaging modalities in the past decade. The confocal strategy of optical illumination and acoustic detection is a way to boost the sensitivity of PAM. To achieve confocal PAM, current PAM systems utilize separate acoustic and optical converging devices, making the systems bulky and complicated. In this Letter, we demonstrate the use of a single-liquid lens to successfully achieve acoustic and optical confocal configuration for optical-resolution PAM (ORPAM). Using the lens with a numerical aperture of 0.43, we show that the resolution of the ORPAM system is 4.8 μm with a significantly improved sensitivity of acoustic detection. We also apply this compact ORPAM system to in vivo imaging of the vasculature of a rat ear.

  18. 3D high resolution pure optical photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2012-02-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After some refinedment of in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM of high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5μm and an axial resolution of 8μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue

  19. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  20. In vivo confocal microscopy of the human cornea

    PubMed Central

    Jalbert, I; Stapleton, F; Papas, E; Sweeney, D F; Coroneo, M

    2003-01-01

    Aims: To describe the optics of in vivo confocal microscopy, its advantages over previous methods, and to summarise the literature that arose from its use for the observation of the human cornea. A critical review of the clinical usefulness of this new technology for the corneal examination is undertaken. Methods: Confocal microscopes obtain increased resolution by limiting the illumination and observation systems to a single point. Rapid scanning is used to reconstruct a full field of view and allows for “real time” viewing. Results: Coronal sections of the in situ epithelium, Bowman’s membrane, stroma, and endothelium can be visualised at a resolution of 1–2 μm. A backscattered light intensity curve allows objective measurements of sublayer thickness and corneal haze to be taken. In vivo confocal microscopy is therefore particularly useful in the areas of infective keratitis, corneal dystrophies, refractive surgery, and contact lens wear, where it aids in differential diagnosis and detection of subtle short and long term changes. Real time endothelial cell assessment can also be performed. Conclusion: Because of their ability to visualise living tissue at cellular levels, confocal microscopes have proved useful additions to the current clinical tools. PMID:12543757

  1. 3D structure tensor analysis of light microscopy data for validating diffusion MRI

    PubMed Central

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A.; Kohama, Steven G.; Jespersen, Sune Nørhøj; Kroenke, Christopher D.

    2015-01-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations

  2. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  3. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    NASA Astrophysics Data System (ADS)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  4. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    SciTech Connect

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  5. Confocal microscopy of skin cancers: Translational advances toward clinical utility

    PubMed Central

    Rajadhyaksha, Milind

    2014-01-01

    Recent advances in translational research in and technology for confocal microscopy of skin cancers, toward clinical applications, are described. Advances in translational research are in diagnosis of melanoma in vivo, pre-operative mapping of lentigo maligna melanoma margins to guide surgery and intra-operative imaging of residual basal cell carcinomas to guide shave-biopsy. Advances in technology include mosaicing microscopy for detection of basal cell carcinomas in large areas of excised tissue, toward rapid pathology-at-the-bedside, and development of small, simple and low-cost line-scanning confocal microscopes for worldwide use in diverse primary healthcare settings. Current limitations and future opportunities and challenges for both clinicians and technologists are discussed. PMID:19964286

  6. Enlightening the Pink: Use of Confocal Microscopy in Pink Lesions.

    PubMed

    Gill, Melissa; González, Salvador

    2016-10-01

    Solitary pink lesions can pose a particular challenge to dermatologists because they may be almost or completely featureless clinically and dermoscopically, previously requiring biopsy to exclude malignancy. However, these lesions usually are not particularly challenging histopathologically. Thus, the incorporation of in vivo reflectance confocal microscopy into the clinical practice, which allows for noninvasive examination of the skin at the cellular level revealing features previously seen only on histopathology, is particularly useful for this subset of clinically difficult lesions.

  7. Three-dimensional measurement of cAMP gradients using hyperspectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rich, Thomas C.; Annamdevula, Naga; Britain, Andrea L.; Mayes, Samuel; Favreau, Peter F.; Leavesley, Silas J.

    2016-03-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions over a wide range of timescales. Several lines of evidence have suggested that the distribution of cAMP within cells is not uniform, and that cAMP compartmentalization is largely responsible for signaling specificity within the cAMP signaling pathway. However, to date, no studies have experimentally measured three dimensional (3D) cAMP distributions within cells. Here we use both 2D and 3D hyperspectral microscopy to visualize cAMP gradients in endothelial cells from the pulmonary microvasculature (PMVECs). cAMP levels were measured using a FRETbased cAMP sensor comprised of a cAMP binding domain from EPAC sandwiched between FRET donors and acceptors -- Turquoise and Venus fluorescent proteins. Data were acquired using either a Nikon A1R spectral confocal microscope or custom spectral microscopy system. Analysis of hyperspectral image stacks from a single confocal slice or from summed images of all slices (2D analysis) indicated little or no cAMP gradients were formed within PMVECs under basal conditions or following agonist treatment. However, analysis of hyperspectral image stacks from 3D cellular geometries (z stacks) demonstrate marked cAMP gradients from the apical to basolateral membrane of PMVECs. These results strongly suggest that 2D imaging studies of cAMP compartmentalization -- whether epifluorescence or confocal microscopy -- may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D studies are required to assess mechanisms of signaling specificity.

  8. 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors.

    PubMed

    Wörz, Stefan; Sander, Petra; Pfannmöller, Martin; Rieker, Ralf J; Joos, Stefan; Mechtersheimer, Gunhild; Boukamp, Petra; Lichter, Peter; Rohr, Karl

    2010-08-01

    We introduce a new model-based approach for automatic quantification of colocalizations in multichannel 3D microscopy images. The approach uses different 3D parametric intensity models in conjunction with a model fitting scheme to localize and quantify subcellular structures with high accuracy. The central idea is to determine colocalizations between different channels based on the estimated geometry of the subcellular structures as well as to differentiate between different types of colocalizations. A statistical analysis was performed to assess the significance of the determined colocalizations. This approach was used to successfully analyze about 500 three-channel 3D microscopy images of human soft tissue tumors and controls.

  9. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  10. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    PubMed

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice.

  11. Multimodal confocal mosaicing microscopy: an emphasis on squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Chen, Nathaniel W.; Sensibaugh, Jordan; Ardeshiri, Ardaland; Blanchard, Adam; Jacques, Steven; Gareau, Daniel

    2010-02-01

    Our previous study reported a sensitivity of 96.6% and a specificity of 89.2% in rapidly detecting Basal Cell Carcinomas (BCCs) when nuclei were stained with acridine orange. Squamous Cell Carcinomas (SCCs) and infiltrative BCCs remain difficult to detect. More complete screening can be achieved utilizing both acridine orange for nuclei staining and eosin for cytoplasmic contrast, using two lasers to excite the two stains independently. Nuclear fluorescence is achieved by staining with acridine orange (0.5mM, 60 s), and cytoplasmic fluorescence is achieved by staining with eosin working solution (30 s). This work shows good morphological contrast of SCC and infiltrative BCC with eosin, acridine orange, and reflectance, and presents a means for rapid SCC and infiltrative BCC detection in fresh skin excisions using multimodal confocal microscopy. In addition, digital staining is shown to effectively simulate hematoxylin and eosin (H&E) histology with confocal mosaics.

  12. New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks.

    PubMed

    Schmitt, Stephan; Evers, Jan Felix; Duch, Carsten; Scholz, Michael; Obermayer, Klaus

    2004-12-01

    Exact geometrical reconstructions of neuronal architecture are indispensable for the investigation of neuronal function. Neuronal shape is important for the wiring of networks, and dendritic architecture strongly affects neuronal integration and firing properties as demonstrated by modeling approaches. Confocal microscopy allows to scan neurons with submicron resolution. However, it is still a tedious task to reconstruct complex dendritic trees with fine structures just above voxel resolution. We present a framework assisting the reconstruction. User time investment is strongly reduced by automatic methods, which fit a skeleton and a surface to the data, while the user can interact and thus keeps full control to ensure a high quality reconstruction. The reconstruction process composes a successive gain of metric parameters. First, a structural description of the neuron is built, including the topology and the exact dendritic lengths and diameters. We use generalized cylinders with circular cross sections. The user provides a rough initialization by marking the branching points. The axes and radii are fitted to the data by minimizing an energy functional, which is regularized by a smoothness constraint. The investigation of proximity to other structures throughout dendritic trees requires a precise surface reconstruction. In order to achieve accuracy of 0.1 microm and below, we additionally implemented a segmentation algorithm based on geodesic active contours that allow for arbitrary cross sections and uses locally adapted thresholds. In summary, this new reconstruction tool saves time and increases quality as compared to other methods, which have previously been applied to real neurons.

  13. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    SciTech Connect

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  14. Imaging intracellular protein dynamics by spinning disk confocal microscopy

    PubMed Central

    Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten

    2012-01-01

    The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541

  15. In vivo reflectance confocal microscopy features of a melanoacanthoma

    PubMed Central

    Shahriari, Neda; Grant-Kels, Jane M.; Rabinovitz, Harold S.; Oliviero, Margaret; Scope, Alon

    2016-01-01

    Efforts have been expended to evaluate the reflectance confocal microscopy (RCM) features of different clinical entities in order to more thoroughly delineate benign versus malignant features. In this way, RCM can help clinicians to be more selective in regard to undertaking appropriate skin biopsies and improving their benign to malignant ratio. Herein, we report a case of a histopathologically proven melanoacanthoma, a variant of seborrheic keratosis. There are scarce reports describing the RCM features of melanoacanthoma. Our case demonstrated RCM features that were suspicious for melanoma. More RCM images of this benign entity are needed to establish definitive diagnostic criteria. PMID:27867743

  16. Quantification of transendothelial migration using three-dimensional confocal microscopy.

    PubMed

    Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J

    2011-01-01

    Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.

  17. Precise colloids with tunable interactions for confocal microscopy

    PubMed Central

    Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris

    2015-01-01

    Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems. PMID:26420044

  18. Measurement of steep edges and undercuts in confocal microscopy.

    PubMed

    Mueller, T; Jordan, M; Schneider, T; Poesch, A; Reithmeier, E

    2016-05-01

    Confocal microscopy is widely used to measure the surface topography of specimen with a precision in the micrometer range. The measurement uncertainty and quality of the acquired data of confocal microscopy depends on various effects, such as optical aberrations, vibrations of the measurement setup and variations in the surface reflectivity. In this article, the influence of steep edges and undercuts on measurement results is examined. Steep edges on the specimen's surface lead to a reduced detector signal which influences the measurement accuracy and undercuts cause surface regions, which cannot be captured in a measurement. The article describes a method to overcome the negative effects of steep edges and undercuts by capturing several measurements of the surface with different angles between the surface and the optical axis of the objective. An algorithm is introduced which stitches different angle measurements together without knowledge of the exact position and orientation of the rotation axis. Thus, the measurement uncertainty due to steep edges and undercuts can be avoided without expensive high-precision rotation stages and time consuming adjustment of the measurement setup.

  19. Monitoring Chemokine Receptor Trafficking by Confocal Immunofluorescence Microscopy

    PubMed Central

    Marchese, Adriano

    2016-01-01

    Here, we describe a protocol to detect chemokine receptor CXCR4 by confocal immunofluorescence microscopy in HeLa cells treated with its chemokine ligand CXCL12. Typically, ligand-activated chemokine receptors undergo a multistep process of desensitization and/or internalization from the plasma membrane in order to terminate signaling. Once internalized to endosomes, chemokine receptors readily enter the recycling pathway and return to the cell surface, giving rise to resensitization of signaling. The chemokine receptor CXCR4, when activated by CXCL12 is also internalized to endosomes, but in contrast to many chemokine receptors it is mainly sorted to the degradative pathway, contributing to a loss in the cellular complement of CXCR4 and long-term downregulation of signaling. The trafficking of CXCR4 from early endosomes to lysosomes can be easily detected by confocal immunofluorescence microscopy by immunostaining fixed cells for the receptor and with markers of these vesicular compartments. This approach is advantageous because it can be used to identify factors that regulate the trafficking of CXCR4 from early endosomes to lysosomes. The protocol described here focuses on CXCR4, but it can be easily adapted to other chemokine receptors. PMID:26921951

  20. Precise colloids with tunable interactions for confocal microscopy

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas E.; Guerra, Rodrigo E.; Sprakel, Joris

    2015-09-01

    Model colloidal systems studied with confocal microscopy have led to numerous insights into the physics of condensed matter. Though confocal microscopy is an extremely powerful tool, it requires a careful choice and preparation of the colloid. Uncontrolled or unknown variations in the size, density, and composition of the individual particles and interactions between particles, often influenced by the synthetic route taken to form them, lead to difficulties in interpreting the behavior of the dispersion. Here we describe the straightforward synthesis of copolymer particles which can be refractive index- and density-matched simultaneously to a non-plasticizing mixture of high dielectric solvents. The interactions between particles are accurately tuned by surface grafting of polymer brushes using Atom Transfer Radical Polymerization (ATRP), from hard-sphere-like to long-ranged electrostatic repulsion or mixed charge attraction. We also modify the buoyant density of the particles by altering the copolymer ratio while maintaining their refractive index match to the suspending solution resulting in well controlled sedimentation. The tunability of the inter-particle interactions, the low volatility of the solvents, and the capacity to simultaneously match both the refractive index and density of the particles to the fluid opens up new possibilities for exploring the physics of colloidal systems.

  1. Segmentation of skin strata in reflectance confocal microscopy depth stacks

    NASA Astrophysics Data System (ADS)

    Hames, Samuel C.; Ardigò, Marco; Soyer, H. Peter; Bradley, Andrew P.; Prow, Tarl W.

    2015-03-01

    Reflectance confocal microscopy is an emerging tool for imaging human skin, but currently requires expert human assessment. To overcome the need for human experts it is necessary to develop automated tools for automatically assessing reflectance confocal microscopy imagery. This work presents a novel approach to this task, using a bag of visual words approach to represent and classify en-face optical sections from four distinct strata of the skin. A dictionary of representative features is learned from whitened and normalised patches using hierarchical spherical k-means. Each image is then represented by extracting a dense array of patches and encoding each with the most similar element in the dictionary. Linear discriminant analysis is used as a simple linear classifier. The proposed framework was tested on 308 depth stacks from 54 volunteers. Parameters are tuned using 10 fold cross validation on a training sub-set of the data, and final evaluation was performed on a held out test set. The proposed method generated physically plausible profiles of the distinct strata of human skin, and correctly classified 81.4% of sections in the test set.

  2. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy

    PubMed Central

    B.J. KOPECKY; J.S. DUNCAN; ELLIOTT, K.L.; FRITZSCH, B.

    2013-01-01

    Summary Three-dimensional (3D) reconstructions of the vertebrate inner ear have provided novel insights into the development of this complex organ. 3D reconstructions enable superior analysis of phenotypic differences between wild type and mutant ears but can result in laborious work when reconstructed from physically sectioned material. Although nondestructive optical sectioning light sheet microscopy may ultimately prove the ideal solution, these technologies are not yet commercially available, or in many instances are not monetarily feasible. Here we introduce a simple technique to image a fluorescently labelled ear at different stages throughout development at high resolution enabling 3D reconstruction of any component of the inner ear using confocal microscopy. We provide a step-by-step manual from tissue preparation to imaging to 3D reconstruction and analysis including a rationale and troubleshooting guide at each step for researchers with different equipment, protocols, and access to resources to successfully incorporate the principles of this method and customize them to their laboratory settings. PMID:23140378

  3. Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy.

    PubMed

    Buda, Gregory J; Isaacson, Tal; Matas, Antonio J; Paolillo, Dominick J; Rose, Jocelyn K C

    2009-10-01

    Full appreciation of the roles of the plant cuticle in numerous aspects of physiology and development requires a comprehensive understanding of its biosynthesis and deposition; however, much is still not known about cuticle structure, trafficking and assembly. To date, assessment of cuticle organization has been dominated by 2D imaging, using histochemical stains in conjunction with light and fluorescence microscopy. This strategy, while providing valuable information, has limitations because it attempts to describe a complex 3D structure in 2D. An imaging technique that could accurately resolve 3D architecture would provide valuable additions to the growing body of information on cuticle molecular biology and biochemistry. We present a novel application of 3D confocal scanning laser microscopy for visualizing the architecture, deposition patterns and micro-structure of plant cuticles, using the fluorescent stain auramine O. We demonstrate the utility of this technique by contrasting the fruit cuticle of wild-type tomato (Solanum lycopersicum cv. M82) with those of cutin-deficient mutants. We also introduce 3D cuticle modeling based on reconstruction of serial optical sections, and describe its use in identification of several previously unreported features of the tomato fruit cuticle.

  4. Adaptive optics in digital micromirror based confocal microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  5. Single nuclear pores visualized by confocal microscopy and image processing.

    PubMed Central

    Kubitscheck, U; Wedekind, P; Zeidler, O; Grote, M; Peters, R

    1996-01-01

    How nuclear pore complexes, mediating the transport of nucleic acids, proteins, and metabolites between cell nucleus and cytoplasm, are arranged in the nuclear envelope is essentially unknown. Here we describe a method combining high-resolution confocal imaging with image processing and pattern recognition to visualize single nuclear pore complexes (120 nm diameter), determine their relative positions with nanometer accuracy, and analyze their distribution in situ. The method was tested by means of a model system in which the very same sample areas could be imaged by confocal and electron microscopy. It was thus found that single fluorescent beads of 105 nm nominal diameter could be localized with a lateral accuracy of <20 nm and an axial accuracy of approximately 20 nm. The method was applied to digitonin-permeabilized 3T3 cells, whose nuclear pore complexes were fluorescently labeled with the anti-nucleoporin antibody mAb414. Stacks of optical sections were generated by confocal imaging at high resolution. Herein the nuclear pore complexes appeared as bright diffraction-limited spots whose centers were localized by fitting them by three-dimensional gaussians. The nearest-neighbor distribution function and the pair correlation function were calculated and found to agree well with those of randomly distributed hard cylinders of 138 +/- 17 nm diameter, but not with those of randomly distributed points or nonrandomly distributed cylinders. This was supported by a cluster analysis. Implications for the direct observation of the transport of single particles and molecules through individual nuclear pore complexes are discussed. Images FIGURE 1 FIGURE 2 FIGURE 4 PMID:9172731

  6. Cosmetic assessment of the human hair by confocal microscopy.

    PubMed

    Hadjur, Christophe; Daty, Gérard; Madry, Geneviève; Corcuff, Pierre

    2002-01-01

    The optical sectioning property of the confocal microscope offers a breakthrough from the classic observation of the hair in a scanning electron microscope (SEM). Confocal microscopy requires minimal sampling preparation, and the hair can be observed in its natural environment with less damage than by other microscopic methods such as SEM. While used in the reflection mode, the true morphology of the cuticle and the various exogenous deposits at the surface can be identified and quantified. This relatively noninvasive, nondestructive technique is routinely used by us to monitor the efficiency of cleansing shampoos, to assess the homogeneity of layering polymers, and to evaluate the changes they induce in the optical properties of the hair surface in terms of opacity, transparency, and brilliancy. A second important field of investigation uses the fluorescence channel which reveals the internal structure of the hair. Fluorescent probes (rhodamine and its derivatives) demonstrate the routes of penetration and outline the geometry of cortical cells and of the medulla according to their lipophilic or hydrophilic properties. A volume rendering of a hair cylinder provides a better understanding of the interrelationships between cuticle cells, cortical cells, and the medullar channel. This recent technology is becoming an invaluable tool for the cosmetic assessment of the hair.

  7. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  8. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  9. Confocal laser scanning microscopy in study of bone calcification

    NASA Astrophysics Data System (ADS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  10. Endoscopic probe optics for spectrally encoded confocal microscopy.

    PubMed

    Kang, Dongkyun; Carruth, Robert W; Kim, Minkyu; Schlachter, Simon C; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.

  11. Endoscopic probe optics for spectrally encoded confocal microscopy

    PubMed Central

    Kang, DongKyun; Carruth, Robert W.; Kim, Minkyu; Schlachter, Simon C.; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J.

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo. PMID:24156054

  12. Comparative three-dimensional imaging of living neurons with confocal and atomic force microscopy.

    PubMed

    McNally, Helen A; Rajwa, Bartek; Sturgis, Jennie; Robinson, J Paul

    2005-03-30

    Atomic force microscopy applications extend across a number of fields; however, limitations have reduced its effectiveness in live cell analysis. This report discusses the use of AFM to evaluate the three-dimensional (3-D) architecture of living chick dorsal root ganglia and sympathetic ganglia. These data sets were compared to similar images acquired with confocal laser scanning microscopy of identical cells. For this comparison we made use of visualization techniques which were applicable to both sets of data and identified several issues when coupling these technologies. These direct comparisons offer quantitative validation and confirmation of the character of novel images acquired by AFM. This paper is one in a series emphasizing various new applications of AFM in neurobiology.

  13. DURIP: Super-Resolution Module for Confocal Microscopy of Reconfigurable Matter

    DTIC Science & Technology

    2014-09-28

    SECURITY CLASSIFICATION OF: This project acquired an instrument module for super-resolution confocal microscopy imaging of reconfigurable colloids ...During the project the different methods and instruments available for super-resolution microscopy was evaluated against the needs of colloidal ...Approved for Public Release; Distribution Unlimited Final Report: DURIP: Super-resolution module for confocal microscopy of reconfigurable colloidal

  14. Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy

    PubMed Central

    Mulligan, Jeffrey A.; Bordeleau, François; Reinhart-King, Cynthia A.; Adie, Steven G.

    2017-01-01

    Traction force microscopy (TFM) is a method used to study the forces exerted by cells as they sense and interact with their environment. Cell forces play a role in processes that take place over a wide range of spatiotemporal scales, and so it is desirable that TFM makes use of imaging modalities that can effectively capture the dynamics associated with these processes. To date, confocal microscopy has been the imaging modality of choice to perform TFM in 3D settings, although multiple factors limit its spatiotemporal coverage. We propose traction force optical coherence microscopy (TF-OCM) as a novel technique that may offer enhanced spatial coverage and temporal sampling compared to current methods used for volumetric TFM studies. Reconstructed volumetric OCM data sets were used to compute time-lapse extracellular matrix deformations resulting from cell forces in 3D culture. These matrix deformations revealed clear differences that can be attributed to the dynamic forces exerted by normal versus contractility-inhibited NIH-3T3 fibroblasts embedded within 3D Matrigel matrices. Our results are the first step toward the realization of 3D TF-OCM, and they highlight the potential use of OCM as a platform for advancing cell mechanics research. PMID:28271010

  15. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  16. High-speed addressable confocal microscopy for functional imaging of cellular activity.

    PubMed

    Bansal, Vivek; Patel, Saumil; Saggau, Peter

    2006-01-01

    Due to cellular complexity, studying fast signaling in neurons is often limited by: 1. the number of sites that can be simultaneously probed with conventional tools, such as patch pipettes, and 2. the recording speed of imaging tools, such as confocal or multiphoton microscopy. To overcome these spatiotemporal limitations, we develop an addressable confocal microscope that permits concurrent optical recordings from multiple user-selected sites of interest at high frame rates. Our system utilizes acousto-optic deflectors (AODs) for rapid positioning of a focused laser beam and a digital micromirror device (DMD) for addressable spatial filtering to achieve confocality. A registration algorithm synchronizes the AODs and DMD such that point illumination and point detection are always colocalized in conjugate image planes. The current system has an adjustable spatial resolution of approximately 0.5 to 1 microm. Furthermore, we show that recordings can be made at an aggregate frame rate of approximately 40 kHz. The system is capable of optical sectioning; this property is used to create 3-D reconstructions of fluorescently labeled test specimens and visualize neurons in brain slices. Additionally, we use the system to record intracellular calcium transients at several sites in hippocampal neurons using the fluorescent calcium indicator Oregon Green BAPTA-1.

  17. Probing chirality of a lipid tubular by confocal Raman microscopy.

    PubMed

    Kiang-ia, Jarinee; Hailong, Hu; Bin, Yan; Jantippana, Yuwathida; Pantu, Piboon; Limtrakul, Jumras; Chattham, Nattaporn; Zexiang, Shen; Ting, Yu

    2010-11-01

    The chiral phospholipids 1,2-bis-(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9 PC) can self assemble into lipid nanotubules. This hollow cylindrical supramolecular structure shows promise in a number of biotechnological applications. The mechanism of lipid tubule formation was initiated by assembling of lipid bilayer sheets from amphiphilic solution. Upon cooling, small ribbons were detached from the sheets and rolled up into helical tubules. The lipid tubules obtained were 0.6-0.8 microm in diameter and approximately 50 microm in length. Raman spectra of individual polymerized lipid tubules were measured by focused laser excitation of 532 nm leading to intense and reproducible Raman spectra. The chirality of lipid tubules was investigated by atomic force microscopy (AFM) and confocal Raman microscopy. We report the Raman mapping images revealing helical tubular profiles of C=C stretching and C[triple bond]C stretching of lipid tubules. Circular dichroism property of lipid tubules has also been probed with a 532 nm laser.

  18. A generalized Potts model for confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter W.

    2015-01-01

    Much as being among the least invasive mainstream imaging technologies in life sciences, the resolution of confocal microscopy is limited. Imaged structures, e.g., chromatin-fiber loops, have diameters around or beyond the diffraction limit, and microscopy images show seemingly random spatial density distributions only. While such images are important because the organization of the chromosomes influences different cell mechanisms, many interesting questions can also be related to the observed patterns. These concern their spatial aspects, the role of randomness, the possibility of modeling these images with a random generative process, the interaction between the densities of adjacent loci, the length-scales of these influences, etc. We answer these questions by implementing a generalization of the Potts model. We show how to estimate the model parameters, test the performance of the estimation process and numerically prove that the obtained values converge to the ground truth. Finally, we generate images with a trained model and show that they compare well to real cell images.

  19. Multiphoton, confocal, and lifetime microscopy for molecular imaging in cartilage

    NASA Astrophysics Data System (ADS)

    Wachsmann-Hogiu, Sebastian; Krakow, Deborah; Kirilova, Veneta T.; Cohn, Daniel H.; Bertolotto, Cristina; Acuna, Dora; Fang, Qiyin; Krivorov, Nikola; Farkas, Daniel L.

    2005-03-01

    It has recently been shown that mutations in Filamin A and B genes produce a large spectrum of skeletal disorders in developing fetuses. However, high-resolution optical microscopy in cartilage growth plate using fluorescent antibody assays, which should elucidate molecular aspects of these disorders, is extremely difficult due to the high level of autofluoresce in this tissue. We apply multiphoton, confocal, lifetime and spectral microscopy to (i) image and characterize autofluorophores in chondrocytes and subtract their contributions to obtain a corrected antibody-marker fluorescence signal, and (ii) measure the interaction between Filamin A and B proteins by detecting the fluorescence resonance energy transfer (FRET) between markers of the two proteins. Taking advantage of the different fluorescence spectra of the endogenous and exogenous markers, we can significantly reduce the autofluorescence background. Preliminary results of the FRET experiments suggest no interaction between Filamin A and B proteins. However, developing of new antibodies targeting the carboxy-terminal immunoglobulin-like domain may be necessary to confirm this result.

  20. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  1. Cytology 3D structure formation based on optical microscopy images

    NASA Astrophysics Data System (ADS)

    Pronichev, A. N.; Polyakov, E. V.; Shabalova, I. P.; Djangirova, T. V.; Zaitsev, S. M.

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment.

  2. The investigation of the dynamic morphology of block copolymer solutions by laser scanning confocal microscopy (LSCM)

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjung

    2005-03-01

    Recently we applied laser scanning confocal microscopy (LSCM) for the study of block copolymer 3D morphology. Besides static measurement of microstructures (direct 3-D imaging of block copolymer morphology), LSCM also enables the tracking of the fast dynamic process which has been impossible by conventional microscopic techniques such as TEM (transmission electron microscopy) or AFM (atomic force microscopy). In this study, in-situ LSCM investigation of the morphology of confined photonic BCP solution was performed in conjunction with spectroscopic measurement for the first time. When a lamellar forming polystyrene-b-isoprene (480k-360k, PS/PI) in cumene was placed between cover glasses, the continuous evaporation of the solvent induced a shear field along the radial direction (evaporation direction). As a result, the photonic lamellar BCP solution over the whole area developed a series of concentric ring pattern covering entire visible colors (blue to red). Comparison of the experimental result with theoretical calculation (transfer matrix method) revealed that this phenomenon mainly comes from the change of the orientation of BCP lamella based on the reflectivity at each region along the radius..

  3. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  4. 3D segmentations of neuronal nuclei from confocal microscope image stacks.

    PubMed

    Latorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; Defelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario-the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  5. 3D segmentations of neuronal nuclei from confocal microscope image stacks

    PubMed Central

    LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123

  6. Developing a confocal acoustic holography microscope for non-invasive 3D temperature and composition measurements.

    PubMed

    Herring, Rodney A; Jacquemin, Peter; Sawicka, Barbara D; Atalick, Stefan

    2009-06-01

    A confocal acoustic holography microscope (CAHM) has been designed, simulated and partially verified experimentally to take holograms for non-invasive, three-dimensional measurements of a specimen's refractive indices from one view point. The designed and simulated prototype CAHM used a frequency of 2.25 MHz and measured sound speed changes of 16 m/s, temperature changes of 5 degrees C and had a spatial resolution of 660 microm. With future improvements utilizing the latest technologies such as two-dimensional array detectors, Micro-Electro-Mechanical Systems (MEMS), and acoustic lenses, resolutions of 1m/s, 0.5 degrees C, and 150 microm are expected. The CAHM is expected to have many useful applications, including non-invasive mass and heat transfer measurements in fluids and materials and as a medical diagnostic tool to non-intrusively visualize compositions and temperatures within the human body.

  7. Two-Layer Elastographic 3-D Traction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Álvarez-González, Begoña; Zhang, Shun; Gómez-González, Manuel; Meili, Ruedi; Firtel, Richard A.; Lasheras, Juan C.; Del Álamo, Juan C.

    2017-01-01

    Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions.

  8. Two-Layer Elastographic 3-D Traction Force Microscopy

    PubMed Central

    Álvarez-González, Begoña; Zhang, Shun; Gómez-González, Manuel; Meili, Ruedi; Firtel, Richard A.; Lasheras, Juan C.; del Álamo, Juan C.

    2017-01-01

    Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions. PMID:28074837

  9. Reflectance confocal microscopy--state-of-art and research overview.

    PubMed

    Hofmann-Wellenhof, Rainer; Wurm, Elisabeth M T; Ahlgrimm-Siess, Verena; Richtig, Erika; Koller, Silvia; Smolle, Josef; Gerger, Armin

    2009-09-01

    Reflectance confocal microscopy (RCM) enables in vivo imaging of human skin at a quasi histologic resolution. The black-and-white RCM images show horizontal sections of the skin, at a maximum depth of 350 microm. To date, the RCM features of a significant number of skin conditions have been described. The main focus of the research community investigating RCM, however, lies on describing and diagnosing melanocytic skin lesions. Taking into account all RCM studies dealing with diagnostic accuracy in melanocytic skin lesions, sensitivity and specificity of approximately 90% and 86% could be found. Improvement of diagnostic accuracy, improved assessment of dermoscopic-histologic correlation, in vivo biopsy side selection, surgical margin assessment, and response control of conservative therapies in skin diseases are some of the major advantages of this novel imaging method. Additionally, RCM holds inherent potential for teledermatologic application and automated image analyzing. This article describes morphologic features of diverse skin lesions and features of "normal skin," summarizes diagnostic advances of RCM, compares studies dealing with diagnostic applicability, and discusses further research goals of this exciting new imaging technique.

  10. Semiquantitative confocal laser scanning microscopy applied to marine invertebrate ecotoxicology.

    PubMed

    Chandler, G Thomas; Volz, David C

    2004-01-01

    Confocal laser scanning microscopy (CLSM) represents a powerful, but largely unexplored ecotoxicologic tool for rapidly assessing in vivo effects of toxicants on marine invertebrate embryo quality and development. We describe here a new semiquantitative CLSM approach for assessing relative yolk quantity in marine invertebrate embryos (harpacticoid copepods) produced by parents reared from hatching to adult in the polycylic aromatic hydrocarbon chrysene. This method is based on fluorogenic labeling of embryo yolk and subsequent statistical analysis of areal pixel intensities over multiple Z-series using a general linear model (GLM)-nested analysis of variance. The fluorescent yolk-labeling method described here was able to detect statistically significant differences in yolk concentrations in marine copepod (Amphiascus tenuiremis) eggs or embryos from females exposed to ultraviolet light and chrysene-contaminated sediments. Yolk intensities in embryos from females cultured throughout their life cycles in clean sediments were statistically identical with or without UV exposure. In contrast, yolk intensities in embryos of females cultured throughout their life cycle in chrysene-contaminated sediments were significantly higher in the non-UV-exposed treatment with chrysene at 2500 ng/g sediment (65.7% higher) and the UV-exposed treatment with chrysene at 500 ng/g sediment (76.6% higher).

  11. Quantitative analysis of in vivo confocal microscopy images: a review.

    PubMed

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  12. Intracellular phthalocyanine localization: confocal laser scanning microscopy studies

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Elena B.; Greve, Jan; de Grooth, Bart G.; Van Leeuwen, A. G.

    1994-02-01

    Phthalocyanines (Pc) are promising second-generation photosensitizers for the photodynamic therapy (PDT) of cancer. We report on the tetrasulfonated aluminum phthalocyanine (AlPcS4) localization in cultured Chinese hamster lung cells studied by means of confocal laser scanning microscopy (CLSM). In these cells AlPcS4 was found in granules surrounding Golgi apparatus and in the peripheral cytoplasmic region. Peripheral Pc-containing granules partially coincided with the acidic cellular compartments. The effect of irradiation with light on Pc intracellular distribution was also studied. In the Pc-free medium disruption of some Pc- containing granules was observed followed by appearance of Pc fluorescence in the cell plasma membrane, the nuclear envelope, and the near-nuclear region. When cells were irradiated in the presence of Pc in external medium a drastic increase of membrane permeability to Pc was observed, followed by Pc binding the cell plasma membrane, nuclear envelope, and some structures in the cytoplasm. Diffusive Pc fluorescence in the nucleus was also observed. The implication of observed Pc redistribution caused by irradiation with light for the PDT protocol is discussed.

  13. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  14. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  15. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids

    PubMed Central

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T.

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  16. Confocal (micro)-XRF for 3D anlaysis of elements distribution in hot environmental particles

    SciTech Connect

    Bielewski, M; Eriksson, M; Himbert, J; Simon, R; Betti, M; Hamilton, T F

    2007-11-27

    Studies on the fate and transport of radioactive contaminates in the environment are often constrained by a lack of knowledge on the elemental distribution and general behavior of particulate bound radionuclides contained in hot particles. A number of hot particles were previously isolated from soil samples collected at former U.S. nuclear test sites in the Marshall Islands and characterized using non-destructive techniques [1]. The present investigation at HASYLAB is a part of larger research program at ITU regarding the characterization of environmental radioactive particles different locations and source-terms. Radioactive particles in the environment are formed under a number of different release scenarios and, as such, their physicochemical properties may provide a basis for identifying source-term specific contamination regimes. Consequently, studies on hot particles are not only important in terms of studying the elemental composition and geochemical behavior of hot particles but may also lead to advances in assessing the long-term impacts of radioactive contamination on the environment. Six particles isolated from soil samples collected at the Marshall Islands were studied. The element distribution in the particles was determined by confocal {micro}-XRF analysis using the ANKA FLUO beam line. The CRL (compound refractive lens) was used to focus the exciting beam and the polycapillary half lens to collimate the detector. The dimensions of confocal spot were measured by 'knife edge scanning' method with thin gold structure placed at Si wafer. The values of 3.1 x 1.4 x 18.4 {micro}m were achieved if defined as FWHMs of measured L?intensity profiles and when the19.1 keV exciting radiation was used. The collected XRF spectra were analyzed offline with AXIL [2] software to obtain net intensities of element characteristic lines.Further data processing and reconstruction of element distribution was done with the software 'R' [3] dedicated for statistical

  17. Laser ablation of basal cell carcinomas guided by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2016-02-01

    Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.

  18. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    PubMed

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  19. Visualization of calcium and zinc ions in Saccharomyces cerevisiae cells treated with PEFs (pulse electric fields) by laser confocal microscopy.

    PubMed

    Urszula, Pankiewicz; Jerzy, Jamroz; Sujka, Monika; Kowalski, Radosław

    2015-12-01

    The aim of the present work was to visualize the areas of increased concentration of calcium and zinc ions inside Saccharomyces cerevisiae cells with the use of confocal microscopy and to make an attempt to asses semi-quantitatively their concentration within the limits of the cells. Semi-quantitative analysis revealed that fluorescence inside cells from control samples was three-times lower than that observed for cells from the sample enriched with calcium. Differences in distribution of fluorescence intensity between cells originated from the samples enriched with zinc and control samples were also observed. On the basis of the optical sections, the 3D reconstructions of ion-rich areas distribution in the cell were made. The obtained results showed that confocal microscopy is a useful technique for visualization of the areas in S. cerevisiae cells which contain higher amount of calcium and zinc and it may be also used for semi-quantitative analysis.

  20. Research and application on imaging technology of line structure light based on confocal microscopy

    NASA Astrophysics Data System (ADS)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  1. Dual-Color 3D Superresolution Microscopy by Combined Spectral-Demixing and Biplane Imaging

    PubMed Central

    Winterflood, Christian M.; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-01-01

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color. PMID:26153696

  2. Optical axial scanning in confocal microscopy using an electrically tunable lens.

    PubMed

    Jabbour, Joey M; Malik, Bilal H; Olsovsky, Cory; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A; Cheng, Yi-Shing Lisa; Wright, John M; Maitland, Kristen C

    2014-02-01

    This paper presents the use and characterization of an electrically focus tunable lens to perform axial scanning in a confocal microscope. Lateral and axial resolution are characterized over a >250 µm axial scan range. Confocal microscopy using optical axial scanning is demonstrated in epithelial tissue and compared to traditional stage scanning. By enabling rapid axial scanning, minimizing motion artifacts, and reducing mechanical complexity, this technique has potential to enhance in vivo three-dimensional imaging in confocal endomicroscopy.

  3. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.

    PubMed

    Charwat, Verena; Schütze, Karin; Holnthoner, Wolfgang; Lavrentieva, Antonina; Gangnus, Rainer; Hofbauer, Pablo; Hoffmann, Claudia; Angres, Brigitte; Kasper, Cornelia

    2015-07-10

    Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called "z-stacks". However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell

  4. Confocal imaging at the nanoscale with two-color STED microscopy

    NASA Astrophysics Data System (ADS)

    Gugel, Hilmar; Giske, Arnold; Dyba, Marcus; Sieber, Jochen

    2011-03-01

    STED microscopy enables confocal imaging of biological samples with a resolution that is not limited by diffraction. It provides new insights in various fields of biology, such as membrane biology, neurobiology and physiology. Its three dimensional sectioning ability allows the acquisition of high resolution image stacks. Furthermore, STED microscopy enables the recording of dynamic processes and live cell images. We present two-color imaging in confocal STED microscopy with a single STED wavelength. Pulsed and continuous wave lasers in the visible and near infra-red wavelengths range are used for stimulated emission. The resolution enhancement is demonstrated in comparison to confocal imaging with biological specimens.

  5. Simple fiber-optic confocal microscopy with nanoscale depth resolution beyond the diffraction barrier.

    PubMed

    Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir

    2007-09-01

    A novel fiber-optic confocal approach for ultrahigh depth-resolution (microscopy beyond the diffraction barrier in the subwavelength nanometric range below 200 nm is presented. The key idea is based on a simple fiber-optic confocal microscope approach that is compatible with a differential confocal microscope technique. To improve the dynamic range of the resolving laser power and to achieve a high resolution in the nanometric range, we have designed a simple apertureless reflection confocal microscope with a highly sensitive single-mode-fiber confocal output. The fiber-optic design is an effective alternative to conventional pinhole-based confocal systems and offers a number of advantages in terms of spatial resolution, flexibility, miniaturization, and scanning potential. Furthermore, the design is compatible with the differential confocal pinhole microscope based on the use of the sharp diffraction-free slope of the axial confocal response curve rather than the area around the maximum of that curve. Combining the advantages of ultrahigh-resolution fiber-optic confocal microscopy, we can work beyond the diffraction barrier in the subwavelength (below 200 nm) nanometric range exploiting confocal nanobioimaging of single cell and intracellular analytes.

  6. A study of hydrogenated carbon fibers by scanning electron microscopy and confocal laser scanning microscopy.

    PubMed

    de la Cal, Antonio Madroñero; Aguado-Serrano, Juan; Rojas-Cervantes, Maria Luisa; Adame, Elena V Rosa; Marron, Belen Sarmiento; Rosende, Africa Castro; Nevshupa, Roman

    2009-06-01

    The hydrogen absorption process is studied in carbonaceous fibers produced from a mixture of methane and hydrogen. The absorption of the hydrogen was examined in two types of fibers, in "as-grown" state and after a process of desorption during an annealing to 1.473 K under vacuum. Later to its production process, the fibers withstand an oxidation in air to 973 K. The fibers were examined by means of scanning electron microscopy (SEM) and confocal microscopy by reflection. Differences in the behavior during the oxidation were observed between the fibers in as-grown state and those subjected to a further annealing. It could be verified that the fibers were really constituted by two different phases. In one of the phases, the storage of the hydrogen absorbed took place, whereas in the other phase there was no alteration. The process of annealing prior to the absorption of the hydrogen has an appreciable effect on the desorption rate of the hydrogen.

  7. FTIR microscopy and confocal Raman microscopy for studying lateral drug diffusion from a semisolid formulation.

    PubMed

    Gotter, B; Faubel, W; Neubert, R H H

    2010-01-01

    Fourier transform infrared (FTIR) microscopy was applied to obtain information on lateral drug diffusion of dithranol in artificial acceptor membranes. Lateral (2D) drug distribution into an artificial membrane was investigated on an area of 300microm x 1000microm with a lateral resolution of 25microm x 25microm by integrating a specific IR band located at 1430cm(-1). The concentration profiles show a heterogeneous distribution of dithranol particles resulting in non-uniform drug diffusion. Use of the FTIR microscope either in the transmission or in the reflection mode was restricted to a thickness of the DDC membrane <15microm. The third dimension (depth profile) was analysed by means of confocal Raman microscopy (CRM). In an artificial membrane, the depth range from a minimum of 1.5microm up to a maximum of 49microm was analysed for dithranol distribution.

  8. In vivo confocal microscopy of meibomian glands in primary blepharospasm

    PubMed Central

    Lin, Tong; Gong, Lan

    2016-01-01

    Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P < 0.05), whereas meibum quality showed no difference (P > 0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P < 0.05). For the PBS patients, the severity of blepharospasm evaluated by JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar

  9. Automatic Detection, Segmentation and Classification of Retinal Horizontal Neurons in Large-scale 3D Confocal Imagery

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Gleason, Shaun Scott; Martins, Rodrigo; Dyer, Michael

    2011-01-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  10. Resolution doubling using confocal microscopy via analogy with structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi

    2016-08-01

    Structured illumination microscopy (SIM) is a super-resolution fluorescence microscopy with a 2-fold higher lateral resolution than conventional wide-field fluorescence (WF) microscopy. Confocal fluorescence (CF) microscopy has approximately the same optical cutoff frequency as SIM; however, the maximum theoretical increase in lateral resolution over that of WF is 1.4-fold with an infinitesimal pinhole diameter. Quantitative comparisons based on an analytical imaging formula revealed that modulation transfer functions (MTFs) of SIM reconstructed images before postprocessing are nearly identical to those of CF images recorded with an infinitesimal pinhole diameter. Here, we propose a new method using an adequate pinhole diameter combined with the use of an apodized Fourier inverse filter to increase the lateral resolution of CF images to as much as that SIM images without significant noise degradation in practice. Furthermore, the proposed method does not require a posteriori parameterization and has reproducibility. This approach can be easily applied to conventional laser scanning CF, spinning disk CF, and multiphoton microscopies.

  11. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  12. Generalized model for incoherent detection in confocal optical microscopy.

    PubMed

    Hammoum, Rachid; Hamady, Sidi Ould Saad; Fontana, Marc D

    2010-06-01

    We develop a generalized model in order to calculate the point spread functions in both the focal and the detection planes for the electric field strengths. In these calculations, based on the generalized Jones matrices, we introduce all of the interdependent parameters that could influence the spatial resolution of a confocal optical microscope. Our proposed model is more nearly complete, since we make no approximations of the scattered electric fields. These results can be successfully applied to standard confocal optical techniques to get a better understanding for more quantitative interpretations of the probe.

  13. WHOLE INSECT AND MAMMALIAN EMBRYO IMAGING WITH CONFOCAL MICROSCOPY: MORPHOLOGY AND APOPTOSIS

    EPA Science Inventory

    Background: After fluorochromes are incorporated into cells, tissues, and organisms, confocal microscopy can be used to observe three-dimensional structures. LysoTracker Red (LT) is a paraformaldehyde fixable probe that concentrates into acidic compartments of cells and indicates...

  14. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...

  15. Clinical usefulness of reflectance confocal microscopy in the management of facial lentigo maligna melanoma.

    PubMed

    Alarcón, I; Carrera, C; Puig, S; Malvehy, J

    2014-04-01

    Facial lentigo maligna melanoma can be a diagnostic challenge in daily clinical practice as it has similar clinical and morphological features to other lesions such as solar lentigines and pigmented actinic keratoses. Confocal microscopy is a noninvasive technique that provides real-time images of the epidermis and superficial dermis with cellular-level resolution. We describe 3 cases of suspected facial lentigo maligna that were assessed using dermoscopy and confocal microscopy before histopathology study. In the first case, diagnosed as lentigo maligna melanoma, presurgical mapping by confocal microscopy was performed to define the margins more accurately. In the second and third cases, with a clinical and dermoscopic suspicion of lentigo maligna melanoma, confocal microscopy was used to identify the optimal site for biopsy.

  16. In Vivo Confocal Microscopy of the Ocular Surface: From Bench to Bedside

    PubMed Central

    Villani, Edoardo; Baudouin, Christophe; Efron, Nathan; Hamrah, Pedram; Kojima, Takashi; Patel, Sanjay V.; Pflugfelder, Stephen C.; Zhivov, Andrey; Dogru, Murat

    2014-01-01

    In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis. PMID

  17. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  18. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  19. Brain morphology imaging by 3D microscopy and fluorescent Nissl staining.

    PubMed

    Lazutkin, A A; Komissarova, N V; Toptunov, D M; Anokhin, K V

    2013-07-01

    Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

  20. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  1. Cytosolic pH gradients in cultured neuronal cell lines studied by laser scanning confocal microscopy, real-time confocal microscopy, and spectral imaging microscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Armass, Sergio; Sennoune, Souad; Martinez, Gloria M.; Ortega, Filiberta; Martinez-Zaguilan, Raul

    2002-06-01

    Changes in intracellular pH are important for the regulation of many physiological processes including: cell growth and differentiation, exocytosis, synaptic transmission, cell motility and invasion, to name a few. In pathological states such as cancer and diabetes, pH regulation is known to be altered. Nevertheless the physiological and pathological significance of this ion, there are still many gaps in our knowledge. The advent of fluorescent pH probes to monitor this ion, has substantially accelerated its study. New advances in the methods of detection of this ion by fluorescence-based approaches have also helped us to understand more about the regulation of cytosolic pH. This study evaluates the usefulness of real time confocal imaging microscopy, laser scanning confocal microscopy, and spectral imaging microscopy to the study of pH. These approaches exhibit unsurpassed temporal, spatial, and spectral resolution and are complementary. We employed cell lines derived from the brain exhibiting soma and dendrites. The existence of cell polarity suggests that the different protein composition/micro environment in discrete subcellular domains may affect the properties of fluorescent ion indicators. We performed in situ calibration of pH probes in discrete cellular regions of the neuronal cell lines to eliminate any bias in data interpretation because of differences in cell thickness/micro environment. We show that there are distinct in situ calibration parameters in different cellular domains. These indicate that in situ titrations in discrete cellular domains are needed to assign pH values. We concluded that there are distinct pH micro domains in discrete cellular regions of neuronal cell lines.

  2. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography.

    PubMed

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup; Flo, Trude Helen; Halaas, Øyvind

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D.

  3. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  4. Analysis of Microstructure of the Cardiac Conduction System Based on Three-Dimensional Confocal Microscopy

    PubMed Central

    Romero, Daniel; Camara, Oscar; Sachse, Frank; Sebastian, Rafael

    2016-01-01

    The specialised conducting tissues present in the ventricles are responsible for the fast distribution of the electrical impulse from the atrio-ventricular node to regions in the subendocardial myocardium. Characterisation of anatomical features of the specialised conducting tissues in the ventricles is highly challenging, in particular its most distal section, which is connected to the working myocardium via Purkinje-myocardial junctions. The goal of this work is to characterise the architecture of the distal section of the Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a segmentation of Purkinje fibres at cellular scale, and mathematically describing its morphology and interconnections. Purkinje cells from rabbit hearts were visualised by confocal microscopy using wheat germ agglutinin labelling. A total of 16 3D stacks including labeled Purkinje cells were collected, and semi-automatically segmented. State-of-the-art graph metrics were applied to estimate regional and global features of the Purkinje network complexity. Two types of cell types, tubular and star-like, were characterised from 3D segmentations. The analysis of 3D imaging data confirms the previously suggested presence of two types of Purkinje-myocardium connections, a 2D interconnection sheet and a funnel one, in which the narrow side of a Purkinje fibre connect progressively to muscle fibres. The complex network analysis of interconnected Purkinje cells showed no small-world connectivity or assortativity properties. These results might help building more realistic computational PK systems at high resolution levels including different cell configurations and shapes. Better knowledge on the organisation of the network might help in understanding the effects that several treatments such as radio-frequency ablation might have when the PK system is disrupted locally. PMID:27716829

  5. Resolution and signal-to-noise ratio improvement in confocal fluorescence microscopy using array detection and maximum-likelihood processing

    NASA Astrophysics Data System (ADS)

    Kakade, Rohan; Walker, John G.; Phillips, Andrew J.

    2016-08-01

    Confocal fluorescence microscopy (CFM) is widely used in biological sciences because of its enhanced 3D resolution that allows image sectioning and removal of out-of-focus blur. This is achieved by rejection of the light outside a detection pinhole in a plane confocal with the illuminated object. In this paper, an alternative detection arrangement is examined in which the entire detection/image plane is recorded using an array detector rather than a pinhole detector. Using this recorded data an attempt is then made to recover the object from the whole set of recorded photon array data; in this paper maximum-likelihood estimation has been applied. The recovered object estimates are shown (through computer simulation) to have good resolution, image sectioning and signal-to-noise ratio compared with conventional pinhole CFM images.

  6. Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel

    2014-03-01

    The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy

  7. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo

    PubMed Central

    Chen, Guannan; Lui, Harvey

    2015-01-01

    Background Non-invasive cellular imaging of the skin in vivo can be achieved in reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) modalities to yield complementary images of the skin based on different optical properties. One of the challenges of in vivo microscopy is the delineation (i.e., segmentation) of cellular and subcellular architectural features. Methods In this work we present a method for combining watershed and level-set models for segmentation of multimodality images obtained by an integrated MPM and RCM imaging system from human skin in vivo. Results Firstly, a segmentation model based on watershed is introduced for obtaining the accurate structure of cell borders from the RCM image. Secondly,, a global region based energy level-set model is constructed for extracting the nucleus of each cell from the MPM image. Thirdly, a local region-based Lagrange Continuous level-set approach is used for segmenting cytoplasm from the MPM image. Conclusions Experimental results demonstrated that cell borders from RCM image and boundaries of cytoplasm and nucleus from MPM image can be obtained by our segmentation method with better accuracy and effectiveness. We are planning to use this method to perform quantitative analysis of MPM and RCM images of in vivo human skin to study the variations of cellular parameters such as cell size, nucleus size and other mophormetric features with skin pathologies. PMID:25694949

  8. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    PubMed Central

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  9. Three-dimensional imaging and image analysis of hippocampal neurons: confocal and digitally enhanced wide field microscopy.

    PubMed

    Turner, J N; Szarowski, D H; Turner, T J; Ancin, H; Lin, W C; Roysam, B; Holmes, T J

    1994-11-01

    The microscopy of biological specimens has traditionally been a two-dimensional imaging method for analyzing what are in reality three-dimensional (3-D) objects. This has been a major limitation of the application of one of science's most widely used tools. Nowhere has this limitation been more acute than in neurobiology, which is dominated by the necessity of understanding both large- and small-scale 3-D anatomy. Fortunately, recent advances in optical instrumentation and computational methods have provided the means for retrieving the third dimension, making full 3-D microscopic imaging possible. Optical designs have concentrated on the confocal imaging mode while computational methods have made 3-D imaging possible with wide field microscopes using deconvolution methods. This work presents a brief review of these methods, especially as applied to neurobiology, and data using both approaches. Specimens several hundred micrometers thick can be sampled allowing essentially intact neurons to be imaged. These neurons or selected components can be contrasted with either fluorescent, absorption, or reflection stains. Image analysis in 3-D is as important as visualization in 3-D. Automated methods of cell counting and analysis by nuclear detection as well as tracing of individual neurons are presented.

  10. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2016-06-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4(th) dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed.

  11. Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus.

    PubMed

    Koga, Daisuke; Ushiki, Tatsuo; Watanabe, Tsuyoshi

    2017-01-01

    The structure of the Golgi apparatus has been extensively examined by light and electron microscopy, but details of its three-dimensional (3D) structure have remained unclear because of the technical limitations of conventional microscopy techniques. To overcome this problem, we have developed several novel scanning electron microscopy (SEM) methods for observing the 3D structure of subcellular organelles including the Golgi apparatus: (1) an osmium maceration method that facilitates SEM observation of membranous organelles, including the Golgi apparatus, by selectively removing soluble cytoplasmic proteins, (2) an osmium impregnation/maceration method that combines an osmium impregnation method with the osmium maceration method to determine the polarity of the Golgi apparatus by SEM, (3) a correlative light and SEM method that combines a cryosectioning technique with the osmium maceration method to enable correlation of the immunocytochemical distribution of molecules with the 3D ultrastructure of the Golgi apparatus, and (4) array tomography based on the systematic collection and integration of SEM images of serial ultrathin sections on glass slides for revealing the 3D ultrastructure of the entire Golgi apparatus. Together, the novel SEM techniques listed above can reveal the complete 3D structure of the Golgi apparatus in different cell types.

  12. Lipid and protein distribution in epithelial cells assessed with confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peterson, Kajsa H.; Randen, Michael; Hays, Richard M.; Magnusson, Karl-Eric

    1992-06-01

    Confocal laser scanning microscopy, image processing, and volume visualization were used to characterize the 3-D distribution of lectin receptors, lipid probes, and actin cytoskeleton in epithelial cells. Small intestine-like cells were grown on glass or filter supports and apically labelled with different fluorescent lipid and lectin probes. The restriction of the probes by the tight junctions was studied in living cells. Series of confocal x-y sections were transferred to an image processing system for analysis. The fluorescence intensity within a specified area of all x-y sections was plotted as a function of the vertical position of the sections. The curve inclination was used to describe the degree of restriction to the probes. It was found that lectins were more confined to the apical part than the lipids, which showed varying degree of redistribution to the basolateral membrane. Volume rendering, and specifically animated sequences with varying viewpoint and opacity mapping, were used to visualize the structure of actin cytoskeleton and distribution of lipid and lectin probes. In toad bladder epithelial cells, actin was labelled before and after treatment with the antidiuretic hormone vasopressin. The hormone-induced redistribution of actin in the apical and lateral portion of the cells was measured on x-z scanned images. Ratios of apical-to-lateral intensity were calculated. It was found that the decrease in the ratios after vasopressin treatment was around 30%. The decrease was due to loss of actin apically. This is supposed to facilitate apical fusion of vesicles containing the water-channel forming proteins, being important in water homeostasis.

  13. In-vivo multi-spectral confocal microscopy

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  14. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  15. Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis.

    PubMed

    Miller, S E; Levenson, R M; Aldridge, C; Hester, S; Kenan, D J; Howell, D N

    1997-01-01

    A correlative microscopy method for the ultrastructural analysis of focal viral tissue infections is presented. Using a confocal scanning laser microscope, foci of infection are identified in tissue sections prior to embedment; a variety of techniques can be employed for viral detection, including staining with standard histochemical reagents and fluorescently labeled antibodies. Areas of infection identified using confocal microscopy are excised from the tissue sections, embedded, and examined by transmission electron microscopy. Applications of this technique in both diagnostic and basic research settings are described.

  16. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.

    PubMed

    Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2015-03-01

    High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas.

  17. Reflective confocal laser scanning microscopy and nonlinear microscopy of cross-linked rabbit cornea

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Hovakimyan, Marina; Ramirez, Diego F.; Stachs, Oliver; Guthoff, Rudolf F.; Heisterkamp, Alexander

    2009-07-01

    Cross-linking of the cornea with application of Ribovlavin and UV-A light is an evolving clinical treatment of the eye disease keratoconus. Despite the positive clinical track record of corneal cross-linking, the complex wound healing process after the treatment is still under investigation. In this study an animal model was used to clarify the state of wound healing 5 weeks after treatment. Cross-linked rabbit corneae were imaged with reflective confocal laser scanning and nonlinear microscopy, namely second harmonic imaging microscopy (SHIM) and two-photon excited autofluorescence. First results show that the NAD(P) H-autofluorescence of the corneal keratocytes and their scattering signal still show a signature of the treatment five weeks after the cross-linking procedure. The SHIM signals show the structural morphology of the fibrous collagen sheets in the stroma of the cornea. SHIM detected in the forward direction differs substantially from backward SHIM, but no signature of treatment was found in both detection channels of the SHIM signal.

  18. Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2012-03-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in fresh tissue, without the processing that is required for conventional pathology. Previously, basal cell carcinoma margins were detected by mosaicing of confocal images of 12 x 12 mm2 of excised tissue from Mohs surgery. This mosaicing took 9 minutes. Recently we reported the initial feasibility of a faster approach called "strip mosaicing" on 10 x 10 mm2 of tissue that was demonstrated in 3 minutes. In this paper we report further advances in instrumentation and software. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Thus, strip mosaicing confocal microscopy may serve as an adjunct to pathology for imaging tumor margins to guide surgery.

  19. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    PubMed Central

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  20. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  1. Sample holder for axial rotation of specimens in 3D microscopy.

    PubMed

    Bruns, T; Schickinger, S; Schneckenburger, H

    2015-10-01

    In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results.

  2. Functional imaging of living Paramecium by means of confocal and two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto; Fronte, Paola; Raimondo, Marco; Fato, Marco; DeLeo, Gianluca; Beltrame, Francesco; Cannone, Fabio; Chirico, Giberto; Ramoino, Paola

    2002-05-01

    Confocal and Two-photon excitation laser scanning microscopy allow gathering three-dimensional and temporal information from biological systems exploiting fluorescence labeling and autofluorescence properties. In this work we study biological events linked to functionality in Paramecium primaurelia. The internalization of material in ciliated one-celled organisms (protozoa) occurs via different mechanisms, even if most of nutrients, particulate or not, is taken up by food vacuoles formed at the bottom of the oral cavity. The endocytosis of small-sized molecules occurs at the parasomal sacs, located next the ciliar basal bodies. Vital fluorescent dyes (BSA-FITC, WGA-FITC, dextran-Texas Red, cholesteryl-Bodipy) and autofluorescence were used to study formation, movement, and fusion of vesicles during endocytosis and phagocytosis of Paramecium primaurelia. By immobilizing living cells pulsed with food vacuole and endosome markers at successive times after chasing in unlabeled medium, the intracellular movement and fusion of food vacuoles and of endosomes were visualized. A temporal analysis of fluorescence images and the false-color technique were used. Starting from time series or 3D data sets composite images were generated by associating with each originally acquired image a different color corresponding to each sampling point in time and along the z-axis. Second Harmonic Generation Imaging attempts are also outlined.

  3. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy

    PubMed Central

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E.; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L’Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-01-01

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology. PMID:27983695

  4. Aerial wetting contact angle measurement using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chesna, Jacob W.; Wiedmaier, Bob F.; Wang, Jinlin; Samara, Ayman; Leach, Richard K.; Her, Tsing-Hua; Smith, Stuart T.

    2016-12-01

    A method is presented in which the wetting contact angle of a sessile drop is acquired aerially using confocal techniques to measure the radius and the height of a droplet deposited on a planar surface. The repeatability of this method is typically less than 0.25°, and often less than 0.1°, for droplet diameters less than 1 mm. To evaluate accuracy of this method, an instrument uncertainty budget is developed, which predicts a combined uncertainty of 0.91° for a 1 mm diameter water droplet with a contact angle of 110°. For droplets having diameters less than 1 mm and contact angles between 15° and 160°, these droplets approach spherical shape and their contact angles can be computed analytically with less than 1% error. For larger droplets, gravitational deformation needs to be considered.

  5. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  6. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  7. Deep Learning Segmentation of Optical Microscopy Images Improves 3D Neuron Reconstruction.

    PubMed

    Li, Rongjian; Zeng, Tao; Peng, Hanchuan; Ji, Shuiwang

    2017-03-08

    Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging, especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different reconstruction algorithms.

  8. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  9. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  10. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    PubMed

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  11. Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Netti, Paolo A.; Coppola, Giuseppe; Ferraro, Pietro

    2013-04-01

    We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

  12. Local intracellular ion measurements with luminescent indicators using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Opitz, N.; Merten, E.; Acker, H.

    1995-09-01

    Ion sensitive fluoroprobes such as BCECF (pH) and FURA-II (Ca2+) are frequently used indicators for determination of ion activities in single cells and subcellular compartments, e.g. by video enhanced or video intensified microscopy. Moreover, using confocal laser scanning microscopy (CLSM) with its inherent potential for noninvasive optical sectioning of cells and tissues and subsequent 3D image reconstruction, intracellular ion topographies can be monitored via pseudocolor encoded ratio imaging from pixel to pixel enabling in vivo measurements of dynamic intracellular processes. Regardless of the degree of spatial resolution, reliable qualtitative determinations essentially depend on accurate calibration of the intracellularly entrapped fluoroprobe. Calibration is either established on the basis of a whole cell or within a more or less extended subcellular compartment and the characteristics are displayed as concentration encoded pseudocolor bar within the image frame. This calibration is assumed to be valid for other cellular compartments and, in case of ion imaging, it is even thought to be valid for every single pixel of the complete pixel field. However, the assumption of a topographically invariant intracellular calibration requires a reliable behavior of the intracellularly applied indicator. This intracellular integrity of the dyes often does not seem to exist since intracellular calibration curves considerably deviate from in vitro calibration characteristics. Deviations may be due to intracellular interactions of indicator molecules with cytoplasmic macromolecules, e.g. proteins, resulting in spectral distortions and/or sensitivity deficits as demonstrated by the indicators BCECF and FURA-RED (a FURA-II analogue) or to intracellular redistribution of the indicator as exemplified by pH measurements using carboxy-SNARF-1. Consequences of these investigations as well as further potential interferences are discussed with special respect to ion imaging

  13. Two-photon confocal microscopy in the study of the volume characteristics of semiconductors

    NASA Astrophysics Data System (ADS)

    Kalinushkin, V. P.; Uvarov, O. V.

    2016-12-01

    Zn-Se crystals are used to analyze prospects for application of two-photon confocal microscopy in the study of plane and volume interband and impurity luminescence in semiconductors. Such maps can be formed with a depth step and planar spatial resolution of several micrometers at distances of up to 1 mm from the surface. The method is used to detect luminescence-active inhomogeneities in crystals and study their structure and luminescence characteristics. Prospects for the application of the two-photon confocal microscopy in the study of direct-band-semiconductors and materials of the fourth group are discussed.

  14. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    NASA Astrophysics Data System (ADS)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  15. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen

    2013-11-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.

  16. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing

    PubMed Central

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A.; Lin, Charles P.; Neville, Craig

    2015-01-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (d,l-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  17. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  18. Staining and embedding of human chromosomes for 3-d serial block-face scanning electron microscopy.

    PubMed

    Yusuf, Mohammed; Chen, Bo; Hashimoto, Teruo; Estandarte, Ana Katrina; Thompson, George; Robinson, Ian

    2014-12-01

    The high-order structure of human chromosomes is an important biological question that is still under investigation. Studies have been done on imaging human mitotic chromosomes using mostly 2-D microscopy methods. To image micron-sized human chromosomes in 3-D, we developed a procedure for preparing samples for serial block-face scanning electron microscopy (SBFSEM). Polyamine chromosomes are first separated using a simple filtration method and then stained with heavy metal. We show that the DNA-specific platinum blue provides higher contrast than osmium tetroxide. A two-step procedure for embedding chromosomes in resin is then used to concentrate the chromosome samples. After stacking the SBFSEM images, a familiar X-shaped chromosome was observed in 3-D.

  19. Infrared differential interference contrast microscopy for 3D interconnect overlay metrology.

    PubMed

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-08-12

    One of the main challenges for 3D interconnect metrology of bonded wafers is measuring through opaque silicon wafers using conventional optical microscopy. We demonstrate here the use infrared microscopy, enhanced by implementing the differential interference contrast (DIC) technique, to measure the wafer bonding overlay. A pair of two dimensional symmetric overlay marks were processed at both the front and back sides of thinned wafers to evaluate the bonding overlay. A self-developed analysis algorithm and theoretical fitting model was used to map the overlay error between the bonded wafers and the interconnect structures. The measurement accuracy was found to be better than 1.0 micron.

  20. Photometry unlocks 3D information from 2D localization microscopy data.

    PubMed

    Franke, Christian; Sauer, Markus; van de Linde, Sebastian

    2017-01-01

    We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.

  1. Using 3D Super-Resolution Microscopy to Probe Breast Cancer Stem Cells and Their Microenvironment

    DTIC Science & Technology

    2014-05-01

    microenvironments on breast cancer by creating arrays of polydimethlysiloxane (PDMS) microposts of different stiffness and sizes and seeded them with MCF-7 cells...of MCF-7s. Finally, with QPI, we investigated the real-time response of breast- cancer cells to different microenvironmental cues . We thus have...controls this cellular phenotype. To realize this goal, we had proposed to use 3D super-resolution microscopy to visualize how individual breast CaSCs

  2. Mean cell size and collagen orientation from 2D Fourier analysis on confocal laser scanning microscopy and two-photon fluorescence microscopy on human skin in vivo

    NASA Astrophysics Data System (ADS)

    Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.

    2003-07-01

    We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.

  3. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-03-18

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data.

  4. SEM/EDX and confocal Raman microscopy as complementary tools for the characterization of pharmaceutical tablets.

    PubMed

    Scoutaris, Nikolaos; Vithani, Kapilkumar; Slipper, Ian; Chowdhry, Babur; Douroumis, Dennis

    2014-08-15

    The drug distribution on the surface of hot-melt extruded, pre-mixed hot-melt extruded and direct compressed tablet formulations was characterized by using scanning electron microscopy, energy dispersive X-ray spectroscopy (EDX) and confocal Raman spectroscopy. Formulations of paracetamol (PMOL) and Compritol(®) (C-888) were extruded using hot-melt extrusion at different processing temperatures and formulation compositions before being compressed into tablets. EDX and confocal Raman spectroscopy were employed to map the drug and excipient distribution, both qualitatively and quantitatively, on the surface of the tablets. The results from EDX and confocal Raman studies confirmed better uniformity and distribution of PMOL in the pre-mixed extruded formulations compared to both hot-melt extruded formulations and those obtained by means of direct compression. The quantification of the drug composition on the surface of the tablets by both EDX and confocal Raman was in good agreement with the theoretically expected values.

  5. All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide.

    PubMed

    Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle

    2017-02-10

    While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.

  6. All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide

    PubMed Central

    Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle

    2017-01-01

    While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab. PMID:28186188

  7. All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide

    NASA Astrophysics Data System (ADS)

    Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle

    2017-02-01

    While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.

  8. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  9. Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy

    PubMed Central

    Arnold, Jan; Mahamid, Julia; Lucic, Vladan; de Marco, Alex; Fernandez, Jose-Jesus; Laugks, Tim; Mayer, Tobias; Hyman, Anthony A.; Baumeister, Wolfgang; Plitzko, Jürgen M.

    2016-01-01

    The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy. PMID:26769364

  10. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    PubMed Central

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  11. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  12. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids

    PubMed Central

    Rane, Tushar D.; Armani, Andrea M.

    2016-01-01

    Nanomaterials can be synthesized from a wide range of material systems in numerous morphologies, creating an extremely diverse portfolio. As result of this tunability, these materials are emerging as a new class of nanotherapeutics and imaging agents. One particularly interesting nanomaterial is the gold nanoparticle. Due to its inherent biocompatibility and tunable photothermal behavior, it has made a rapid transition from the lab setting to in vivo testing. In most nanotherapeutic applications, the efficacy of the agent is directly related to the target of interest. However, the optimization of the AuNP size and shape for efficacy in vitro, prior to testing in in vivo models of a disease, has been largely limited to two dimensional monolayers of cells. Two dimensional cell cultures are unable to reproduce conditions experienced by AuNP in the body. In this article, we systematically investigate the effect of different properties of AuNP on the penetration depth into 3D cell spheroids using two-photon microscopy. The 3D spheroids are formed from the HCT116 cell line, a colorectal carcinoma cell line. In addition to studying different sizes and shapes of AuNPs, we also study the effect of an oligo surface chemistry. There is a significant difference between AuNP uptake profiles in the 2D monolayers of cells as compared to the 3D cell spheroids. Additionally, the range of sizes and shapes studied here also exhibit marked differences in uptake penetration depth and efficacy. Finally, our results demonstrate that two-photon microscopy enables quantitative AuNP localization and concentration data to be obtained at the single spheroid level without fluorescent labeling of the AuNP, thus, providing a viable technique for large scale screening of AuNP properties in 3D cell spheroids as compared to tedious and time consuming techniques like electron microscopy. PMID:27936027

  13. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    NASA Astrophysics Data System (ADS)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  14. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  15. In vivo reflectance confocal microscopy features of a large cell acanthoma: report of a case

    PubMed Central

    Shahriari, Neda; Grant-Kels, Jane M.; Rabinovitz, Harold S.; Oliviero, Margaret; Scope, Alon

    2016-01-01

    Reflectance confocal microscopy (RCM) is an FDA approved noninvasive optical imaging technique that acquires cellular level-resolution skin images in vivo. Herein, we report a case of histopathologically proven large cell acanthoma (LCA) whose RCM features simulate those of squamous cell carcinoma in situ. PMID:27648388

  16. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  17. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    EPA Science Inventory

    MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY

    Robert M. Zucker Susan C. Jeffery and Sally D. Perreault

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Prot...

  18. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    EPA Science Inventory

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  19. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  20. 3D reconstruction of cortical microtubules using multi-angle total internal reflection fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Jin, Luhong; Xiu, Peng; Zhou, Xiaoxu; Fan, Jiannan; Kuang, Cuifang; Liu, Xu; Xu, Yingke

    2017-01-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different illumination angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  1. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  2. Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy.

    PubMed

    Welsher, Kevin; Yang, Haw

    2015-01-01

    The overwhelming effort in the development of new microscopy methods has been focused on increasing the spatial and temporal resolution in all three dimensions to enable the measurement of the molecular scale phenomena at the heart of biological processes. However, there exists a significant speed barrier to existing 3D imaging methods, which is associated with the overhead required to image large volumes. This overhead can be overcome to provide nearly unlimited temporal precision by simply focusing on a single molecule or particle via real-time 3D single-particle tracking and the newly developed 3D Multi-resolution Microscopy (3D-MM). Here, we investigate the optical and mechanical limits of real-time 3D single-particle tracking in the context of other methods. In particular, we investigate the use of an optical cantilever for position sensitive detection, finding that this method yields system magnifications of over 3000×. We also investigate the ideal PID control parameters and their effect on the power spectrum of simulated trajectories. Taken together, these data suggest that the speed limit in real-time 3D single particle-tracking is a result of slow piezoelectric stage response as opposed to optical sensitivity or PID control.

  3. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network.

    PubMed

    Zoghlami, Karima; Gómez-Gras, David; Corbella, Mercè; Darragi, Fadila

    2008-11-01

    In the present work, we propose the use of the Laser Scanning Confocal Microscopy (LSCM) to determine the effect of water repellents on rock's pore-network configuration and interconnection. The rocks studied are sandstones of Miocene age, a building material that is commonly found in the architectural heritage of Tunisia. The porosity quantitative data of treated and untreated samples, obtained by mercury porosimetry tests, were compared. The results show a slight decrease in total porosity with the water repellent treatment, which reduced both microporosity and macroporosity. This reduction produced a modification in pore size distribution and a shift of the pore access size mode interval toward smaller pore diameters (from the 30-40 microm to the 20-30 microm intervals). The water repellent was observed in SEM images as a continuous film coating grain surfaces; moreover, it was easily visualized in LSCM, by staining the water repellent with Epodye fluorochrome, and the coating thickness was straightforwardly measured (1.5-2 microm). In fact, the combination of mercury intrusion porosimetry data and LSCM observations suggests that the porosity reduction and the shift of the pore diameter mode were mainly due to the general reduction of pore diameters, but also to the plugging of the smallest pores (less than 3-4 microm in diameter) by the water repellent film. Finally, the LSCM technique enabled the reconstruction of 3D views of the water repellent coating film in the pore network, indicating that its distribution was uniform and continuous over the 100 microm thick sample. The LSCM imaging facilitates the integration and interpretation of mercury porosimetry and SEM data.

  4. Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data.

    PubMed

    Queisser, Gillian; Wittmann, Malte; Bading, Hilmar; Wittum, Gabriel

    2008-01-01

    The cell nucleus is often considered a spherical structure. However, the visualization of proteins associated with the nuclear envelope in rat hippocampal neurons indicates that the geometry of nuclei is far more complex. The shape of cell nuclei is likely to influence the nucleo-cytoplasmic exchange of macromolecules and ions, in particular calcium, a key regulator of neuronal gene expression. We developed a tool to retrieve the 3-D view of cell nuclei from laser scanning confocal microscopy data. By applying an inertia-based filter, based on a special structure detection mechanism, the signal-to-noise ratio of the image is enhanced, the signal is smoothed, gaps in the membrane are closed, while at the same time the geometric properties, such as diameters of the membrane, are preserved. After segmentation of the image data, the microscopy data are sufficiently processed to extract surface information of the membrane by creating an isosurface with a marching tetrahedra algorithm combined with a modified Dijkstra graph-search algorithm. All methods are tested on artificial data, as well as on real data, which are recorded with a laser scanning confocal microscope. Significant advantages of the inertia-based filter can be observed when comparing it to other state of the art nonlinear diffusion filters. An additional program is written to calculate surface and volume of cell nuclei. These results represent the first step toward establishing a geometry-based model of the-dynamics of cytoplasmic and nuclear calcium.

  5. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.

  6. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    PubMed

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  7. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  8. Microtomography and improved resolution in cathodoluminescence microscopy using confocal mirror optics

    SciTech Connect

    Chan, D.S.H.; Liu, Y.Y.; Phang, J.C.H.; Rau, E.; Sennov, R.; Gostev, A.V.

    2004-10-01

    Cathodoluminescence in scanning electron microscopy observed using an ellipsoidal confocal light collector system can offer improved resolution and an implementation of microtomography. With this signal collection system, the resolution limit is no longer determined by the beam and specimen properties but by the system optics. This possibility is demonstrated by the modeling of light transport in cathodoluminescent materials and in the ellipsoidal confocal system which collects the light emission. The conditions for the high-resolution three-dimensional visualization of microstructure within the generation volume of cathodoluminescence emission is described.

  9. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  10. Utilization of 3D printing for an intravital microscopy platform to study the intestinal microcirculation.

    PubMed

    Burkovskiy, I; Lehmann, C; Jiang, C; Zhou, J

    2016-11-01

    Intravital microscopy of the intestine is a sophisticated technique that allows qualitative and quantitative in vivo observation of dynamic cellular interactions and blood flow at a high resolution. Physiological conditions of the animal and in particular of the observed organ, such as temperature and moisture are crucial for intravital imaging. Often, the microscopy stage with the animal or the organ of interest imposes limitations on how well the animal can be maintained. In addition, the access for additional oxygen supply or drug administration during the procedure is rather restricted. To address these limitations, we developed a novel intravital microscopy platform, allowing us to have improved access to the animal during the intravital microscopy procedure, as well as improved microenvironmental maintenance. The production process of this prototype platform is based on 3D printing of device parts in a single-step process. The simplicity of production and the advantages of this versatile and customizable design are shown and discussed in this paper. Our design potentially represents a major step forward in facilitating intestinal intravital imaging using fluorescent microscopy.

  11. Applications of Digital Holography: From Microscopy to 3D-Television

    NASA Astrophysics Data System (ADS)

    Kreis, T.

    2012-03-01

    The paper gives an overview of the applications of digital holography based on the one hand on CCD-recording, computer storage, and numerical reconstruction of the wave fields, and on the other hand on numerical calculation of computer generated holograms (CGH) and the transfer of these CGHs to spatial light modulators (SLM) for optical reconstruction of the wave fields. The first mentioned type of digital holography finds applications in digital holographic microscopy, particle analysis, and interferometric form and deformation measurement, while the second type constitutes the basis for holographic 3D TV. The space-bandwidth-problem occuring in this context is addressed and first partial solutions are presented.

  12. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  13. X-ray Laue Diffraction Microscopy in 3D at the Advanced Photon Source

    SciTech Connect

    Liu, W.; Zschack, P.; Tischler, Jonathan Zachary; Ice, Gene E; Larson, Ben C

    2011-01-01

    Studies of materials on mesoscopic length-scales require a penetrating structural probe with submicron point-to-point spatial resolution. The principle research activities at beamline 34-ID-E of the Advanced Photon Source (APS) involve development of exciting new micro-/nano-diffraction techniques for characterization and microscopy in support of both applied engineering and fundamental materials research. Taking advantage of the high brightness of the source, advanced focusing mirrors, a novel depth profiling technique, and high-speed area detectors, three-dimensional scanning Laue diffraction microscopy provides detailed local structural information of crystalline materials, such as crystallographic orientation, orientation gradients, and strain tensors. It is general and applicable to single-crystal, polycrystalline, composite, deformed, and functionally graded materials. Applications include 3D diffraction investigations for a diverse and growing user community with interests in materials deformation, electro-migration, recrystallization, fatigue, solid-solution precipitation, high-pressure environments, and condensed matter physics.

  14. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization.

    PubMed

    Kaushik, Madhu; Basu, Kaustuv; Benoit, Charles; Cirtiu, Ciprian M; Vali, Hojatollah; Moores, Audrey

    2015-05-20

    Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.

  15. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products.

  16. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies

    PubMed Central

    VARDAXIS, N. J.; BRANS, T. A.; BOON, M. E.; KREIS, R. W.; MARRES, L. M.

    1997-01-01

    The structure of porcine skin as examined by light microscopy is reviewed and its similarities to and differences from human skin are highlighted. Special imaging techniques and staining procedures are described and their use in gathering morphological information in porcine skin is discussed. Confocal laser scanning microscopy (CLSM) was employed to examine the structure of porcine skin and the findings are presented as an adjunct to the information already available in the literature. It is concluded that CLSM provides valuable additional morphological information to material examined by conventional microscopy and is useful for wound healing studies in the porcine model. PMID:9183682

  17. Rapid diagnosis of tinea incognito using handheld reflectance confocal microscopy: a paradigm shift in dermatology?

    PubMed

    Navarrete-Dechent, Cristián; Bajaj, Shirin; Marghoob, Ashfaq A; Marchetti, Michael A

    2015-06-01

    Dermatophytoses are common skin infections. Traditional diagnostic tests such as skin scrapings for light microscopy examination, fungal cultures and biopsies remain imperfect due to false-negative test results, cost, time required to perform the procedure, time delays in test results and/or a requirement for an invasive procedure. Herein, we present a case of an 80-year-old female whose tinea incognito was non-invasively diagnosed within seconds using handheld reflectance confocal microscopy (RCM). As non-invasive skin imaging continues to improve, we expect light-based office microscopy to be replaced with technologies such as RCM, which has multiple and continually expanding diagnostic applications.

  18. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  19. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  20. Use of a white light supercontinuum laser for confocal interference-reflection microscopy.

    PubMed

    Chiu, L-D; Su, L; Reichelt, S; Amos, W B

    2012-05-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460-700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser.

  1. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  2. 3D Imaging of Diatoms with Ion-abrasion Scanning Electron Microscopy

    PubMed Central

    Hildebrand, Mark; Kim, Sang; Shi, Dan; Scott, Keana; Subramaniam, Sriram

    2009-01-01

    Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at ~ 30 nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the “hard” (siliceous) and “soft” (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system. PMID:19269330

  3. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  4. A one-piece 3D printed flexure translation stage for open-source microscopy

    NASA Astrophysics Data System (ADS)

    Sharkey, James P.; Foo, Darryl C. W.; Kabla, Alexandre; Baumberg, Jeremy J.; Bowman, Richard W.

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

  5. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    NASA Astrophysics Data System (ADS)

    Casal, A.; Cerrato, R.; Mateo, M. P.; Nicolas, G.

    2016-06-01

    A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  6. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module.

    PubMed

    Petroll, W Matthew; Robertson, Danielle M

    2015-07-01

    The optical sectioning ability of confocal microscopy allows high magnification images to be obtained from different depths within a thick tissue specimen and is thus ideally suited to the study of intact tissue in living subjects. In vivo confocal microscopy has been used in a variety of corneal research and clinical applications since its development over 25 years ago. In this article we review the latest developments in quantitative corneal imaging with the Heidelberg Retinal Tomograph with Rostock Corneal Module (HRT-RCM). We provide an overview of the unique strengths and weaknesses of the HRT-RCM. We discuss techniques for performing 3-D imaging with the HRT-RCM, including hardware and software modifications that allow full-thickness confocal microscopy through-focusing (CMTF) of the cornea, which can provide quantitative measurements of corneal sublayer thicknesses, stromal cell and extracellular matrix backscatter, and depth-dependent changes in corneal keratocyte density. We also review current approaches for quantitative imaging of the subbasal nerve plexus, which require a combination of advanced image acquisition and analysis procedures, including wide-field mapping and 3-D reconstruction of nerve structures. The development of new hardware, software, and acquisition techniques continues to expand the number of applications of the HRT-RCM for quantitative in vivo corneal imaging at the cellular level. Knowledge of these rapidly evolving strategies should benefit corneal clinicians and basic scientists alike.

  7. In vivo confocal microscopy of the cornea: New developments in image acquisition, reconstruction and analysis using the HRT-Rostock Corneal Module

    PubMed Central

    Petroll, W. Matthew; Robertson, Danielle M.

    2015-01-01

    The optical sectioning ability of confocal microscopy allows high magnification images to be obtained from different depths within a thick tissue specimen, and is thus ideally suited to the study of intact tissue in living subjects. In vivo confocal microscopy has been used in a variety of corneal research and clinical applications since its development over 25 years ago. In this article we review the latest developments in quantitative corneal imaging with the Heidelberg Retinal Tomograph with Rostock Corneal Module (HRT-RCM). We provide an overview of the unique strengths and weaknesses of the HRT-RCM. We discuss techniques for performing 3-D imaging with the HRT-RCM, including hardware and software modifications that allow full thickness confocal microscopy through focusing (CMTF) of the cornea, which can provide quantitative measurements of corneal sublayer thicknesses, stromal cell and extracellular matrix backscatter, and depth dependent changes in corneal keratocyte density. We also review current approaches for quantitative imaging of the subbasal nerve plexus, which require a combination of advanced image acquisition and analysis procedures, including wide field mapping and 3-D reconstruction of nerve structures. The development of new hardware, software, and acquisition techniques continues to expand the number of applications of the HRT-RCM for quantitative in vivo corneal imaging at the cellular level. Knowledge of these rapidly evolving strategies should benefit corneal clinicians and basic scientists alike. PMID:25998608

  8. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling.

    PubMed

    Ming, Xing; Li, Anan; Wu, Jingpeng; Yan, Cheng; Ding, Wenxiang; Gong, Hui; Zeng, Shaoqun; Liu, Qian

    2013-01-01

    Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.

  9. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  10. In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

    NASA Astrophysics Data System (ADS)

    Kaufman, Stephen C.; Laird, Jeffery A.; Beuerman, Roger W.

    1996-05-01

    The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

  11. The role of confocal microscopy in the dermato-oncology practice.

    PubMed

    Diaconeasa, A; Boda, D; Neagu, M; Constantin, C; Căruntu, C; Vlădău, L; Guţu, D

    2011-01-01

    Reflectance-mode confocal microscopy (RCM) is a new in vivo skin imaging technique. We present our one-year experience in RCM examinations in skin tumors and the retrospective analysis of patients enrolled in the Dermatological Department of 'N. Paulescu' Institute using the Fotofinder Dermoscope IIŴ for the dermatoscopy analysis and VivaScope 1500Ŵ for in vivo RCM. We established the rank of RCM in the complex algorithm of skin cancer diagnose, showing that the presented experience can open new possibilities to implement this automated image analyzing system in the routine practice. Our analyzed cases clearly showed that confocal microscopy, therefore, optical biopsy, could guide the clinician towards an accurate diagnosis before surgical removal. Moreover, we emphasized that the development of this technique increases the potential of future teledermatologic applications.

  12. Confocal scanning laser microscopy and quantitative image analysis: application to cream cheese microstructure investigation.

    PubMed

    Fenoul, F; Le Denmat, M; Hamdi, F; Cuvelier, G; Michon, C

    2008-04-01

    The naked eye observation of cream cheese confocal scanning laser microscopy images only provides qualitative information about its microstructure. Because those products are dense dairy gels, confocal scanning laser microscopy images of 2 different cream cheeses may appear close. Quantitative image analysis is then necessary to compensate for human eye deficiency (e.g., lack of precision, subjectivity). Two kinds of quantitative image analysis were performed in this study: high-order statistical methods and grayscale mathematical morphology. They were applied to study the microstructure of 3 different cream cheeses (same manufacturing process, same dry matter content, but different fat and protein contents). Advantages and drawbacks of both methods are reviewed. The way they may be used to describe cream cheese microstructure is also presented.

  13. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  14. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  15. Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin

    PubMed Central

    Mortensen, Luke J.; Glazowski, Christopher E.; Zavislan, James M.; DeLouise, Lisa A.

    2011-01-01

    Understanding the skin penetration of nanoparticles (NPs) is an important concern due to the increasing presence of NPs in consumer products, including cosmetics. Technical challenges have slowed progress in evaluating skin barrier and NP factors that contribute to skin penetration risk. To limit sampling error and other problems associated with histological processing, many researchers are implementing whole tissue confocal or multiphoton microscopies. This work introduces a fluorescence and reflectance confocal microscopy system that utilizes near-IR excitation and emission to detect near-IR lead sulfide quantum dots (QDs) through ex vivo human epidermis. We provide a detailed prediction and experimental analysis of QD detection sensitivity and demonstrate detection of QD skin penetration in a barrier disrupted model. The unique properties of near-IR lead-based QDs will enable future studies that examine the impact of further barrier-disrupting agents on skin penetration of QDs and elucidate mechanistic insight into QD tissue interactions at the cellular level. PMID:21698023

  16. [Confocal microscopy as an early relapse marker after keratoplasty due to Fusarium solani keratitis].

    PubMed

    Daas, L; Bischoff-Jung, M; Viestenz, A; Seitz, B; Viestenz, A

    2017-01-01

    In the case of therapy-resistant keratitis an infection with Fusarium solani should be taken into consideration as a rare but very severe eye disease. In the majority of cases Fusarium solani keratitis will result in a protracted clinical course despite aggressive medicinal and surgical interventions. We describe the case of a referred patient after intensive topical, intracameral and systemic antibacterial and antimycotic therapy as well as surgical treatment with emergency keratoplasty à chaud because of Fusarium solani keratitis. The patient presented to our department with persistent discomfort for further therapeutic interventions. Using confocal microscopy we were able to demonstrate the presence of fungal hyphae in the host cornea and the graft, which was important for making further surgical decisions. Furthermore, this emphasizes the role of confocal microscopy as an early relapse marker during the clinical monitoring.

  17. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  18. Analyzing cell structure and dynamics with confocal light scattering and absorption spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Le; Vitkin, Edward; Fang, Hui; Zaman, Munir M.; Andersson, Charlotte; Salahuddin, Saira; Modell, Mark D.; Freedman, Steven D.; Hanlon, Eugene B.; Itzkan, Irving; Perelman, Lev T.

    2007-02-01

    We recently developed a new microscopic optical technique capable of noninvasive analysis of cell structure and cell dynamics on the submicron scale [1]. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light scattering spectroscopy (LSS) and is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales on the order of 100 nm. To test the ability of CLASS microscopy to monitor cellular dynamics in vivo we performed experiments with human bronchial epithelial cells treated with DHA and undergoing apoptosis. The treated and untreated cells show not only clear differences in organelle spatial distribution but time sequencing experiments on a single cell show disappearance of certain types of organelles and change of the nuclear shape and density with the progression of apoptosis. In summary, CLASS microscopy provides an insight into metabolic processes within the cell and opens doors for the noninvasive real-time assessment of cellular dynamics. Noninvasive monitoring of cellular dynamics with CLASS microscopy can be used for a real-time dosimetry in a wide variety of medical and environmental applications that have no immediate observable outcome, such as photodynamic therapy, drug screening, and monitoring of toxins.

  19. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    PubMed

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  20. In vivo confocal microscopy in dermatology: from research to clinical application

    NASA Astrophysics Data System (ADS)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  1. UNDERSTANDING THE EFFECTS OF SURFACTANT ADDITION ON RHEOLOGY USING LASER SCANNING CONFOCAL MICROSCOPY

    SciTech Connect

    White, T

    2007-05-08

    The effectiveness of three dispersants to modify rheology was examined using rheology measurements and laser scanning confocal microscopy (LSCM) in simulated waste solutions. All of the dispersants lowered the yield stress of the slurries below the baseline samples. The rheology curves were fitted reasonably to a Bingham Plastic model. The three-dimensional LSCM images of simulants showed distinct aggregates were greatly reduced after the addition of dispersants leading to a lowering of the yield stress of the simulated waste slurry solutions.

  2. Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC)

    PubMed Central

    Wakamatsu, Tais Hitomi; Okada, Naoko; Kojima, Takashi; Matsumoto, Yukihiro; Ibrahim, Osama M.A.; Adan, Enrique Sato; Fukagawa, Kazumi; Katakami, Chikako; Tsubota, Kazuo; Shimazaki, Jun; Fujishima, Hiroshi

    2009-01-01

    Purpose To elucidate the status of the conjunctival inflammation in atopic keratoconjunctivitis (AKC) using laser scanning confocal microscopy and compare the relevant findings with conjunctival brush cytology in a prospective controlled study. Methods Twenty eyes from 20 AKC patients as well as 16 eyes from 16 age and sex matched normal subjects were studied. The subjects underwent tear film break-up time (BUT), fluorescein and Rose Bengal staining of the ocular surface, conjunctival confocal microscopy, Schirmer test, and brush cytology. Brush cytology specimens and in vivo confocal microscopy scans underwent evaluation for inflammatory cell densities. Results Brush cytology specimens and in vivo confocal microscopy scans from AKC patients revealed significantly higher numbers of inflammatory cells (p<0.05). Conjunctival inflammatory cell density showed a negative correlation with tear stability and a positive correlation with vital staining scores and conjunctival injection grades. The extent of conjunctival inflammation assessed by in vivo confocal microscopy showed a strong positive linear correlation with the inflammation status evaluated by brush cytology. The corneal inflammatory cell density assessed by in vivo confocal microscopy showed a significant negative correlation with tear stability and a positive linear correlation with corneal fluorescein staining. Conclusions Confocal scanning laser microscopy is an efficient, noninvasive, and a promising tool for the quantitative assessment of conjunctival inflammation, a parameter of this new technology which correlated well with subjective and objective ocular surface clinical findings. PMID:19693288

  3. Error analysis and tolerance allocation for confocal scanning microscopy using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yoo, Hongki; Kang, Dong-Kyun; Lee, SeungWoo; Lee, Junhee; Gweon, Dae-Gab

    2004-07-01

    The errors can cause the serious loss of the performance of a precision machine system. In this paper, we propose the method of allocating the alignment tolerances of the components and apply this method to Confocal Scanning Microscopy (CSM) to get the optimal tolerances. CSM uses confocal aperture, which blocks the out-of-focus information. Thus, it provides images with superior resolution and has unique property of optical sectioning. Recently, due to these properties, it has been widely used for measurement in biological field, medical science, material science and semiconductor industry. In general, tight tolerances are required to maintain the performance of a system, but a high cost of manufacturing and assembling is required to preserve the tight tolerances. The purpose of allocating the optimal tolerances is minimizing the cost while keeping the performance of the system. In the optimal problem, we set the performance requirements as constraints and maximized the tolerances. The Monte Carlo Method, a statistical simulation method, is used in tolerance analysis. Alignment tolerances of optical components of the confocal scanning microscopy are optimized, to minimize the cost and to maintain the observation performance of the microscopy. We can also apply this method to the other precision machine system.

  4. In vivo Confocal Microscopy in Differentiating Ipilimumab-Induced Anterior Uveitis from Metastatic Uveal Melanoma

    PubMed Central

    Kiratli, Hayyam; Mocan, Mehmet C.; İrkeç, Murat

    2016-01-01

    This report aims to describe the facilitating role of in vivo confocal microscopy in differentiating inflammatory cells from a metastatic process in a patient with uveal melanoma and multiple systemic metastases who developed anterior uveitis while under ipilimumab treatment. A 43-year-old woman developed systemic metastases 11 months after treatment of amelanotic choroidal melanoma in her right eye with 30 Gy fractionated stereotactic radiotherapy. She first received temozolomide and then 4 cycles of ipilimumab 3 mg/kg/day. After the third cycle, severe anterior uveitis with coarse pigment clumps on the lens was seen in the left eye. Her left visual acuity declined from 20/20 to 20/80. Confocal microscopy revealed globular keratic precipitates with hyperreflective inclusions and endothelial blebs all suggestive of granulomatous uveitis. The uveitic reaction subsided after a 3-week course of topical corticosteroids, and her visual acuity was 20/20 again. Although uveal melanoma metastatic to the intraocular structures of the fellow eye is exceedingly rare and metastasis masquerading uveitis without any identifiable uveal lesion is even more unusual, it was still mandatory to rule out this distant possibility in our particular patient who already had widespread systemic metastases. Confocal microscopy was a useful complementary tool by identifying the inflammatory features of the keratic precipitates. PMID:27790127

  5. Visualization and quantification of dentin structure using confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Wilder-Smith, Petra B.; Krasieva, Tatiana B.; Arrastia-Jitosho, Anna-Marie A.; Liaw, Lih-Huei L.; Matsumoto, Koukichi

    1997-07-01

    Dentin was visualized using a new fluorescence technique and confocal laser scanning microscopy. Thirty extracted human teeth showing no clinical signs of caries were investigated. All teeth were horizontally sectioned to approximately 200 micrometers thickness and sections were subjected to different pretreatment conditions as follows: vacuum only, ultrasonication only, sodium hypochlorite only, sodium hypochlorite and vacuum, sodium hypochlorite and ultrasonication, and a combination of sodium hypochlorite, vacuum, and ultrasonication. Some samples were left untreated to serve as control. Following pretreatment, rhodamine 123 fluorescent dye was used for staining at concentrations ranging from 10-3 to 10-7 M for 1 to 24 h at pH 6.0, 6.5, or 7.4. Optical staining occurred at pH 7.4 and concentrations >= 10-5 M over 3 h or longer. Surface images obtained using confocal laser scanning microscopy were similar to those observed by scanning electron microscopy without the need for sample- altering conventional scanning electron microscope preparation techniques. Subsurface imaging to a depth of approximately 60 micrometers was achieved using confocal laser microscope techniques. This fluorescence technique offers a useful new alternative for visualization and quantification of dentin.

  6. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  7. Application of Confocal and Spectrally Resolved Techniques to Scanning Laser Photoluminescence Microscopy.

    NASA Astrophysics Data System (ADS)

    Bowron, John William

    Both confocal microscopes and photoluminescence wafer mapping systems are well-developed technologies, however the application of confocal techniques to photoluminescence microscopy is not common in the literature. While developing this microscope a novel design for a spectrally-resolved detection arm was implemented. The microscope shows full confocal capabilities in reflected light operation, good spectral sensitivity in the visible region and a range of possible spectral resolutions between 10 nm and 0.1 nm, however the axial response in photoluminescence operation was found to be broader than expected by a factor of two. Calculations were performed to model and understand the new microscope. Simulations of the axial-response of an infinity-connected microscope in reflected light agreed well with experimental data. A new prediction showed that under certain circumstances the maximum signal is not always obtained at best focus. This prediction was confirmed later by experiment. These calculations were extended to understand the broadening observed in photoluminescence imaging. Three factors were considered: absorption in the material, diffusion of photo-excited carriers and the high refractive index of the material. The utility of the microscope was demonstrated by using it to image several different samples. Near-infrared fluorescence imaging was demonstrated for a stained biological specimen. Auto-fluorescence imaging was demonstrated using an ultra-violet laser and spectrally-resolved images were used to distinguish between various materials in the specimen. Confocal image stacking was demonstrated in photoluminescence on a CuO sample. Confocal photoluminescence images were shown to have higher spatial resolution than non-confocal images. Quantitative information was obtained for a SiC sample containing several polytypes. The optical measurements were then correlated with X-ray diffraction measurements in order to arrive at a polytype identification scheme

  8. The Unique Pollen Morphology of Duparquetia (Leguminosae: Caesalpinioideae): Developmental Evidence of Aperture Orientation Using Confocal Microscopy

    PubMed Central

    BANKS, HANNAH; FEIST-BURKHART, SUSANNE; KLITGAARD, BENTE

    2006-01-01

    • Background and Aims The phylogenetic affinities of the aberrant monotypic genus Duparquetia (subfamily Caesalpinioideae) are at present unresolved. Preliminary results from molecular analyses suggest a basal, isolated position among legumes. A study of Duparquetia pollen was carried out to provide further morphological characters to contribute to multi-data set analyses. Understanding the development of Duparquetia pollen was necessary to clarify the orientation of the apertures. • Methods Pollen grains and developing microspores were examined using light microscopy, confocal microscopy and scanning electron microscopy. Evidence for the orientation of the apertures was provided by the examination of microspores within developing tetrads, using (a) confocal microscopy to locate the position of the ectoapertures, and (b) light microscopy and Alcian blue stain to locate the position of the endoapertures. • Key Results Confocal microscopy has been used for the first time to examine developing microspores in order to obtain information on ectoapertures that was unavailable using other techniques. Pollen in Duparquetia develops in tetrahedral tetrads as in other eudicots, with the apertures arranged in a modified pattern following Fischer's rule. Pollen grains are asymmetrical and have one equatorial-encircling ectoaperture with two equatorial endoapertures, a unique feature in Leguminosae, and in eudicots. • Conclusions The pollen morphology of Duparquetia is so unusual that it provides little information to help determine its closest relatives. However, it does fit with a pattern of greater pollen morphological diversity in the first-branching caesalpinioid legume groups than in the more derived clades. The latitudinal ectoaperture of Duparquetia is unique within the Fabales and eudicot clades, resembling more closely the monosulcate pollen found in monocots and basal angiosperms; however, developmental patterns are recognizably similar to those of all other

  9. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    PubMed

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization.

  10. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    PubMed Central

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  11. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  12. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    PubMed

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  13. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction.

    PubMed

    Verrier, Nicolas; Fournier, Corinne; Fournel, Thierry

    2015-06-01

    In-line digital holography is a valuable tool for sizing, locating, and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, inverse problem approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with inverse problem approaches improves the estimation of particle size and 3D position. Here, we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D position are jointly optimized from video holograms acquired with a digital holographic microscopy setup based on a low-end microscope objective (×20, NA 0.5). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2×2×5  nm3 for position under additive white Gaussian noise assumption.

  14. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  15. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  16. Fluorescence fluctuation microscopy to reveal 3D architecture and function in the cell nucleus.

    PubMed

    Lenser, Thorsten; Weisshart, Klaus; Ulbricht, Tobias; Klement, Karolin; Hemmerich, Peter

    2010-01-01

    The three-dimensional (3D) architecture of the cell nucleus is determined not only by the presence of subnuclear domains, such as the nuclear envelope, chromosome territories, and nuclear bodies, but also by smaller domains which form in response to specific functions, such as RNA transcription, DNA replication, and DNA repair. Since both stable and dynamic structures contribute to nuclear morphology, it is important to study the biophysical principles of the formation of macromolecular assemblies within the nucleus. For this purpose, a variety of fluorescence fluctuation microscopy techniques can be applied. Here, we summarize our current knowledge on the 3D architecture of the mammalian cell nucleus and describe in detail how the assembly of functional nuclear protein complexes can be analyzed in living cells using fluorescence bleaching techniques, fluorescence correlation spectroscopy, raster image correlation spectroscopy, and mathematical modeling. In conclusion, the application of all these techniques in combination is a powerful tool to assess the full spectrum of nuclear protein dynamics and to understand the biophysical principles underlying nuclear structure and function.

  17. Automated Atom-By-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data.

    PubMed

    Dagan, Michal; Gault, Baptiste; Smith, George D W; Bagot, Paul A J; Moody, Michael P

    2017-03-20

    An automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen's surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM's potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of "out of sequence" events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.

  18. A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy.

    PubMed

    Voss, Neil R; Lyumkis, Dmitry; Cheng, Anchi; Lau, Pick-Wei; Mulder, Anke; Lander, Gabriel C; Brignole, Edward J; Fellmann, Denis; Irving, Christopher; Jacovetty, Erica L; Leung, Albert; Pulokas, James; Quispe, Joel D; Winkler, Hanspeter; Yoshioka, Craig; Carragher, Bridget; Potter, Clinton S

    2010-03-01

    Structure determination of a novel macromolecular complex via single-particle electron microscopy depends upon overcoming the challenge of establishing a reliable 3-D reconstruction using only 2-D images. There are a variety of strategies that deal with this issue, but not all of them are readily accessible and straightforward to use. We have developed a "toolbox" of ab initio reconstruction techniques that provide several options for calculating 3-D volumes in an easily managed and tightly controlled work-flow that adheres to standard conventions and formats. This toolbox is designed to streamline the reconstruction process by removing the necessity for bookkeeping, while facilitating transparent data transfer between different software packages. It currently includes procedures for calculating ab initio reconstructions via random or orthogonal tilt geometry, tomograms, and common lines, all of which have been tested using the 50S ribosomal subunit. Our goal is that the accessibility of multiple independent reconstruction algorithms via this toolbox will improve the ease with which models can be generated, and provide a means of evaluating the confidence and reliability of the final reconstructed map.

  19. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues

    PubMed Central

    Leigh, Steven Y.; Chen, Ye; Liu, Jonathan T.C.

    2014-01-01

    A strategy is presented to enable optical-sectioning microscopy with improved contrast and imaging depth using low-power (0.5 - 1 mW) diode laser illumination. This technology combines the inherent strengths of focal-modulation microscopy and dual-axis confocal (DAC) microscopy for rejecting out-of-focus and multiply scattered background light in tissues. The DAC architecture is unique in that it utilizes an intersecting pair of illumination and collection beams to improve the spatial-filtering and optical-sectioning performance of confocal microscopy while focal modulation selectively ‘labels’ in-focus signals via amplitude modulation. Simulations indicate that modulating the spatial alignment of dual-axis beams at a frequency f generates signals from the focal volume of the microscope that are modulated at 2f with minimal modulation of background signals, thus providing nearly an order-of-magnitude improvement in optical-sectioning contrast compared to DAC microscopy alone. Experiments show that 2f lock-in detection enhances contrast and imaging depth within scattering phantoms and fresh tissues. PMID:24940534

  20. Analysis of incomplete excisions of basal-cell carcinomas after breadloaf microscopy compared with 3D-microscopy: a prospective randomized and blinded study.

    PubMed

    Boehringer, Alexandra; Adam, Patrick; Schnabl, Saskia; Häfner, Hans-Martin; Breuninger, Helmut

    2015-08-01

    Basal-cell carcinomas may show irregular, asymmetric subclinical growth. This study analyzed the efficacy of 'breadloaf' microscopy (serial sectioning) and three-dimensional (3D) microscopy in detecting positive tumor margins. Two hundred eighty-three (283) tumors (51.2%) were put into the breadloaf microscopy group; 270 tumors (48.8%) into the 3D microscopy group. The position of any detected tumor outgrowths was identified in clock face fashion. The time required for cutting and embedding the specimens and the examination of the microscopic slides was measured. Patient/tumor characteristics and surgical margins did not differ significantly. Tumor outgrowths at the excision margin were found in 62 of 283 cases (21.9%) in the breadloaf microscopy group and in 115 of 270 cases (42.6%) in the 3D microscopy group, constituting a highly significant difference (p < 0.001). This difference held true with incomplete excision of fibrosing (infiltrative/sclerosing/morpheaform) tumors [32.9% in the breadloaf microscopy group and 57.5% in the 3D microscopy group (p = 0.003)] and also with solid (nodular) tumors [16.1 and 34.2%, respectively (p < 0.001)]. The mean overall examination time required showed no important difference. In summary, for detection of tumor outgrowths, 3D microscopy has almost twice the sensitivity of breadloaf microscopy, particularly in the situation of aggressive/infiltrative carcinomas.

  1. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bonfigli, Francesca; Hampai, Dariush; Dabagov, Sultan B.; Montereali, Rosa Maria

    2016-08-01

    Solid-state radiation imaging detectors based on photoluminescent colour centres in lithium fluoride (LiF) crystals have been successfully tested for both advanced 2D and 3D characterizations of X-ray polycapillary optics by a table-top laboratory system. Polycapillary optics can control X-ray beams propagation and allows obtaining quasi-parallel beam (half-lens) or focused beams (full-lens). The combination of a fine-focused micro X-ray tube and a polycapillary lens can provide the high intensity radiation fluxes that are necessary for high resolution X-ray imaging. In this paper we present novel results about advanced characterization of these complex optics by 2D as well as 3D confocal laser fluorescence microscopy of X-ray irradiated LiF crystal detectors. Two dimensional high spatial resolution images on a wide field of view of transmitted X-rays through a semi-lens and 3D direct inspection of the coloured volumes produced in LiF crystals by both focused and parallel X-ray beam transmitted by a full and a semi-lens, respectively, as well as their 3D reconstructions were obtained. The results show that the photoluminescent colour centres volume in LiF crystals combined with an optical sectioning reading system provide information about tomography of transmitted X-ray beams by policapillary optics in a single exposure process. For the first time, the use of LiF crystal plates as versatile radiation imaging luminescent detectors have been used to characterize the operation of polycapillary optics as X-ray lens, in focusing and parallel mode.

  2. Enhanced quantitative confocal microscopy and its application for the measurement of tympanic membrane thickness

    NASA Astrophysics Data System (ADS)

    Kuypers, Liesbeth

    2005-11-01

    This work shows that confocal microscopy allows a quantitative study of delicate 3D-biotissue in fresh condition, thus avoiding histological preparation processes. The developed procedure results in exact and accurate thickness data for mum-sized objects with a measuring error of less than 1mum. It is, however, necessary to take into account the effect of focal shift in the case of refractive index mismatch to obtain such precise data. The use of the proposed method is advised instead of the use of a paraxial approximation for the axial scale correction because the method improves measurement precision by a factor of four. The axial scaling correction factors obtained in this work show that for most practical situations the correction cannot be ignored when one wants to obtain precise quantitative data. The thickness correction method can also be used to determine with high accuracy the index of refraction of biological tissue. The thickness measurement method was applied to fresh, untreated tympanic membranes of the gerbil, the cat and the human. Thickness had to be measured at many points as it differs strongly across the membrane. Similar thickness distributions were found in all pars tensas measured even across the species studied: (1) a very thin, central region with a rather constant thickness, curving as a horse shoe upwards around the manubrium (thickness: gerbil: about 7mum, cat: about 10mum, human: large inter-specimen variation: 40mum-120mum), (2) a thinnest zone at the inferior side, (3) a thicker zone at the supero-anterior side, (4) superior to the umbo, an anterior region thicker than the posterior region, (5) maximal thicknesses in a very small region near the entire manubrium and the entire annular periphery. The pars flaccida is found to be thicker than the pars tensa. It shows no central homogeneous zone: the thickness varies irregularly and very rapidly over short distances. Arbitrarily spaced bumps and notches are present over the entire pars

  3. Fast imaging with inelastically scattered electrons by off-axis chromatic confocal electron microscopy.

    PubMed

    Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne

    2014-04-25

    We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840  eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.

  4. Towards real-time image deconvolution: application to confocal and STED microscopy

    PubMed Central

    Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.

    2013-01-01

    Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127

  5. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM).

    PubMed

    Turnbull, Lynne; Strauss, Michael P; Liew, Andrew T F; Monahan, Leigh G; Whitchurch, Cynthia B; Harry, Elizabeth J

    2014-09-29

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques - stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.

  6. Super-resolution Imaging of the Cytokinetic Z Ring in Live Bacteria Using Fast 3D-Structured Illumination Microscopy (f3D-SIM)

    PubMed Central

    Liew, Andrew T. F.; Monahan, Leigh G.; Whitchurch, Cynthia B.; Harry, Elizabeth J.

    2014-01-01

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide. PMID:25286090

  7. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Li, Yongbiao; Larson, Bjorg; Peterson, Gary; Seltzer, Emily; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2013-06-01

    Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  8. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo.

    PubMed Central

    Delaney, P M; King, R G; Lambert, J R; Harris, M R

    1994-01-01

    Fibre optic confocal imaging (FOCI) is a new type of microscopy which has been recently developed (Delaney et al. 1993). In contrast to conventional light microscopy, FOCI and other confocal techniques allow clear imaging of subsurface structures within translucent objects. However, unlike conventional confocal microscopes which are bulky (because of a need for accurate alignment of large components) FOCI allows the imaging end to be miniaturised and relatively mobile. FOCI is thus particularly suited for clear subsurface imaging of structures within living animals or subjects. The aim of the present study was to assess the suitability of using FOCI for imaging of subsurface structures within the colon, both in vitro (human and rat biopsies) and in vivo (in rats). Images were obtained in fluorescence mode (excitation 488 nm, detection above 515 nm) following topical application of fluorescein. By this technique the glandular structure of the colon was imaged. FOCI is thus suitable for subsurface imaging of the colon in vivo. Images Fig. 2 Fig. 3 PMID:8157487

  9. Immuno- and correlative light microscopy-electron tomography methods for 3D protein localization in yeast.

    PubMed

    Mari, Muriel; Geerts, Willie J C; Reggiori, Fulvio

    2014-10-01

    Compartmentalization of eukaryotic cells is created and maintained through membrane rearrangements that include membrane transport and organelle biogenesis. Three-dimensional reconstructions with nanoscale resolution in combination with protein localization are essential for an accurate molecular dissection of these processes. The yeast Saccharomyces cerevisiae is a key model system for identifying genes and characterizing pathways essential for the organization of cellular ultrastructures. Electron microscopy studies of yeast, however, have been hampered by the presence of a cell wall that obstructs penetration of resins and cryoprotectants, and by the protein dense cytoplasm, which obscures the membrane details. Here we present an immuno-electron tomography (IET) method, which allows the determination of protein distribution patterns on reconstructed organelles from yeast. In addition, we extend this IET approach into a correlative light microscopy-electron tomography procedure where structures positive for a specific protein localized through a fluorescent signal are resolved in 3D. These new investigative tools for yeast will help to advance our understanding of the endomembrane system organization in eukaryotic cells.

  10. Video rate confocal laser scanning reflection microscopy in the investigation of normal and neoplastic living cell dynamics.

    PubMed

    Vesely, P; Boyde, A

    1996-01-01

    The introduction of video rate confocal laser scanning microscopes (VRCLSM) used in reflection mode with high magnification, high aperture objective lenses and with further magnification by a zoom facility allowed the first detailed observations of the activity of living cytoplasm and offered a new tool for investigation of the structural transition from the living state to the specimen fixed for electron microscopy (EM). We used a Noran Odyssey VRCLSM in reflection (backscattered) mode. A greater degree of oversampling and more comfortable viewing of the liver or taped video image was achieved at zoom factor 5, giving a display monitor field width of 10 microns. A series of mesenchyme derived cell lines--from normal cells to sarcoma cells of different malignancy--was used to compare behaviour of the observed intracellular structures and results of fixation. We contrasted the dynamic behaviour of fine features in the cytoplasm of normal and neoplastic living cells and changes induced by various treatments. The tubulomembraneous 3D structure of cytoplasm in living cells is dynamic with motion observable at the new limits of resolution provided by VRCLSM. All organelles appear integrated into one functional compartment supporting the continuous 3D trafficking of small particles (vesicles). This integrated dynamic spatial network (IDSN) was found to be largest in neoplastic cells.

  11. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens.

    PubMed

    Jeong, Hyeong-jun; Yoo, Hongki; Gweon, DaeGab

    2016-02-22

    We propose a new structure of confocal imaging system based on a direct-view confocal microscope (DVCM) with an electrically tunable lens (ETL). Since it has no mechanical moving parts to scan both the lateral (x-y) and axial (z) directions, the DVCM with an ETL allows for high-speed 3-dimensional (3-D) imaging. Axial response and signal intensity of the DVCM were analyzed theoretically according to the pinhole characteristics. The system was designed to have an isotropic spatial resolution of 20 µm in both lateral and axial direction with a large field of view (FOV) of 10 × 10 mm. The FOV was maintained according to the various focal shifts as a result of an integrated design of an objective lens with the ETL. The developed system was calibrated to have linear focal shift over a range of 9 mm with an applied current to the ETL. The system performance of 3-D volume imaging was demonstrated using standard height specimens and a dental plaster.

  12. Next-generation endomyocardial biopsy: the potential of confocal and super-resolution microscopy.

    PubMed

    Crossman, David J; Ruygrok, Peter N; Hou, Yu Feng; Soeller, Christian

    2015-03-01

    Confocal laser scanning microscopy and super-resolution microscopy provide high-contrast and high-resolution fluorescent imaging, which has great potential to increase the diagnostic yield of endomyocardial biopsy (EMB). EMB is currently the gold standard for identification of cardiac allograft rejection, myocarditis, and infiltrative and storage diseases. However, standard analysis is dominated by low-contrast bright-field light and electron microscopy (EM); this lack of contrast makes quantification of pathological features difficult. For example, assessment of cardiac allograft rejection relies on subjective grading of H&E histology, which may lead to diagnostic variability between pathologists. This issue could be solved by utilising the high contrast provided by fluorescence methods such as confocal to quantitatively assess the degree of lymphocytic infiltrate. For infiltrative diseases such as amyloidosis, the nanometre resolution provided by EM can be diagnostic in identifying disease-causing fibrils. The recent advent of super-resolution imaging, particularly direct stochastic optical reconstruction microscopy (dSTORM), provides high-contrast imaging at resolution approaching that of EM. Moreover, dSTORM utilises conventional fluorescence dyes allowing for the same structures to be routinely imaged at the cellular scale and then at the nanoscale. The key benefit of these technologies is that the high contrast facilitates quantitative digital analysis and thereby provides a means to robustly assess critical pathological features. Ultimately, this technology has the ability to provide greater accuracy and precision to EMB assessment, which could result in better outcomes for patients.

  13. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  14. In vivo observation of papillae of the human tongue using confocal laser scanning microscopy.

    PubMed

    Just, Tino; Stave, Joachim; Pau, Hans Wilhelm; Guthoff, Rudolf

    2005-01-01

    The aim of this investigation was to visualize the epithelial structures of the tongue using confocal laser scanning microscopy (LSM). The human tongue epithelium of 28 healthy subjects, aged 21-67 years, mean age 38 years, 14 women and 14 men, was examined in vivo by LSM. Using LSM, a combination of the Heidelberg Retina Tomograph HRT II and the Rostock Cornea Module, up to 800-fold magnifications were obtained. On the tongue surface both filiform and fungiform papillae and their taste pores were easily identified. The epithelium of the tongue with its subcellular structures could be observed up to a depth of 50 microm, cellular structures up to 150 microm and subepithelial vessels up to 300 microm. Additionally the papillary crests and blood flow were visible. Confocal LSM seems suitable for noninvasive in vivo examination of the tongue. The hydraulic z scan, the manual start setting and the measurement of the depth allow a clear classification of the observed structures.

  15. The use of reflectance confocal microscopy for examination of benign and malignant skin tumors

    PubMed Central

    Wielowieyska-Szybińska, Dorota; Białek-Galas, Kamila; Podolec, Katarzyna

    2014-01-01

    Reflectance confocal microscopy (RCM) is a modern, non-invasive diagnostic method that enables real-time imaging of epidermis and upper layers of the dermis with a nearly histological precision and high contrast. The application of this technology in skin imaging in the last few years has resulted in the progress of dermatological diagnosis, providing virtual access to the living skin erasing the need for conventional histopathology. The RCM has a potential of wide application in the dermatological diagnostic process with a particular reference to benign and malignant skin tumors. This article provides a summary of the latest reports and previous achievements in the field of RCM application in the diagnostic process of skin neoplasms. A range of dermatological indications and general characteristics of confocal images in various types of tumors are presented. PMID:25610353

  16. From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy

    PubMed Central

    Spiegelhalter, Coralie; Tosch, Valérie; Hentsch, Didier; Koch, Marc; Kessler, Pascal; Schwab, Yannick; Laporte, Jocelyn

    2010-01-01

    Background In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM). Methodology To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1) phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1) expression. Conclusion Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM. PMID:20140253

  17. Combined analysis of in situ hybridization, cell cycle and structural markers using reflectance and immunofluorescence confocal microscopy.

    PubMed

    Linares-Cruz, G; Millot, G; De Cremoux, P; Vassy, J; Olofsson, B; Rigaut, J P; Calvo, F

    1995-01-01

    A method for the simultaneous detection of mRNA by reflectance in situ hybridization (RISH), cell cycle and structural markers by immunofluorescence using confocal laser scanning microscopy is presented. The mRNA expression of two ras-related genes rhoB and rhoC was analysed in human breast cancer cell lines and human histological specimens (breast cancer tissues and skin biopsies). In breast cancer cell lines, the conditions were optimized to detect RNA-RNA hybrids and DNA synthesis after pulse-labelling with bromodeoxyuridine. Endonuclease-exonuclease digestion, which allows the accessibility to specific antibodies of halogenated pyrimidine molecules, was carried out following ISH. Finally, cytokeratin or vimentin staining was performed. The detection of signals, arising from 1-nm colloidal gold particles without silver enhancement, by reflectance confocal laser scanning microscopy is described. Bromodeoxybiridine DNA markers and cytokeratin/vimentin staining were detected concomitantly using different fluorochromes. To allow comparative expression of two related genes, the mRNA of rhoB and rhoC were detected using digoxigenin- or biotin-labelled riboprobes and, after 3-D imaging, a detailed analysis by optical horizontal (x, y) and vertical (x, z) sectioning was undertaken. The subsequent bromodeoxyuridine detection procedure permitted to us explore the specific transcription of these two genes during S and non-S phases. This method allows the identification and localization of several subcellular components in cells within a complex tissue structure and makes it possible to analyse further transcript localization in relation to the function of the encoded protein and to the cell cycle.

  18. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study

    PubMed Central

    Reddy, D Shyam Prasad; Sherlin, Herald J; Ramani, Pratibha; Prakash, P Ajay

    2012-01-01

    Context: Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. Aims: The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Settings and Design: Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Materials and Methods: Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology). The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO) staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Statistical Analysis Used: Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Results: Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. Conclusion: The study showed that the presence of Barr body in buccal

  19. Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography

  20. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy.

    PubMed

    Krause, Marina; Te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m(-1), force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  1. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy

    PubMed Central

    Cardinale, Massimiliano

    2014-01-01

    No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology. PMID:24639675

  2. Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy.

    PubMed

    Yang, Ya-Li; Leone, Lindsay M; Kaufman, Laura J

    2009-10-07

    We quantitatively compare data obtained from imaging two-dimensional slices of three-dimensional unlabeled and fluorescently labeled collagen gels with confocal reflectance microscopy (CRM) and/or confocal fluorescence microscopy (CFM). Different network structures are obtained by assembling the gels over a range of concentrations at various temperatures. Comparison between CRM and CFM shows that the techniques are not equally sensitive to details of network structure, with CFM displaying higher fidelity in imaging fibers parallel to the optical axis. Comparison of CRM of plain and labeled collagen gels shows that labeling itself induces changes in gel structure, chiefly through inhibition of fibril bundling. Despite these differences, image analyses carried out on two-dimensional CFM and CRM slices of collagen gels reveal identical trends in structural parameters as a function of collagen concentration and gelation temperature. Fibril diameter approximated from either CRM or CFM is in good accord with that determined via electron microscopy. Two-dimensional CRM images are used to show that semiflexible polymer theory can relate network structural properties to elastic modulus successfully. For networks containing bundled fibrils, it is shown that average structural diameter, rather than fibril diameter, is the length scale that sets the magnitude of the gel elastic modulus.

  3. Cross-Sectional Shape of Rat Mesenteric Arterioles at Branching Studied by Confocal Laser Microscopy

    NASA Astrophysics Data System (ADS)

    Nakano, Atushi; Minamiyama, Motomu; Niimi, Hideyuki

    This study was aimed to investigate the cross-sectional shape of mesenteric arterioles at branching, using confocal laser microscopy. Wistar rats (8 weeks, male) were anesthetized with thiobutabarbital sodium. Blood flow and microvascular network in the mesentery were observed using video microscopy. The rat intestine with mesentery was extracted and the intestinal vasculature was perfused with Krebs-Ringer and then fixed with paraformaldehyde under a static pressure of 100mmHg. A section of mesentery was isolated from the intestine, and spread up to the in vivo geometry based on the intravital microscopic observation. The mesentery section was stained with tetramethyl rhodamine isothiocyanate (TRITC)-phalloidin. The samples were observed under a confocal laser microscope. The cross-sectional image was re-sliced to measure the cross-sectional area and major/minor axes of the best fitting ellipse. The aspect ratio was defined in terms of the minor/major diameter ratio. The extended focus image of mesenteric arterioles showed that the cross-sectional shape was not circular but elliptic-like. The cross-sectional area of the parent vessel decreased from proximal to distal positions. The mean aspect ratio of the parent vessel was approximately 0.5, while that of the branching vessel was approximately 0.8. The flattened shape and variation of the cross-sectional area of arterioles requires some correction of in vivo data of the two-dimensional mesenteric microvasculature obtained using intravital microscopy.

  4. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  5. Re-description of Craspodema reflectans (Nematoda, Cyatholaimidae) using confocal laser scanning microscopy.

    PubMed

    Semprucci, Federica; Burattini, Sabrina

    2015-06-12

    Craspodema reflectans, erected by Gerlach 1964, is here re-described from some specimens recently found in the Maldivian archipelago and the implication of the new findings for the taxonomy of the Craspodema genus is discussed. Accordingly, an emended diagnosis of Craspodema genus and C. reflectans species are proposed. New data are also provided with the aid of the confocal laser scanning microscopy, using the natural fluorescence of the nematodes. The approach described here lays new foundations for the study of Museum collection material and it may be decisive for capture of new morphological details.

  6. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    SciTech Connect

    Wanjara, P. . E-mail: priti.wanjara@cnrc-nrc.gc.ca; Brochu, M.; Jahazi, M.

    2005-03-15

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region.

  7. Characterization of microporous membranes using confocal scanning laser microscopy in fluorescence mode

    NASA Astrophysics Data System (ADS)

    Charcosset, C.; Bernengo, J.-C.

    2000-12-01

    Confocal Scanning Laser Microscopy (CSLM) in fluorescence mode was used to characterize microporous membranes. Two microfiltration membranes were investigated: a mixed ester (cellulose nitrate/cellulose acetate) 1.2 μm-rated membrane and a polycarbonate track-etched membrane with cylindrical pores of 2 μm diameter. Optical sections of the membranes stained with rhodamine and mounted in glycerol were performed at 1 μm intervals, from 0 to 10 μm. CSLM was found useful for microporous membrane characterization, as it gives some insight into bulk membrane morphology.

  8. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  9. Simultaneous confocal fluorescence microscopy and optical coherence tomography for drug distribution and tissue integrity assessment

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; LaCroix, Jeffrey; Henderson, Marcus; Katz, David; Wax, Adam

    2011-03-01

    The effectiveness of microbicidal gels, topical products developed to prevent infection by sexually transmitted diseases including HIV/AIDS, is governed by extent of gel coverage, pharmacokinetics of active pharmaceutical ingredients (APIs), and integrity of vaginal epithelium. While biopsies provide localized information about drug delivery and tissue structure, in vivo measurements are preferable in providing objective data on API and gel coating distribution as well as tissue integrity. We are developing a system combining confocal fluorescence microscopy with optical coherence tomography (OCT) to simultaneously measure local concentrations and diffusion coefficients of APIs during transport from microbicidal gels into tissue, while assessing tissue integrity. The confocal module acquires 2-D images of fluorescent APIs multiple times per second allowing analysis of lateral diffusion kinetics. The custom Fourier domain OCT module has a maximum a-scan rate of 54 kHz and provides depth-resolved tissue integrity information coregistered with the confocal fluorescence measurements. The combined system is validated by imaging phantoms with a surrogate fluorophore. Time-resolved API concentration measured at fixed depths is analyzed for diffusion kinetics. This multimodal system will eventually be implemented in vivo for objective evaluation of microbicide product performance.

  10. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  11. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  12. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  13. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  14. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  15. Clean localization super-resolution microscopy for 3D biological imaging

    SciTech Connect

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-15

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  16. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented.

  17. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions.

  18. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  19. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    PubMed Central

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  20. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium

  1. One shot confocal microscopy based on wavelength/space conversion by use of multichannel spectrometer

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shuji; Hase, Eiji; Ichikawa, Ryuji; Mnamikawa, Takeo; Yasui, Takeshi; Yamamoto, Hirotugu

    2016-03-01

    Confocal laser microscope (CLM) has been widely used in the fields of the non-contact surface topography, biomedical imaging, and other applications, because of two-dimensional (2D) or three-dimensional (3D) imaging capability with the confocal effect and the stray light elimination. Although the conventional CLM has acquired the 2D image by mechanical scanning of the focused beam spot, further reduction of image acquisition time and the robustness to various disturbances are strongly required. To this end, it is essential to omit mechanical scanning for the image acquisition. In this article, we developed the scan-less, full-field CLM by combination of the line-focused CLM with the wavelength/1D-space conversion. This combination enables us to form the 2D focal array of a 2D rainbow beam on a sample and to encode the 2D image information of a sample on the 2D rainbow beam. The image-encoded 2D rainbow beam was decoded as a spectral line image by a multi-channel spectrometer equipped with a CMOS camera without the need for the mechanical scanning. The confocal full-field image was acquired during 0.23 ms with the lateral resolution of 26.3μm and 4.9μm for the horizontal and vertical directions, respectively, and the depth resolution of 34.9μm. We further applied this scan-less, full-field CLM for biomedical imaging of a sliced specimen and non-contact surface topography of an industry products. These demonstrations highlight a high potential of the proposed scan-less, full-field CLM.

  2. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  3. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy

    PubMed Central

    Huang, Chao; Sachse, Frank B.; Hitchcock, Robert W.; Kaza, Aditya K.

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2±0.3% and 98.0±0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2±0.3% and 94.0±2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease. PMID:26808149

  4. Cuticle and subsurface ornamentation of intact plant leaf epidermis under confocal and superresolution microscopy.

    PubMed

    Urban, Michael A; Barclay, Richard S; Sivaguru, Mayandi; Punyasena, Surangi W

    2016-04-25

    Plant cuticle micromorphology is an invaluable tool in modern ecology and paleoecology. It has expanded our knowledge of systematic relationships among diverse plant groups and can be used to identify fossil plants. Furthermore, fossil plant leaf micromorphology is used for reconstructing past environments, most notably for estimating atmospheric CO2 concentration. Here we outline a new protocol for imaging plant cuticle for archival and paleoecological applications. Traditionally, both modern reference and fossil samples undergo maceration with subsequent imaging via environmental SEM, widefield fluorescence, or light microscopy. In this paper, we demonstrate the capabilities of alternative preparation and imaging methods using confocal and superresolution microscopy with intact leaf samples. This method produces detailed three-dimensional images of surficial and subsurface structures of the intact leaf. Multiple layers are captured simultaneously, which previously required independent maceration and microtome steps. We compared clearing agents (chloral hydrate, KOH, and Visikol); mounting media (Eukitt and Hoyer's); fluorescent stains (periodic acid Schiff, propidium iodide); and confocal vs. superresolution microscopes. We conclude that Eukitt is the best medium for long-term preservation and imaging. Because of nontoxicity and ease of procurement, Visikol made for the best clearing agent. Staining improves contrast and under most circumstances PAS provided the clearest images. Supperresolution produced higher clarity images than traditional confocal, but the information gained was minimal. This new protocol provides the botanical and paleobotanical community an alternative to traditional techniques. Our proposed workflow has the net benefit of being more efficient than traditional methods, which only capture the surface of the plant epidermis. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc.

  5. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    PubMed

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  6. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study.

    PubMed Central

    Erie, Jay C

    2003-01-01

    PURPOSE: To perform a sequential quantitative analysis of corneal wound healing after photorefractive keratectomy (PRK) by using confocal microscopy in vivo. METHODS: In a prospective, nonrandomized, comparative trial performed in an institutional setting, 24 eyes of 14 patients received PRK to correct refractive errors between -1.25 and -5.75 D. Central corneas were examined preoperatively and at 1 day, 5 days, and 1, 3, 6, 12, 24, and 36 months after PRK by using confocal microscopy. A masked observer randomly examined 3 to 6 confocal scans per eye per visit to determine epithelial and stromal thickness, keratocyte density in 5 anterior-posterior stromal layers, corneal nerve density in the subbasal region and the stroma, and corneal light backscattering (corneal haze). RESULTS: Epithelial thickness increased 21% (P < .001) by 12 months after PRK and thereafter remained unchanged to 36 months after PRK. There was no change in stromal thickness between 1 and 36 months after PRK (P = .35). The dense keratocyte population in the preoperative anterior 10% of the stroma (32,380 +/- 5,848 cells/mm3) that was partially or completely removed during photoablation was not reconstituted at 36 months in the anterior 10% of the post-PRK stroma (17,720 +/- 4,308 cells/mm3, P < .001). Subbasal nerve fiber bundle density was decreased 60% at 12 months after PRK (P < .001) before returning to densities at 24 and 36 months after PRK that were not significantly different from preoperative values (P = 1.0). Activated keratocytes and corneal haze peaked at 3 months after PRK. CONCLUSIONS: Wounding of the cornea by PRK alters the normal structure, cellularity, and innervation of the cornea for up to 36 months. PMID:14971584

  7. Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals.

    PubMed

    Lelidis, I; Blanc, C; Kléman, M

    2006-11-01

    We present experimental evidence of the presence of isolated screw dislocations in smectic-A liquid crystals observed by polarizing microscopy. In a wedge-shaped homeotropic cell, the edge and screw dislocations interaction gives rise to a strong-enough optical contrast and makes visible their mutual intersections at temperatures close to the smectic-A to smectic-C phase transition temperature. The nature of the defects is confirmed by confocal microscopy observations. At large scale we observe a forest of screw dislocations, perpendicular to the smectic layers, across the thickness of the cell (end-on configuration). Their density varies between 10(9) and 10(12) m-2. In situ observations of dislocations under stress, in the optical microscope, provide quantitative information about the screw-edge dislocation interactions. The latter interaction is calculated in the unharmonic approximation and it gives rise to an observed yield stress.

  8. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    PubMed Central

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens. PMID:25185543

  9. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    PubMed

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  10. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  11. Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology

    PubMed Central

    Sencan, Ikbal; Huang, Brendan K.; Bian, Yong; Mis, Emily; Khokha, Mustafa K.; Cao, Hui; Choma, Michael

    2016-01-01

    We developed ultra-high-speed, phase-sensitive, full-field reflection interferometric confocal microscopy (FFICM) for the quantitative characterization of in vivo microscale biological motions and flows. We demonstrated 2D frame rates in excess of 1 kHz and pixel throughput rates up to 125 MHz. These fast FFICM frame rates were enabled by the use of a low spatial coherence, high-power laser source. Specifically, we used a dense vertical cavity surface emitting laser (VCSEL) array that synthesized low spatial coherence light through a large number of narrowband, mutually-incoherent emitters. Off-axis interferometry enabled single-shot acquisition of the complex-valued interferometric signal. We characterized the system performance (~2 μm lateral resolution, ~8 μm axial gating depth) with a well-known target. We also demonstrated the use of this highly parallelized confocal microscopy platform for visualization and quantification of cilia-driven surface flows and cilia beat frequency in an important animal model (Xenopus embryos) with >1 kHz frame rate. Such frame rates are needed to see large changes in local flow velocity over small distance (high shear flow), in this case, local flow around a single ciliated cell. More generally, our results are an important demonstration of low-spatial coherence, high-power lasers in high-performance, quantitative biomedical imaging. PMID:27896006

  12. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  13. In vivo corneal confocal microscopy in diabetes: Where we are and where we can get

    PubMed Central

    Maddaloni, Ernesto; Sabatino, Francesco

    2016-01-01

    In vivo corneal confocal microscopy (IVCCM) is a novel, reproducible, easy and noninvasive technique that allows the study of the different layers of the cornea at a cellular level. As cornea is the most innervated organ of human body, several studies investigated the use of corneal confocal microscopy to detect diabetic neuropathies, which are invalidating and deadly complications of diabetes mellitus. Corneal nerve innervation has been shown impaired in subjects with diabetes and a close association between damages of peripheral nerves due to the diabetes and alterations in corneal sub-basal nerve plexus detected by IVCCM has been widely demonstrated. Interestingly, these alterations seem to precede the clinical onset of diabetic neuropathies, paving the path for prevention studies. However, some concerns still prevent the full implementation of this technique in clinical practice. In this review we summarize the most recent and relevant evidences about the use of IVCCM for the diagnosis of peripheral sensorimotor polyneuropathy and of autonomic neuropathy in diabetes. New perspectives and current limitations are also discussed. PMID:27660697

  14. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques

    PubMed Central

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera’s collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response. PMID:27806070

  15. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  16. In vivo fluorescence confocal microscopy: indocyanine green enhances the contrast of epidermal and dermal structures

    NASA Astrophysics Data System (ADS)

    Skvara, Hans; Kittler, Harald; Schmid, Johannes A.; Plut, Ulrike; Jonak, Constanze

    2011-09-01

    In recent years, in vivo skin imaging devices have been successfully implemented in skin research as well as in clinical routine. Of particular importance is the use of reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM) that enable visualization of the tissue with a resolution comparable to histology. A newly developed commercially available multi-laser device in which both technologies are integrated now offers the possibility to directly compare RCM with FCM. The fluorophore indocyanine green (ICG) was intradermally injected into healthy forearm skin of 10 volunteers followed by in vivo imaging at various time points. In the epidermis, accurate assessment of cell morphology with FCM was supplemented by identification of pigmented cells and structures with RCM. In dermal layers, only with FCM connective tissue fibers were clearly contoured down to a depth of more than 100 μm. The fluorescent signal still provided a favorable image contrast 24 and 48 hours after injection. Subsequently, ICG was applied to different types of skin diseases (basal cell carcinoma, actinic keratosis, seborrhoeic keratosis, and psoriasis) in order to demonstrate the diagnostic benefit of FCM when directly compared with RCM. Our data suggest a great impact of FCM in combination with ICG on clinical and experimental dermatology in the future.

  17. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network.

    PubMed

    Alves da Rocha, Roney; Paiva, Igor Moura; Anjos, Virgílio; Furtado, Marco Antônio Moreira; Bell, Maria José Valenzuela

    2015-06-01

    In this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature. No pre- or posttreatment (e.g., sample preparation or spectral correction) was required in the analyses. Quantitative determination of adulteration was performed through a feed-forward artificial neural network (ANN). Different ANN configurations were evaluated based on their coefficient of determination (R2) and root mean square error values, which were criteria for selecting the best predictor model. In the selected model, we observed that data from both training and validation subsets presented R2>99.99%, indicating that the combination of confocal Raman microscopy and ANN is a rapid, simple, and efficient method to quantify milk adulteration by whey. Because sample preparation and postprocessing of spectra were not required, the method has potential applications in health surveillance and food quality monitoring.

  18. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  19. [Clinical forms of acanthamoeba keratitis as viewed from the standpoint of biomicroscopy and confocal microscopy].

    PubMed

    Maĭchuk, Iu F; Maĭchuk, D Iu

    2004-01-01

    Clinical cases of 60 patients with acanthamebic keratitis examined by biomicroscopy and of 22 patients largely examined by confocal microscopy are generalized. Acanthamebic keratitis is a slowly progressing infectious lesion of the cornea, which is caused by acanthamebas freely residing in soil and water. Contaminated contact lenses are the key risk factor. The main clinical features of acanthamebic keratitis are defined; they are presence of risk factors; a unilateral lesion in young, healthy and immune-competent persons; a typical clinical pattern of surface keratitis mainly of the ring shape; corneal neuritis without corneal neovascularization but with a severe pain in the eye; and a slow chronic clinical course, i.e. lasting for several weeks and months. Confocal microscopy is the most effective and fast diagnostic tool because it ensures the detection of acanthamebic cysts and trophozoids in all strata of the corneal stroma. The authors isolate, within the clinical course of acanthamebic keratitis, 5 stages; they are surface epithelial keratitis; surface epithelial punctate keratitis; stromal ring-shaped keratitis; ulcerous keratitis; and keratoscleritis.

  20. Determination of nitric oxide mediating intracellular Ca2+ release on neurons based on confocal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua; He, Yipeng; Zeng, Yixiu; Zhang, Yanding; Xie, Shusen

    2014-09-01

    The gas NO is a ubiquitous intercellular messenger that modulates a wide range of physiological and pathophysiological functions. But few studies were made to study the role of NO in the Ca2+ release in dorsal root ganglion (DRG) neurons by confocal microscopy. Thus the objective of this study was to assess if NO has a role in Ca2+ signaling in DRG neurons using confocal microscopy combined with special fluorescence probe Fluo-3/AM. A 100 μM concentration of the NO donors (Sodium Nitroprusside, Dihydrate, SNP) and NO synthase inhibitor (NG-Monomethyl-L-arginine, Monoacetate salt, L-NMMA) was used in the study. Results showed that the fluorescence intensity increased rapidly after injecting SNP, which indicated that SNP could enhance intracellular Ca2+ release. And the fluorescence intensity shrank gradually with time and kept at a low level for quite a long period after loading with L-NMMA which indicated that L-NMMA could block intracellular Ca2+ release. All these results demonstrated that NO was involved in the regulation of intracellular Ca2+ release in the DRG neurons.

  1. Coherent artifact suppression in line-field reflection confocal microscopy using a low spatial coherence light source.

    PubMed

    Liu, Changgeng; Cao, Hui; Choma, Michael A

    2016-10-15

    Line-field reflection confocal microscopy (LF-RCM) has the potential to add a dimension of parallelization to traditional confocal microscopy while reducing the need for two-axis beam scanning. LF-RCM systems often employ light sources with a high degree of spatial coherence. This high degree of spatial coherence potentially leads to unwanted coherent artifact in the setting of nontrivial sample scattering. Here, we (a) confirm that a coherent artifact is a nontrivial problem in LF-RCM when using spatially coherent light, and (b) demonstrate that such a coherent artifact can be mitigated through the use of reduced spatial coherence line-field sources. We demonstrate coherent noise suppression in a full-pupil line-field confocal microscope using a large number of mutually incoherent emitters from a vertical-cavity surface-emitting lasers (VCSEL) array. The coherent noise from a highly scattering sample is significantly suppressed by the use of this synthesized reduced spatial coherence light source compared to a fully coherent light source. Lastly, with scattering samples, the axial confocality of line-field confocal microscopy is compromised independent of the source spatial coherence, as demonstrated by our experimental result. Our results highlight the importance of spatial coherence engineering in parallelized reflection confocal microscopy.

  2. Concomitant use of Congo red staining and confocal laser scanning microscopy to detect amyloidosis in oral biopsy: A clinicopathological study of 16 patients.

    PubMed

    Scivetti, Michele; Favia, Gianfranco; Fatone, Laura; Maiorano, Eugenio; Crincoli, Vito

    2016-01-01

    Twenty oral biopsies from 16 patients were analyzed both by traditional microscopy and by confocal laser scanning microscopy. Using conventional histopathological techniques, the diagnosis of amyloidosis was confirmed only in 15 biopsies. Using confocal laser scanning microscopy, amyloid deposits were detected in all of the samples. The current study shows that confocal laser scanning analysis helps to identify minimal amyloid deposits that could be overlooked using traditional microscopy, thus raising the sensitivity of oral biopsy up to 100%.

  3. Improving and Understanding Three Dimensional Spatial Resolution in a Confocal Raman Microscopy and Raman Hyperspectral Imaging I

    NASA Astrophysics Data System (ADS)

    Lee, Eunah; Roussel, Bernard; Froigneux, Emmanuel; Adar, Fran; Mamedov, Sergey; Whitley, Andrew

    2010-08-01

    Confocal Raman microscopy provides a high spatial resolution because it operates in short wavelength region and utilizes confocal optics. However, the spatial resolution of a confocal Raman microscopy is not well understood, and often confused with the smallest measurable sample size. When performing Raman hyperspectral imaging with a confocal Raman microscope, it is also confused with the smallest distance a mapping stage can step. While all these parameters are pertinent to record a good Raman spectrum or a good Raman map, they are not spatial resolution, and thus have different impacts to the data and results. In this and subsequent papers, we will begin with the theoretical definition, examine the instrumental implementations and present the empirical applications of these parameters with examples.

  4. Prototype study on a miniaturized dual-modality imaging system for photoacoustic microscopy and confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Xie, Zhixing; Guo, L. Jay; Wang, Xueding

    2014-03-01

    It is beneficial to study tumor angiogenesis and microenvironments by imaging the microvasculature and cells at the same time. Photoacoustic microscopy (PAM) is capable of sensitive three-dimensional mapping of microvasculature, while fluorescence microscopy may be applied to assessment of tissue pathology. In this work, a fiber-optic based PAM and confocal fluorescence microscopy (CFM) dual-modality imaging system was designed and built, serving as a prototype of a miniaturized dual-modality imaging probe for endoscopic applications. As for the design, we employed miniature components, including a microelectromechanical systems (MEMS) scanner, a miniature objective lens, and a small size optical microring resonator as an acoustic detector. The system resolutions were calibrated as 8.8 μm in the lateral directions for both PAM and CFM, and 19 μm and 53 μm in the axial direction for PAM and CFM, respectively. Images of the animal bladders ex vivo were demonstrated to show the ability of the system in imaging not only microvasculature but also cellular structure.

  5. Correlative analysis of immunoreactivity in confocal laser-scanning microscopy and scanning electron microscopy with focused ion beam milling.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Unzai, Tomo; Matsuda, Wakoto; Iwai, Haruki; Yamanaka, Atsushi; Uemura, Masanori; Kaneko, Takeshi

    2013-01-01

    Recently, three-dimensional reconstruction of ultrastructure of the brain has been realized with minimal effort by using scanning electron microscopy (SEM) combined with focused ion beam (FIB) milling (FIB-SEM). Application of immunohistochemical staining in electron microscopy (EM) provides a great advantage in that molecules of interest are specifically localized in ultrastructures. Thus, we applied immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in confocal laser-scanning microcopy (CF-LSM). Dendrites of medium-sized spiny neurons in the rat neostriatum were visualized using a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively. In contrast-inverted FIB-SEM images, silver precipitations and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were as easily recognizable as those in the transmission electron microscopy (TEM) images. Furthermore, in the sites of interest, some appositions displayed synaptic specializations of an asymmetric type. Thus, the present method was useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connections in the central neural circuit.

  6. Infrared differential interference contrast microscopy for overlay metrology on 3D-interconnect bonded wafers

    NASA Astrophysics Data System (ADS)

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-04-01

    Overlay metrology for stacked layers will be playing a key role in bringing 3D IC devices into manufacturing. However, such bonded wafer pairs present a metrology challenge for optical microscopy tools by the opaque nature of silicon. Using infrared microscopy, silicon wafers become transparent to the near-infrared (NIR) wavelengths of the electromagnetic spectrum, enabling metrology at the interface of bonded wafer pairs. Wafers can be bonded face to face (F2F) or face to back (F2B) which the stacking direction is dictated by how the stacks are carried in the process and functionality required. For example, Memory stacks tend to use F2B stacking enables a better managed design. Current commercial tools use single image technique for F2F bonding overlay measurement because depth of focus is sufficient to include both surfaces; and use multiple image techniques for F2B overlay measurement application for the depth of focus is no longer sufficient to include both stacked wafer surfaces. There is a need to specify the Z coordinate or stacking wafer number through the silicon when visiting measurement wafer sites. Two shown images are of the same (X, Y) but separate Z location acquired at focus position of each wafer surface containing overlay marks. Usually the top surface image is bright and clear; however, the bottom surface image is somewhat darker and noisier as an adhesive layer is used in between to bond the silicon wafers. Thus the top and bottom surface images are further processed to achieve similar brightness and noise level before merged for overlay measurement. This paper presents a special overlay measurement technique, using the infrared differential interference contrast (DIC) microscopy technique to measure the F2B wafer bonding overlay by a single shot image. A pair of thinned wafers at 50 and 150 μm thickness is bonded on top of a carrier wafer to evaluate the bonding overlay. It works on the principle of interferometry to gain information about the

  7. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart

    PubMed Central

    Huang, Chao; Kaza, Aditya K.; Hitchcock, Robert W.; Sachse, Frank B.

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5–9 lines, which is comparable to 4–8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery. PMID:25309455

  8. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  9. Examination of heterogeneous crossing sequences between toner and rollerball pen strokes by digital microscopy and 3-D laser profilometry.

    PubMed

    Montani, Isabelle; Mazzella, Williams; Guichard, Marion; Marquis, Raymond

    2012-07-01

    The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner.

  10. Virtual pinhole confocal microscope

    SciTech Connect

    George, J.S.; Rector, D.M.; Ranken, D.M.; Peterson, B.; Kesteron, J.

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  11. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Jauss, Andrea; Hollricher, Olaf; Fulda, Simone; Hauser, Carmen; Steiner, Rudolf; Rück, Angelika

    2007-07-01

    The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods. In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously, eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished. Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the

  12. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy.

    PubMed

    Dishari, Shudipto K; Venkiteshwaran, Adith; Zydney, Andrew L

    2015-10-01

    Virus filtration is used to ensure drug safety in the production of biotherapeutics. Several recent studies have shown a dramatic decrease in virus retention as a result of a process disruption, e.g., a transient pressure release. In this work, a novel two-label fluorescence technique was developed to probe virus capture within virus filtration membranes using confocal microscopy. Experiments were performed with Ultipor® DV20, Viresolve® Pro, and Viresolve® NFP membranes using bacteriophage φx174 as a model virus. The filters were challenged with two batches of fluorescently labeled phage: one labeled with red dye (Cy5) and one with green dye (SYBR Gold) to visualize captured phage from before and after the pressure release. The capture patterns seen in the confocal images were a strong function of the underlying membrane morphology and pore structure. The DV20 and Viresolve® NFP showed migration of previously captured phage further into the filter, consistent with the observed loss of virus retention after the pressure release. In contrast, there was no migration of captured virus in the Viresolve® Pro membranes, and these filters were also the only ones to show stable virus retention after a pressure release. The direct visualization of virus capture using the two-label fluorescence technique provides unique insights into the factors controlling the retention characteristics of virus filters with different pore structure.

  13. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue.

    PubMed

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E; Maitland, Kristen C

    2013-05-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue.

  14. Confocal mosaicing microscopy in skin excisions: a demonstration of rapid surgical pathology

    PubMed Central

    Gareau, D.S.; Patel, Y.G.; Li, Y.; Aranda, I.; Halpern, A.C.; Nehal, K.S.; Rajadhyaksha, M.

    2009-01-01

    Summary Precise micro-surgical removal of tumour with minimal damage to the surrounding normal tissue requires a series of excisions, each guided by an examination of frozen histology of the previous. An example is Mohs surgery for the removal of basal cell carcinomas (BCCs) in skin. The preparation of frozen histology is labour-intensive and slow. Confocal microscopy may enable rapid detection of tumours directly in surgical excisions with minimal need for frozen histology. Mosaicing of images enables observation of nuclear and cellular morphology in large areas of surgically excised tissue. In skin, the use of 10–1% acetic acid as a reflectance contrast agent brightens nuclei in 0.5–5 min and enhances nuclear-to-dermis contrast and detectability of BCCs. A tissue fixture was engineered for precisely mounting surgical excisions to enable mosaicing of 36 × 36 images to create a field of view of 12 × 12 mm. This large field of view displays the excision at 2× magnification, similar to that routinely used by Mohs surgeons when examining frozen histology. Comparison of mosaics to histology demonstrates detectability of BCCs. Confocal mosaicing presently requires 9 min, instead of 20–45 min per excision for preparing frozen histology, and thus may provide a means for rapid pathology-at-the-bedside to expedite and guide surgery. PMID:19196421

  15. Low-power laser effects at the single-cell level: a confocal microscopy study

    NASA Astrophysics Data System (ADS)

    Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2000-11-01

    Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.

  16. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  17. Structure and chemical composition of the dentin-enamel junction analyzed by Confocal Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Desoutter, A.; Salehi, H.; Slimani, A.; Marquet, P.; Jacquot, B.; Tassery, H.; Cuisinier, F. J. G.

    2014-02-01

    The structure and chemical composition of the human dentin-enamel junction (DEJ) was studied using confocal Raman microscopy - a chemical imaging technique. Slices of non-fixed, sound teeth were prepared with an Isomet diamond saw and scanned with Witec Alpha300R system. The combination of different characteristics peaks of phosphate, carbonate and organic matrix (respectively 960, 1072 and 1545 cm-1), generates images representing the chemical composition of the DEJ area. Images are also calculated using peak ratios enabling precise determination of the chemical composition across the DEJ. Then, with two characterized peaks, different pictures are calculated to show the ratio of two components. The images of the spatial distribution of mineral phosphate (960cm-1) to organic matrix (1545 cm-1) ratios, mineral carbonates (1072cm-1) to mineral phosphate ratios; and mineral carbonates to organic matrix ratios were reconstructed. Cross sectional and calculated graphic profile show the variations of the different chemical component ratios through the enamel and the dentin. Phosphate to organic ratio shows an accumulation of organic material under the enamel surface. The cross sectional profile of these pictures shows a high phosphate content compared to enamel in the vicinity of the DEJ. The Confocal Raman imaging technique can be used to further provide full chemical imaging of tooth, particularly of the whole DEJ and to study enamel and dentin decay.

  18. Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging.

    PubMed

    Llorca-Isern, N; Tartera, J; Espanol, M; Marsal, M; Bertran, G; Castel, S

    2002-01-01

    Spherulitic crystallisation is a mode of growth of crystals from the melt. Considerable attention has been given to spheroidal graphite formation, providing detailed information about the internal microstructure of the spherulites in spheroidal (SG irons) and compacted graphite irons (CG irons) (Stefanescu, D., 1990. Cast Irons. ASM Handbook, 10th ed., vol. 1). Nevertheless, the mechanisms responsible for this mode of crystallisation are not fully understood. This study deals with the inoculation mechanisms, with particular emphasis on the study of the inclusions for the heterogeneous nucleation of graphite. It is shown that the graphite nuclei are sulfide products of the nodularizing treatment. It has been observed that when rare-earth treatment is applied, the central nucleus consists of a core and an envelope from which the graphite grows. Confocal Scanning Laser Microscopy (CSLM), in reflection mode, was used to study the internal features of the spheroidal graphite growth. Confocal reflection imaging, which has a capacity for optical sectioning of the sample, provides high-resolution images of surface and subsurface regions of interest contained within a semi-transparent sample. Furthermore, three-dimensional reconstruction of these optical sections can provide insight into the mechanism of graphite growth mechanism interpretation. With CSLM the radial growth of graphite was seen. Other techniques, such as TEM, SEM-EDS, WDS, AES and SAM were also used to corroborate the results.

  19. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  20. Automated detection of malignant features in confocal microscopy on superficial spreading melanoma versus nevi

    NASA Astrophysics Data System (ADS)

    Gareau, Dan; Hennessy, Ricky; Wan, Eric; Pellacani, Giovanni; Jacques, Steven L.

    2010-11-01

    In-vivo reflectance confocal microscopy (RCM) shows promise for the early detection of superficial spreading melanoma (SSM). RCM of SSM shows pagetoid melanocytes (PMs) in the epidermis and disarray at the dermal-epidermal junction (DEJ), which are automatically quantified with a computer algorithm that locates depth of the most superficial pigmented surface [DSPS(x,y)] containing PMs in the epidermis and pigmented basal cells near the DEJ. The algorithm uses 200 noninvasive confocal optical sections that image the superficial 200 μm of ten skin sites: five unequivocal SSMs and five nevi. The pattern recognition algorithm automatically identifies PMs in all five SSMs and finds none in the nevi. A large mean gradient ψ (roughness) between laterally adjacent points on DSPS(x,y) identifies DEJ disruption in SSM ψ = 11.7 +/- 3.7 [-] for n = 5 SSMs versus a small ψ = 5.5 +/- 1.0 [-] for n = 5 nevi (significance, p = 0.0035). Quantitative endpoint metrics for malignant characteristics make digital RCM data an attractive diagnostic asset for pathologists, augmenting studies thus far, which have relied largely on visual assessment.

  1. Structure and function relationship of Zebrafish embryonic heart from confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abbas N.; Forouhar, Arian; Liebling, Michael; Tsai, Huai-Jen; Gharib, Morteza

    2006-03-01

    Confocal microscopy enables us to track myocytes in the embryonic zebrafish heart. The Zeiss LSM 5 Live high speed confocal microscope has been used to take optical sections (at 3 μm intervals and 151 frames per second) through a fluorescently labeled zebrafish heart at two developmental stages (26 and 34 hours post fertilization (hpf)). This data provides unique information allowing us to conjecture on the morphology and biomechanics of the developing vertebrate heart. Nevertheless, the myocytes, whose positions could be determined in a reliable manner, were located sparsely and mostly in one side of the heart tube. This difficulty was overcome using computational methods, that give longitudinal, radial and circumferential displacements of the myocytes as well as their contractile behavior. Applied strain analysis has shown that in the early embryonic heart tube, only the caudal region (near the in-flow) and another point in the middle of the tube can be active; the rest appears to be mostly passive. This statement is based on the delay between major strain and displacement which a material point experiences. Wave-like propagation of all three components of the displacement, especially in the circumferential direction, as well as the almost-periodic changes of the maximum strain support the hypothesis of helical muscle structure embedded in the tube. Changes of geometry in the embryonic heart after several hours are used to verify speculations about the structure based on the earlier images and aforementioned methods.

  2. Micron-scale Resolution Optical Tomography of Entire Mouse Brains with Confocal Light Sheet Microscopy

    PubMed Central

    Silvestri, Ludovico; Bria, Alessandro; Costantini, Irene; Sacconi, Leonardo; Peng, Hanchuan; Iannello, Giulio; Pavone, Francesco Saverio

    2013-01-01

    Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a reasonable time, producing datasets in the TeraByte range. We recently demonstrated an optical method (confocal light sheet microscopy, CLSM) capable of obtaining micron-scale reconstruction of entire mouse brains labeled with enhanced green fluorescent protein (EGFP). Combining light sheet illumination and confocal detection, CLSM allows deep imaging inside macroscopic cleared specimens with high contrast and speed. Here we describe the complete experimental pipeline to obtain comprehensive and human-readable images of entire mouse brains labeled with fluorescent proteins. The clearing and the mounting procedures are described, together with the steps to perform an optical tomography on its whole volume by acquiring many parallel adjacent stacks. We showed the usage of open-source custom-made software tools enabling stitching of the multiple stacks and multi-resolution data navigation. Finally, we illustrated some example of brain maps: the cerebellum from an L7-GFP transgenic mouse, in which all Purkinje cells are selectively labeled, and the whole brain from a thy1-GFP-M mouse, characterized by a random sparse neuronal labeling. PMID:24145191

  3. Liquid crystal lens array for 3D microscopy and endoscope application

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Chu, Chao-Yu; Hsuan, Yun; Martinez, Manuel; Javidi, Bahram

    2016-06-01

    In this paper, we demonstrate two liquid crystal (LC) lens array devices for 3D microscope and 3D endoscope applications respectively. Compared with the previous 3D biomedical system, the proposed LC lens arrays are not only switchable between 2D and 3D modes, but also are able to adjust focus in both modes. The multi-function liquid crystal lens (MFLC-lens) array with dual layer electrode has diameter 1.42 mm, which is much smaller than the conventional 3D endoscope with double fixed lenses. The hexagonal liquid crystal micro-lens array (HLC-MLA) instead of fixed micro-lens array in 3D light field microscope can extend the effective depth of field from 60 um to 780 um. To achieve the LC lens arrays, a high-resistance layer needs to be coated on the electrodes to generate an ideal gradient electric-field distribution, which can induce a lens-like form of LC molecules. The parameters and characteristics of high-resistance layer are investigated and discussed with an aim to optimize the performance of liquid crystal lens arrays.

  4. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  5. In vivo analysis of solar lentigines by reflectance confocal microscopy before and after Q-switched ruby laser treatment.

    PubMed

    Richtig, Erika; Hofmann-Wellenhof, Rainer; Kopera, Daisy; El-Shabrawi-Caelen, Laila; Ahlgrimm-Siess, Verena

    2011-03-01

    Solar lentigines are benign lesions usually found on sun-damaged skin. We investigated twelve cases of solar lentigines through dermoscopy and reflectance confocal microscopy, performed before, and 30 min and 10 days after, a single treatment with a Q-switched ruby laser. At baseline, all lesions showed characteristic features of solar lentigines in reflectance confocal microscopy analysis: regular honeycomb patterns, edged dermal papillae and cord-like rete ridges at the dermoepidermal junction. Thirty minutes post-laser treatment, blurred epidermal intercellular connections, dark structureless areas of different sizes and shapes in the lower epidermal layers, and hyporeflective dermal papillae, reflecting epidermal and dermal oedema, were observed. Ten days post-treatment highly reflective round-to polygonal areas and aggregated granules, representing extracellular melanin, were detected in all epidermal layers featuring regular honeycomb patterns. Reflectance confocal microscopy can be used to visualise dynamic skin processes, allowing non-invasive in vivo follow-up of skin lesions after treatment.

  6. Further study of trichosanthin's effect on mouse embryos with confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-09-01

    Trichosanthin(TCS), a ribosome inactivating protein extracted from the root tuber of a traditional Chinese medicine herb Tian Huo Fen(THF), possessed abortifacient, anti-tumor and anti-human immunodeficiency virus(HIV) activities. For centuries in China, THF has been used as an effective folk medicine to terminate early and midtrimester pregnancies and to treat ectopic pregnancies, hydatidiform moles and trophoblastic tumor. We observed the changes in reactive oxygen species and intracellular calcium in mouse embryos induced by TCS with confocal laser scanning microscopy in combination with the fluorescene diacetate (DCFHDA) and Fluo-3-AM. The results indicated that TCS induced increase in intracellular calcium and production of reactive oxygen species in mouse embryos , and TCS inhibited the development of mouse embryos effectively. Mouse embryos of different developmental stages before implantation are used in the experiments. This provides new insight into mechanism for abortifacient activity of TCS.

  7. In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology.

    PubMed

    González, S; Gilaberte-Calzada, Y

    2008-02-01

    In vivo reflectance confocal microscopy (RCM) is a non-invasive imaging tool that allows real-time visualization of cells and structures in living skin with near histological resolution. RCM has been used for the assessment of benign and malignant lesions, showing great potential for applications in basic skin research and clinical dermatology. RCM also reveals dynamic changes in the skin over time and in response to specific stimuli, like ultraviolet exposure, which makes it a promising tool in cosmetology, as it allows repetitive sampling without biopsy collection, causing no further damage to the areas under investigation. This review summarizes the latest advances in RCM, and its applications in the characterization of both normal and pathological skin.

  8. Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

    PubMed Central

    Kang, Jeon Woong; Singh, Surya P.; Nguyen, Freddy T.; Lue, Niyom; Sung, Yongjin; So, Peter T. C.; Dasari, Ramachandra R.

    2016-01-01

    Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA) was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation. PMID:27983660

  9. Consistency and distribution of reflectance confocal microscopy features for diagnosis of cutaneous T cell lymphoma

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Susanne; Babilli, Jasmin; Beyer, Marc; Ríus-Diaz, Francisca; González, Salvador; Stockfleth, Eggert; Ulrich, Martina

    2012-01-01

    Reflectance confocal microscopy (RCM) represents a noninvasive imaging technique that has previously been used for characterization of mycosis fungoides (MF) in a pilot study. We aimed to test the applicability of RCM for diagnosis and differential diagnosis of MF in a clinical study. A total of 39 test sites of 15 patients with a biopsy-proven diagnosis of either MF, parapsoriasis, Sézary syndrome, or lymphomatoid papulosis were analyzed for presence and absence of RCM features of MF. Cochran and Chi2 analysis were applied to test the concordance between investigators and the distribution of RCM features, respectively. For selected parameters, the Cochran analysis showed good concordance between investigators. Inter-observer reproducibility was highest for junctional atypical lymphocytes, architectural disarray, and spongiosis. Similarly, Chi2 analysis demonstrated that selected features were present at particularly high frequency in individual skin diseases, with values ranging from 73% to 100% of all examined cases.

  10. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  11. Measurement of buried undercut structures in microfluidic devices by laser fluorescent confocal microscopy

    SciTech Connect

    Li Shiguang; Liu Jing; Nguyen, Nam-Trung; Fang Zhongping; Yoon, Soon Fatt

    2009-11-20

    Measuring buried, undercut microstructures is a challenging task in metrology. These structures are usually characterized by measuring their cross sections after physically cutting the samples. This method is destructive and the obtained information is incomplete. The distortion due to cutting also affects the measurement accuracy. In this paper, we first apply the laser fluorescent confocal microscopy and intensity differentiation algorithm to obtain the complete three-dimensional profile of the buried, undercut structures in microfluidic devices, which are made by the soft lithography technique and bonded by the oxygen plasma method. The impact of material wettability and the refractive index (n) mismatch among the liquid, samples, cover layer, and objective on the measurement accuracy are experimentally investigated.

  12. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    PubMed

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.

  13. The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies

    PubMed Central

    Ulrich, Martina; Lange-Asschenfeldt, Susanne; Gonzalez, Salvador

    2012-01-01

    Summary Reflectance confocal microscopy (RCM) is a new non-invasive imaging technique that enables visualizing cells and structures in living skin in real-time with resolution close to that of histological analysis. RCM has been successfully implemented in the assessment of benign and malignant lesions. Most importantly, it also enables monitoring dynamic changes in the skin over time and in response to different therapies, e.g., imiquimod, photodynamic therapy, and others. Given the often traumatic nature of skin cancer that affects both the physiology and the psychology of the patients, it is crucial to have methods that enable monitoring the response to treatment but that minimize the distress and discomfort associated with such process. This article provides a very brief overview of the fundamentals of RCM and then focuses on its recent employment as a monitoring tool in skin cancer and other pathologies that may require frequent follow-up. PMID:23785598

  14. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-08-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  15. Mapping Li(+) Concentration and Transport via In Situ Confocal Raman Microscopy.

    PubMed

    Forster, Jason D; Harris, Stephen J; Urban, Jeffrey J

    2014-06-05

    We demonstrate confocal Raman microscopy as a general, nonperturbative tool to measure spatially resolved lithium ion concentrations in liquid electrolytes. By combining this high-spatial-resolution technique with a simple microfluidic device, we are able to measure the diffusion coefficient of lithium ions in dimethyl carbonate in two different concentration regimes. Because lithium ion transport plays a key role in the function of a variety of electrochemical devices, quantifying and visualizing this process is crucial for understanding device performance. This method for detecting lithium ions should be immediately useful in the study of lithium-ion-based devices, ion transport in porous media, and at electrode-electrolyte interfaces, and the analytical framework is useful for any system exhibiting a concentration-dependent Raman spectrum.

  16. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems.

    PubMed

    Pygall, Samuel R; Whetstone, Joanne; Timmins, Peter; Melia, Colin D

    2007-12-10

    The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed to exploit the imaging capabilities of CLSM to study a wide range of pharmaceutical systems, including phase-separated polymers, colloidal systems, microspheres, pellets, tablets, film coatings, hydrophilic matrices, and chromatographic stationary phases. Additionally, methods to measure diffusion in gels, bioadhesives, and for monitoring microenvironmental pH change within dosage forms have been utilised. CLSM has also been used in the study of the physical interaction of dosage forms with biological barriers such as the eye, skin and intestinal epithelia, and in particular, to determine the effectiveness of a plethora of pharmaceutical systems to deliver drugs through these barriers. In the future, there is continuing scope for wider exploitation of existing techniques, and continuing advancements in instrumentation.

  17. Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves.

    PubMed

    Kumar, T; Majumdar, A; Das, P; Sarafis, V; Ghose, M

    2008-06-01

    Roots of three mangroves, Acanthus ilicifolius, Ceriops tagal and Excoecaria agallocha, collected from forests of the Sundarbans of India were stained with trypan blue to observe arbuscular mycorrhizal colonization. Spores of arbuscular mycorrhizal fungi isolated from rhizospheric soil, collected together with the root samples, also were stained for testing the suitability of the dye as a fluorochrome. Confocal laser scanning microscopy images were constructed. A. ilicifolius and E. agallocha exhibited "Arum" type colonization with highly branched arbuscules, whereas C. tagal showed "Paris" type association with clumped and collapsed arbuscules. We demonstrated that trypan blue is a suitable fluorochrome for staining arbuscular mycorrhizal fungal spores, fungal hyphae, arbuscules and vesicles, which presumably have a considerable amount of surface chitin. It appears that as the integration of chitin into the fungal cell wall changes, its accessibility to trypan blue dye also changes.

  18. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  19. An alternative method of promoter assessment by confocal laser scanning microscopy.

    PubMed

    Sahoo, Dipak K; Ranjan, Rajiv; Kumar, Deepak; Kumar, Alok; Sahoo, Bhabani S; Raha, Sumita; Maiti, Indu B; Dey, Nrisingha

    2009-10-01

    A rapid and useful method of promoter activity analysis using techniques of confocal laser scanning microscopy (CLSM) is described in the present study. The activities of some pararetroviral promoters such as CaMV35S (Cauliflower mosaic virus), FMVSgt3 (Figwort mosaic virus sub-genomic transcript) and MMVFLt12 (Mirabilis mosaic virus full-length transcript) coupled to GFP (green fluorescent protein) and GUS (beta-glucuronidase) reporter genes were determined simultaneously by the CLSM technique and other available conventional methods for reporter gene assay based on relevant biochemical and molecular approaches. Consistent and comparable results obtained by CLSM as well as by other conventional assay methods confirm the effectiveness of the CLSM approach for assessment of promoter activity. Hence the CLSM method can be suggested as an alternative way for promoter analysis on the basis of high throughput.

  20. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.

    PubMed

    Villar-Piqué, Anna; Espargaró, Alba; Ventura, Salvador; Sabate, Raimon

    2016-01-01

    Amyloid polymerization underlies an increasing number of human diseases. Despite this process having been studied extensively in vitro, aggregation is a difficult process to track in vivo due to methodological limitations and the slow kinetics of aggregation reactions in cells and tissues. Herein we exploit the amyloid properties of the inclusions bodies (IBs) formed by amyloidogenic proteins in bacteria to address the kinetics of in vivo amyloid aggregation. To this aim we used time-lapse confocal microscopy and a fusion of the amyloid-beta peptide (A β42) with a fluorescent reporter. This strategy allowed us to follow the intracellular kinetics of amyloid-like aggregation in real-time and to discriminate between variants exhibiting different in vivo aggregation propensity. Overall, the approach opens the possibility to assess the impact of point mutations as well as potential anti-aggregation drugs in the process of amyloid formation in living cells.

  1. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária

    2013-10-01

    The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.

  2. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  3. Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography

    PubMed Central

    Giannakaki-Zimmermann, Helena; Kokona, Despina; Wolf, Sebastian; Ebneter, Andreas; Zinkernagel, Martin S.

    2016-01-01

    Purpose Optical coherence tomography angiography (OCT-A) allows noninvasive visualization of retinal vessels in vivo. OCT-A was used to characterize the vascular network of the mouse retina and was compared with fluorescein angiography (FA) and histology. Methods In the present study, OCT-A based on a Heidelberg Engineering Spectralis system was used to investigate the vascular network in mice. Data was compared with FA and confocal microscopy of flat-mount histology stained with isolectin IB4. For quantitative analysis the National Cancer Institute's AngioTool software was used. Vessel density, the number of vessel junctions, and endpoints were measured and compared between the imaging modalities. Results The configuration of the superficial capillary network was comparable with OCT-A and flat-mount histology in BALBc mice. However, vessel density and the number of vessel junctions per region of interest (P = 0.0161 and P = 0.0015, respectively) in the deep vascular network of BALBc mice measured by OCT-A was significantly higher than with flat-mount histology. In C3A.Cg-Pde6b+Prph2Rd2/J mice, where the deep capillary plexus is absent, analysis of the superficial network provided similar results for all three imaging modalities. Conclusion OCT-A is a helpful imaging tool for noninvasive, in vivo imaging of the vascular plexus in mice. It may offer advantages over FA and confocal microscopy especially for imaging the deep vascular plexus. Translational Relevance The present study shows that OCT-A can be employed for small animal imaging to assess the vascular network and offers advantages over flat-mount histology and FA. PMID:27570710

  4. Spectrally Encoded Confocal Microscopy (SECM) for Diagnosing of Breast Cancer in Excision and Margin Specimens

    PubMed Central

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, Dongkyun

    2016-01-01

    A large percentage of breast cancer patients treated with breast conserving surgery need to undergo multiple surgeries due to positive margins found during post-operative margin assessment. Carcinomas could be removed completely during the initial surgery and additional surgery avoided if positive margins can be determined intra-operatively. Spectrally-encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to rapidly image the entire surgical margin at sub-cellular resolution and accurately determine margin status intra-operatively. In this paper, in order to test feasibility of using SECM for intra-operative margin assessment, we have evaluated the diagnostic accuracy of SECM for detecting various types of breast cancers. Forty-six surgically-removed breast specimens were imaged with a SECM system. Side-by-side comparison between SECM and histologic images showed that SECM images can visualize key histomorphologic patterns of normal/benign and malignant breast tissues. Small (500 µm × 500 µm) spatially-registered SECM and histologic images (n=124 for each) were diagnosed independently by three pathologists with expertise in breast pathology. Diagnostic accuracy of SECM for determining malignant tissues was high, average sensitivity of 0.91, specificity of 0.93, positive predictive value of 0.95, and negative predictive value of 0.87. Intra-observer agreement and inter-observer agreement for SECM were also high, 0.87 and 0.84, respectively. Results from this study suggest that SECM may be developed into an intra-operative margin assessment tool for guiding breast cancer excisions. PMID:26779830

  5. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  6. Effects of acids used in the microabrasion technique: Microhardness and confocal microscopy analysis

    PubMed Central

    Pini, Núbia-Inocencya-Pavesi; Ambrosano, Gláucia-Maria-Bovi; da Silva, Wander-José; Aguiar, Flávio-Henrique-Baggio; Lovadino, José-Roberto

    2015-01-01

    Background This study evaluated the effects of the acids used in the microabrasion on enamel. Material and Methods Seventy enamel/dentine blocks (25 mm2) of bovine incisors were divided into 7 groups (n=10). Experimental groups were treated by active/passive application of 35% H3PO4 (E1/E2) or 6.6% HCl (E3/E4). Control groups were treated by microabrasion with H3PO4+pumice (C5), HCl+silica (C6), or no treatment (C7). The superficial (SMH) and cross-sectional (CSMH; depths of 10, 25, 50, and 75 µm) microhardness of enamel were analyzed. Morphology was evaluated by confocal laser-scanning microscopy (CLSM). Data were analyzed by analysis of variance (Proc Mixed), Tukey, and Dunnet tests (α=5%). Results Active application (E1 and E3) resulted in higher microhardness than passive application (E2 and E4), with no difference between acids. For most groups, the CSMH decreased as the depth increased. All experimental groups and negative controls (C5 and C6) showed significantly reduced CSMH values compared to the control. A significantly higher mean CSMH result was obtained with the active application of H3PO4 (E1) compared to HCl (E3). Passive application did not result in CSMH differences between acids. CLSM revealed the conditioning pattern for each group. Conclusions Although the acids displayed an erosive action, use of microabrasive mixture led to less damage to the enamel layers. Key words:Enamel microabrasion, enamel microhardness, confocal laser scanning microscopy. PMID:26535098

  7. Spectrally encoded confocal microscopy (SECM) for rapid assessment of breast excision specimens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, DongKyun

    2016-03-01

    Unacceptably large percentage (20-40%) of breast cancer lumpectomy patients are required to undergo multiple surgeries when positive margins are found upon post-operative histologic assessment. If the margin status can be determined during surgery, surgeon can resect additional tissues to achieve tumor-free margin, which will reduce the need for additional surgeries. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to image the entire surgical margin within a short procedural time. Previously, SECM was shown to rapidly image a large area (10 mm by 10 mm) of human esophageal tissue within a short procedural time (15 seconds). When used in lumpectomy, SECM will be able to image the entire margin surface of ~30 cm2 in around 7.5 minutes. SECM images will then be used to determine margin status intra-operatively. In this paper, we present results from a study of testing accuracy of SECM for diagnosing malignant breast tissues. We have imaged freshly-excised breast specimens (N=46) with SECM. SECM images clearly visualized histomorphologic features associated with normal/benign and malignant breast tissues in a similar manner to histologic images. Diagnostic accuracy was tested by comparing SECM diagnoses made by three junior pathologists with corresponding histologic diagnoses made by a senior pathologist. SECM sensitivity and specificity were high, 0.91 and 0.93, respectively. Intra-observer agreement and inter-observer agreement were also high, 0.87 and 0.84, respectively. Results from this study showed that SECM has a potential to accurately determine margin status during breast cancer lumpectomy.

  8. A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components☆

    PubMed Central

    Chen, Sung-Liang; Xie, Zhixing; Guo, L. Jay; Wang, Xueding

    2013-01-01

    Imaging of the cells and microvasculature simultaneously is beneficial to the study of tumor angiogenesis and microenvironments. We designed and built a fiber-optic based photoacoustic microscopy (PAM) and confocal fluorescence microscopy (CFM) dual-modality imaging system. To explore the feasibility of this all-optical device for future endoscopic applications, a microelectromechanical systems (MEMS) scanner, a miniature objective lens, and a small size optical microring resonator as an acoustic detector were employed trying to meet the requirements of miniaturization. Both the lateral resolutions of PAM and CFM were quantified to be 8.8 μm. Axial resolutions of PAM and CFM were experimentally measured to be 19 μm and 53 μm, respectively. The experiments on ex vivo animal bladder tissues demonstrate the good performance of this system in imaging not only microvasculature but also cellular structure, suggesting that this novel imaging technique holds potential for improved diagnosis and guided treatment of bladder cancer. PMID:24466507

  9. Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Gerke, Horst H.

    2016-04-01

    During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother

  10. A virtually imaged defocused array (VIDA) for high-speed 3D microscopy.

    PubMed

    Schonbrun, Ethan; Di Caprio, Giuseppe

    2016-10-01

    We report a method to capture a multifocus image stack based on recording multiple reflections generated by imaging through a custom etalon. The focus stack is collected in a single camera exposure and consequently the information needed for 3D reconstruction is recorded in the camera integration time, which is only 100 µs. We have used the VIDA microscope to temporally resolve the multi-lobed 3D morphology of neutrophil nuclei as they rotate and deform through a microfluidic constriction. In addition, we have constructed a 3D imaging flow cytometer and quantified the nuclear morphology of nearly a thousand white blood cells flowing at a velocity of 3 mm per second. The VIDA microscope is compact and simple to construct, intrinsically achromatic, and the field-of-view and stack number can be easily reconfigured without redesigning diffraction gratings and prisms.

  11. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches.

    PubMed

    Schmid, G; Zeitvogel, F; Hao, L; Ingino, P; Floetenmeyer, M; Stierhof, Y-D; Schroeppel, B; Burkhardt, C J; Kappler, A; Obst, M

    2014-07-01

    The formation of cell-(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2-D microscopy techniques, the 3-D and internal structure remain obscure. In this study, we examined the 3-D structure of cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3-D microscopy techniques. We obtained 3-D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4-200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike- or platelet-shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell-(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell-(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3-D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X-ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a

  12. Application of confocal laser scanning microscopy for the diagnosis of amyloidosis.

    PubMed

    Castellani, Chiara; Fedrigo, Marny; Frigo, Anna Chiara; Barbera, Mila Della; Thiene, Gaetano; Valente, Marialuisa; Adami, Fausto; Angelini, Annalisa

    2017-02-20

    We analysed specificity and sensitivity of confocal laser microscopy (CLSM) on tissue sections for a diagnosis of amyloidosis, in an attempt to reduce technical errors and better standardise pathological diagnosis. We first set up a protocol for the use of CLSM on this type of specimen, using a group of 20 amyloid negative and 20 positive samples. Of all specimens, 2, 4 and 8-μm sections were cut. Sections were stained with Congo red (CR) and thioflavin-T (ThT) and observed by cross-polarised light microscopy (CR-PL), epifluorescence microscopy (CRF-epiFM and ThT-epiFM) and CLSM (CRF-CLSM and ThT-CLSM). To validate the method in a diagnostic setting, we examined tissue samples from 116 consecutive patients with clinical suspicion of amyloidosis, selected from the period 2005 to 2014 from the database of the Pathology Unit of the University of Padua. The results were compared with those of transmission electron microscopy (TEM), which we consider as reference. We found that with CRF-CLSM, the false negative rate was reduced from 17 to 5%, while the sensitivity of detection increased to 12%. The results were in complete agreement with those of TEM ThT-CLSM; both sensitivity and specificity were 100%. Finally, ThT-CLSM results did not vary with section thickness, and small amounts of amyloid could even be detected in 2-μm sections. In conclusion, we found ThT-CLSM to be more sensitive as a screening method for amyloidosis than CR and ThT epifluorescence optical imaging. The method was easier to standardise, provided images with better resolution and resulted in more consistent pathologist diagnoses.

  13. Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping.

    PubMed

    Hu, Zhenxing; Luo, Huiyang; Du, Yingjie; Lu, Hongbing

    2013-05-20

    Recently, mechanobiology has received increased attention. For investigation of biofilm and cellular tissue, measurements of the surface topography and deformation in real-time are a pre-requisite for understanding the growth mechanisms. In this paper, a novel three-dimensional (3D) fluorescent microscopic method for surface profilometry and deformation measurements is developed. In this technique a pair of cameras are connected to a binocular fluorescent microscope to acquire micrographs from two different viewing angles of a sample surface doped or sprayed with fluorescent microparticles. Digital image correlation technique is used to search for matching points in the pairing fluorescence micrographs. After calibration of the system, the 3D surface topography is reconstructed from the pair of planar images. When the deformed surface topography is compared with undeformed topography using fluorescent microparticles for movement tracking of individual material points, the full field deformation of the surface is determined. The technique is demonstrated on topography measurement of a biofilm, and also on surface deformation measurement of the biofilm during growth. The use of 3D imaging of the fluorescent microparticles eliminates the formation of bright parts in an image caused by specular reflections. The technique is appropriate for non-contact, full-field and real-time 3D surface profilometry and deformation measurements of materials and structures at the microscale.

  14. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  15. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  16. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging.

    PubMed

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-12-02

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second.

  17. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

    PubMed Central

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L.; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-01-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  18. Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging.

    PubMed

    Lipiec, Ewelina; Bambery, Keith R; Heraud, Philip; Kwiatek, Wojciech M; McNaughton, Don; Tobin, Mark J; Vogel, Christian; Wood, Bayden R

    2014-09-07

    SR-FTIR in combination with Principal Component Analysis (PCA) was applied to investigate macromolecular changes in a population of melanocytes and their extracted nuclei induced by environmentally relevant fluxes of UVR (Ultraviolet Radiation). Living cells and isolated cellular nuclei were investigated post-irradiation for three different irradiation dosages (130, 1505, 15,052 Jm(-2) UVR, weighted) after either 24 or 48 hours of incubation. DNA conformational changes were observed in cells exposed to an artificial UVR solar-simulator source as evidenced by a shift in the DNA asymmetric phosphodiester vibration from 1236 cm(-1) to 1242 cm(-1) in the case of the exposed cells and from 1225 cm(-1) to 1242 cm(-1) for irradiated nuclei. PCA Scores plots revealed distinct clustering of spectra from irradiated cells and nuclei from non-irradiated controls in response to the range of applied UVR radiation doses. 3D Raman confocal imaging in combination with k-means cluster analysis was applied to study the effect of the UVR radiation exposure on cellular nuclei. Chemical changes associated with apoptosis were detected and included intra-nuclear lipid deposition along with chromatin condensation. The results reported here demonstrate the utility of SR-FTIR and Raman spectroscopy to probe in situ DNA damage in cell nuclei resulting from UVR exposure. These results are in agreement with the increasing body of evidence that lipid accumulation is a characteristic of aggressive cancer cells, and are involved in the production of membranes for rapid cell proliferation.

  19. SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems.

    PubMed

    Liu, Fang; Lizio, Rosario; Schneider, Uwe J; Petereit, Hans-Ulrich; Blakey, Peter; Basit, Abdul W

    2009-03-18

    A novel double coating enteric system (comprising an inner layer of neutralised EUDRAGIT) L 30 D-55 and organic acid, and an outer layer of standard EUDRAGIT) L 30 D-55) was developed to provide fast dissolution in proximal small intestinal conditions. The mechanisms involved in the dissolution of the double coating were investigated and compared with a conventional single layer enteric coating and an hypromellose (HPMC) sub-coated enteric system. Rates of drug release from coated prednisolone pellets were established using USP II dissolution methods (0.1M HCl for 2h and subsequently pH 5.5 phosphate buffer) and the coating dissolution process was illustrated using confocal laser scanning microscopy (CLSM). The distribution of sodium, as a representative ion, in the double-coating system during dissolution was determined using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). The double-coating system showed faster dissolution compared to the single coating and the HPMC sub-coated system in pH 5.5 buffer. The dissolution process of the double-coating was unusual; the inner coat dissolved before the outer coat and this accelerated the dissolution of the outer coat. During dissolution, sodium ions diffused from the inner coat to the outer coat. This migration of ions and the increased ionic strength and buffer capacity of the inner coat contribute to the rapid dissolution of the double-coating system.

  20. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    SciTech Connect

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  1. Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy

    PubMed Central

    MacDonald, Glen H.; Rubel, Edwin W

    2008-01-01

    The complex anatomy of the mammalian cochlea is most readily understood by representation in three-dimensions. However, the cochlea is often sectioned to minimize the effects of its anatomic complexity and optical properties on image acquisition by light microscopy. We have found that optical aberrations present in the decalcified cochlea can be greatly reduced by dehydration through graded ethanols followed by clearing with a mixture of 5 parts methyl salicylate and 3 parts benzyl benzoate (MSBB). Clearing the cochlea with MSBB enables acquisition of high-resolution images with multiple fluorescent labels, through the full volume of the cochlea by laser scanning confocal microscopy. The resulting images are readily applicable to three-dimensional morphometric analysis and volumetric visualizations. This method promises to be particularly useful for three-dimensional characterization of anatomy, innervation and expression of genes or proteins in the many new animal models of hearing and balance generated by genetic manipulation. Furthermore, the MSBB is compatible with most non-protein fluorophores used for histological labeling, and may be removed with traditional transitional solvents to allow subsequent epoxy embedding for sectioning. PMID:18573326

  2. Assessing Strain Mapping by Electron Backscatter Diffraction and Confocal Raman Microscopy Using Wedge-indented Si

    PubMed Central

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F.

    2016-01-01

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2 × 10−4 in strain. CRM was similarly precise, but was limited in accuracy to several times this value. PMID:26939030

  3. Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy

    SciTech Connect

    LAGASSE,ROBERT R.; THOMPSON,KYLE R.

    2000-06-12

    The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

  4. Design of H-PDLC grating array chopper applied in frequency division multiplexed integrated confocal microscopy

    NASA Astrophysics Data System (ADS)

    Wen, Ken; Zheng, Jihong; Sun, Guoqiang; Liu, Defeng; Chen, Luoyang; Zhuang, Songlin

    2009-11-01

    A new type of electrically controlled optical chopper based on Holographic Polymer Dispersed Liquid Crystal (HPDLC) grating array is demonstrated in this paper. H-PDLC grating can be erased and become transparent to the incident beam when applied the external voltage. H-PDLC grating recovers and diffracts incident light in the original way after removal the driving voltage. Thus the intensity and the frequency modulation to the incident beam can be achieved through adjusting the voltage applied on the H-PDLC cell. Compared with a conventional chopper, the H-PDLC gratings exhibit more advantage like much faster response time, the grating array is much more integrated and easier to be fabricated etc. Moreover, electro-optical properties including response time and diffraction efficiency of H-PDLC gratings are investigated. By optimizing some parameters, H-PDLC chopper cell with a microsecond response time and high diffraction efficiency is obtained. The driving voltage of H-PDLC can be reduced through controlling the droplet size in H-PDLC and the thickness of the grating. As the application example, the chopper is applied in the new born frequency division multiplexed multichannel fluorescence confocal microscopy so that it can improve the temporal and spatial resolution ability of the microscopy system.

  5. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB☆

    PubMed Central

    Lagerstedt, Ingvar; Moore, William J.; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R.; Kleywegt, Gerard J.

    2013-01-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed. PMID:24113529

  6. Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB.

    PubMed

    Lagerstedt, Ingvar; Moore, William J; Patwardhan, Ardan; Sanz-García, Eduardo; Best, Christoph; Swedlow, Jason R; Kleywegt, Gerard J

    2013-11-01

    The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.

  7. Confocal microscopy reveals persisting stromal changes after myopic photorefractive keratectomy in zero haze corneas

    PubMed Central

    Bohnke, M.; Thaer, A.; Schipper, I.

    1998-01-01

    punctate inclusions seen in rods, but densely packed. Both of these unusual structures were confined, laterally, to the ablated area, but were otherwise distributed throughout all stromal layers, with a clear predominance in the anterior ones. These rods and needles were observed in all PRK treated corneas, irrespective of previous contact lens wear. On the basis of qualitative inspection, the incidence of rods and needles did not appear to correlate with either the volume of tissue ablated or the length of the postoperative interval. In contact lens wearing controls, highly reflective granules, reminiscent of those from which the needles were composed, were found scattered as isolated entities throughout the entire depth and lateral extent of the corneal stroma, but rods and needles were never encountered. The corneal endothelium exhibited no obvious abnormalities.
CONCLUSION—Confocal microscopy 8-43 months after PRK revealed belated changes in the corneal stroma. These were manifested as two distinct types of abnormal reflective bodies, which had persisted beyond the stage when acute wound healing would have been expected to be complete. The clinical significance of these findings in the context of contrast visual acuity and long term status of the cornea is, as yet, unknown.

 Keywords: photorefractive keratectomy; excimer laser; confocal microscopy; stromal pathology PMID:9930270

  8. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures.

    PubMed

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W

    2005-06-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60 nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale.

  9. Effects of contact lens wearing on keratoconus: a confocal microscopy observation

    PubMed Central

    Ghosh, Somnath; Mutalib, Haliza A; Sharanjeet-Kaur; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    AIM To evaluate the corneal cell morphology of new keratoconus patients wearing two different types of rigid gas-permeable (RGP) contact lenses for 1y. METHODS Thirty nine eyes of 39 new keratoconus patients were selected and randomly fitted with two types of RGP contact lenses. Group 1 had 21 eyes with regular rigid gas-permeable (RRGP) contact lens and rest 18 eyes were in group 2 with specially designed rigid gas-permeable (SRGP) contact lens. Corneal cell morphology was evaluated using a slit scanning confocal microscope at no-lens wear and after 1y of contact lens wearing. RESULTS After 1y of contact lens wearing in group 1, the mean anterior and posterior stromal keratocyte density were significantly less (P=0.006 and P=0.001, respectively) compared to no-lens wear. The mean cell area of anterior and posterior stromal keratocyte were also significantly different (P=0.005 and P=0.001) from no-lens wear. The anterior and posterior stromal haze increased by 18.74% and 23.81%, respectively after 1y of contact lens wearing. Whereas in group 2, statistically significant changes were observed only in cell density & area of anterior stroma (P=0.001 and P=0.001, respectively) after 1y. While, level of anterior and posterior stromal haze increased by 16.67% and 11.11% after 1y of contact lens wearing. Polymegathism and pleomorphism also increased after 1y of contact lens wearing in both the contact lens groups. CONCLUSION Confocal microscopy observation shows the significant alterations in corneal cell morphology of keratoconic corneas wearing contact lenses especially in group 1. The type of contact lens must be carefully selected to minimize changes in corneal cell morphology. PMID:28251081

  10. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell