Visualization of 3D Geological Models on Google Earth
NASA Astrophysics Data System (ADS)
Choi, Y.; Um, J.; Park, M.
2013-05-01
Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
A hybrid-3D hillslope hydrological model for use in Earth system models
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Fang, Y.; Broxton, P.; Gochis, D.; Niu, G.-Y.; Pelletier, J. D.; Troch, P. A.; Zeng, X.
2015-10-01
Hillslope-scale rainfall-runoff processes leading to a fast catchment response are not explicitly included in land surface models (LSMs) for use in earth system models (ESMs) due to computational constraints. This study presents a hybrid-3D hillslope hydrological model (h3D) that couples a 1-D vertical soil column model with a lateral pseudo-2D saturated zone and overland flow model for use in ESMs. By representing vertical and lateral responses separately at different spatial resolutions, h3D is computationally efficient. The h3D model was first tested for three different hillslope planforms (uniform, convergent and divergent). We then compared h3D (with single and multiple soil columns) with a complex physically based 3-D model and a simple 1-D soil moisture model coupled with an unconfined aquifer (as typically used in LSMs). It is found that simulations obtained by the simple 1-D model vary considerably from the complex 3-D model and are not able to represent hillslope-scale variations in the lateral flow response. In contrast, the single soil column h3D model shows a much better performance and saves computational time by 2-3 orders of magnitude compared with the complex 3-D model. When multiple vertical soil columns are implemented, the resulting hydrological responses (soil moisture, water table depth, and base flow along the hillslope) from h3D are nearly identical to those predicted by the complex 3-D model, but still saves computational time. As such, the computational efficiency of the h3D model provides a valuable and promising approach to incorporating hillslope-scale hydrological processes into continental and global-scale ESMs.
Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)
Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David
2015-11-15
This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).
Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake
NASA Astrophysics Data System (ADS)
Qu, W.; Cheng, H.; Shi, Y.
2015-12-01
The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.
Compilation of 3D global conductivity model of the Earth for space weather applications
NASA Astrophysics Data System (ADS)
Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay
2015-07-01
We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.
NASA Astrophysics Data System (ADS)
Thesenga, David; Town, James
2014-05-01
visualization and exporting as a .stl file for 3D printing. A proposal for improving the method and making it more accessible to middle school aged students is provided. Using the SRTM data to print a hand-held visual representation of a portion of the Earth's surface would utilize existing technology in the school and alter how topography can be taught in the classroom. Combining methods of 2D paper representations, on-screen 3D visualizations, and 3D hand-held models, give students the opportunity to truly grasp and retain the information being provided.
3D Sun-to-Earth Solar Wind Modeling by SIP-CESE-MHD Model
NASA Astrophysics Data System (ADS)
Feng, Xueshang
2012-07-01
3D Sun-to-Earth Solar Wind Modeling by SIP-CESE-MHD Model Xueshang Feng, Xiang Changqing, Jiang Chaowei State Key Lab of Space Weather/CSSAR, CAS Beijing 100190 The objective is to present our solar-interplanetary space-time conservation element and solution element (CESE) model (SIP-CESE MHD model) (Feng, Zhou and Wu, Astrophys. J. 655, 1110, 2007; Feng et al., Astrophys. J. 723, 300, 2010; Feng et al., ApJ, 734, 50, 2011) with adaptive mesh refinement (AMR) implementation under six-component/Yin-Yang grid system. In this talk, we present the results of applying the SIP-AMR-CESE MHD model for modeling the coronal mass ejection and the solar wind background of different solar activity phases by comparison with SOHO observations and other spacecraft data from OMNI. Our numerical results show overall good agreements in the solar corona and in interplanetary space with these multiple spacecraft observations. From the modeler's experience, some limitations are addressed for this kind of initial-value boundary problems in Sun-to-Earth MHD modeling, and future out-of-ecliptic and in situ observations of the Sun and solar wind will be a solution to these limitations.
Joint earthquake source inversions using seismo-geodesy and 3-D earth models
NASA Astrophysics Data System (ADS)
Weston, J.; Ferreira, A. M. G.; Funning, G. J.
2014-08-01
A joint earthquake source inversion technique is presented that uses InSAR and long-period teleseismic data, and, for the first time, takes 3-D Earth structure into account when modelling seismic surface and body waves. Ten average source parameters (Moment, latitude, longitude, depth, strike, dip, rake, length, width and slip) are estimated; hence, the technique is potentially useful for rapid source inversions of moderate magnitude earthquakes using multiple data sets. Unwrapped interferograms and long-period seismic data are jointly inverted for the location, fault geometry and seismic moment, using a hybrid downhill Powell-Monte Carlo algorithm. While the InSAR data are modelled assuming a rectangular dislocation in a homogeneous half-space, seismic data are modelled using the spectral element method for a 3-D earth model. The effect of noise and lateral heterogeneity on the inversions is investigated by carrying out realistic synthetic tests for various earthquakes with different faulting mechanisms and magnitude (Mw 6.0-6.6). Synthetic tests highlight the improvement in the constraint of fault geometry (strike, dip and rake) and moment when InSAR and seismic data are combined. Tests comparing the effect of using a 1-D or 3-D earth model show that long-period surface waves are more sensitive than long-period body waves to the change in earth model. Incorrect source parameters, particularly incorrect fault dip angles, can compensate for systematic errors in the assumed Earth structure, leading to an acceptable data fit despite large discrepancies in source parameters. Three real earthquakes are also investigated: Eureka Valley, California (1993 May 17, Mw 6.0), Aiquile, Bolivia (1998 February 22, Mw 6.6) and Zarand, Iran (2005 May 22, Mw 6.5). These events are located in different tectonic environments and show large discrepancies between InSAR and seismically determined source models. Despite the 40-50 km discrepancies in location between previous geodetic and
Glacial isostatic adjustment on 3-D Earth models: a finite-volume formulation
NASA Astrophysics Data System (ADS)
Latychev, Konstantin; Mitrovica, Jerry X.; Tromp, Jeroen; Tamisiea, Mark E.; Komatitsch, Dimitri; Christara, Christina C.
2005-05-01
We describe and present results from a finite-volume (FV) parallel computer code for forward modelling the Maxwell viscoelastic response of a 3-D, self-gravitating, elastically compressible Earth to an arbitrary surface load. We implement a conservative, control volume discretization of the governing equations using a tetrahedral grid in Cartesian geometry and a low-order, linear interpolation. The basic starting grid honours all major radial discontinuities in the Preliminary Reference Earth Model (PREM), and the models are permitted arbitrary spatial variations in viscosity and elastic parameters. These variations may be either continuous or discontinuous at a set of grid nodes forming a 3-D surface within the (regional or global) modelling domain. In the second part of the paper, we adopt the FV methodology and a spherically symmetric Earth model to generate a suite of predictions sampling a broad class of glacial isostatic adjustment (GIA) data types (3-D crustal motions, long-wavelength gravity anomalies). These calculations, based on either a simple disc load history or a global Late Pleistocene ice load reconstruction (ICE-3G), are benchmarked against predictions generated using the traditional normal-mode approach to GIA. The detailed comparison provides a guide for future analyses (e.g. what grid resolution is required to obtain a specific accuracy?) and it indicates that discrepancies in predictions of 3-D crustal velocities less than 0.1 mm yr-1 are generally obtainable for global grids with ~3 × 106 nodes; however, grids of higher resolution are required to predict large-amplitude (>1 cm yr-1) radial velocities in zones of peak post-glacial uplift (e.g. James bay) to the same level of absolute accuracy. We conclude the paper with a first application of the new formulation to a 3-D problem. Specifically, we consider the impact of mantle viscosity heterogeneity on predictions of present-day 3-D crustal motions in North America. In these tests, the
Synthetic Seismograms for Realistic 3D Earth Model with Anisotropic Inner Core
NASA Astrophysics Data System (ADS)
Tsuboi, S.; Tono, Y.
2006-12-01
We have demonstrated that we can calculate global theoretical seismograms for realistic 3D Earth models based upon the combination of a precise numerical technique (the spectral-element method) and a sufficiently fast supercomputer (the Earth Simulator) [Tsuboi et al, 2003]. Here we have calculated synthetic seismograms by using model S20RTS of the mantle (Ritsema et al., 1999), model CRUST2.0 of the crust (Basin et al., 2000), topography and bathymetry model ETOPO5, and anisotropic inner core model (Ishii 2002). The calculations are performed on 4056 processors, which require 507 out of 640 nodes of the Earth Simulator. These synthetics are computed by using SPECFEM3D(Komatitsch and Tromp, 2002) and are accurate up to 3.5 seconds. We have calculated these synthetics with aisotropic inner core model for several earthquakes and compared with the synthetics which are calculated for isotropic inner core model. Preliminary comparison shows that the travel time differences between anisotropic inner core model and isotropic core model for PKPab phases are at most a few seconds. There seems to be no significant differences in waveforms of PKP phases. These differences in travel times may help us to improve inner core fine structure by comparing these synthetics with observation.
NASA Astrophysics Data System (ADS)
Tandon, K.; Egbert, G.; Siripunvaraporn, W.
2003-12-01
We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.
Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)
Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David
2015-11-15
This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels
NASA Astrophysics Data System (ADS)
Baraka, S. M.; Ben-Jaffel, L. B.
2014-12-01
We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere
A 3D Earth orbit model; visualization and analysis of Milankovitch cycles and insolation
NASA Astrophysics Data System (ADS)
Gilb, R. D.; Kostadinov, T. S.
2012-12-01
An astronomically precise and accurate Earth orbit graphical model, Earth orbit v2.0, is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Prevalent paleoclimatic theories invoke Milankovitch cycles as a major forcing mechanism capable of shifting Earth's climate regimes on time scales of tens to hundreds of thousands of years. Variability of eccentricity (ellipticity of orbit), precession (longitude of perihelion) and obliquity (Earth's axial tilt) changes parameters such as amplitude of seasonal insolation, timing of seasons with respect to perihelion, and total annual insolation. Hays et al. (1976) demonstrated a strong link between Milankovitch cycles and paleoclimatological records, which has been confirmed and expanded many times since (e.g. Berger et al., 1994; Berger et al., 2010). The complex interplay of several orbital parameters on various time scales makes assessment and visualization of Earth's orbit and spatio-temporal insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns on various spatio-temporal scales. These factors also make Milankovitch theory difficult to teach effectively. The model allows substantial user control in a robust, yet intuitive and user-friendly graphical user interface (GUI) developed in Matlab. We present the user with a choice between Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. Berger solutions span from -1 Myr to +1 Myr, while Laskar provides solutions from -101 Myr to +21 Myr since J2000. Users can also choose a "demo" mode which allows the three Milankovitch parameters to be varied independently of each other, so the user can isolate the effects of each on orbital geometry and insolation. For example, extreme eccentricity can be
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
NASA Astrophysics Data System (ADS)
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2014-12-01
Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton
3-D density models within an ellipsoidal-Earth from inversion of geoid anomalies
NASA Astrophysics Data System (ADS)
Chaves, C. M.; Ussami, N.
2013-12-01
Modeling density perturbations is very important to understand geodynamic processes which occur within the Earth's mantle. Commonly, the Earth's density is predicted by converting a velocity model into a density model using either a constant scaling factor or a relationship provided by mineral physics. Nonetheless, several factors such as temperature, composition and melting can affect the wave propagation speed so that a seismically converted density model may not retrieve the actual density distribution. This limitation may hamper the modeling the geodynamic processes. Due to advances in satellite-derived gravity data acquisition (e.g. GRACE, GOCE), the gravity field is now obtained with an unprecedented accuracy and resolution allowing us to estimate more uniformly the 3-D density distribution for the whole Earth. Here we present a computational algorithm to invert geoid anomalies in order to estimate density variations in the mantle. Using an ellipsoidal-Earth approximation, the model space is represented by a set of tesseroids. From a synthetic geoid anomaly caused by a plume tail ascending through the mantle with Gaussian noise added, the inversion code is capable to recover with good accuracy the density contrast and the body geometry when compared to the synthetic model. This algorithm was also tested in a natural case study, where geoid anomalies from the Yellowstone Province (YP) were inverted. The estimated density model (EDM) has a predominantly negative density contrast (~ -50 kg/m3) relative to the surrounding upper mantle and extends to the depth of 1000 km. The EDM exhibits an anti-correlation of up to -0.7 with one of the most recent S-velocity model for the western United States. The predicted dynamic topography from the EDM explains almost 80 % of the observed dynamic topography in the YP. From our results, we conclude that a joint-interpretation of density anomalies derived from geoid and velocity perturbations from seismic tomography models
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, R.; Gerya, T.
2015-12-01
Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and a mantle potential temperature increase (ΔTp, compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanics and plutonics. For an increase in mantle potential temperature ΔTp= 250 K, presumably corresponding to an Archean mantle, models show large amounts of subcrustal decompression melting and consequently large amounts of magmatism, which in turn influence the dynamics. In a first active phase (10-20 Ma) rising diapirs within the crust lead to the formation of the typical dome and keel pattern (e.g. Kaapvaal craton in South Africa, Pilbara craton in northwest Australia). A long passive phase follows with strong growth of crust and lithosphere. Both crust and lithosphere thickness are regulated by thermal-chemical instabilities assisted by lower crust eclogitization. Eclogitization depth is reached after ~80 Ma and linear or cylindrical drips originate at the crust or lithosphere bottom. Delamination of lower crust and lithosphere then occurs as one 'catastrophic' event within the next 20 Ma.
A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.
NASA Astrophysics Data System (ADS)
Kostadinov, Tihomir; Gilb, Roy
2013-04-01
Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry
Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2016-04-01
Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.
Early Earth tectonics: A high-resolution 3D numerical modelling approach
NASA Astrophysics Data System (ADS)
Fischer, Ria; Gerya, Taras
2015-04-01
Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions using a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a hot lower thermal boundary layer is used to introduce spontaneously developing mantle plumes. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics and/or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic to granitic depending on its source rock. For a major increase in the mantle temperature, presumably corresponding to an Archean mantle (ΔTp = 200 - 300K compared to present day conditions), models show large amounts of subcrustal decompression melting and consequently large amounts of volcanics, which in turn influence the dynamics. Mantle and crust are convecting separately. Dome-shaped felsic plutons can be observed in the crust. Between these domes elongated belts of downwelling basalt and sediments are formed. Both crust and lithosphere thickness are regulated by thermo-chemical instabilities assisted by lower crust eclogitization: linear or cylindrical drips originating at the crust or lithosphere bottom or delamination of lower crust or lithosphere. Very similar examples of dome and belt structures are still preserved in Archean cratons. One example is the Kaapvaal craton is South Africa where the elongated shape of the Barberton Greenstone Belt, mainly built from mafic rocks and sediments, is surrounded
Rapid probabilistic source characterisation in 3D earth models using learning algorithms
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kaeufl, P.; Trampert, J.
2015-12-01
triggers; if longer windows are used, constraints on focal mechanism can also be obtained. We demonstrate that the use of 3D wave propagation allows results to be constrained better than is possible when only 1D earth models are used.
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Encarnacao, A.; Phillips, W. S.; Chael, E. P.; Rowe, C. A.
2012-12-01
We are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography to assess improvement to seismic event locations obtained using high quality 3D Earth models in lieu of 1D and 2/2.5D models. We present the most recent version of SALSA3D (SAndia LoS Alamos 3D) version 1.9, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events. Our model is derived from the latest version of the GT catalog of P/Pn travel-time picks assembled by Los Alamos National Laboratory. For this current version, we employ more robust data quality control measures than previously used, as well as additional global GT data sources. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays into representative rays. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, overlying a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant such a refinement. In previous versions, we based this refinement on velocity changes from previous model iterations. For the current version, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. In addition to the changes in grid refinement, we also employ a more robust convergence criterion between successive grid refinements, allowing a better fit to first broader
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A.; Rowe, C. A.; Phillips, W. S.; Steck, L.
2011-12-01
To test the hypothesis that high quality 3D Earth models will produce seismic event locations that are more accurate and more precise than currently used 1D and 2/2.5D models, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos 3D) version 1.7, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events, compared to existing models and/or systems. Our model is derived from the latest version of the GT catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model elsewhere, over a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant it. In previous versions of SALSA3D, we based this refinement on velocity changes from previous model iterations. For version 1.7, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. We
Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Barnhoorn, Auke; Stocchi, Paolo; Gradmann, Sofie; Wu, Patrick; Drury, Martyn; Vermeersen, Bert
2013-07-01
Models for glacial isostatic adjustment (GIA) can provide constraints on rheology of the mantle if past ice thickness variations are assumed to be known. The Pleistocene ice loading histories that are used to obtain such constraints are based on an a priori 1-D mantle viscosity profile that assumes a single deformation mechanism for mantle rocks. Such a simplified viscosity profile makes it hard to compare the inferred mantle rheology to inferences from seismology and laboratory experiments. It is unknown what constraints GIA observations can provide on more realistic mantle rheology with an ice history that is not based on an a priori mantle viscosity profile. This paper investigates a model for GIA with a new ice history for Fennoscandia that is constrained by palaeoclimate proxies and glacial sediments. Diffusion and dislocation creep flow law data are taken from a compilation of laboratory measurements on olivine. Upper-mantle temperature data sets down to 400 km depth are derived from surface heatflow measurements, a petrochemical model for Fennoscandia and seismic velocity anomalies. Creep parameters below 400 km are taken from an earlier study and are only varying with depth. The olivine grain size and water content (a wet state, or a dry state) are used as free parameters. The solid Earth response is computed with a global spherical 3-D finite-element model for an incompressible, self-gravitating Earth. We compare predictions to sea level data and GPS uplift rates in Fennoscandia. The objective is to see if the mantle rheology and the ice model is consistent with GIA observations. We also test if the inclusion of dislocation creep gives any improvements over predictions with diffusion creep only, and whether the laterally varying temperatures result in an improved fit compared to a widely used 1-D viscosity profile (VM2). We find that sea level data can be explained with our ice model and with information on mantle rheology from laboratory experiments
Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling
NASA Astrophysics Data System (ADS)
Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.
2016-07-01
Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When
SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location
NASA Astrophysics Data System (ADS)
Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.
2010-12-01
To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a
EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2013-04-01
EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be
NASA Astrophysics Data System (ADS)
Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong
2010-09-01
Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.
NASA Astrophysics Data System (ADS)
Stocchi, P.; van der Wal, W.; Vermeersen, B. L.; van de Wal, R.; Wu, P. P.
2010-12-01
Constraining the rheology of the upper mantle beneath the Scandinavian shield by means of relative sea-level indicators and instrumental observations demands a realistic spatio-temporal discretization of the late Pleistocene ice coverage over Eurasia. The waxing and waning of ice sheets is testified by the occurrence of surface marks that come in form of datable depositional and erosive features. We use these georeferenced geological evidences to infer the time-dependent ice sheet margins. By adopting both plastic and viscosplastic rheologies, we fill the boundaries with ice mass resting at equilibrium. Thus, in our approach the ice model is not biased by assumptions on the Earth’s rheology. The Fennoscandian ice cap contributes up to ~14 of the ~38 m of equivalent sea level stored over Eurasia, while 82 m are distributed between simplified parabolic ice caps for North America, Greenland and Antarctica in order to conserve the 120 m of global eustatic sea level rise. We apply the equal-volume plastic and viscoplastic versions of our ice model to a 3d spherical Earth model with rheology based on laboratory derived flow laws for mantle rocks. Fixed deformation parameters for diffusion and dislocation creep are used throughout the mantle, except for the top 250 km in which deformation parameters are computed from lateral varying temperature derived from seismology. We vary grain sizes and water content in the top layers to study their impact on glacial isostatic adjustment (GIA) observables. Predictions are compared with GIA observations in Scandinavia to show whether the ice model and laterally varying Earth rheology can explain GIA observations as good as previous models that were based on Newtonian rheology in the Earth.
NASA Technical Reports Server (NTRS)
Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.
2013-01-01
Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.
A New Global Model for 3-D variations in P Wave Speed in Earth's Mantle
NASA Astrophysics Data System (ADS)
Karason, H.; van der Hilst, R. D.; Li, C.
2003-12-01
In an effort to improve the resolution of mantle structure we have combined complementary data sets of short- and long period (absolute and differential) travel time residuals. Our new model is based on short period P (N\\~7.7x10**6), pP (N\\~2.3x10**5), and PKP (N\\~16x10**4) data from the catalog by Engdahl et al (BSSA, 1998), short-period PKP differential times (N\\~1600) measured by McSweeney & Creager, and long-period differential PP-P times - N\\~20,000 measured by Bolton & Masters and N\\~18,000 by Ritsema - and Pdiff-PKP (N\\~560) measured by Wysession. Inversion tests, spectral analysis, and comparison with geology indicate that the large-scale upper mantle structure is better constrained with the addition of PP-P, whereas the Pdiff and PKP data help constrain deep mantle structure (Karason & Van der Hilst, JGR, 2001). The long period data were measured by cross-correlation. We solved the system of equations using 400 iterations of the iterative algorithm LSQR For the short period (1 Hz) data we use a high frequency approximation and trace rays through a fine grid of constant slowness cells to invert for mantle structure. For low frequency Pdiff and PP data we account for sensitivity to structure away from the optical ray path with 3-D Frechet derivatives (sensitivity kernels) estimated from single forward scattering and projected onto basis functions (constant slowness blocks) used for model parameterization. With such kernels the low frequency data can constrain long wavelength heterogeneity without keeping the short period data from mapping details in densely sampled regions. In addition to finite frequency sensitivity kernels we optimized the localization by using a parameterization that adapts to spatial resolution, with small cells in regions of dense sampling and larger cells in regions where sampling is more sparse (the total number of cells was \\~ 350,000). Finally, we corrected all travel times and surface reflections for lateral variations in
NASA Astrophysics Data System (ADS)
Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart
2013-09-01
The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.
NASA Astrophysics Data System (ADS)
Mu, D.; Lee, E.; Chen, P.; Jordan, T. H.; Maechling, P. J.
2010-12-01
Accurate and rapid CMT inversion is important for seismic hazard analysis. We have developed an algorithm for very rapid CMT inversions in a 3D Earth structure model and applied it on small to medium-sized earthquakes recorded by the Southern California Seismic Network (SCSN). Our CMT inversion algorithm is an integral component of the scattering-integral (SI) method for full-3D waveform tomography (F3DT). In the SI method for F3DT, the sensitivity (Fréchet) kernels are constructed through the temporal convolution between the earthquake wavefield (EWF) from the source and the receiver Green tensor (RGT) from the receiver. In this study, our RGTs were computed in a 3D seismic structure model for Southern California (CVM4SI1) using the finite-difference method, which allows us to account for 3D path effects in our source inversion. By storing the RGTs, synthetic seismograms for any source in our modeling volume could be generated rapidly by applying the reciprocity principle. An automated waveform-picking algorithm based on continuous wavelet transform is applied on observed waveforms to pick P, S and surface waves. A grid-searching algorithm is then applied on the picked waveforms to find an optimal focal mechanism that minimizes the amplitude misfit and maximize the weighted correlation coefficient. The grid-search result is then used as the initial solution in a gradient-based optimization algorithm that minimizes the L2 norm of the generalized seismological data functionals (GSDF), which quantifies waveform differences between observed and synthetic seismograms using frequencies-dependent phase-delay and amplitude anomalies. In general, our CMT solutions agree with solutions inverted using other methods and provide better fit to the observed waveforms.
NASA Astrophysics Data System (ADS)
Parisi, Laura; Ferreira, Ana M. G.
2016-04-01
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ˜ 45-150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ˜ 45-150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ˜ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ˜20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ˜ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT's phase errors are smaller, notably for the shortest wave periods considered (T ˜ 45 s and
NASA Astrophysics Data System (ADS)
Chen, P.; Lee, E.; Jordan, T. H.; Maechling, P. J.
2009-12-01
Accurate and rapid CMT inversion is important for seismic hazard analysis. We have developed an algorithm for very rapid CMT inversions in a 3D Earth structure model and applied it on small to medium-sized earthquakes recorded by the Southern California Seismic Network (SCSN). Our CMT inversion algorithm is an integral component of the scattering-integral (SI) method for full-3D waveform tomography (F3DT). In the SI method for F3DT, the sensitivity (Fréchet) kernels are constructed through the temporal convolution between the earthquake wavefield (EWF) and the receiver Green tensor (RGT), which is the wavefield generated by 3 orthogonal unit impulsive body forces acting at the receiver location. The RGTs are also the partial derivatives of the waveform with respect to the moment tensors. In this study, our RGTs are computed in a 3D seismic structure model for Southern California (CVM4SI1) using the finite-difference method, which allows us to account for 3D path effects in our source inversion. We used three component broadband waveforms below 0.2 Hz. An automated waveform-picking algorithm based on continuous wavelet transform is applied on observed waveforms to pick P, S and surface waves. A multi-scale grid-searching algorithm is then applied on the picked waveforms to find the optimal strike, dip and rake values that minimize the amplitude misfit and maximize the correlation coefficient. In general, our CMT solutions agree with solutions inverted using other methods and provide better fit to the observed waveforms.
NASA Astrophysics Data System (ADS)
Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.
2014-12-01
Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.
NASA Astrophysics Data System (ADS)
Luo, Cong; Friederich, Wolfgang
2016-04-01
Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark
2010-11-01
Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase
Spectral element modeling of 3D wave propagation in the Earth: the graver part of the spectrum
NASA Astrophysics Data System (ADS)
Chaljub, E.; Valette, B.
2003-04-01
The Spectral Element Method (SEM) has been recently established as a new reference to compute synthetic seismograms in 3D models of the Earth. So far, all the studies involving the SEM have been performed within the Cowling approximation, i. e. neglecting the variations of the gravity field during wave propagation. For low-frequency studies (typically less than 5 mHz) the previous assumption fails and the complete treatment of self-gravitation has to be considered. This requires the introduction of the mass redistribution potential (MRP) which has to satisfy Poisson's equation everywhere in space. Unlike spherical harmonics approaches, the use of a grid based method does not provide a natural framework for the resolution of the exterior problem. However, we show that a Dirichlet-to-Neumann operator at the surface of the Earth provides a simple and efficient solution to this problem. A special attention is needed for the fluid parts to avoid spurious oscillations. To this end, we introduce a general two-potentials formulation which allows to take any density stratification into account. Contrary to other studies that considered the velocity potential, our decomposition is applied to the displacement field in order to obtain natural solid-fluid boundary conditions for the MRP. At each time step, the MRP is computed from the displacement field through a preconditioned conjugate gradient algorithm. This procedure has to be accurate enough in order to ensure a stable calculation on long time series. Some examples of synthetic seismograms computed in spherical Earth models illustrate the accuracy of our approach.
NASA Technical Reports Server (NTRS)
Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom
2007-01-01
World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D. J.; Lawrence, D. M.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2014-12-01
Traditionally, LSMs for use in Earth system models (ESMs) only account for one-dimensional (1-D) vertical hydrological processes at very coarse resolutions (~100 km). Recently, there has been interest in simulating lateral exchange of surface and subsurface water, as the grid resolution of ESMs increases (currently towards ~20 km) due to advances in computational power.In the current work, we present a new physically-based hydrological model capable of simulating lateral flow at a hyperresolution (1 km pixels) coupled with the vertical soil column of the Community Land Model (CLM), which has a much coarser resolution. Our new approach also uses sub-pixel topographic information to represent small scale lateral-flow processes. As input to our model, we use 1 km data of required surface and subsurface information, such depth to bedrock, hillslope width functions, fractional coverage of hillslopes/wetlands/riparian zones within each 1 km pixel, and a river network. Such data are largely derived from higher-resolution (30 m) topographic data, and will be made available to the community as global products.We have tested our model against measurements over a well instrumented, artificial hillslope at the University of Arizona's Biosphere 2 and found that both our approach and a full 3-D physically-based hydrological model can realistically simulate hydrological states and fluxes. However, computationally, our approach is 2 - 3 orders of magnitude faster than the latter. We are currently testing it for an ESM grid box that covers much of southeastern New York State, which includes the headwaters of the Delaware River, the Susquehana River, and parts of the Mohawk River Basin. Our approach improves upon the 1-D hydrological representation in CLM by representing the subgrid topographic and geomorphological variability in the grid box. The impact of representing such subgrid variability on surface water and energy fluxes will be discussed in our presentation.
A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location
NASA Astrophysics Data System (ADS)
Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Lewis, J.; Begnaud, M. L.; Rowe, C. A.
2009-12-01
further refinement takes place around adjusted nodes to form a new model, and the process is repeated until no more improvement can be obtained. We thus produce a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a Java-based distributed computing framework developed by Sandia National Laboratories (SNL), providing us with 300+ processors having an efficiency of better than 90% for the calculations. We evaluate our model both in terms of travel time residual variance reduction and in location improvement for GT events. For the latter, we use a new multi-threaded version of the SNL-developed LocOO code modified to use 3D velocity models.
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2015-12-01
The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate
NASA Astrophysics Data System (ADS)
Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.
2013-12-01
SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Sibeck, D. G.
2016-09-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Astrophysics Data System (ADS)
De Donatis, Mauro; Susini, Sara
2014-05-01
-consistent in showing the structural features of the study area. The work was not so straightforward, but the result is more then satisfying, even if some limitations were not solved (i.e. visualisation of bedding attitudes). Geological maps are fundamental for knowledge transfer among experts but, if combined with the innovative digital methods from survey to 3D model, this knowledges could reach a much larger number of people, allowing a cultural growth and the establishment of a larger awareness of the Earth and Environment.
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
NASA Astrophysics Data System (ADS)
Vidal Royo, O.
2014-12-01
GIS and geological modeling software have radically changed the means by which geological mapping is produced, published and visualized. This type of software environment normally requires a spatially aware reference system to position data and interpretation, often referred as georeferenced data (i.e. geographic data referenced on the Earth). However, for this study we coin the term areoreferenced data (i.e. Mars-referenced "geographic" data). Thanks to the wealth of areoreferenced data made available by the NASA and the HiRise at University of Arizona it is now possible to carry out 3D areographic and areologic (i.e. related to the topography and geology of Mars, respectively) reconstructions in great detail. The present work benefits from the availability of software and areographic data, and presents the results of an areologic map and 3D model of the fault systems in the Meridiani Planum of Mars. The work has been carried out in Move™ (developed by Midland Valley Exploration), a geological modeling toolkit that allows for easy data loading in a wide range of formats as well as straightforward 2D/3D model building tools of geological bodies. Initial data consisted of Digital Terrain Model and orthoimages (NASA/JPL/University of Arizona/USGS). From these we have interpreted several structural domains: right-lateral strike-slip systems with associated releasing bends, which gave room to an extensional event causing a horizontal-axis rotation of the bedding. Bedding ranges from subhorizontal in the southern domain where strike-slip prevails to nearly 40º in the central and northern domains, where a more complex interaction between strike-slip and extensional faults is described. The stratigraphic sequence is mainly composed by moderately rounded well laminated basaltic sandstones (Squyres et al., 2004) in which a high component of sulfurs (e.g. sulfate anhydrate, hexahydrite, epsomite, gypsum) and salts (e.g. halite) has been described (Squyres et al., 2004
The Esri 3D city information model
NASA Astrophysics Data System (ADS)
Reitz, T.; Schubiger-Banz, S.
2014-02-01
With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.
EarthServer - 3D Visualization on the Web
NASA Astrophysics Data System (ADS)
Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes
2013-04-01
EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client
NASA Astrophysics Data System (ADS)
Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.
2013-12-01
The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
Modeling Cellular Processes in 3-D
Mogilner, Alex; Odde, David
2011-01-01
Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197
The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data
NASA Astrophysics Data System (ADS)
Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris
2010-05-01
Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as
Radiosity diffusion model in 3D
NASA Astrophysics Data System (ADS)
Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin
2001-11-01
We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.
3D Orbit Visualization for Earth-Observing Missions
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.
2011-01-01
This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.
3D model reconstruction of underground goaf
NASA Astrophysics Data System (ADS)
Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan
2005-10-01
Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.
Regional geothermal 3D modelling in Denmark
NASA Astrophysics Data System (ADS)
Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.
2012-04-01
In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the
3D Modeling Engine Representation Summary Report
Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang
2014-09-01
Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.
BEAMS3D Neutral Beam Injection Model
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Lazerson, Samuel A.
2014-09-01
With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Virtual 3d City Modeling: Techniques and Applications
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2013-08-01
3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3
Solar abundances and 3D model atmospheres
NASA Astrophysics Data System (ADS)
Ludwig, Hans-Günter; Caffau, Elisabetta; Steffen, Matthias; Bonifacio, Piercarlo; Freytag, Bernd; Cayrel, Roger
2010-03-01
We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.
Image based 3D city modeling : Comparative study
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-06-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city
ERIC Educational Resources Information Center
Bradley, Joan; Farland-Smith, Donna
2010-01-01
Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
Illustrative visualization of 3D city models
NASA Astrophysics Data System (ADS)
Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian
2005-03-01
This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.
Integrated Biogeomorphological Modeling Using Delft3D
NASA Astrophysics Data System (ADS)
Ye, Q.; Jagers, B.
2011-12-01
The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.
What spherically symmetric viscosity structure produces the same PGR as a realistic 3D Earth?
NASA Astrophysics Data System (ADS)
Paulson, A.; Zhong, S.; Wahr, J.
2003-04-01
Observations of isostatic adjustment of the earth's surface due to transient loading provide important constraints on the mantle viscosity structure. However, most studies of this response have assumed a spherically symmetric (1D) earth. This study is motivated by the following question: when a one-dimensional viscosity model is derived from post-glacial rebound (PGR) observations, how does this 1D structure correspond to the three-dimensional structure of the earth? Using the 3D spherical finite element software CitcomSVE [Zhong et al., 2002], we are able to compute the earth's response to realistic glacial loading when the earth has a truly 3D viscosity structure. The loading is provided by the ICE-3G deglaciation history [Tushingham &Peltier, 1991]. The 3D viscosity structure is constructed by first selecting a priori a radial average viscosity (for example, ( 1021 \\: {Pa \\cdot s}) in the upper mantle and (2 × 1021 \\: {Pa \\cdot s}) in the lower mantle). The lateral variations about this radial structure are derived from seismic shear-velocity tomography models by converting velocities to temperature, then temperature to viscosity. The seismic tomography models used are S20RTS [Ritsema et al., 1999] and NA00 [Van der Lee, 2002]. From the computed isostatic response, we measure typical PGR observables: relative sea level change (RSLC) and (dot{J2}). These measurements are then treated as synthetic data, and we search for 1D (radially stratified) viscosity models, forced with the same glaciation history, that will best fit these synthetic PGR observations. We find that for sites near the center of a large glacial load (e.g., southern Hudson Bay), a local average of the 3D viscosity structure provides a reasonable 1D proxy. For sites along the periphery of the glacial load (e.g., Boston), it is much more difficult to find a 1D model that can reproduce the 3D observations. We also approach the problem by running an ensemble of 1D viscosity models, and finding
Sensing and compressing 3-D models
Krumm, J.
1998-02-01
The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.
3D modeling of optically challenging objects.
Park, Johnny; Kak, Avinash
2008-01-01
We present a system for constructing 3D models of real-world objects with optically challenging surfaces. The system utilizes a new range imaging concept called multi-peak range imaging, which stores multiple candidates of range measurements for each point on the object surface. The multiple measurements include the erroneous range data caused by various surface properties that are not ideal for structured-light range sensing. False measurements generated by spurious reflections are eliminated by applying a series of constraint tests. The constraint tests based on local surface and local sensor visibility are applied first to individual range images. The constraint tests based on global consistency of coordinates and visibility are then applied to all range images acquired from different viewpoints. We show the effectiveness of our method by constructing 3D models of five different optically challenging objects. To evaluate the performance of the constraint tests and to examine the effects of the parameters used in the constraint tests, we acquired the ground truth data by painting those objects to suppress the surface-related properties that cause difficulties in range sensing. Experimental results indicate that our method significantly improves upon the traditional methods for constructing reliable 3D models of optically challenging objects. PMID:18192707
NASA Astrophysics Data System (ADS)
Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin
2014-02-01
3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.
Fallon FORGE 3D Geologic Model
Doug Blankenship
2016-03-01
An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
3D Models of Symbiotic Binaries
NASA Astrophysics Data System (ADS)
Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.
2015-12-01
Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.
Inferential modeling of 3D chromatin structure
Wang, Siyu; Xu, Jinbo; Zeng, Jianyang
2015-01-01
For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen. PMID:25690896
NASA Astrophysics Data System (ADS)
Wolf, Eric T.; Kopparapu, Ravi; Haqq-Misra, Jacob; Toon, Owen Brian
2015-12-01
The host star imposes a primary control on terrestrial planet climate. Both the spectral energy distribution and the main sequence lifetime vary as a function of stellar type. Here we present recent results from three-dimensional climate system models describing the evolutionary sequence of Earth-analog planets throughout their habitable lifetimes. Climatological evolution is traced from snowball to moist greenhouse, representing the conventional end-member states of the habitable zone. For Earth the habitable period would have been tantalizingly short, if not for geological and biological regulation of greenhouse gases. Without active carbon cycling, an early snowball could not have been broken until late in Earth’s history. Abrupt solar driven deglaciation would soon be followed by the onset of the water vapor greenhouse feedback and a moist greenhouse climate, leaving little over 1 billion years of habitable surface conditions. Around bluer stars, the habitable period for terrestrial planets is constricted further due to their reduced main sequence lifetimes and thus more rapid brightening. Planets with long-lived habitable periods are most likely found around stars redder than the Sun due to their more gradual brightening.
NASA Astrophysics Data System (ADS)
Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala
2015-04-01
One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and
3D Model of Surfactant Replacement Therapy
NASA Astrophysics Data System (ADS)
Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel
2015-11-01
Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.
MOSSFRAC: An anisotropic 3D fracture model
Moss, W C; Levatin, J L
2006-08-14
Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.
3D Stratigraphic Modeling of Central Aachen
NASA Astrophysics Data System (ADS)
Dong, M.; Neukum, C.; Azzam, R.; Hu, H.
2010-05-01
Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x
3D Modeling of Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Huba, Joseph; Joyce, Glenn; Krall, Jonathan
2011-10-01
Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Research supported by ONR.
The Earth's Seasons in 3-D--Part 1.
ERIC Educational Resources Information Center
Eckroth, Charles A.
1993-01-01
This article describes a teaching aid made from four colored foam balls mounted on a stiff wire circle used to teach about the changing seasons and earth temperature fluctuations. The spheres represent the Earth at the solstice and equinox positions. (MVL)
Reservoir geology using 3D modelling tools
Dubrule, O.; Samson, P.; Segonds, D.
1996-12-31
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
Reservoir geology using 3D modelling tools
Dubrule, O. ); Samson, P. ); Segonds, D. )
1996-01-01
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
3-D model-based Bayesian classification
Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.
1994-12-31
The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.
The 3D model control of image processing
NASA Technical Reports Server (NTRS)
Nguyen, An H.; Stark, Lawrence
1989-01-01
Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.
Teaching the geological subsurface with 3D models
NASA Astrophysics Data System (ADS)
Thorpe, Steve; Ward, Emma
2014-05-01
3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough
3d model for site effect assessment at Nice (France)
NASA Astrophysics Data System (ADS)
Bertrand, E.; Courrioux, G.; Bourgine, B.; Bour, M.; Guillen, A.; Mouroux, P.; Devaux, E.; Duval, A. M.
2003-04-01
Assessment of lithologic site effects is based on an accurate knowledge of properties and geometry of superficial geological formations, i.e. ideally a 3D-4G subsurface model (Geology, Geomorphology, Geophysics, Geotechnics). Such a model has been achieved using a 3D geomodeler ("Geological Editor" developed at BRGM) that allows building 3D volumes of geological formations starting from drill-holes data, sections, and geological maps. This software uses a pseudo-stratigraphic pile in order to reproduce geological history and structural relationships (erosion, deposit). The interpolation is achieved through a 3D potential field. A geostatistical formulation allows to consider data points of a geological limit as equipotential, and sructural dips as gradient inputs for the 3D field interpolation. Then isosurfaces corresponding to each limit are combined using formation relationships to provide volumic models of geological formations. The first task was to identify the relevant geological formations underlying in Nice area. In a first approach Mesozoic bedrock, Pliocene bedrock, and Quaternary alluvial deposits have been distinguished considering their seismic properties. Then alluvions have been subdivided into 9 groups according to their lithology and granulometry. Modelling has been performed considering 2 major erosion surfaces, post-Mesozoic and post-Pliocene. The succession of Quaternary alluviums have been considered as "onlap deposits". Given adjacent lithologies contained in maps and drill holes, these relations lead to logical identification of the roof of formations to be interpolated. The distribution of modeled geological formations can be visualised in 3 dimensions or in 2D sections. Besides the visual interest of 3D representations, the model is first used to build a series of earth columns over a 50m/50m 2D grid. A statistical analysis allowed to identify 73 existing configurations in the Nice district area. Among these, only 15 configurations
3-D physical models of amitosis (cytokinesis).
Cheng, Kang; Zou, Changhua
2005-01-01
Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too. PMID:15533619
3D Models of Stellar Interactions
NASA Astrophysics Data System (ADS)
Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.
2014-04-01
Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.
Modeling and Processing of Continuous 3D Elastic Wavefield Data
NASA Astrophysics Data System (ADS)
Milkereit, B.; Bohlen, T.
2001-12-01
Continuous seismic wavefields are excited by earthquake clustering, induced seismicity in reservoirs, and mining. In hydrocarbon reservoirs, for example, pore pressure changes and fluid flow (mass transfer) will cause incremental deviatoric stresses sufficient to trigger and sustain seismic activity. Here we address three aspects of seismic wavefields in three-dimensional heterogeneous media triggered by distributed sources in space and time: forward modeling, multichannel data processing, and source location imaging. A power law distribution of seismic sources (such as the Gutenberg-Richter law) is used for the modeling of viscoelastic/elastic wave propagation through a realistic earth model. 3D modeling provides new insight in the interaction of multi-source wavefields and the role of scale-dependend elastic model parameters on transmitted and reflected/back-scattered wavefields. There exists a strong correlation between the spatial properties of the compressional, shear wave and density perturbations and the lateral correlation length of the resulting reflected or transmitted seismic wavefields. Modeling is based on the implementation of 3D elastic/viscoelastic FD codes on massive parallel and/or distributed computing resources using MPI (message passing interface). For parallelization, large grid 3D earth models are decomposed into subvolume processing elements whereby each processing element is updating the wavefield within its portion of the grid. Processing of continuous seismic wavefields excited by multiple distributed sources is based on a combination of crosscorrelated or slowness-transformed array data and Kirchhoff or reverse time migration for source location or source volume imaging. The appearance of slowness in both migration and array data processing suggests the possibility of combining them into a single process. In order to place further constraints on the migration, the directivity properties of 3-component receiver arrays can be included in
Multi-view and 3D deformable part models.
Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt
2015-11-01
As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ). PMID:26440264
NASA Astrophysics Data System (ADS)
Matsumoto, Munehisa; Akai, Hisazumi; Harashima, Yosuke; Doi, Shotaro; Miyake, Takashi
2016-06-01
A classical spin model derived ab initio for rare-earth-based permanent magnet compounds is presented. Our target compound, NdFe12N, is a material that goes beyond today's champion magnet compound Nd2Fe14B in its intrinsic magnetic properties with a simpler crystal structure. Calculated temperature dependence of the magnetization and the anisotropy field agrees with the latest experimental results in the leading order. Having put the realistic observables under our numerical control, we propose that engineering 5d-electron-mediated indirect exchange coupling between 4f-electrons in Nd and 3d-electrons from Fe would most critically help enhance the material's utility over the operation-temperature range.
3D-GNOME: an integrated web service for structural modeling of the 3D genome
Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-01-01
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892
3D-GNOME: an integrated web service for structural modeling of the 3D genome.
Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-07-01
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892
3D Printing of Advanced Biocomposites on Earth and Beyond
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Gentry, Diana; Micks, Ashley
2015-01-01
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing could make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. Image what new products can be enabled by such a technology, on earth or beyond!
3D Printing of Advanced Biocomposites on Earth and Beyond
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley
2015-01-01
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology can greatly enhance and expand life's evolved repertoire. Using natural and synthetically altered organisms as the feedstock for additive manufacturing could one day make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. To this end our lab has produced a proof-of-concept bioprinter with nearly one-cell resolution. Genetically engineering yeast cells to secrete bioproducts subsequent to printing allows the potential to make biomaterials with a fine microstructure. Imagine a production system that, at a few micron scale resolution, can add mollusk shell for compressive strength per unit mass, spider silk or collagen for tensile strength per unit mass, and potentially biologically-deposited wires. Now imagine what new products can be enabled by such a technology, on earth or beyond
3D fast wavelet network model-assisted 3D face recognition
NASA Astrophysics Data System (ADS)
Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2015-12-01
In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
NASA Astrophysics Data System (ADS)
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
Australia is surrounded by active complex tectonic belts causing significant seismicity. The recent expansion of permanent seismic networks in the Australasian region provides great opportunity to study Earth structure and a great variety of physical mechanisms responsible for earthquakes.On one hand, a better understanding of the Australasian lithosphere, which is now available through tomographic images from full waveform modelling (Fichtner et al. 2010), provides a powerful tool to scrutinize the determination of earthquake source parameters. Even at relatively long periods (40-200s), the 3D effects of regional structure were shown to significantly alter the global centroid moment tensor solutions (Hingee et al. 2012). Thus, we can now explore other types of uncertainties and test the accuracy of global centroid moment tensor (GCMT) solution for the earthquakes in the Australasian region while checking for the systematic inconsistencies in the solutions. This has a significant bearing on tectonic interpretations. For example, azimuth and plunge of fault planes can be investigated in search for systematic biases.On the other hand, the time has come to take a full advantage of the 3D Earth structural model and embrace ongoing advances in computational power and storage. We develop a semi-automated procedure to calculate the Centroid Moment Tensors in a 3D heterogeneous Earth. We utilize the reciprocity theorem to create Green's functions for point sources covering seismogenic zones of Australasia. We focus on improving the capacity of the method to fully complement the existing monitoring tools at Geosciences Australia. Furthermore, we investigate the effects of detailed velocity structure on Centroid location and double-couple percentages. Moreover Azimuth and Plunge of focal mechanisms in GCMT (Global CMT), were investigated in search for any systematic bias.References: Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2010. Full waveform tomography for
A 3-D shape model of Interamnia
NASA Astrophysics Data System (ADS)
Sato, Isao
2015-08-01
A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.
3D Modeling Techniques for Print and Digital Media
NASA Astrophysics Data System (ADS)
Stephens, Megan Ashley
In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.
3D modeling of metallic grain growth
George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.
1999-06-01
This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.
The 3D rocket combustor acoustics model
NASA Technical Reports Server (NTRS)
Priem, Richard J.; Breisacher, Kevin J.
1992-01-01
The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.
3D exploitation system for operational applications of Earth observation data
NASA Astrophysics Data System (ADS)
Bonavenia, Roberto; Colaiacomo, Lucio; Dooley, Colin; Menu, Eric; Palumbo, Gianluca; Prisco, Giulio; Valero, Juan L.; Villemaud, Olivier
1999-07-01
The operational applicability of Earth Observation data to facilitate decision making is demonstrated with examples taken from the work of the Western European Union Satellite Center in Madrid. Analysis and reporting techniques based on 3D representations of the surface of the Earth and Virtual Reality are described.
NASA Astrophysics Data System (ADS)
Zhang, Mian; Huang, Cheng-li
2012-08-01
Generalized spherical harmonics (GSH) are usually applied on the problems where the Earth model is elliptical and elastic stress tensor is involved in, as stress tensor can’t be represented in vector spherical harmonics. However, the divergence of the te ns or and a vector dot - product with the tensor are only needed on computation rotation modes of the Earth which can be written in the vector spherical harmonics. We extend the equations on the spherical Earth to asymmetric 3D model by means of linear operator method. This method doesn’t use the complicated generalized spherical harmonics nor Wigner 3 - j symbol. As a validation of this method, the practical calculation of rotational modes of 3D Earth will be made and discussed.
3D Face Modeling Using the Multi-Deformable Method
Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun
2012-01-01
In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976
Life in 3D is never flat: 3D models to optimise drug delivery.
Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M
2015-10-10
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. PMID:26220617
Assessing the RELAPS-3D Heat Conduction Enclosure Model
McCann, Larry D.
2008-09-30
Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.
3D scene modeling from multiple range views
NASA Astrophysics Data System (ADS)
Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel
1995-09-01
This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
NASA Astrophysics Data System (ADS)
Haas, Kevin A.; Warner, John C.
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
A 3D Geometry Model Search Engine to Support Learning
ERIC Educational Resources Information Center
Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin
2009-01-01
Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…
Evaluation of 3D-Jury on CASP7 models
Kaján, László; Rychlewski, Leszek
2007-01-01
Background 3D-Jury, the structure prediction consensus method publicly available in the Meta Server , was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. Results The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. Conclusion The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature available in the Meta Server. PMID:17711571
NASA Astrophysics Data System (ADS)
Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. J. M.; Hack, H. R. G. K.
2014-03-01
In infrastructural projects, communication as well as information exchange and (re-)use in and between involved parties is difficult. Mainly this is caused by a lack of information harmonisation. Various specialists are working together on the development of an infrastructural project and all use their own specific software and definitions for various information types. In addition, the lack of and/or differences in the use and definition of thematic semantic information regarding the various information types adds to the problem. Realistic 3D models describing and integrating parts of the earth already exist, but are generally neglecting the subsurface, and especially the aspects of geology and geo-technology. This paper summarises the research towards the extension of an existing integrated semantic information model to include surface as well as subsurface objects and in particular, subsurface geological and geotechnical objects. The major contributions of this research are the definition of geotechnical objects and the mechanism to link them with CityGML, GeoSciML and O&M standard models. The model is called 3D-GEM, short for 3D Geotechnical Extension Model.
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Accelerating DynEarthSol3D on tightly coupled CPU-GPU heterogeneous processors
NASA Astrophysics Data System (ADS)
Ta, Tuan; Choo, Kyoshin; Tan, Eh; Jang, Byunghyun; Choi, Eunseo
2015-06-01
DynEarthSol3D (Dynamic Earth Solver in Three Dimensions) is a flexible, open-source finite element solver that models the momentum balance and the heat transfer of elasto-visco-plastic material in the Lagrangian form using unstructured meshes. It provides a platform for the study of the long-term deformation of earth's lithosphere and various problems in civil and geotechnical engineering. However, the continuous computation and update of a very large mesh poses an intolerably high computational burden to developers and users in practice. For example, simulating a small input mesh containing around 3000 elements in 20 million time steps would take more than 10 days on a high-end desktop CPU. In this paper, we explore tightly coupled CPU-GPU heterogeneous processors to address the computing concern by leveraging their new features and developing hardware-architecture-aware optimizations. Our proposed key optimization techniques are three-fold: memory access pattern improvement, data transfer elimination and kernel launch overhead minimization. Experimental results show that our proposed implementation on a tightly coupled heterogeneous processor outperforms all other alternatives including traditional discrete GPU, quad-core CPU using OpenMP, and serial implementations by 67%, 50%, and 154% respectively even though the embedded GPU in the heterogeneous processor has significantly less number of cores than high-end discrete GPU.
Computational modeling of RNA 3D structures and interactions.
Dawson, Wayne K; Bujnicki, Janusz M
2016-04-01
RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. PMID:26689764
MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)
Nutter, C.; Wannamaker, P.E.
1980-11-01
MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.
An Automated 3d Indoor Topological Navigation Network Modelling
NASA Astrophysics Data System (ADS)
Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.
2015-10-01
Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.
Highway 3D model from image and lidar data
NASA Astrophysics Data System (ADS)
Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan
2014-05-01
We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.
Simulation of 3D infrared scenes using random fields model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Zhang, Jianqi
2001-09-01
Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
Extending 3D city models with legal information
NASA Astrophysics Data System (ADS)
Frank, A. U.; Fuhrmann, T.; Navratil, G.
2012-10-01
3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.
3D scanning modeling method application in ancient city reconstruction
NASA Astrophysics Data System (ADS)
Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo
2015-07-01
With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.
Opportunity Landing Spot Panorama (3-D Model)
NASA Technical Reports Server (NTRS)
2004-01-01
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
[figure removed for brevity, see original site] Click on image for larger view
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
Venusian Applications of 3D Convection Modeling
NASA Technical Reports Server (NTRS)
Bonaccorso, Timary Annie
2011-01-01
This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.
James E. Fisher; Cliff B. Davis; Walter L. Weaver
2005-06-01
A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.
NoSQL Based 3D City Model Management System
NASA Astrophysics Data System (ADS)
Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.
2014-04-01
To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
Modelling Polymer Deformation during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir
2014-05-01
Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.
Picker, Katharina M
2004-04-01
The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are
A new approach towards image based virtual 3D city modeling by using close range photogrammetry
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-05-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country
3D-model building of the jaw impression
NASA Astrophysics Data System (ADS)
Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.
1997-03-01
A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.
3D model-based still image object categorization
NASA Astrophysics Data System (ADS)
Petre, Raluca-Diana; Zaharia, Titus
2011-09-01
This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
DynEarthSol3D: numerical studies of basal crevasses and calving blocks
NASA Astrophysics Data System (ADS)
Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.
2014-12-01
DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.
Formal representation of 3D structural geological models
NASA Astrophysics Data System (ADS)
Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle
2016-05-01
The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.
Metrological validation for 3D modeling of dental plaster casts.
Brusco, Nicola; Andreetto, Marco; Lucchese, Luca; Carmignato, Simone; Cortelazzo, Guido M
2007-11-01
The contribution of this paper is twofold: (1) it presents an automatic 3D modeling technique and (2) it advances a procedure for its metrological evaluation in the context of a medical application, the 3D modeling of dental plaster casts. The motivation for this work is the creation of a "virtual gypsotheque" where cumbersome dental plaster casts can be replaced by numerical 3D models, thereby alleviating storage and access problems and allowing dentists and orthodontists the use of novel and unprecedented software tools for their medical evaluations. Modeling free-form surfaces of anatomical interest is an intriguing mixture of open issues concerning 3D modeling, geometrical metrology, and medicine. Of general interest is both the fact that a widespread use of 3D modeling in non-engineering applications requires automatic procedures of the kind presented in this work and the adopted validation paradigm for free-form surfaces, rather useful for practical purposes. In this latter respect, the metrological analysis we advance is the first seminal attempt in the field of 3D modeling and can be readily extended to contexts other than the medical one discussed in this paper. PMID:17126062
3D Modeling from Photos Given Topological Information.
Kim, Young Min; Cho, Junghyun; Ahn, Sang Chul
2016-09-01
Reconstructing 3D models given a single-view 2D information is inherently an ill-posed problem and requires additional information such as shape prior or user input.We introduce a method to generate multiple 3D models of a particular category given corresponding photographs when the topological information is known. While there is a wide range of shapes for an object of a particular category, the basic topology usually remains constant.In consequence, the topological prior needs to be provided only once for each category and can be easily acquired by consulting an existing database of 3D models or by user input. The input of topological description is only connectivity information between parts; this is in contrast to previous approaches that have required users to interactively mark individual parts. Given the silhouette of an object and the topology, our system automatically finds a skeleton and generates a textured 3D model by jointly fitting multiple parts. The proposed method, therefore, opens the possibility of generating a large number of 3D models by consulting a massive number of photographs. We demonstrate examples of the topological prior and reconstructed 3D models using photos. PMID:26661474
Performance Evaluation of 3d Modeling Software for Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Yanagi, H.; Chikatsu, H.
2016-06-01
UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.
Modeling Electric Current Flow in 3D Fractured Media
NASA Astrophysics Data System (ADS)
Demirel, S.; Roubinet, D.; Irving, J.
2014-12-01
The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on
Automatic Texture Mapping of Architectural and Archaeological 3d Models
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Gis-Based Smart Cartography Using 3d Modeling
NASA Astrophysics Data System (ADS)
Malinverni, E. S.; Tassetti, A. N.
2013-08-01
3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.
Full-Waveform Validation of a 3D Seismic Model for Western US
NASA Astrophysics Data System (ADS)
Maceira, M.; Larmat, C. S.; Ammon, C. J.; Chai, C.; Herrmann, R. B.
2014-12-01
Since the initiation of tomographic studies in the 1970s, geoscientists have advanced the art of inferring 3D variations in the subsurface using collections of geophysical (primarily seismic) observables recorded at or near Earth's surface. Advances have come from improvement and enhancement of the available data and from research on theoretical and computational improvements to tomographic and generalized inverse methods. In the last decade, utilizing dense array datasets, these efforts have led to unprecedented 3D images of the subsurface. Understandably, less effort has been expended on model validation to provide an absolute assessment of model uncertainty. Generally models constructed with different data sets and independent computational codes are assessed with geological reasonability and compared other models to gain confidence. The question of "How good is a particular 3D geophysical model at representing the Earth's true nature?" remains largely unaddressed at a time when 3D Earth models are used for both societal and energy security. In the last few years, opportunities have arisen in earth-structure imaging, including the advent of new methods in computational seismology and statistical sciences. We use the unique and extensive High Performance Computing resources available at Los Alamos National Laboratory to explore approaches to realistic model validation. We present results from a study focused on validating a 3D model for the western United States generated using a joint inversion simultaneously fitting interpolated teleseismic P-wave receiver functions, Rayleigh-wave group-velocity estimates between 7 and 250 s period, and high-wavenumber filtered Bouguer gravity observations. Validation of the obtained model is performed through systematic comparison of observed and predicted seismograms generated using the Spectral Element Method, which is a direct numerical solution for full waveform modeling in 3D models, with accuracy of spectral methods.
Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko
2008-03-01
The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).
3D Bioprinting of Tissue/Organ Models.
Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson
2016-04-01
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. PMID:26895542
3D web visualization of huge CityGML models
NASA Astrophysics Data System (ADS)
Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.
2015-08-01
Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.
Forcing Ferromagnetic Coupling Between Rare-Earth-Metal and 3d Ferromagnetic Films
NASA Astrophysics Data System (ADS)
Sanyal, Biplab; Antoniak, Carolin; Burkert, Till; Krumme, Bernhard; Warland, Anne; Stromberg, Frank; Praetorius, Christian; Fauth, Kai; Wende, Heiko; Eriksson, Olle
2010-04-01
Using density functional calculations, we have studied the magnetic properties of nanocomposites composed of rare-earth-metal elements in contact with 3d transition metals (Fe and Cr). We demonstrate the possibility to obtain huge magnetic moments in such nanocomposites, of order 10μB/rare-earth-metalatom, with a potential to reach the maximum magnetic moment of Fe-Co alloys at the top of the so-called Slater-Pauling curve. A first experimental proof of concept is given by thin-film synthesis of Fe/Gd and Fe/Cr/Gd nanocomposites, in combination with x-ray magnetic circular dichroism.
3-D electromagnetic modeling of wakefields in accelerator components
Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C.; Steich, D.
1996-09-18
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
3-D electromagnetic modeling of wakefields in accelerator components
Poole, Brian R.; Caporaso, George J.; Ng, Wang C.; Shang, Clifford C.; Steich, David
1997-02-01
We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for the modeling of accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been extremely successful in predicting the wake potential and wake impedances of these structures, but fully 3-D modeling of complex structures has been limited due to the substantial computer resources required for a fully 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes will be discussed in the context of their applicability to accelerator problems. A variety of 3-D structures are tested with an existing cubical cell FDTD code and the wake impedances are compared with simple analytic models for the structures. These results will provide a set of benchmarks for testing the new time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for the monopole and dipole impedances with the models are found for these structures below the cutoff frequency of the beam line.
Multivariate 3D modelling of Scottish soil properties
NASA Astrophysics Data System (ADS)
Poggio, Laura; Gimona, Alessandro
2015-04-01
Information regarding soil properties across landscapes at national or continental scales is critical for better soil and environmental management and for climate regulation and adaptation policy. The prediction of soil properties variation in space and time and their uncertainty is an important part of environmental modelling. Soil properties, and in particular the 3 fractions of soil texture, exhibit strong co-variation among themselves and therefore taking into account this correlation leads to spatially more accurate results. In this study the continuous vertical and lateral distributions of relevant soil properties in Scottish soils were modelled with a multivariate 3D-GAM+GS approach. The approach used involves 1) modelling the multivariate trend with full 3D spatial correlation, i.e., exploiting the values of the neighbouring pixels in 3D-space, and 2) 3D kriging to interpolate the residuals. The values at each cell for each of the considered depth layers were defined using a hybrid GAM-geostatistical 3D model, combining the fitting of a GAM (generalised Additive Models) to estimate multivariate trend of the variables, using a 3D smoother with related covariates. Gaussian simulations of the model residuals were used as spatial component to account for local details. A dataset of about 26,000 horizons (7,800 profiles) was used for this study. A validation set was randomly selected as 25% of the full dataset. Numerous covariates derived from globally available data, such as MODIS and SRTM, are considered. The results of the 3D-GAM+kriging showed low RMSE values, good R squared and an accurate reproduction of the spatial structure of the data for a range of soil properties. The results have an out-of-sample RMSE between 10 to 15% of the observed range when taking into account the whole profile. The approach followed allows the assessment of the uncertainty of both the trend and the residuals.
Perception-based shape retrieval for 3D building models
NASA Astrophysics Data System (ADS)
Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao
2013-01-01
With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance
Microfluidic 3D cell culture: from tools to tissue models.
van Duinen, Vincent; Trietsch, Sebastiaan J; Joore, Jos; Vulto, Paul; Hankemeier, Thomas
2015-12-01
The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications. PMID:26094109
Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models.
Carvalho, Mariana R; Lima, Daniela; Reis, Rui L; Correlo, Vitor M; Oliveira, Joaquim M
2015-11-01
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models. PMID:26603572
Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl
2016-08-01
The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463
NASA Astrophysics Data System (ADS)
Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.
2013-09-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its
STELLOPT Modeling of the 3D Diagnostic Response in ITER
Lazerson, Samuel A
2013-05-07
The ITER three dimensional diagnostic response to an n=3 resonant magnetic perturbation is modeled using the STELLOPT code. The in-vessel coils apply a resonant magnetic perturbation (RMP) fi eld which generates a 4 cm edge displacement from axisymmetry as modeled by the VMEC 3D equilibrium code. Forward modeling of flux loop and magnetic probe response with the DIAGNO code indicates up to 20 % changes in measured plasma signals. Simulated LIDAR measurements of electron temperature indicate 2 cm shifts on the low field side of the plasma. This suggests that the ITER diagnostic will be able to diagnose the 3D structure of the equilibria.
MR image denoising method for brain surface 3D modeling
NASA Astrophysics Data System (ADS)
Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan
2014-11-01
Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
3D head model classification using optimized EGI
NASA Astrophysics Data System (ADS)
Tong, Xin; Wong, Hau-san; Ma, Bo
2006-02-01
With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.
Vhrs Stereo Images for 3d Modelling of Buildings
NASA Astrophysics Data System (ADS)
Bujakiewicz, A.; Holc, M.
2012-07-01
The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B
3D model of amphioxus steroid receptor complexed with estradiol
Baker, Michael E.; Chang, David J.
2009-08-28
The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.
Quality of 3D Models Generated by SFM Technology
NASA Astrophysics Data System (ADS)
Marčiš, Marián
2013-12-01
Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.
3D surface digitizing and modeling development at ITRI
NASA Astrophysics Data System (ADS)
Hsueh, Wen-Jean
2000-06-01
This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.
Diffusion approximation for modeling of 3-D radiation distributions
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Prokein, P.; Nolan, M.
2004-12-01
/educators can teleconference and use the software's collaborative tools such that one user can control the displays of the others', guiding them to points of interest in 3D over the internet. EarthSLOT is a new and evolving project and we are seeking input from potential user communities on ways to improve it as well as ways to diversify and strengthen its funding base. Combinations of any resolution digital elevation models or imagery can be used in EarthSLOT, and we plan to use global Landsat mosaics as the minimum level of imagery. One way to improve this is through contributions of higher resolution data from users. Our current funding is arctic-based, but the application itself is global in nature. We are therefore seeking new funding sources to help support developments in other regions of the globe and ensure that EarthSLOT can remain on-line as a low-cost resource for as many users as possible.
Modelling Gaia CCD pixels with Silvaco 3D engineering software
NASA Astrophysics Data System (ADS)
Seabroke, G. M.; Prod'Homme, T.; Hopkinson, G.; Burt, D.; Robbins, M.; Holland, A.
2011-02-01
Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957
Geospatial Modelling Approach for 3d Urban Densification Developments
NASA Astrophysics Data System (ADS)
Koziatek, O.; Dragićević, S.; Li, S.
2016-06-01
With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.
Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.
Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan
2013-01-01
Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663
3D Model Generation From the Engineering Drawing
NASA Astrophysics Data System (ADS)
Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav
2010-01-01
The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Geodiversity: Exploration of 3D geological model space
NASA Astrophysics Data System (ADS)
Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.
2013-05-01
The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine
Testing the hybrid-3D Hillslope Hydrological Model in a Real-World Controlled Environment
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Gochis, D. J.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2015-12-01
Hillslopes play an important role for converting rainfall into runoff, and as such, influence theterrestrial dynamics of the Earth's climate system. Recently, we have developed a hybrid-3D (h3D) hillslope hydrological model that couples a 1D vertical soil column model with a lateral pseudo-2D saturated zone and overland flow model. The h3D model gives similar results as the CATchment HYdrological model (CATHY), which simulates the subsurface movement of water with the 3D Richards equation, though the runtime efficiency of the h3D model is about 2-3 orders of magnitude faster. In the current work, the ability of the h3D model to predict real-world hydrological dynamics is assessed using a number of recharge-drainage experiments within the Landscape Evolution Observatory (LEO) at the Biosphere 2 near Tucson, Arizona, USA. LEO offers accurate and high-resolution (both temporally and spatially) observations of the inputs, outputs and storage dynamics of several hillslopes. The level of detail of these observations is generally not possible with real-world hillslope studies. Therefore, LEO offers an optimal environment to test the h3D model. The h3D model captures the observed storage, baseflow, and overland flow dynamics of both a larger and a smaller hillslope. Furthermore, it simulates overland flow better than CATHY. The h3D model has difficulties correctly representing the height of the saturated zone close to the seepage face of the smaller hillslope, though. There is a gravel layer near this seepage face, and the numerical boundary condition of the h3D model is insufficient to capture the hydrological dynamics within this region. In addition, the h3D model is used to test the hypothesis that model parameters change through time due to the migration of soil particles during the recharge-drainage experiments. An in depth calibration of the h3D model parameters reveals that the best results are obtained by applying an event-based optimization procedure as compared
NASA Astrophysics Data System (ADS)
Sharkawi, K.-H.; Abdul-Rahman, A.
2013-09-01
Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0
Creating Physical 3D Stereolithograph Models of Brain and Skull
Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.
2007-01-01
The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879
3D Geological Model for "LUSI" - a Deep Geothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.
2016-04-01
Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.
Performance and Cognitive Assessment in 3-D Modeling
ERIC Educational Resources Information Center
Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.
2011-01-01
The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…
Tracking people and cars using 3D modeling and CCTV.
Edelman, Gerda; Bijhold, Jurrien
2010-10-10
The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. PMID:20439141
A Sketching Interface for Freeform 3D Modeling
NASA Astrophysics Data System (ADS)
Igarashi, Takeo
This chapter introduces Teddy, a sketch-based modeling system to quickly and easily design freeform models such as stuffed animals and other rotund objects. The user draws several 2D freeform strokes interactively on the screen and the system automatically constructs plausible 3D polygonal surfaces. Our system supports several modeling operations, including the operation to construct a 3D polygonal surface from a 2D silhouette drawn by the user: it inflates the region surrounded by the silhouette making a wide area fat, and a narrow area thin. Teddy, our prototype system, is implemented as a Java program, and the mesh construction is done in real-time on a standard PC. Our informal user study showed that a first-time user masters the operations within 10 minutes, and can construct interesting 3D models within minutes. We also report the result of a case study where a high school teacher taught various 3D concepts in geography using the system.
Assessment of 3D Models Used in Contours Studies
ERIC Educational Resources Information Center
Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes
2015-01-01
This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…
Earth Science Research Discovery, Integration, 3D Visualization and Analysis using NASA World Wind
NASA Astrophysics Data System (ADS)
Alameh, N.; Hogan, P.
2008-12-01
NASA plays a leadership role in the world of Advanced Information Technologies. Part of our mission is to leverage those technologies to increase the usability of the growing amount of earth observation produced by the science community. NASA World Wind open source technology provides a complete 3D visualization platform that is being continually advanced by NASA, its partners and the open source community. The technology makes scientific data and observations more accessible to Earth scientists and offers them a standards-based extensible platform to manipulate and analyze that data. The API-centric architecture of World Wind's SDK allows others to readily extend or embed this technology (including in web pages). Such multiple approaches to using the technology accelerate opportunities for the research community to provide "advances in fundamental understanding of the Earth system and increased application of this understanding to serve the nation and the people of the world" (NRC Decadal Survey). The opportunities to advance this NASA Open Source Agreement (NOSA) technology by leveraging advances in web services, interoperability, data discovery mechanisms, and Sensor Web are unencumbered by proprietary constraints and therefore provide the basis for an evolving platform that can reliably service the needs of the Earth Science, Sensor Web and GEOSS communities. The ability for these communities to not only use this technology in an unrestricted manner but to also participate in advancing it leads to accelerated innovation and maximum exchange of information. 3 characteristics enable World Wind to push the frontier in Advanced Information Systems: 1- World Wind provides a unifying information browser to enable a variety of 3D geospatial applications. World Wind consists of a coherent suite of modular components to be used selectively or in concert with any number of programs. 2- World Wind technology can be embedded as part of any application and hence makes it
Thermal 3D Modeling of Geothermal Area Using Terrestrial Photogrammetry
NASA Astrophysics Data System (ADS)
Akcay, Ozgun; Cuneyt Erenoglu, Ramazan; Erenoglu, Oya; Yılmazturk, Ferruh; Karaca, Zeki
2015-04-01
Photogrammetry and computer vision, sciences producing high accuracy 3D models from digital images based on projective geometry. 3D models can also be produced using thermal camera images using photogrammetry and computer vision techniques. Thermal images are capable of displaying hotspots on geothermal areas as a heat source in details. In the research, Tuzla geothermal area in Çanakkale province of Turkey is inspected using imaging techniques of terrestrial photogrammetry. Both a digital camera Canon EOS 650D and an infrared camera Optris PI 450 are used to obtain images of the thermal site. Calibration parameters (focal length, principle point, distortion coefficients) of thermal and digital cameras are determined using the calibration test field at the laboratory before the field work. In order to provide the georeferencing and the robustness of the 3D model, aluminum discs having diameter of 30 centimeters as ground control points (GCPs) are set to the geothermal area appropriately before imaging. Aluminum targets are chosen as the GCP because they are determined on the image depending on the contrast reflectance rate of the aluminum. Using GNSS RTK receivers supplying ±1 cm accuracy positioning, GCPs are measured so as to implement photogrammetric process successfully with thermal images. Numerous corresponding points are detected on the overlapped images with image matching techniques. Later on, bundle block adjustment is applied to calculate the revised interior orientation parameters of camera and exterior orientation parameters of camera positions. The 3D model showing details of the surface temperatures of the geothermal area are produced with multi view stereo (MVS) technique. The technique is able to produce 3D representation (point cloud, mesh and textured surface) of the field from both the thermal and digital images. The research presents that photogrammetric evaluation of thermal images is a noteworthy method to obtain a quick- accurate 3D
3D geometric modelling of hand-woven textile
NASA Astrophysics Data System (ADS)
Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood
2008-02-01
Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.
Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model
NASA Astrophysics Data System (ADS)
Panning, M. P.; Romanowicz, B.; Gung, Y.
2001-12-01
Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well
A biochemical/biophysical 3D FE intervertebral disc model.
Schroeder, Y; Huyghe, J M; van Donkelaar, C C; Ito, K
2010-10-01
Present research focuses on different strategies to preserve the degenerated disc. To assure long-term success of novel approaches, favorable mechanical conditions in the disc tissue are essential. To evaluate these, a model is required that can determine internal mechanical conditions which cannot be directly measured as a function of assessable biophysical characteristics. Therefore, the objective is to evaluate if constitutive and material laws acquired on isolated samples of nucleus and annulus tissue can be used directly in a whole-organ 3D FE model to describe intervertebral disc behavior. The 3D osmo-poro-visco-hyper-elastic disc (OVED) model describes disc behavior as a function of annulus and nucleus tissue biochemical composition, organization and specific constituent properties. The description of the 3D collagen network was enhanced to account for smaller fibril structures. Tissue mechanical behavior tests on isolated nucleus and annulus samples were simulated with models incorporating tissue composition to calculate the constituent parameter values. The obtained constitutive laws were incorporated into the whole-organ model. The overall behavior and disc properties of the model were corroborated against in vitro creep experiments of human L4/L5 discs. The OVED model simulated isolated tissue experiments on confined compression and uniaxial tensile test and whole-organ disc behavior. This was possible, provided that secondary fiber structures were accounted for. The fair agreement (radial bulge, axial creep deformation and intradiscal pressure) between model and experiment was obtained using constitutive properties that are the same for annulus and nucleus. Both tissue models differed in the 3D OVED model only by composition. The composition-based modeling presents the advantage of reducing the numbers of material parameters to a minimum and to use tissue composition directly as input. Hence, this approach provides the possibility to describe internal
Use Models like Maps in a 3D SDI
NASA Astrophysics Data System (ADS)
Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha
2013-04-01
Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.
Robust 3D reconstruction system for human jaw modeling
NASA Astrophysics Data System (ADS)
Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.
1999-03-01
This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.
3D Geological modelling - towards a European level infrastructure
NASA Astrophysics Data System (ADS)
Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.
2013-04-01
The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large
UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models
NASA Astrophysics Data System (ADS)
Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.
2015-12-01
Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small
Considerations on the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables
Harris, D B; Zucca, J J; McCallen, D B; Pasyanos, M E; Flanagan, M P; Myers, S C; Walter, W R; Rodgers, A J; Harben, P E
2007-07-09
-scale computing and other activities in the pursuit of 3-D model development and use? In this paper, we examine what technical issues must be addressed to answer these questions. Although convened for a somewhat broader purpose, the June 2007 Workshop on Multi-resolution 3D Earth Models held in Berkeley, CA also touched on this topic. Results from the workshop are summarized in this paper.
Quasi-3D Multi-scale Modeling Framework Development
NASA Astrophysics Data System (ADS)
Arakawa, A.; Jung, J.
2008-12-01
When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
NASA Astrophysics Data System (ADS)
Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco
2016-04-01
The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
NASA Astrophysics Data System (ADS)
Okaya, D. A.; Van Avendonk, H. J.
2013-12-01
Recent anisotropy studies at scales ranging from crust to full mantle have recognized the importance of 3D anisotropy geometry and heterogeneity as well as variability in anisotropic symmetry and orientation (tilt) of the Earth. The strong relationship between seismic anisotropy and geodynamic processes highlights the need to construct realistic Earth models that can explain observations of anisotropy in modern seismic data sets. For example, ray paths through a mantle slab window or a mountain belt may show that the crust or mantle exhibits low-order anisotropy due to a history of deformation and the development of tectonic fabrics. Observed traveltimes might not be fit with simple Transverse Isotropy (TI), so realistic calculations require an Earth model that accurately describes the wave speeds of compressional and shear waves. We have developed an anisotropic traveltime solver that allows for full 3D heterogeneity of anisotropy tensors, degrees of symmetry, and arbitrary orientation. This traveltime solver is based on the robust shortest path method (SPM) and a ray-bending algorithm that were previously applied to isotropic media (e.g., Van Avendonk et al., 2001). Instead of using an isotropic description of the seismic wave velocity, we define the full elastic tensor at each location in the model. The directional seismic velocity can subsequently be extracted using solutions of the Christoffel equations. For computational efficiency, we calculate all directional seismic velocities at each model node before the start of ray tracing. As we calculate a new ray segment, this information is quickly retrieved. We use these directional velocity maps to separately describe the propagation of compressional (P) and shear (S) body waves in anisotropic media and to subsequently calculate their traveltimes. Patterns within the velocity maps represent tensor symmetries and tilts, allowing for the construction of discretized large-scale 3D LPO flow fields or fabric
A method for building 3D models of barchan dunes
NASA Astrophysics Data System (ADS)
Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu
2016-01-01
The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.
Geometric and colour data fusion for outdoor 3D models.
Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo
2012-01-01
This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327
Moving beyond flat earth: dense 3D scene reconstruction from a single FL-LWIR camera
NASA Astrophysics Data System (ADS)
Stone, K.; Keller, J. M.; Anderson, D. T.
2013-06-01
In previous work an automatic detection system for locating buried explosive hazards in forward-looking longwave infrared (FL-LWIR) and forward-looking ground penetrating radar (FL-GPR) data was presented. This system consists of an ensemble of trainable size-contrast filters prescreener coupled with a secondary classification step which extracts cell-structured image space features, such as local binary patterns (LBP), histogram of oriented gradients (HOG), and edge histogram descriptors (EHD), from multiple looks and classifies the resulting feature vectors using a support vector machine. Previously, this system performed image space to UTM coordinate mapping under a flat earth assumption. This limited its applicability to flat terrain and short standoff distances. This paper demonstrates a technique for dense 3D scene reconstruction from a single vehicle mounted FL-LWIR camera. This technique utilizes multiple views and standard stereo vision algorithms such as polar rectification and optimal correction. Results for the detection algorithm using this 3D scene reconstruction approach on data from recent collections at an arid US Army test site are presented. These results are compared to those obtained under the flat earth assumption, with special focus on rougher terrain and longer standoff distance than in previous experiments. The most recent collection also allowed comparison between uncooled and cooled FL-LWIR cameras for buried explosive hazard detection.
3D Global Magnetohydrodynamic Simulations of the Solar Wind/Earth's Magnetosphere Interaction
NASA Astrophysics Data System (ADS)
Yalim, M. S.; Poedts, S.
2014-09-01
In this paper, we present results of real-time 3D global magnetohydrodynamic (MHD) simulations of the solar wind interaction with the Earth's magnetosphere using time-varying data from the NASA Advanced Composition Explorer (ACE) satellite during a few big magnetic storm events of the previous and current solar cycles, namely the 06 April 2000, 20 November 2003 and 05 April 2010 storms. We introduce a numerical magnetic storm index and compare the geo-effectiveness of these events in terms of this storm index which is a measure for the resulting global perturbation of the Earth's magnetic field. Steady simulations show that the upstream solar wind plasma parameters enter the low-β switch-on regime for some time intervals during a magnetic storm causing a complex dimpled bow shock structure. We also investigate the traces of such bow shock structures during time-dependent simulations of the events. We utilize a 3D, implicit, parallel, unstructured grid, compressible finite volume ideal MHD solver with an anisotropic grid adaptation technique for the computer simulations.
Towards a 3d Spatial Urban Energy Modelling Approach
NASA Astrophysics Data System (ADS)
Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.
2013-09-01
Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies
3-D model-based tracking for UAV indoor localization.
Teulière, Céline; Marchand, Eric; Eck, Laurent
2015-05-01
This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights. PMID:25099967
3D Babcock-Leighton Solar Dynamo Models
NASA Astrophysics Data System (ADS)
Miesch, Mark S.; Hazra, Gopal; Karak, Bidya Binay; Teweldebirhan, Kinfe; Upton, Lisa
2016-05-01
We present results from the new STABLE (Surface flux Transport and Babcock Leighton) Dynamo Model. STABLE is a 3D Babcock-Leighton/Flux Transport dynamo model in which the source of poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMRs). In this talk I will discuss initial results with axisymmetric flow fields, focusing on the operation of the model, the general features of the cyclic solutions, and the challenge of achieving supercritical dynamo solutions using only the Babcock-Leighton source term. Then I will present dynamo simulations that include 3D convective flow fields based on the observed velocity power spectrum inferred from photospheric Dopplergrams. I'll use these simulations to assess how the explicit transport and amplification of fields by surface convection influences the operation of the dynamo. I will also discuss the role of surface magnetic fields in regulating the subsurface toroidal flux budget.
3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.
Texture blending on 3D models using casual images
NASA Astrophysics Data System (ADS)
Liu, Xingming; Liu, Xiaoli; Li, Ameng; Liu, Junyao; Wang, Huijing
2013-12-01
In this paper, a method for constructing photorealistic textured model using 3D structured light digitizer is presented. Our method acquisition of range images and texture images around object, and range images are registered and integrated to construct geometric model of object. System is calibrated and poses of texture-camera are determined so that the relationship between texture and geometric model is established. After that, a global optimization is applied to assign compatible texture to adjacent surface and followed with a level procedure to remove artifacts due to vary lighting, approximate geometric model and so on. Lastly, we demonstrate the effect of our method on constructing a real model of world.
A 3D alcoholic liver disease model on a chip.
Lee, JaeSeo; Choi, BongHwan; No, Da Yoon; Lee, GeonHui; Lee, Seung-Ri; Oh, HyunJik; Lee, Sang-Hoon
2016-03-14
Alcohol is one of the main causes of liver diseases, and the development of alcoholic liver disease (ALD) treatment methods has been one of the hottest issues. For this purpose, development of in vitro models mimicking the in vivo physiology is one of the critical requirements, and they help to determine the disease mechanisms and to discover the treatment method. Herein, a three-dimensional (3D) ALD model was developed and its superior features in mimicking the in vivo condition were demonstrated. A spheroid-based microfluidic chip was employed for the development of the 3D in vitro model of ALD progression. We co-cultured rat primary hepatocytes and hepatic stellate cells (HSCs) in a fluidic chip to investigate the role of HSCs in the recovery of liver with ALD. An interstitial level of flow derived by an osmotic pump was applied to the chip to provide in vivo mimicking of fluid activity. Using this in vitro tool, we were able to observe structural changes and decreased hepatic functions with the increase in ethanol concentration. The recovery process of liver injured by alcohol was observed by providing fresh culture medium to the damaged 3D liver tissue for few days. A reversibly- and irreversibly-injured ALD model was established. The proposed model can not only be used for the research of alcoholic disease mechanism, but also has the potential for use in studies of hepatotoxicity and drug screening applications. PMID:26857817
Two-equation turbulence modeling for 3-D hypersonic flows
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
3D cartographic modeling of the Alpine arc
NASA Astrophysics Data System (ADS)
Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe
2012-12-01
We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.
3D modeling of dual-gate FinFET.
Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John
2012-01-01
The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493
The IRIS DMC's Earth Model Collaboration (EMC)
NASA Astrophysics Data System (ADS)
Bahavar, M.; Trabant, C. M.; Hutko, A. R.
2014-12-01
The Earth Model Collaboration (EMC) is an IRIS DMC data product that serves as a community-supported repository of Earth models. The aim is to provide access to various Earth models with a uniform format and visualization tools for model preview and comparison. EMC currently contains 23 3-D seismic velocity models, one 3-D electrical conductivity model, one 3-D seismic attenuation (Q) model and seven 1-D reference Earth models. New contributions are encouraged and instructions are provided for model authors who wish to share their model via EMC. All contributed Earth models are hosted in their original format and a version in netCDF format (network Common Data Form). The EMC model overview pages provide summaries of the contributed models and links to more detailed metadata and description pages. Taking advantage of the unified netCDF format of the models, EMC provides a set of online 2D visualization tools that allow users to produce a variety of horizontal slices, vertical slices and velocity profiles from the Earth models. Auxiliary data such as topography, earthquake locations, plate boundaries, etc. may also be included on these plots. Extension of the EMC visualization tools to 3D is currently underway. The intention is to bridge the gap between 2D model slices and advanced 3D modeling packages, such as IDV and ParaView, with simple 3D visualization capabilities that can be learned and applied within minutes.
Interchain coupling and 3D modeling of trans-polyacetylene
Bronold, F.; Saxena, A.; Bishop, A.R.
1992-01-01
In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.
Interchain coupling and 3D modeling of trans-polyacetylene
Bronold, F.; Saxena, A.; Bishop, A.R.
1992-09-01
In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH){sub x}-chains where the {pi}-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment.
CityGML - Interoperable semantic 3D city models
NASA Astrophysics Data System (ADS)
Gröger, Gerhard; Plümer, Lutz
2012-07-01
CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its
3D root canal modeling for advanced endodontic treatment
NASA Astrophysics Data System (ADS)
Hong, Shane Y.; Dong, Janet
2002-06-01
More than 14 million teeth receive endodontic (root canal) treatment annually. Before a clinician's inspection and diagnosis, destructive access preparation by removing teeth crown and dentin is usually needed. This paper presents a non-invasive method for accessing internal tooth geometry by building 3-D tooth model from 2-D radiographic and endoscopic images to be used for an automatic prescription system of computer-aided treatment procedure planning, and for the root canal preparation by an intelligent micro drilling machine with on-line monitoring. It covers the techniques specific for dental application in the radiographic images acquirement, image enhancement, image segmentation and feature recognition, distance measurement and calibration, merging 2D image into 3D mathematical model representation and display. Included also are the methods to form references for irregular teeth geometry and to do accurately measurement with self-calibration.
Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS
1999-05-01
EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less
NASA Astrophysics Data System (ADS)
Green, A.; Gribenko, A.; Cuma, M.; Zhdanov, M. S.
2008-12-01
In this paper we apply 3D inversion to MT data collected in Oregon as a part of the EarthScope project. We use the integral equation method as a forward modeling engine. Quasi-analytical approximation with a variable background (QAVB) method of Frechet derivative calculation is applied. This technique allows us to simplify the inversion algorithm and to use just one forward modeling on every iteration step. The receiver footprint approach considerably reduces the computational resources needed to invert the large volumes of data covering vast areas. The data set, which was used in the inversion, was obtained through the Incorporated Research Institutions for Seismology (IRIS). The long-period MT data was collected in Eastern Oregon in 2006. The inverted electrical conductivity distribution agrees reasonably well with geological features of the region as well as with 3D MT inversion results obtained by other researchers. The geoelectrical model of the Oregon deep interior produced by 3D inversion indicates several lithospheres' electrical conductivity anomalies, including a linear zone marked by low-high conductivity transition along the Klamath Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region.
Modeling 3D faces from samplings via compressive sensing
NASA Astrophysics Data System (ADS)
Sun, Qi; Tang, Yanlong; Hu, Ping
2013-07-01
3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.
GIA models with composite rheology and 3D viscosity: effect on GRACE mass balance in Antarctica
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Whitehouse, Pippa; Schrama, Ernst
2014-05-01
Most Glacial Isostatic Adjustment (GIA) models that have been used to correct GRACE data for the influence of GIA assume a radial stratification of viscosity in the Earth's mantle (1D viscosity). Seismic data in Antarctica indicate that there are large viscosity variations in the horizontal direction (3D viscosity). The purpose of this research is to determine the effect of 3D viscosity on GIA model output, and hence mass balance estimates in Antarctica. We use a GIA model with 3D viscosity and composite rheology in combination with ice loading histories ICE-5G and W12a. From comparisons with uplift and sea-level data in Fennoscandia and North America three preferred viscosity models are selected. For two of the 3D viscosity models the maximum gravity rate due to ICE-5G forcing is located over the Ronne-Filchner ice shelf. This is in contrast with the results obtained using a 1D model, in which the maximum gravity rate due to ICE-5G forcing is always located over the Ross ice shelf. This demonstrates that not all 3D viscosity models can be approximated with a 1D viscosity model. Using CSR release 5 GRACE data from February 2003 to June 2013 mass balance estimates for the three preferred viscosity models are -131 to -171 Gt/year for the ICE-5G model, and -48 to -57 Gt/year for the W12a model. The range due to Earth model uncertainty is larger than the error bar for GRACE (10 Gt/year), but smaller than the range resulting from the difference in ice loading histories.
3D modelling of the Black Sea ecosystem
NASA Astrophysics Data System (ADS)
Capet, A.; Gregoire, M.; Beckers, J.-M.; Joassin, P.; Naithani, J.; Soetart, K.
2009-04-01
A coupled physical-biogeochemical model has been developed to simulate the ecosystem of the Black Sea at the end of the 80's when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The biogeochemical model describes the cycle of carbon, nitrogen, silicate, oxygen and phosphorus through the foodweb from bacteria to gelatinous carnivores and explicitly represents processes in the anoxic layer down to the bottom. For calibration and analyses purposes, the coupled model has first been run in 1D at several places in the Black Sea. The biogeochemical model involves some hundred parameters which have been first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of 15 identifiable parameters. An automatic calibration subroutine has been used to fine tune these parameters. In 1D, the model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modelling of top predators. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The calibrated biogeochemical model is implemented in a 3D hydrodynamical model of the Black Sea. Results of these 3D simulations will be presented and compared with maps of in-situ data reconstructed from available data base using the software DIVA (Data Interpolation and Variational analysis).
2D quantum double models from a 3D perspective
NASA Astrophysics Data System (ADS)
Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo
2014-09-01
In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.
West Flank Coso, CA FORGE 3D geologic model
Doug Blankenship
2016-03-01
This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
Right approach to 3D modeling using CAD tools
NASA Astrophysics Data System (ADS)
Baddam, Mounica Reddy
The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2013-11-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Northern California Seismic Attenuation: 3-D Qp and Qs models
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, D. M.
2015-12-01
The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
3D Geologic Model of the San Diego Area
NASA Astrophysics Data System (ADS)
Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.
2015-12-01
Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.
Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering
NASA Astrophysics Data System (ADS)
Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.
2016-06-01
This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.
Subduction zone guided waves: 3D modelling and attenuation effects
NASA Astrophysics Data System (ADS)
Garth, T.; Rietbrock, A.
2013-12-01
Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2
3D flare particle model for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2016-05-01
A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.
3D finite element model for treatment of cleft lip
NASA Astrophysics Data System (ADS)
Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong
2009-02-01
Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.
NASA Astrophysics Data System (ADS)
Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.
2015-03-01
During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.
KAGLVis - On-line 3D Visualisation of Earth-observing-satellite Data
NASA Astrophysics Data System (ADS)
Szuba, Marek; Ameri, Parinaz; Grabowski, Udo; Maatouki, Ahmad; Meyer, Jörg
2015-04-01
One of the goals of the Large-Scale Data Management and Analysis project is to provide a high-performance framework facilitating management of data acquired by Earth-observing satellites such as Envisat. On the client-facing facet of this framework, we strive to provide visualisation and basic analysis tool which could be used by scientists with minimal to no knowledge of the underlying infrastructure. Our tool, KAGLVis, is a JavaScript client-server Web application which leverages modern Web technologies to provide three-dimensional visualisation of satellite observables on a wide range of client systems. It takes advantage of the WebGL API to employ locally available GPU power for 3D rendering; this approach has been demonstrated to perform well even on relatively weak hardware such as integrated graphics chipsets found in modern laptop computers and with some user-interface tuning could even be usable on embedded devices such as smartphones or tablets. Data is fetched from the database back-end using a ReST API and cached locally, both in memory and using HTML5 Web Storage, to minimise network use. Computations, calculation of cloud altitude from cloud-index measurements for instance, can depending on configuration be performed on either the client or the server side. Keywords: satellite data, Envisat, visualisation, 3D graphics, Web application, WebGL, MEAN stack.
Bazhenov fm unconventional reservoir 3D geological modeling methodology
NASA Astrophysics Data System (ADS)
Telnova, A.; Baranov, V.; Bukhanov, N.
2016-03-01
The Bazhenov Formation has been studied for more than 50 years, but its petroleum potential, optimal STOIIP or resource estimation approaches, the methodology used to select a reservoir, determine its properties are still unclear. The distinctive features of bituminous shale are specific geochemical properties chosen as basic parameters to perform the geological modeling of the Bazhenov deposits and determine the key areas. The main objective of this paper is to choose an optimal 3D geological modeling algorithm and test conventional (petrophysical) and specific (geochemical) properties.
Towards Forward Modeling of 3D Heterogeneity in D" region
NASA Astrophysics Data System (ADS)
To, A.; Capdeville, Y.; Romanowicz, B.
2002-12-01
The presence of strong lateral heterogeneity in D" is now well documented. While tomographic modeling provides constraints on the large scale patterns, strong variations on shorter scales are best addressed by forward modeling. Appropriate tools are needed for forward modeling that will handle strong 3D heterogeneity, at relatively short periods and including diffracted waves. We use a coupled mode/SEM (Spectral Element Method) to compute synthetic seismograms in 3D models of the D" layer down to 1/12s. This coupled method (Capdeville, 2001) affords faster computations than SEM in cases where heterogeneity can be restricted to a specific layer. We compare them with observed waveforms for several events in the Western Pacific. Observed and synthetic travel time trends are very consistent, although in most cases the observed residuals are significantly larger. Waveform amplitudes are less consistent. In order to understand the origin of the amplitude difference, we test the effect of 3D heterogeneity on Sdiff phase. In particular, the results show opposite trends in the amplitude of Sdiff due to heterogeneity located near the CMB or well above it. This provides constraints on the location of the causative velocity heterogeneity. Because the forward modeling approach requires many iterations, the coupled mode/SEM approach is still computationally intensive. It is more efficient to use a less accurate traditional approach to first get closer to a final model, and only then use coupled mode/SEM to refine the model. Ray theory is the most expedient way to calculate travel times. However, it is an infinite frequency approximation and not appropriate to handle diffracting waves. We show that ray theory predicts larger travel time anomaly for Sdiff phase than the one obtained by coupled mode/SEM. Although it is based on a weak heterogeneity assumption, Non-linear Asymptotic Coupling Theory(NACT) (Li and Romanowicz, 1995) helps to overcome this difficulty. It can handle
Digital 3D Borobudur - Integration of 3D surveying and modeling techniques
NASA Astrophysics Data System (ADS)
Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.
2015-08-01
The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.
Discrete Method of Images for 3D Radio Propagation Modeling
NASA Astrophysics Data System (ADS)
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
3D Building Evacuation Route Modelling and Visualization
NASA Astrophysics Data System (ADS)
Chan, W.; Armenakis, C.
2014-11-01
The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.
Modeling the GFR with RELAP5-3D
Cliff B. Davis; Theron D. Marshall; K. D. Weaver
2005-09-01
Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.
Testing Mercury Porosimetry with 3D Printed Porosity Models
NASA Astrophysics Data System (ADS)
Hasiuk, F.; Ewing, R. P.; Hu, Q.
2014-12-01
Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.
3D model tools for architecture and archaeology reconstruction
NASA Astrophysics Data System (ADS)
Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice
2016-06-01
The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.
Exploiting Textured 3D Models for Developing Serious Games
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Georgopoulos, A.
2015-08-01
Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.
The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models
NASA Astrophysics Data System (ADS)
Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain
2014-05-01
The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail
Recent progress in modelling 3D lithospheric deformation
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Popov, A.; May, D. A.
2012-04-01
Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of
3-D Modeling of a Nearshore Dye Release
NASA Astrophysics Data System (ADS)
Maxwell, A. R.; Hibler, L. F.; Miller, L. M.
2006-12-01
The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool
Discussion of Source Reconstruction Models Using 3D MCG Data
NASA Astrophysics Data System (ADS)
Melis, Massimo De; Uchikawa, Yoshinori
In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.
Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey
NASA Astrophysics Data System (ADS)
Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet
2013-04-01
The past decade has seen the British Geological Survey (BGS) construct over one hundred 3D geological models using software such as GOCAD®, GSI3D, EarthVision and Petrel across the United Kingdom and overseas. These models have been produced for different purposes and at different scales and resolutions in the shallow and deep subsurface. Alongside the construction of these models, the BGS and its collaborators have developed several options for disseminating these 3D geological models to external partners and the public. Initially, the standard formats for disseminating these 3D geological models by the BGS comprised of 2D images of cross-sections, GIS raster data and specialised visualisation software such as the LithoFrame Viewer. The LithoFrame Viewer is a thick-client software that allows the user to explore the 3D geometries of the geological units using a 3D interface, and generate synthetic cross-sections and boreholes on the fly. Despite the increased functionality of the LithoFrame Viewer over the other formats, the most popular data formats distributed remained 2D images of cross-sections, CAD based formats (e.g. DWG and DXF) and GIS raster data of surfaces and thicknesses, as these were the types of data that the external partners were most used too. Since 2009 software for delivering 3D geological models has advanced and types of data available have increased. Feature Manipulation Engine (FME) has been used to increase the number of outputs from 3D geological models. These include: • 3D PDFs (Adobe Acrobat) • KMZ/KML (GoogleEarth) • 3D shapefiles (ESRI) Alongside these later outputs, the BGS has developed other software such as GroundhogTM and Geovisionary (in collaboration with Virtalis). Groundhog is fully a web based application that allows the user to generate synthetic cross-sections, boreholes and horizontal slices from 3D geological models on the fly. Geovisionary provides some of the most advanced visualisation of 3D geological models in
Reassessing Geophysical Models of the Bushveld Complex in 3D
NASA Astrophysics Data System (ADS)
Cole, J.; Webb, S. J.; Finn, C.
2012-12-01
Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less
3D simulation of the Cluster-Cluster Aggregation model
NASA Astrophysics Data System (ADS)
Li, Chao; Xiong, Hailing
2014-12-01
We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.
A generic 3D kinetic model of gene expression
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2012-04-01
Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.
Unstructured 3D grid toolbox for modeling and simulation
George, D.
1997-11-01
Computable 3D grids that accurately represent complex multimaterial geometries are essential for both static and time-dependent modeling and simulation. LaGriT, the grid toolbox developed at Los Alamos provides a sophisticated set of initial grid generation, grid maintenance and grid optimization tools. We present example grids that demonstrate the flexibility of the grid generator. Additionally, we present the results of an electrostatic calculation and a grain growth problem that illustrate the grid optimization features and the utility of the grid server architecture.
Simulation of 3D Global Wave Propagation Through Geodynamic Models
NASA Astrophysics Data System (ADS)
Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.
2005-12-01
This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.
3D Model of Melt Distribution in Partially Molten Dunite
NASA Astrophysics Data System (ADS)
Garapic, G.; Faul, U.; Brisson, E.
2010-12-01
The currently existing model of grain-scale melt geometry in the Earth’s upper mantle is derived from theoretical considerations that stem from material science research, combined with relatively low-resolution observations of polished two-dimensional surfaces. This model predicts a simple, interconnected network of melt along three-grain edges in static surface energy equilibrium. However, due to a continuous rearrangements of neighboring grains caused by grain growth, melt forms complex shapes among the grains. As a result, it is impossible to construct a 3D image of the pore space from 2D surfaces, which makes it particularly challenging to resolve the current controversy on whether all two-grain boundaries are wetted or melt-free. We present a new method for reconstruction of the 3D pore space in partially molten rocks. The method consists of serial sectioning and high resolution imaging (Field Emission SEM) of polished surfaces, followed by image alignment and rendering. The ablation rate during serial sectioning is determined by measuring the depth of a laser hole by interferometry. We removed a total of 25 layers with a spacing of of 1.3.microns between layers. Each layer consists of a mosaic of images approximately 300 x 320 microns in size. Melt regions are identified within each layer by hand-digitizing SEM images. We obtain a 3D model by stacking the slices, registering each slice, and using alpha shapes as a surface reconstruction technique. The sample we investigated is a partially molten dunite consisting of Fo90 olivine with a mean grain size of 33 microns and 4% melt. It was run in a piston cylinder at 1350°C and 1 GPa for 432 hours to achieve steady state grain growth. Rendering of the 3D pore space shows that the larger melt pockets at multi-grain junctions change within only a few microns in depth, whereas thin inclusions along two-grain boundaries persist over the entire depth of the imaged volume, which is similar to the mean grain size
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources
NASA Astrophysics Data System (ADS)
Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.
2015-12-01
Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.
Comparative 3-D Modeling of tmRNA
Burks, Jody; Zwieb, Christian; Müller, Florian; Wower, Iwona; Wower, Jacek
2005-01-01
Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA). This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families. PMID:15958166
SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Holen, Ingunn; Jones, Louise; Speirs, Valerie
2015-12-01
SEARCHBreast, a UK initiative supported by the NC3Rs, organised a workshop entitled 3D Modelling of Breast Cancer. The workshop focused on providing researchers with solutions to overcome some of the perceived barriers to working with human-derived tumour cells, cell lines and tissues, namely: a) the limited access to human-derived material; and b) the difficulty in working with these samples. The workshop presentations provided constructive advice and information on how to best prepare human cells or tissues for further downstream applications. Techniques in developing primary cultures from patient samples, and considerations when preserving tissue slices, were discussed. A common theme throughout the workshop was the importance of ensuring that the cells are grown in conditions as similar to the in vivo microenvironment as possible. Comparisons of the advantages of several in vitro options, such as primary cell cultures, cell line cultures, explants or tissue slices, suggest that all offer great potential applications for breast cancer research, and highlight that it need not be a case of choosing one over the other. The workshop also offered cutting-edge examples of on-chip technologies and 3-D tumour modelling by using virtual pathology, which can contribute to clinically relevant studies and provide insights into breast cancer metastatic mechanisms. PMID:26753939
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
Stochastic Modeling of Calcium in 3D Geometry
Mazel, Tomáš; Raymond, Rebecca; Raymond-Stintz, Mary; Jett, Stephen; Wilson, Bridget S.
2009-01-01
Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics. PMID:19254531
Topological order in an exactly solvable 3D spin model
Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.
2011-04-15
Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on {Omega}(R{sup 2}) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.
A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.
2013-12-01
The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness,
Insights on the Subduction Process from High-Resolution 3D Models
NASA Astrophysics Data System (ADS)
Jadamec, Margarete
2015-04-01
This is an exciting time in geodynamics as the use of unprecedented high-resolution 3D modeling allows us to ask new questions that were previously unattainable. It is now relatively straightforward to run 3D numerical simulations, with local mesh refinement to ~1 km, input data mapped onto over 100 million finite element nodes, and using tens of thousands of compute hours per model, e.g. Jadamec et al. [2012]. With the additional computational resources, comes a new approach to modeling the tectonic problem. For example, mapping tectonic plates onto a high-resolution 3D geodynamic model grid forces the modeler to ask questions much as a field geologist would ask when constructing a geologic map. In this process of moving from textbook models of subduction to using models based on observation, the modeler is forced to explain the more complicated geometries and features in the Earth, allowing for the new computational approaches to be powerful tools for scientific discovery. Subduction modeling of this kind has expanded the classical view of two-dimensional corner flow, e.g. McKenzie [1969], to a slab driven flow that can be quite complex with predictions for upper mantle flow rates that can be over ten times surface plate motions, e.g. Jadamec et al. [2010] and others. In this talk, I will investigate the role of the third-dimension and non-linearity in plate boundary deformation. I will present high-resolution 3D numerical models that examine the effect of observationally based slab geometry, multiple subducting plates, non-linear rheology, and variations in overriding plate thickness on the subduction related deformation of plate margins. Specific examples include the Alaska and Central America subduction systems. In addition, I will highlight future directions in subduction modeling, and how these can be advanced by the increased incorporation of observational data, high-performance computing, focused numerical algorithms, and 3D interactive data visualization.
Development of an aquifer management model AQMAN3D
Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael
1990-01-01
A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.
3D electromagnetic modelling of a TTI medium and TTI effects in inversion
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien
2016-04-01
We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.
Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode
NASA Astrophysics Data System (ADS)
Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur
2013-04-01
The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.
Active Exploration of Large 3D Model Repositories.
Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min
2015-12-01
With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models. PMID:26529460
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
3D Tissue-Engineered Model of Ewing Sarcoma
Lamhamedi-Cherradi, Salah-Eddine; Santoro, Marco; Ramammoorthy, Vandhana; Menegaz, Brian A.; Bartholomeusz, Geoffrey; Iles, Lakesla R.; Amin, Hesham M.; Livingston, Andrew J.; Mikos, Antonios G.; Ludwig, Joseph A.
2015-01-01
Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine. PMID:25109853
3D Model of the Eta Carinae Little Homunculus Nebula
NASA Astrophysics Data System (ADS)
Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji
2015-01-01
We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.
3D in vitro modeling of the central nervous system
Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.
2015-01-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688
Polygonal Shapes Detection in 3d Models of Complex Architectures
NASA Astrophysics Data System (ADS)
Benciolini, G. B.; Vitti, A.
2015-02-01
A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Ma, Nina K L; Lim, Jia Kai; Leong, Meng Fatt; Sandanaraj, Edwin; Ang, Beng Ti; Tang, Carol; Wan, Andrew C A
2016-02-01
A hierarchy of cellular stemness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating stemness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stem cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma stemness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of stemness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to stemness. PMID:26684838
A study of Forbush Decreases with a full 3-D cosmic ray modulation model
NASA Astrophysics Data System (ADS)
Luo, Xi; Zhang, Ming; Potgieter, Marius
2016-07-01
We have constructed a 3-D numerical model for studying Forbush Decreases (FDs) in the global heliosphere. It incorporates 3-D propagation barriers, with enhanced cooling inside, into a time-dependent Parker type modulation model using a Stochastic Differential Equation (SDE) approach. This numerical model simultaneously takes into account the effect of solar wind convection with associated adiabatic energy changes; gradient, curvature and current sheet drifts; as well as parallel and perpendicular diffusion. This state-of-the-art numerical model enables us to find and study some new 3-D features for FD type events: 1. The cosmic ray intensity at Earth varies depending on the relative location of the Earth to the current sheet, and is reflected also in the amplitude of the FDs. The local modulation conditions, at a given observational point, determine the total amplitude. 2. The radial, latitudinal and longitudinal extent of a diffusion barrier significantly affects the amplitude of a FD. 3. The recovery time of a FD, at a given observational location, is determined by the modulation conditions which the corresponding propagation barrier encounters as it moves outwards in the heliosphere.
Shadow Effect on Photovoltaic Potentiality Analysis Using 3d City Models
NASA Astrophysics Data System (ADS)
Alam, N.; Coors, V.; Zlatanova, S.; Oosterom, P. J. M.
2012-07-01
Due to global warming, green-house effect and various other drawbacks of existing energy sources, renewable energy like Photovoltaic system is being popular for energy production. The result of photovoltaic potentiality analysis depends on data quality and parameters. Shadow rapidly decreases performance of the Photovoltaic system and it always changes due to the movement of the sun. Solar radiation incident on earth's atmosphere is relatively constant but the radiation at earth's surface varies due to absorption, scattering, reflection, change in spectral content, diffuse component, water vapor, clouds and pollution etc. In this research, it is being investigated that how efficiently real-time shadow can be detected for both direct and diffuse radiation considering reflection and other factors in contrast with the existing shadow detection methods using latest technologies and what is the minimum quality of data required for this purpose. Of course, geometric details of the building geometry and surroundings directly affect the calculation of shadows. In principle, 3D city models or point clouds, which contain roof structure, vegetation, thematically differentiated surface and texture, are suitable to simulate exact real-time shadow. This research would develop an automated procedure to measure exact shadow effect from the 3D city models and a long-term simulation model to determine the produced energy from the photovoltaic system. In this paper, a developed method for detecting shadow for direct radiation has been discussed with its result using a 3D city model to perform a solar energy potentiality analysis.
3D density model of the Central Andes
NASA Astrophysics Data System (ADS)
Prezzi, Claudia B.; Götze, Hans-Jürgen; Schmidt, Sabine
2009-12-01
We developed a 3D density model of the continental crust, the subducted plate and the upper mantle of the Central Andes between 20-29°S and 74-61°W through the forward modelling of Bouguer anomaly. The goal of this contribution is to gain insight on the lithospheric structure integrating the available information (geophysical, geologic, petrologic, and geochemical) in a single model. The geometry of our model is defined and constrained by hypocentre location, reflection and refraction on and offshore seismic lines, travel time and attenuation tomography, receiver function analysis, magnetotelluric studies, thermal models and balanced structural cross-sections. The densities allocated to the different bodies are calculated considering petrologic and geochemical data and pressure and temperature conditions. The model consists of 31 parallel E-W vertical planes, where the continental crust comprises distinct bodies, which represent the different morphotectonic units of the Central Andes. We include a partial melting zone at midcrustal depths under the Altiplano-Puna (low-velocity zone) and consider the presence of a rheologically strong block beneath the Salar de Atacama basin, according to recent seismic studies. Contour maps of the depth of the continental Moho, the thickness of the lower crust and the depth to the bottom of the lithosphere below South America are produced. The possible percentage of partial melt in the Central Andes low-velocity zone is estimated. The residual anomaly is calculated by subtracting from the Bouguer anomaly the gravimetric effect of the modelled subducted slab and of the modelled Moho. Isostatic anomalies are calculated from regional and local isostatic Mohos calculated with and without internal loads, derived from our gravity model, which are then compared to the modelled continental Moho. This study contributes to a more detailed knowledge of the lithospheric structure of this region of the Andes and provides an integrated 3D
Faceless identification: a model for person identification using the 3D shape and 3D motion as cues
NASA Astrophysics Data System (ADS)
Klasen, Lena M.; Li, Haibo
1999-02-01
Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
The USGS 3D Seismic Velocity Model for Northern California
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.
2006-12-01
We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at
A 3D Bubble Merger Model for RTI Mixing
NASA Astrophysics Data System (ADS)
Cheng, Baolian
2015-11-01
In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
3D model generation using an airborne swarm
Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Estimation of Hydraulic Fracturing in the Earth Fill Dam by 3-D Analysis
NASA Astrophysics Data System (ADS)
Nishimura, Shin-Ichi
It is necessary to calculate strength and strain for estimation of hydraulic fracturing in the earth fill dam, and to which the FEM is effective. 2-D analysis can produce good results to some extent if an embankment is linear and the plain strain condition can be set to the cross section. However, there may be some conditions not possible to express in the 2-D plain because the actual embankment of agricultural reservoirs is formed by straight and curved lines. Moreover, it may not be possible to precisely calculate strain in the direction of dam axis because the 2-D analysis in the cross section cannot take the shape in the vertical section into consideration. Therefore, we performed 3-D built up analysis targeting the actually-leaked agricultural reservoir to examine hazards of hydraulic fracturing based on the shape of an embankment and by rapid impoundment of water. It resulted in the occurrence of hydraulic fracturing to develop by water pressure due to the vertical cracks caused by tensile strain in the valley and refractive section of the foundation.
Crashworthiness analysis using advanced material models in DYNA3D
Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.
1993-10-22
As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.
On the computation of long period seismograms in a 3-D earth using normal mode based approximations
NASA Astrophysics Data System (ADS)
Romanowicz, Barbara A.; Panning, Mark P.; Gung, Yuancheng; Capdeville, Yann
2008-11-01
Tomographic inversions for large-scale structure of the earth's mantle involve a forward modelling step of wave propagation through 3-D heterogeneity. Until now, most investigators have worked in the framework of the simplest theoretical assumptions, namely the infinite frequency `ray theory' in the case of body wave traveltime inversions, or the `path-average' approximation (PAVA) to normal mode perturbation theory, in the case of surface waves and long-period waveforms. As interest is shifting to mapping shorter wavelength structures, the need for a more accurate theoretical account of the interaction of seismic waves with mantle heterogeneity, coupled with improvements in path coverage, has been realized. Here we discuss different levels of approximations used in the context of normal mode perturbation theory, when modelling time domain seismic waveforms. We compare the performance of asymptotic approximations, which collapse the effects of 3-D structure onto the great circle vertical plane: the 1-D PAVA and a 2-D approximation called non-linear asymptotic coupling theory (NACT), which both are zeroth order asymptotic approximations. We then discuss how off-vertical plane effects can be introduced using higher order asymptotics. These computationally efficient approximations are compared to the linear Born formalism (BORN), which computes scattering integrals over the entire surface of the sphere. We point out some limitations of this linear formalism in the case of spatially extended anomalies, and show how that can be remedied through the introduction of a non-linear term (NBORN). All these approximations are referenced to a precise 3-D numerical computation afforded by the spectral element method. We discuss simple geometries, and explore a range of sizes of anomalies compared to the wavelength of the seismic waves considered, thus illustrating the range of validity and limitations of the various approximations considered.
3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups
ERIC Educational Resources Information Center
Scalfani, Vincent F.; Vaid, Thomas P.
2014-01-01
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
3D Model of the San Emidio Geothermal Area
James E. Faulds
2013-12-31
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.
3D lithography modeling for ground rule development
NASA Astrophysics Data System (ADS)
Sarma, Chandra; Bailey, Todd; Lyons, Adam; Shao, Dongbing
2011-04-01
The ability to incorporate the effect of patterned underlayers in a 3-dimensional physical resist model that truly mimics the process on real wafers could be used to formulate robust ground rules for design. We have shown as an example block level simulations, where the resist critical dimension is determined by the presence of STI (shallow trench isolation) and/or patterned gate level underneath & their relative spacing, as confirmed on wafer. We will demonstrate how the results of such study could be used for creating ground rules which are truly dependent on the interaction between the current layer resist & the patterned layers underneath. We have also developed a new way to visualize lithographic process variations in 3-D space that is useful for simulation analysis that can prove very helpful in ground rule development and process optimization. Such visualization capability in the dataprep flow to flag issues or dispose critical structures increases speed and efficiency in the mask tapeout process.
Massive fermion model in 3d and higher spin currents
NASA Astrophysics Data System (ADS)
Bonora, L.; Cvitan, M.; Prester, P. Dominis; de Souza, B. Lima; Smolić, I.
2016-05-01
We analyze the 3d free massive fermion theory coupled to external sources. The presence of a mass explicitly breaks parity invariance. We calculate two- and three-point functions of a gauge current and the energy momentum tensor and, for instance, obtain the well-known result that in the IR limit (but also in the UV one) we reconstruct the relevant CS action. We then couple the model to higher spin currents and explicitly work out the spin 3 case. In the UV limit we obtain an effective action which was proposed many years ago as a possible generalization of spin 3 CS action. In the IR limit we derive a different higher spin action. This analysis can evidently be generalized to higher spins. We also discuss the conservation and properties of the correlators we obtain in the intermediate steps of our derivation.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern
A 3D parallel model of Ganymede's exosphere
NASA Astrophysics Data System (ADS)
Leclercq, Ludivine; Turc, Lucile; François, Leblanc; Ronan, Modolo
2013-04-01
Ganymede is a unique object : it is the biggest moon of our solar system, and the only satellite which has its own intrinsic magnetic field. Its surface is covered by water ice and by regolith. Some previous observations suggest that below its surface may exist an ocean of liquid water. The atmosphere of the planet is poorly known but should be composed essentially of water, hydrogen and oxygen (Marconi et al., Icarus, 2007). These atmospheric particles mainly originate from the surface thanks to sublimation of water-ice and sputtering, a process driven by the magnetospheric Jovian particles impacting Ganymede surface and leading to ejection of atoms and molecules into Ganymede atmosphere. We developed a model of Ganymede's atmosphere based on a 3D Monte Carlo description of the fate of the ejected particles from the surface. This model has been parallelized allowing a much better statistical, spatial and temporal description of Ganymede's environment. This model includes the main sources of the neutral atmosphere and is able to calculate all its characteristics. It was successfully compared to the few known observations as well as to previous modeling. In this presentation, we will present the main characteristics of this model and what it tells us on Ganymede's atmosphere, in terms of spatial structure, composition, temporal variability and relations with both magnetosphere and surface.
Efficient sensitivity computations in 3D air quality models
NASA Astrophysics Data System (ADS)
Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis
2005-04-01
The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).
Indoor Modelling Benchmark for 3D Geometry Extraction
NASA Astrophysics Data System (ADS)
Thomson, C.; Boehm, J.
2014-06-01
A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.
3-D Eutrophication Modeling for Lake Simcoe, Canada
NASA Astrophysics Data System (ADS)
Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.
2006-12-01
The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.
Planetary subsurface investigation by 3D visualization model .
NASA Astrophysics Data System (ADS)
Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.
Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.
Accurate, low-cost 3D-models of gullies
NASA Astrophysics Data System (ADS)
Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine
2015-04-01
Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we
Investigating the Paleoproterozoic glaciations with 3-D climate modeling
NASA Astrophysics Data System (ADS)
Teitler, Yoram; Le Hir, Guillaume; Fluteau, Frédéric; Philippot, Pascal; Donnadieu, Yannick
2014-06-01
It is generally assumed that the Earth's surface was warm during most of its early history but that significant cooling occurred between 2.45 and 2.22 Ga leading to the first global and cyclical glacial epoch. This onset of snowball Earth conditions was coeval with a large pulse of oxygenation that permanently oxygenated the atmosphere and shallow oceans (Great Oxygenation Event, GOE), though it is not known whether one influenced the other or if they were independent events. Hereafter we used a General Circulation climate Model (GCM) to estimate the partial pressures of atmospheric CO2 (pCO2) and CH4 (pCH4) required to account for the onset of snowball Earth conditions during the Paleoproterozoic. We show that Earth's surface can be maintained in an ice-free state under atmospheric CO2 concentrations lower than 2.6×10-2 bar without invoking the need of high CH4 concentrations. Assuming that the cooling of the Earth's surface is related to the collapse of atmospheric greenhouse gases, we tested the relevance of different scenarios including (i) the collapse of pCH4 in response to the GOE and (ii) the drawdown of pCO2 due to both a decrease in volcanic outgassing rate and an increase in global weathering efficiency. We show that the cyclical character of Paleoproterozoic glaciations is best explained by a long-lasted decrease of pCO2. To support this scenario, we examine how the long-term carbon cycle and the equilibrium pCO2 respond to the emplacement of large subaerial basaltic provinces (LIPs) and to a temporary shutdown of volcanism as supported by geologic data. We show that the sink of pCO2 through silicate weathering is limited by the absence of terrestrial higher plants. In such conditions, the equilibrium pCO2 remains high enough to preclude the onset of snowball conditions regardless the intensity of the pCH4 collapse. The combination of an increase in weathering efficiency and a decrease in volcanic outgassing rate can significantly reduce the
3D Printing of Molecular Potential Energy Surface Models
ERIC Educational Resources Information Center
Lolur, Phalgun; Dawes, Richard
2014-01-01
Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…
Exploring the possible climates of the Archean Earth with a 3D GCM
NASA Astrophysics Data System (ADS)
Charnay, B.; Forget, F.; Wordsworth, R.; Leconte, J.; Millour, E.; Codron, F.
2012-12-01
The climate of the early Earth and the faint young Sun paradox have been hitherto essentially studied with 1D models. Different hypothesis have been suggest to solve the faint young Sun paradox as: a higher greenhouse effect by CO2 and CH4 [1], a reduced planetary albedo by a reduced continental area and thinner archean clouds [2] or a higher atmospheric pressure [3]. The problem of 1D models is that they do not simulate the oceanic ice and cloud feedback well. A new global climate model has been developped by our team to study the climates of exoplanets [4] and primitive atmospheres [5]. A correlated-k radiative transfert model is use to simulate atmospheres of N2, CO2 and CH4. Oceanic transport and oceanic ice formation is computed through a slab-ocean module [6], cloud formation and precipitations are based on physical and robust parametrizations. First, we validate our model by simulating the modern Earth. Then we apply it to simulate the climates during the Archean and to test different hypothesis supposed to solve the faint young Sun paradox. We quantify the effect of the lack of ozone, the faster rotation rate and the reduced continental area of the early Earth on the climate. We simulate climates for low, moderate and high CO2/CH4 concentration. We test the effect the radius of cloud droplets and the effect of a higher atmospheric pressure. In particular, by fixing the radius of cloud droplets or the amount of CCN, we show that thinner clouds with a low CO2 and CH4 partial pressure [2] is not a solution over all the Archean, higher greenhouse gas concentrations are required. References [1] Haqq-Misra et al.: A revised, hazy methane greenhouse for the Archean Earth, Astrobiology,8,1127-1137 (2008) [2] Rosing et al.: No climate paradox under the faint early Sun, Nature, 464, 744-747 (2010) [3] Goldblatt et al.: Nitrogen-enhanced greenhouse warming on early Earth, Nature Geoscience, 2, 891-896 (2009) [4] Wordsworth et al.: Gliese 581d is the First Discovered
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to
3D Finite Difference Modelling of Basaltic Region
NASA Astrophysics Data System (ADS)
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109
Collision of continental corner from 3-D numerical modeling
NASA Astrophysics Data System (ADS)
Li, Zhong-Hai; Xu, Zhiqin; Gerya, Taras; Burg, Jean-Pierre
2013-10-01
Continental collision has been extensively investigated with 2-D numerical models assuming infinitely wide plates or insignificant along-strike deformation in the third dimension. However, the corners of natural collision zones normally have structural characteristics that differ from linear parts of mountain belt. We conducted 3-D high-resolution numerical simulations to study the dynamics of a continental corner (lateral continental/oceanic transition zone) during subduction/collision. The results demonstrate different modes between the oceanic subduction side (continuous subduction and retreating trench) and the continental collision side (slab break-off and topography uplift). Slab break-off occurs at a depth (⩽100 km to ˜300 km) that depends on the convergence velocity. The numerical models produce lateral extrusion of the overriding crust from the collisional side to the subduction side, which is also a phenomenon recognized around natural collision of continental corners, for instance around the western corner of the Arabia-Asia collision zone and around the eastern corner of the India-Asia collision zone. Modeling results also indicate that extrusion tectonics may be driven both from above by the topography and gravitational potentials and from below by the trench retreat and asthenospheric mantle return flow, which supports the link between deep mantle dynamics and shallower crustal deformation.
Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K
2015-11-01
Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3. PMID:26473654
Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography
NASA Astrophysics Data System (ADS)
Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.
2011-12-01
The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.
UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models
NASA Astrophysics Data System (ADS)
Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.
2014-12-01
Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract
3D Model Segmentation and Representation with Implicit Polynomials
NASA Astrophysics Data System (ADS)
Zheng, Bo; Takamatsu, Jun; Ikeuchi, Katsushi
When large-scale and complex 3D objects are obtained by range finders, it is often necessary to represent them by algebraic surfaces for such purposes as data compression, multi-resolution, noise elimination, and 3D recognition. Representing the 3D data with algebraic surfaces of an implicit polynomial (IP) has proved to offer the advantages that IP representation is capable of encoding geometric properties easily with desired smoothness, few parameters, algebraic/geometric invariants, and robustness to noise and missing data. Unfortunately, generating a high-degree IP surface for a whole complex 3D shape is impossible because of high computational cost and numerical instability. In this paper we propose a 3D segmentation method based on a cut-and-merge approach. Two cutting procedures adopt low-degree IPs to divide and fit the surface segments simultaneously, while avoiding generating high-curved segments. A merging procedure merges the similar adjacent segments to avoid over-segmentation. To prove the effectiveness of this segmentation method, we open up some new vistas for 3D applications such as 3D matching, recognition, and registration.
Testing the hybrid-3-D hillslope hydrological model in a controlled environment
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P.; Gochis, D.; Niu, G.-Y.; Pangle, L. A.; Pelletier, J. D.; Troch, P. A.; Zeng, X.
2016-02-01
Hillslopes are important for converting rainfall into runoff, influencing the terrestrial dynamics of the Earth's climate system. Recently, we developed a hybrid-3-D (h3D) hillslope hydrological model that gives similar results as a full 3-D hydrological model but is up to 2-3 orders of magnitude faster computationally. Here h3D is assessed using a number of recharge-drainage experiments within the Landscape Evolution Observatory (LEO) with accurate and high-resolution (both temporally and spatially) observations of the inputs, outputs, and storage dynamics of several hillslopes. Such detailed measurements are generally not available for real-world hillslopes. Results show that the h3D model captures the observed storage, base flow, and overland flow dynamics of both the larger LEO and the smaller miniLEO hillslopes very well. Sensitivity tests are also performed to understand h3Ds difficulty in representing the height of the saturated zone close to the seepage face of the miniLEO hillslope. Results reveal that a temporally constant parameters set is able to simulate the response of the miniLEO for each individual event. However, when one focuses on the saturated zone dynamics at 0.15 m from the seepage face, a stepwise evolution of the optimal model parameter for the saturated lateral conductivity parameter of the gravel layer occurs. This evolution might be related to the migration of soil particles within the hillslope. However, it is currently unclear whether and where this takes place (in the seepage face or within the parts of the loamy sand soil).
Object-oriented urban 3D spatial data model organization method
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao
2015-12-01
This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.
A 3D world model builder with a mobile robot
Zhang, Z.; Faugeras, O. )
1992-08-01
This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.
Pros and Cons of ID vs. 3D Modeling
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2012-01-01
Advances in computing capability have led to tremendous improvements in 3D modeling. Entire active regions are being simulated in what might be described as a first principles way, in which plasma heating is treated self consistently rather than through the specification of heating functions. There are limitations to this approach, however, as actual heating mechanisms on the Sun involve spatial scales orders of magnitude smaller than what these simulations can resolve. Other simulations begin to resolve these scales, but they only treat a tiny volume and do not include the all important coupling with larger scales or with other parts of the atmosphere, and so cannot be readily compared with observations. Finally, ID hydrodynamic models capture the field-aligned evolution of the plasma extremely well and are ideally suited for data comparison, but they treat the heating in a totally ad hoc manner. All of these approaches have important contributions to make, but we must be aware of their limitations. I will highlight some of the strengths. and weaknesses of each.
Flexible building primitives for 3D building modeling
NASA Astrophysics Data System (ADS)
Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G.
2015-03-01
3D building models, being the main part of a digital city scene, are essential to all applications related to human activities in urban environments. The development of range sensors and Multi-View Stereo (MVS) technology facilitates our ability to automatically reconstruct level of details 2 (LoD2) models of buildings. However, because of the high complexity of building structures, no fully automatic system is currently available for producing building models. In order to simplify the problem, a lot of research focuses only on particular buildings shapes, and relatively simple ones. In this paper, we analyze the property of topology graphs of object surfaces, and find that roof topology graphs have three basic elements: loose nodes, loose edges, and minimum cycles. These elements have interesting physical meanings: a loose node is a building with one roof face; a loose edge is a ridge line between two roof faces whose end points are not defined by a third roof face; and a minimum cycle represents a roof corner of a building. Building primitives, which introduce building shape knowledge, are defined according to these three basic elements. Then all buildings can be represented by combining such building primitives. The building parts are searched according to the predefined building primitives, reconstructed independently, and grouped into a complete building model in a CSG-style. The shape knowledge is inferred via the building primitives and used as constraints to improve the building models, in which all roof parameters are simultaneously adjusted. Experiments show the flexibility of building primitives in both lidar point cloud and stereo point cloud.
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.
Methods for Geometric Data Validation of 3d City Models
NASA Astrophysics Data System (ADS)
Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2015-12-01
Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges
Development of topography in 3-D continental-collision models
NASA Astrophysics Data System (ADS)
Pusok, A. E.; Kaus, Boris J. P.
2015-05-01
Understanding the formation and evolution of high mountain belts, such as the Himalayas and the adjacent Tibetan Plateau, has been the focus of many tectonic and numerical models. Here we employ 3-D numerical simulations to investigate the role that subduction, collision, and indentation play on lithosphere dynamics at convergent margins, and to analyze the conditions under which large topographic plateaus can form in an integrated lithospheric and upper mantle-scale model. Distinct dynamics are obtained for the oceanic subduction side (trench retreat, slab rollback) and the continental-collision side (trench advance, slab detachment, topographic uplift, lateral extrusion). We show that slab pull alone is insufficient to generate high topography in the upper plate, and that external forcing and the presence of strong blocks such as the Tarim Basin are necessary to create and shape anomalously high topographic fronts and plateaus. Moreover, scaling is used to predict four different modes of surface expression in continental-collision models: (I) low-amplitude homogeneous shortening, (II) high-amplitude homogeneous shortening, (III) Alpine-type topography with topographic front and low plateau, and (IV) Tibet-Himalaya-type topography with topographic front and high plateau. Results of semianalytical models suggest that the Argand number governs the formation of high topographic fronts, while the amplitude of plateaus is controlled by the initial buoyancy ratio of the upper plate. Applying these results to natural examples, we show that the Alps belong to regime (III), the Himalaya-Tibet to regime (IV), whereas the Andes-Altiplano fall at the boundary between regimes (III) and (IV).
EM modeling for GPIR using 3D FDTD modeling codes
Nelson, S.D.
1994-10-01
An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.
West Flank Coso, CA FORGE 3D temperature model
Doug Blankenship
2016-03-01
x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104ËšC was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20ËšC was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73ËšC/km (4ËšF/100â€™) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20ËšC surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6ËšC (20ËšF), or one contour interval, of the
3D Smoothed Particle Hydrodynamics Models of Betelgeuse's Bow Shock
NASA Astrophysics Data System (ADS)
Mohamed, S.; Mackey, J.; Langer, N.
2013-05-01
Betelgeuse, the bright red supergiant (RSG) in Orion, is a runaway star. Its supersonic motion through the interstellar medium has resulted in the formation of a bow shock, a cometary structure pointing in the direction of motion. We present the first 3D hydrodynamic simulations of the formation and evolution of Betelgeuse's bow shock. We show that the bow shock morphology depends substantially on the growth timescale for Rayleigh-Taylor versus Kelvin-Helmholtz instabilities. We discuss our models in light of the recent Herschel, GALEX and VLA observations. If the mass in the bow shock shell is low (~few × 10-3 M⊙), as seems to be implied by the AKARI and Herschel observations, then Betelgeuse's bow shock is very young and is unlikely to have reached a steady state. The circular, smooth bow shock shell is consistent with this conclusion. We further discuss the implications of our results, in particular, the possibility that Betelgeuse may have only recently entered the RSG phase.
3D Simulation Modeling of the Tooth Wear Process
Dai, Ning; Hu, Jian; Liu, Hao
2015-01-01
Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942
3-D model of beam kicker in DARHT-2 accelerator
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Genoni, Thomas; Hughes, Thomas
2003-10-01
The DARHT-2 beamline uses a fast stripline kicker developed at LLNL [1] to create a series of short pulses out of a 2 microsecond pulse for use in high resolution x-ray radiography. Normally, a static bias dipole bends the 2 kA, 18 MeV electron beam off axis into a dump. When the fast stripline kicker is activated, the static dipole kick is cancelled by the dynamic dipole field of the kicker, and the beam travels to the x-ray converter. 3-D PIC simulations are performed to compute the effect of the kicker on the beam. The calculations incorporate the kicker biplate conductor geometry, allowing for accurate modeling of the effects of higher multipole fields as well as beam wakefield effects. Beam emittance growth through the kicker is investigated for various beam loads. [1] B.R. Poole and Y.-J. Chen, "Particle Simulations of DARHT-2 Transport System", Proc. PAC 2001 Conference (http://accelconf.web.cern.ch/AccelConf/p01/PAPERS/RPPH034.PDF).
A 3D numerical model for Kepler's supernova remnant
NASA Astrophysics Data System (ADS)
Toledo-Roy, J. C.; Esquivel, A.; Velázquez, P. F.; Reynoso, E. M.
2014-07-01
We present new 3D numerical simulations for Kepler's supernova remnant. In this work we revisit the possibility that the asymmetric shape of the remnant in X-rays is the product of a Type Ia supernova explosion which occurs inside the wind bubble previously created by an AGB companion star. Due to the large peculiar velocity of the system, the interaction of the strong AGB wind with the interstellar medium results in a bow shock structure. In this new model we propose that the AGB wind is anisotropic, with properties such as mass-loss rate and density having a latitude dependence, and that the orientation of the polar axis of the AGB star is not aligned with the direction of motion. The ejecta from the Type Ia supernova explosion is modelled using a power-law density profile, and we let the remnant evolve for 400 yr. We computed synthetic X-ray maps from the numerical results. We find that the estimated size and peculiar X-ray morphology of Kepler's supernova remnant are well reproduced by considering an AGB mass-loss rate of 10-5 M⊙ yr-1, a wind terminal velocity of 10 km s-1, an ambient medium density of 10-3 cm-3 and an explosion energy of 7 × 1050 erg. The obtained total X-ray luminosity of the remnant in this model reaches 6 × 1050 erg, which is within a factor of 2 of the observed value, and the time evolution of the luminosity shows a rate of decrease in recent decades of ˜2.4 per cent yr-1 that is consistent with the observations.
3D modeling of carbonates petro-acoustic heterogeneities
NASA Astrophysics Data System (ADS)
Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie
2015-04-01
Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.
Global 3-d weather models for the atmospheric correction of gravity time series
NASA Astrophysics Data System (ADS)
Klügel, Thomas; Wziontek, Hartmut
2016-04-01
The use of 3-dimensional weather models allows for an effective reduction of atmospheric effects in gravity time series. In the past the BKG service Atmacs (Atmospheric Attraction Computation Service) provided 3-d atmospheric correction time series only for European stations of the International Geodynamics and Earth Tide Service (IGETS, formerly Global Geodynamics Project, GGP), which are based on the high resolution regional model COSMO-EU of the German Weather Service (DWD). The provision of 3-d density data from the global weather models GME (20 km resolution) and most recently ICON (13 km resolution) by the DWD now allows the computation of 3-d atmospheric correction time series for all IGETS stations worldwide. Due to the triangular grid structure, a different procedure for mass elements close to the computation point is necessary. By increasing the spatial resolution towards the computation point by linear interpolation of the grid values, the use of a point mass approach became possible with an approximation error below 0.3 nm/s2. This approach also allows to consider horizontal density gradients and a tilted model surface of the innermost cells. By means of a variance reduction at different frequency bands a significant improvement of the atmospheric correction can be demonstrated at many IGETS stations. The limited temporal resolution of recently 3 hours can be improved by the user by including local air pressure records using a remove-restore technique. Atmospheric correction time series are online available at http://atmacs.bkg.bund.de.
Brien, Dianne L.; Reid, Mark E.
2007-01-01
Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission
NASA Technical Reports Server (NTRS)
Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.
2011-01-01
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.
3D Geologic Model of the Southern Great Basin
NASA Astrophysics Data System (ADS)
Wagoner, J. L.; Myers, S. C.
2006-12-01
We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous
3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling
NASA Astrophysics Data System (ADS)
Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua
2016-04-01
We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and
3d Modelling of Convective Flow In The Rhine Graben
NASA Astrophysics Data System (ADS)
Bächler, D.; Kohl, T.; Rybach, L.
Detailed investigations of the temperature distribution in the Rhine Graben indi- cate regular pattern of thermal anomalies following major north-south striking faults. These anomalies remain unexplained by conventional Rhine Graben studies based on 2D east-west striking sections. First analytical solutions for convective flow in vertical faults are applied for a clearly observable anomalous temperature pattern along ma- jor Rhine Graben faults. By these calculations the fault height, fault aperture, minimal fault permeability and time to convective onset is derived from the observed distances. Since analytical solutions are limited to simple model geometries further improvement was achieved by numerical model simulations, which allow to assume more com- plex initial and boundary conditions. Using the finite volume code TOUGH2 series of anomalies following the same fault were simulated by a 3D numerical model. Fo- cussing on the predominant north-south permeability structure the model consists of a vertical north-south striking fault and surrounding matrix. The fault geometries are based on the analytically predicted fault geometries (aperture=200m, height=3500m) and on the observed temperatures. Comparison of simulation results with observed temperatures shows that the fault is situated between 500 to 600m and 4200m. The fault permeability is taken as 5*10-13m2 and the fluid velocity in the fault is calcu- lated as 10-9 to 10-10 m/s. These results indicate the importance of our considerations since mass flux is much higher in the faults than across them. The minimal age of the anomaly is considered to be 77'000 years, since steady state is reached after this time span. The study proves that the observed temperature anomaly pattern along the gamma fault at Landau can be explained by north-south striking convection systems within fault zones. Similar situations have been found at Soultz. This may be a hint on a general feature of the major north-south striking
A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools
ERIC Educational Resources Information Center
Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min
2010-01-01
The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by combining…
Orbiter/External Tank Mate 3-D Solid Modeling
NASA Technical Reports Server (NTRS)
Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.
2004-01-01
This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.
Automated robust generation of compact 3D statistical shape models
NASA Astrophysics Data System (ADS)
Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo
2004-05-01
Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.
Research on urban rapid 3D modeling and application based on CGA rule
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Jiang, Jian-wu; Zhou, Song; Yin, Shou-qiang
2015-12-01
Use CityEngine as the 3D modeling platform, research on urban rapid 3D modeling technology based on the CGA(Computer Generated Architectur) rule , solved the problem of the rapid creation of urban 3D model in large scenes , and research on building texture processing and 3D model optimization techniques based on CGA rule , using component modeling method , solved the problem of texture distortion and model redundancy in the traditional fast modeling 3D model , and development of a three-dimensional view and analysis system based on ArcGIS Engine , realization of 3D model query , distance measurement , specific path flight , 3D marking , Scene export,etc.
Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint
McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.
2012-06-01
To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.
NASA Astrophysics Data System (ADS)
Idris, R.; Latif, Z. A.; Hamid, J. R. A.; Jaafar, J.; Ahmad, M. Y.
2014-02-01
A 3D building model of man-made objects is an important tool for various applications such as urban planning, flood mapping and telecommunication. The reconstruction of 3D building models remains difficult. No universal algorithms exist that can extract all objects in an image successfully. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) technology have changed the conventional method of topographic mapping and increased the interest of these valued datasets towards 3D building model construction. Airborne LiDAR has proven accordingly that it can provide three dimensional (3D) information of the Earth surface with high accuracy. In this study, with the availability of open source software such as Sketch Up, LiDAR datasets and photographic images could be integrated towards the construction of a 3D building model. In order to realize the work an area comprising residential areas situated at Putrajaya in the Klang Valley region, Malaysia, covering an area of two square kilometer was chosen. The accuracy of the derived 3D building model is assessed quantitatively. It is found that the difference between the vertical height (z) of the 3D building models derived from LiDAR dataset and ground survey is approximately ± 0.09 centimeter (cm). For the horizontal component (RMSExy), the accuracy estimates derived for the 3D building models were ± 0.31m. The result also shows that the qualitative assessment of the 3D building models constructed seems feasible for the depiction in the standard of LOD 3 (Level of details).
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.
2015-03-01
Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.
Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques
ERIC Educational Resources Information Center
Wang, Yushun; Zhuang, Yueting
2008-01-01
Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…
Stephenson, William J.
2007-01-01
INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.
Time efficient 3-D electromagnetic modeling on massively parallel computers
Alumbaugh, D.L.; Newman, G.A.
1995-08-01
A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model
NASA Astrophysics Data System (ADS)
Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2013-08-01
3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.
Multi Sensor Data Integration for AN Accurate 3d Model Generation
NASA Astrophysics Data System (ADS)
Chhatkuli, S.; Satoh, T.; Tachibana, K.
2015-05-01
The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
Teo, B G; Sarinder, K K S; Lim, L H S
2010-08-01
Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723
NASA Astrophysics Data System (ADS)
Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael
2014-05-01
The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International
3D Modeling of the ALICE Photoinjector Upgrade
McKenzie, J. W.; Militsyn, B. L.; Saveliev, Y. M.
2009-08-04
The injector for the ALICE machine (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory is based around a 350 kV DC photocathode electron gun. An upgrade is proposed to introduce a load-lock GaAs photocathode preparation facility to allow rapid transfer of photocathodes to the gun without breaking the vacuum system. In the current design this requires side-loading of the photocathodes into the cathode ball. An alternative is to relocate the ceramic insulator vertically which will allow back-loading and also backillumination of the photocathodes. 3D electrostatic simulations of the gun chamber are presented for both options along with 3D beam dynamic simulations for an off-axis photocathode, introduced to increase photocathode lifetime by reducing damage by ion backbombardment. Beam dynamic simulations are also presented for the entire injector beamline as well as for a proposed extension to the injector beamline to include a diagnostic section.
3D numerical model for NGC 6888 Nebula
NASA Astrophysics Data System (ADS)
Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.
We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.
Simulation of Current Generation in a 3-D Plasma Model
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Dawson, J. M.
1996-11-01
In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents. In our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. We are extending these simulations to three dimensions. A parallel 3-D electromagnetic PIC code running on the IBM SP2, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present our new results at the meeting. Research partially supported by NSF and DOE.
Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production
NASA Astrophysics Data System (ADS)
Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.
2014-12-01
There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.
Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups
ERIC Educational Resources Information Center
Casas, Lluís; Estop, Euge`nia
2015-01-01
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
The faint young Sun problem revisited with a 3-D climate-carbon model - Part 1
NASA Astrophysics Data System (ADS)
Le Hir, G.; Teitler, Y.; Fluteau, F.; Donnadieu, Y.; Philippot, P.
2014-04-01
During the Archaean, the Sun's luminosity was 18 to 25% lower than the present day. One-dimensional radiative convective models (RCM) generally infer that high concentrations of greenhouse gases (CO2, CH4) are required to prevent the early Earth's surface temperature from dropping below the freezing point of liquid water and satisfying the faint young Sun paradox (FYSP, an Earth temperature at least as warm as today). Using a one-dimensional (1-D) model, it was proposed in 2010 that the association of a reduced albedo and less reflective clouds may have been responsible for the maintenance of a warm climate during the Archaean without requiring high concentrations of atmospheric CO2 (pCO2). More recently, 3-D climate simulations have been performed using atmospheric general circulation models (AGCM) and Earth system models of intermediate complexity (EMIC). These studies were able to solve the FYSP through a large range of carbon dioxide concentrations, from 0.6 bar with an EMIC to several millibars with AGCMs. To better understand this wide range in pCO2, we investigated the early Earth climate using an atmospheric GCM coupled to a slab ocean. Our simulations include the ice-albedo feedback and specific Archaean climatic factors such as a faster Earth rotation rate, high atmospheric concentrations of CO2 and/or CH4, a reduced continental surface, a saltier ocean, and different cloudiness. We estimated full glaciation thresholds for the early Archaean and quantified positive radiative forcing required to solve the FYSP. We also demonstrated why RCM and EMIC tend to overestimate greenhouse gas concentrations required to avoid full glaciations or solve the FYSP. Carbon cycle-climate interplays and conditions for sustaining pCO2 will be discussed in a companion paper.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Spatial Sense and Perspective: A 3-D Model of the Orion Constellation
NASA Astrophysics Data System (ADS)
Heyer, I.; Slater, T. F.; Slater, S. J.
2012-08-01
Building a scale model of the Orion constellation provides spatial perspective for students studying astronomy. For this activity, students read a passage from literature that refers to stars being strange when seen from a different point of view. From a data set of the seven major stars of Orion they construct a 3-D distance scale model. This involves the subject areas of astronomy, mathematics, literature and art, as well as the skill areas of perspective, relative distances, line-of-sight, and basic algebra. This model will appear from one side exactly the way we see it from Earth. But when looking at it from any other angle the familiar constellation will look very alien. Students are encouraged to come up with their own names and stories to go with these new constellations. This activity has been used for K-12 teacher professional development classes, and would be most suitable for grades 6-12.
Advances in 3D electromagnetic finite element modeling
Nelson, E.M.
1997-08-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed.
Computational approaches to 3D modeling of RNA.
Laing, Christian; Schlick, Tamar
2010-07-21
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research. PMID:21399271
Numerical modeling of Tibetan Plateau formation: Thin-sheet versus fully 3D models
NASA Astrophysics Data System (ADS)
Lechmann, S. M.; Schmalholz, S. M.; Kaus, B. J. P.
2009-04-01
Knowledge about the tectonic evolution of the Tibetan Plateau is still incomplete and many open questions remain concerning the deformation style of the crustal thickening, causing the abnormally high elevation of the Tibetan Plateau. Different models have been suggested explaining the crustal thickening by (1) homogeneous, continuous deformation using thin-sheet models, (2) discrete movement along thrusts developing crustal wedges and (3) lateral crustal flow due to pressure gradients resulting from topography. Most existing models are not fully three-dimensional (3D) models (e.g. thin-sheet models) and assume a certain deformation style a priori, which makes it difficult to judge the applicability of such constrained models to the formation of the Tibetan Plateau. We present a comparison of deformation styles during continent indentation resulting from a fully 3D numerical model and a thin-sheet model. The rheology for both models is power-law. The 3D model consists of four layers representing a simplified lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. From the effective viscosity distribution of the 3D model a vertically averaged effective viscosity is calculated and used for the thin-sheet model to make direct comparisons between the two models. Simulating indentation is achieved by assigning free slip at one lateral side of the model, and fixing two other sides. The boundary at which indentation is taking place, exhibits a tripartite velocity profile: Next to the free slip side a section with constant horizontal velocity is applied. The velocity then gradually decreases towards zero, applying a cosine-function. The last section of the indenting boundary next to the fixed side is also fixed. The 3D model additionally exhibits a free surface and a bottom boundary allowing free slip. The 3D code employs the finite element method with a mixed velocity-pressure formulation to simulate incompressible flow. A Lagrangian
NASA Astrophysics Data System (ADS)
Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.
2012-10-01
The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.
Assessing the benefit of 3D a priori models for earthquake location
NASA Astrophysics Data System (ADS)
Tilmann, F. J.; Manzanares, A.; Peters, K.; Kahle, R. L.; Lange, D.; Saul, J.; Nooshiri, N.
2014-12-01
Earthquake location in 1D Earth models is a routine procedure. Particularly in environments such as subduction zones where the network geometry is biased and lateral velocity variations are large, the use of a 1D model can lead to strongly biased solutions. This is well-known and it is therefore usually preferred to use three-dimensional models, e.g. from local earthquake tomography. Efficient codes for earthquake location in 3D models are available for routine use, for example NonLinLoc. However, tomographic studies are time-consuming to carry out, and a sufficient number of data might not always be available. However, in many cases, information about the three-dimensional velocity structure is available in the form of refraction surveys or other constraints such as gravity or receiver functions based models. Failing that, global or regional scale crustal models could be employed. However, it is not obvious that models derived using different types of data lead to better location results than an optimised 1D velocity model. On the other hand, correct interpretation of seismicity patterns often requires comparison and exaxt positioning in pre-existing velocity models. In this presentation we draw on examples from the Chilean and Sumatran margins as well as a mid-ocean ridge environments, using both data and synthetic examples to investigate under what conditions the use of a priori 3D models is expected to result in improved location results and modifies interpretation. Furthermore, we introduce MATLAB tools that facilitate the creation of three-dimensional models suitable for earthquake location from refraction profiles, CRUST1 and SLAB1.0 and other model types.
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth
NASA Technical Reports Server (NTRS)
Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter
2010-01-01
This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently
NASA Technical Reports Server (NTRS)
Knezovich, F. M.
1976-01-01
A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.
A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers
NASA Astrophysics Data System (ADS)
Porter, K.
2014-12-01
Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-12-31
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-{beta} disruption studies in reversed shear plasmas using the MHD level MH3D code, {omega}{sub *i} stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D{sup ++} code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data.
A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation
ERIC Educational Resources Information Center
Wee, Loo Kang; Goh, Giam Hwee
2013-01-01
We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…
NASA Astrophysics Data System (ADS)
Toledo-Redondo, S.; Salinas, A.; Fornieles, J.; Portí, J.; Lichtenegger, H. I. M.
2016-06-01
Schumann resonances can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. Results from a full 3-D model of the Earth-ionosphere electromagnetic cavity based on the Transmission-Line Modeling (TLM) method are presented. A Cartesian scheme with homogeneous cell size of 10 km is used to minimize numerical dispersion present in spherical schemes. Time and frequency domain results have been obtained to study the resonance phenomenon. The effect of conductivity on the Schumann resonances in the cavity is investigated by means of numerical simulations, studying the transition from resonant to nonresonant response and setting the conductivity limit for the resonances to develop inside the cavity. It is found that the transition from resonant to nonresonant behavior occurs for conductivity values above roughly 10-9 S/m. For large losses in the cavity, the resonances are damped, but, in addition, the peak frequencies change according to the local distance to the source and with the particular electromagnetic field component. These spatial variations present steep variations around each mode's nodal position, covering distances around 1/4 of the mode wavelength, the higher modes being more sensitive to this effect than the lower ones. The dependence of the measured frequency on the distance to the source and particular component of the electric field offers information on the source generating these resonances.
Developing and Testing a 3d Cadastral Data Model a Case Study in Australia
NASA Astrophysics Data System (ADS)
Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.
2012-07-01
Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
Ground and Structure Deformation 3d Modelling with a Tin Based Property Model
NASA Astrophysics Data System (ADS)
TIAN, T.; Zhang, J.; Jiang, W.
2013-12-01
With the development of 3D( three-dimensional) modeling and visualization, more and more 3D tectonics are used to assist the daily work in Engineering Survey, in which the prediction of deformation field in strata and structure induced by underground construction is an essential part. In this research we developed a TIN (Triangulated Irregular Network) based property model for the 3D (three dimensional) visualization of ground deformation filed. By record deformation vector for each nodes, the new model can express the deformation with geometric-deformation-style by drawing each node in its new position and deformation-attribute-distribution-style by drawing each node in the color correspond with its deformation attribute at the same time. Comparing with the volume model based property model, this new property model can provide a more precise geometrical shape for structure objects. Furthermore, by recording only the deformation data of the user-interested 3d surface- such as the ground surface or the underground digging surface, the new property model can save a lot of space, which makes it possible to build the deformation filed model of a much more large scale. To construct the models of deformation filed based on TIN model, the refinement of the network is needed to increase the nodes number, which is necessary to express the deformation filed with a certain resolution. The TIN model refinement is a process of sampling the 3D deformation field values on points on the TIN surface, for which we developed a self-adapting TIN refinement method. By set the parameter of the attribute resolution, this self-adapting method refines the input geometric-expressing TIN model by adding more vertexes and triangles where the 3D deformation filed changing faster. Comparing with the even refinement method, the self-adapting method can generate a refined TIN model with nodes counted less by two thirds. Efficiency Comparison between Self-adapting Refinement Method and Even
Quasi 3D modeling of water flow in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Kuznetsov, M.; Yakirevich, A.; Pachepsky, Y. A.; Sorek, S.; Weisbrod, N.
2012-07-01
SummaryThe complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas the flow and transport through groundwater are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow using quasi 3D Richards' equation and finite difference scheme is presented. The corresponding numerical algorithm and the QUASI-3D computer code were developed. Results of the groundwater level simulations were compared with transient laboratory experimental data for 2D data constant-flux infiltration, quasi-3D HYDRUS-MODFLOW numerical model and a FULL-3D numerical model using Richards' equation. Hypothetical 3D examples of infiltration, pumping and groundwater mound dissipation for different spatial-time scales are presented. Water flow simulation for the Alto Piura aquifer (Peru) demonstrates the QUASI-3D model application at the regional scale. Computationally the QUASI-3D code was found to be more efficient by an order of 10-300%, while being accurate with respect to the benchmark fully 3D variable saturation code, when the capillary fringe was considered.
Detection of Disease Symptoms on Hyperspectral 3d Plant Models
NASA Astrophysics Data System (ADS)
Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz
2016-06-01
We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.
The Lifeworld Earth and a Modelled Earth
NASA Astrophysics Data System (ADS)
Juuti, Kalle
2014-08-01
The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the Earth, science's view of the Earth as an object—a celestial body—has been applied. I reanalysed data published in Vosniadou and Brewer's (Cognit psychol 24:535-585, 1992) seminal paper. According to my reanalysis of their interview material, it is plausible to conclude that the Earth as an infinite surface is the way to experience the Earth. Further, the `dual Earth model' is the first model of the Earth as an object. I conclude that experiences in the lifeworld need to be taken into consideration more seriously in science education research.
Waveform prediction with travel time model LLNL-G3D assessed by Spectral-Element simulation
NASA Astrophysics Data System (ADS)
Morency, C.; Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.
2013-12-01
Seismic monitoring requires accurate prediction of travel times, amplitudes, and whole waveforms. As a first step towards developing a model that is suited to seismic monitoring, LLNL developed the LLNL-G3D P-wave travel time model (Simmons et al., 2012, JGR) to improve seismic event location accuracy. LLNL-G3D fulfills the need to predict travel times from events occurring anywhere in the globe to stations ranging from local to teleseismic distances. Prediction over this distance range requires explicit inclusion of detailed 3-dimensional structure from Earths surface to the core. An open question is how well a model optimized to fit P-wave travel time data can predict waveforms? We begin to address this question by using the P-wave velocities in LLNL-G3D as a proxy for S-wave velocity and density, then performing waveform simulations via the SPECFEM3D_GLOBE spectral-element code. We assess the ability of LLNL-G3D to predict waveforms and draw comparisons to other 3D models available in SPECFEM3D_GLOBE package and widely used in the scientific community. Although we do not expect the P-wave model to perform as well as waveform based models, we view our effort as a first step towards accurate prediction of time times, amplitudes and full waveforms based on a single model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Carretier, S.; Martinez, J.; Martinod, P.; Reich, M.; Godderis, Y.
2014-12-01
During mountain uplift, fresh silicate rocks are exhumed and broken into small pieces, potentially increasing their chemical weathering rate and thus the consumption of atmospheric CO2. This process remains debated because although erosion provides fresh rocks, it may also decrease their residence time near Earth's surface where clasts weather. Several recent publications also emphasized the key role of forelands in the weathering of clasts exported from the mountains by erosion. Predicting the chemical outflux of mountains requires to account for the chemical evolution of these rocks from their source to outlet. Powerful chemical models based on diffusion-advection of species between rocks and water have been developed at pedon scale, and recently at hillslope scale. In order to track the weathered material, we have developed a different approach based on the introduction into a 3D landscape evolution model (CIDRE) of dissolving discrete spherical clasts that move downslope. In CIDRE, local erosion and deposition depend on slope and water discharge which adapt dynamically during the topographical evolution. On a cell, bedrock is converted to soil at a rate depending on soil thickness. Clasts are initially spread at specified depths. They have a specified initial size and mineralogical composition. Once they enter the soil, they begins to dissolve at a rate depending on their minerals, temperature and exposed area, which decreases the clast size. Clasts move downstream according to probabilities depending on the ratio between the calculated local deposition and erosion fluxes. Chemical outflux is calculated for each clast during its life. At pedon scale, the model predicts chemical depleted fractions close to that obtained with advection-diffusion models and in agreement with measurements. An integrated chemical flux is estimated for the whole landscape from the clast dissolution rates. This flux reaches a stable solution using a suitable number of initial clasts
Sunlight effects on the 3D polar current system determined from low Earth orbit measurements
NASA Astrophysics Data System (ADS)
Laundal, Karl M.; Finlay, Christopher C.; Olsen, Nils
2016-08-01
Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV emissions on the dayside and on particle precipitation at pre-midnight magnetic local times. In sunlight, the horizontal equivalent current flows in two cells, resembling an opposite ionospheric convection pattern, which implies that it is dominated by Hall currents. By combining the Birkeland current maps and the equivalent current, we are able to calculate the total horizontal current, without any assumptions about the conductivity. We show that the total horizontal current is close to zero in the polar cap when it is dark. That implies that the equivalent current, which is sensed by ground magnetometers, is largely canceled by the horizontal closure of the Birkeland currents.
Dynamics of free subduction from 3-D boundary element modeling
NASA Astrophysics Data System (ADS)
Li, Zhong-Hai; Ribe, Neil M.
2012-06-01
In order better to understand the physical mechanisms underlying free subduction, we perform three-dimensional boundary-element numerical simulations of a dense fluid sheet with thickness h and viscosity η2 sinking in an `ambient mantle' with viscosity η1. The mantle layer is bounded above by a traction-free surface, and is either (1) infinitely deep or (2) underlain by a rigid boundary at a finite depth H + d, similar to the typical geometry used in laboratory experiments. Instantaneous solutions in configuration (1) show that the sheet's dimensionless `stiffness' S determines whether the slab's sinking speed is controlled by the viscosity of the ambient mantle (S < 1) or the viscosity of the sheet itself (S > 10). Time-dependent solutions with tracers in configuration (2) demonstrate a partial return flow around the leading edge of a retreating slab and return flow around its sides. The extra `edge drag' exerted by the flow around the sides causes transverse deformation of the slab, and makes the sinking speed of a 3-D slab up to 40% less than that of a 2-D slab. A systematic investigation of the slab's interaction with the bottom boundary as a function of η2/η1 and H/h delineates a rich regime diagram of different subduction modes (trench retreating, slab folding, trench advancing) and reveals a new `advancing-folding' mode in which slab folding is preceded by advancing trench motion. The solutions demonstrate that mode selection is controlled by the dip of the leading edge of the slab at the time when it first encounters the bottom boundary.
3-D crustal velocity model for Lithuania and its application to local event studies
NASA Astrophysics Data System (ADS)
Budraitis, M.; Kozlovskaya, E.; Janutyte, I.; Motuza, G.
2009-12-01
PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania and operated since June, 2006 till January, 2008. One of the main reasons of PASSEQ deployment in Lithuania is identification and characterisation of the local seismic activity. During the data acquisition period a number of local seismic events was identified and preliminary event location was made using LocSat and VELEST algorithms and 1-D velocity models. These standard procedures is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). Another problem was low quality of S-wave arrivals due to thick (up to 2 km) sediments in most part of Lithuania. In order to improve event location, we compiled a 3-D seismic velocity model of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded by controlled source experiments and calculated travel times through the 3-D velocity model. The model was converted into a density model using a special procedure, in which
Modeling and modification of medical 3D objects. The benefit of using a haptic modeling tool.
Kling-Petersen, T; Rydmark, M
2000-01-01
The Computer Laboratory of the medical faculty in Goteborg (Mednet) has since the end of 1998 been one of a limited numbers of participants in the development of a new modeling tool together with SensAble Technologies Inc [http:¿www.sensable.com/]. The software called SensAble FreeForm was officially released at Siggraph September 1999. Briefly, the software mimics the modeling techniques traditionally used by clay artists. An imported model or a user defined block of "clay" can be modified using different tools such as a ball, square block, scrape etc via the use of a SensAble Technologies PHANToM haptic arm. The model will deform in 3D as a result of touching the "clay" with any selected tool and the amount of deformation is linear to the force applied. By getting instantaneous haptic as well as visual feedback, precise and intuitive changes are easily made. While SensAble FreeForm lacks several of the features normally associated with a 3D modeling program (such as text handling, application of surface and bumpmaps, high-end rendering engines, etc) it's strength lies in the ability to rapidly create non-geometric 3D models. For medical use, very few anatomically correct models are created from scratch. However, FreeForm features tools enable advanced modification of reconstructed or 3D scanned models. One of the main problems with 3D laserscanning of medical specimens is that the technique usually leaves holes or gaps in the dataset corresponding to areas in shadows such as orifices, deep grooves etc. By using FreeForms different tools, these defects are easily corrected and gaps are filled out. Similarly, traditional 3D reconstruction (based on serial sections etc) often shows artifacts as a result of the triangulation and/or tessellation processes. These artifacts usually manifest as unnatural ridges or uneven areas ("the accordion effect"). FreeForm contains a smoothing algorithm that enables the user to select an area to be modified and subsequently apply
The hydrodynamic part of the 3D CEMBS model for the Baltic Sea
NASA Astrophysics Data System (ADS)
Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur
2013-04-01
The paper presents a hydrodynamic part of the coupled ice-ocean model 3D CEMBS designed for the Baltic Sea. It is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research). It was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The models are linked through the coupler (CPL7) based on the Model Coupling Toolkit library. The ocean model has 21 vertical levels and horizontal grid of 600x640 cells. Horizontal resolution is approximately 2km. It is forced by atmospheric fields from European Centre for Medium-Range Weather Forecasts and in operational mode from 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdansk.
Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction
NASA Astrophysics Data System (ADS)
Yu, Qian; Helmholz, Petra; Belton, David
2016-06-01
In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.
NASA Astrophysics Data System (ADS)
Koehl, M.; Brigand, N.
2012-08-01
The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image
Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals
NASA Astrophysics Data System (ADS)
Zamyadi, A.; Pouliot, J.; Bédard, Y.
2013-09-01
Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial
Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites
Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab
2016-01-01
Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456
Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites
NASA Astrophysics Data System (ADS)
Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab
2016-07-01
Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness.
Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites.
Autieri, Carmine; Kumar, P Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A; Wende, Heiko; Sanyal, Biplab
2016-01-01
Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456
Why 3D? The Need for Solution Based Modeling in a National Geoscience Organization.
NASA Astrophysics Data System (ADS)
Terrington, Ricky; Napier, Bruce; Howard, Andy; Ford, Jon; Hatton, William
2008-05-01
In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geoscientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. Some of these issues include foundation and engineering conditions, ground water vulnerability, aquifer recharge and flow, and resource extraction and storage. The British Geological Survey has established a mechanism and infrastructure through the Digital Geoscience Spatial Model Programme (DGSM) to produce these types of 3D geoscience outputs. This cyber-infrastructure not only allows good data and information management, it enables geoscientists to capture their know-how and implicit and tacit knowledge for their 3D interpretations. A user of this data will then have access to value-added information for the 3D dataset including the knowledge, approach, inferences, uncertainty, wider context and best practice acquired during the 3D interpretation. To complement this cyber-infrastructure, an immersive 3D Visualization Facility was constructed at the British Geological Survey offices in Keyworth, Nottingham and Edinburgh. These custom built facilities allow stereo projection of geoscience data, immersing the users and stakeholders in a wealth of 3D geological data. Successful uses of these facilities include collaborative 3D modeling, demonstrations to public stakeholders and Virtual Field Mapping Reconnaissance.
Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow
NASA Astrophysics Data System (ADS)
Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne
2014-05-01
3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from
Probabilistic earthquake location and 3-D velocity models in routine earthquake location
NASA Astrophysics Data System (ADS)
Lomax, A.; Husen, S.
2003-12-01
Earthquake monitoring agencies, such as local networks or CTBTO, are faced with the dilemma of providing routine earthquake locations in near real-time with high precision and meaningful uncertainty information. Traditionally, routine earthquake locations are obtained from linearized inversion using layered seismic velocity models. This approach is fast and simple. However, uncertainties derived from a linear approximation to a set of non-linear equations can be imprecise, unreliable, or even misleading. In addition, 1-D velocity models are a poor approximation to real Earth structure in tectonically complex regions. In this paper, we discuss the routine location of earthquakes in near real-time with high precision using non-linear, probabilistic location methods and 3-D velocity models. The combination of non-linear, global search algorithms with probabilistic earthquake location provides a fast and reliable tool for earthquake location that can be used with any kind of velocity model. The probabilistic solution to the earthquake location includes a complete description of location uncertainties, which may be irregular and multimodal. We present applications of this approach to determine seismicity in Switzerland and in Yellowstone National Park, WY. Comparing our earthquake locations to earthquake locations obtained using linearized inversion and 1-D velocity models clearly demonstrates the advantages of probabilistic earthquake location and 3-D velocity models. For example, the more complete and reliable uncertainty information of non-linear, probabilistic earthquake location greatly facilitates the identification of poorly constrained hypocenters. Such events are often not identified in linearized earthquake location, since the location uncertainties are determined with a simplified, localized and approximate Gaussian statistic.
Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session
ERIC Educational Resources Information Center
Ding, Suining
2008-01-01
This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…
3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand
NASA Astrophysics Data System (ADS)
Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.
2015-08-01
In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.
A topological framework for interactive queries on 3D models in the Web.
Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236
A Topological Framework for Interactive Queries on 3D Models in the Web
Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236
Intriligator, Devrie S.; Detman, Thomas; Fry, Craig D.; Sun Wei; Deehr, Charles; Intriligator, James
2005-08-01
A first-generation 3D kinematic, space weather forecasting solar wind model (HAFv2) has been used to show the importance of solar generated disturbances in Voyager 1 and Voyager 2 observations in the outer heliosphere. We extend this work by using a 3D MHD model (HHMS) that, like HAFv2, incorporates a global, pre-event, inhomogeneous, background solar wind plasma and interplanetary magnetic field. Initial comparisons are made between the two models of the solar wind out to 6 AU and with in-situ observations at the ACE spacecraft before and after the October/November 2003 solar events.
ERIC Educational Resources Information Center
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.
2016-01-01
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…
Magnetic charge model for 3D MMM signals
NASA Astrophysics Data System (ADS)
Pengpeng, Shi; Xiaojing, Zheng
2016-01-01
Stress concentration is a major cause of metal structure failures. Based on the metal magnetic memory (MMM) technique, detailed information of stress concentration or defects on ferromagnetic materials can be obtained from the changed magnetic signals. The magnetic charge model of MMM signal is described, and simulations based on this model are performed for a sample with stress-concentration zone or a long elliptical defect. Some basic characteristics produced by present model are coincident with existed experimental measurements. The agreements between simulations and experimental results confirm that the present magnetic charge model can be used as an MMM signal forward technique.
Indoor 3D Route Modeling Based On Estate Spatial Data
NASA Astrophysics Data System (ADS)
Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.
2014-04-01
Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.
Reconstructing photorealistic 3D models from image sequence using domain decomposition method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2009-11-01
In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.
Services Oriented Smart City Platform Based On 3d City Model Visualization
NASA Astrophysics Data System (ADS)
Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.
2014-04-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.
An object-oriented 3D integral data model for digital city and digital mine
NASA Astrophysics Data System (ADS)
Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong
2005-10-01
With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
3D Fluid-Structure Modeling of a Monofin
NASA Astrophysics Data System (ADS)
Monier, L.; Razafimahery, F.; Rakotomanana, L.
2010-10-01
The purpose of this paper is to develop a numerical modelisation for the behaviour of a monofin. We have developped a fluid struture model simulating the movement of a fin in a swimming pool. We first present the geometry and the equations and then proceed to different numerical experiments in order to validate the model.
Computational 3-D Model of the Human Respiratory System
We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...
NASA Astrophysics Data System (ADS)
Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.
2015-04-01
A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD) is developed for simulating the Global Electric Circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile), the right hand side forcing term of the PDE (i.e. distribution of current sources) or the geometry of the lower boundary.
3D Elastic Seismic Wave Propagation Code
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene
NASA Astrophysics Data System (ADS)
Sahin, H.; Peeters, F. M.
2013-02-01
The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.
Assessing a 3D smoothed seismicity model of induced earthquakes
NASA Astrophysics Data System (ADS)
Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan
2016-04-01
As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.
3D Modeling of CMEs observed with STEREO
NASA Astrophysics Data System (ADS)
Bosman, E.; Bothmer, V.
2012-04-01
From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.
Modeling Recent Large Earthquakes Using the 3-D Global Wave Field
NASA Astrophysics Data System (ADS)
Hjörleifsdóttir, V.; Kanamori, H.; Tromp, J.
2003-04-01
We use the spectral-element method (SEM) to accurately compute waveforms at periods of 40 s and longer for three recent large earthquakes using 3D Earth models and finite source models. The M_w~7.6, Jan~26, 2001, Bhuj, India event had a small rupture area and is well modeled at long periods with a point source. We use this event as a calibration event to investigate the effects of 3-D Earth models on the waveforms. The M_w~7.9, Nov~11, 2001, Kunlun, China, event exhibits a large directivity (an asymmetry in the radiation pattern) even at periods longer than 200~s. We used the source time function determined by Kikuchi and Yamanaka (2001) and the overall pattern of slip distribution determined by Lin et al. to guide the wave-form modeling. The large directivity is consistent with a long fault, at least 300 km, and an average rupture speed of 3±0.3~km/s. The directivity at long periods is not sensitive to variations in the rupture speed along strike as long as the average rupture speed is constant. Thus, local variations in rupture speed cannot be ruled out. The rupture speed is a key parameter for estimating the fracture energy of earthquakes. The M_w~8.1, March~25, 1998, event near the Balleny Islands on the Antarctic Plate exhibits large directivity in long period surface waves, similar to the Kunlun event. Many slip models have been obtained from body waves for this earthquake (Kuge et al. (1999), Nettles et al. (1999), Antolik et al. (2000), Henry et al. (2000) and Tsuboi et al. (2000)). We used the slip model from Henry et al. to compute SEM waveforms for this event. The synthetic waveforms show a good fit to the data at periods from 40-200~s, but the amplitude and directivity at longer periods are significantly smaller than observed. Henry et al. suggest that this event comprised two subevents with one triggering the other at a distance of 100 km. To explain the observed directivity however, a significant amount of slip is required between the two subevents
3D Travel Time Prediction for Earthquake Location - An Assessment of Methods and Models
NASA Astrophysics Data System (ADS)
Begnaud, M. L.; Ballard, S.; Rowe, C. A.; Young, C. J.; Steck, L.; Hipp, J. R.
2009-12-01
We have selected several crustal and mantle 3D models to test for travel-time prediction in a global event location context. Included are the ak135, DoE Unified, Sun et al. (2004) and MITP08 models, among others. Using the recently published tesselated 3D global ray tracing algorithm of Ballard et al., we compare and contrast our travel-time predictions through these obtained models for a set of ~500 Ground Truth (GT) 5 or better events, most of which are chemical or nuclear explosions. We explore the degree of travel-time misfit that can be expected when integrating rays through a model using a different method, or different parameterization, from that which generated the model. For instance, we compare the effect of dynamic ray tracing vs. fixed rays through a mantle tomographic model that was generated by inverting travel-time residuals for pre-calculated, fixed rays in the 1D radial AK135 model. We examine the success of these models for not only teleseismic P arrivals but also Pn and Pg. We explore the geographic biases observed for each phase and the trade-offs encountered when models are integrated. We find that our GT travel times are best predicted through any model when the calculation is perfomed using methods as close as possible to those used in generation of the model, as expected. Such considerations as Earth ellipticity correction and fixed ray vs. dynamic ray tracing need to be applied appropriately for a fair evaluation. Models available to the community are thus of little practical use for global location unless their methods of derivation are also provided, although they may independently provide enlightening images of tectonic features. We conclude that towards our development of a seamless, global model and locator, existing models may best serve as starting models for a global inversion using a single, consistent ray tracing and travel-time calculation approach; thus we view our evaluation of available models as a search for the best starting
NASA Technical Reports Server (NTRS)
Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol
2003-01-01
The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.
Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model
O'Hirok, W.; Ricchiazzi, P.; Gautier, C.
2005-03-18
A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes.
Modelling Galaxies with a 3D Multi-Phase ISM
NASA Astrophysics Data System (ADS)
Harfst, Stefan; Theis, Christian; Hensler, Gerhard
We present a modified TREE-SPH code to model galaxies in three dimensions. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH, whereas a cloudy medium is represented by a sticky particle scheme. Interaction processes (such as star formation and feedback), cooling, and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 Msolar yr-1. Condensation and evaporation rates are in balance at 0.1-1 Msolar yr-1.
Automated mask creation from a 3D model using Faethm.
Schiek, Richard Louis; Schmidt, Rodney Cannon
2007-11-01
We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Complex 3D crustal model of Asia region
NASA Astrophysics Data System (ADS)
Baranov, A. A.
2009-04-01
The Southern and Central Asia is tectonically complex region with great collision between Asian and Indian plates and its evolution is strongly related to the active subduction along the Pacific border. Previous global crustal model (CRUST 2.0.) for Asia region have resolution 2x2 degree. Model AsCRUST-08 (Baranov et al., 2008) of Central and Southern Asia with resolution of 1x1 degree was sufficiently improved in several regions and we built integrated model of the crust for Asia region. Also we add several regions in North Eurasia as Mongolia, Kazahstan and others. For such regions as Red and Dead sea, Northern China, Southern India we built regional maps with more detailed resolution. It was used data of deep seismic reflection, refraction and receiver functions studies from published papers. The existing data were verified and crosschecked. As the first result, we demonstrate a new Moho map for the region. The complex crustal model consists of three layers: upper, middle and lower crust. Besides depth to the boundaries, we provide average P-wave velocities in the upper, middle and lower parts of the crystalline crust. Limits for Vp velocities are: for upper crust 5.5-6.2 km/s, for middle 6.0-6.6 km/s, for lower crust 6.6-7.5km/s. Also we recalculated seismic P velocity data to density in crustal layers using rheology properties and geology data. Conclusions: Moho map and the velocity structure of the crust are much more heterogeneous than in previous maps CRUST 2.0. (Bassin et al., 2000), and CRUST 5.1. (Mooney et al., 1998). Our model offers a starting point for numerical modeling of deep structures by allowing correction for crustal effects beforehand and to resolve trade-off with mantle heterogeneities. This model will be used as a starting point in the gravity modeling of the lithosphere and mantle structure. [1] A. Baranov et al., First steps towards a new crustal model of South and Central Asia , Geophysical Research Abstracts, Vol. 10, EGU2008-A-05313
Congruence of 3-D Whole Mantle Models of Shear Velocity
NASA Astrophysics Data System (ADS)
Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.
2012-12-01
The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to