Science.gov

Sample records for 3-d electrical conductivity

  1. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  2. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  3. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  4. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  5. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  6. Geostatistical modelling with 3D+T data: soil moisture, temperature, and electrical conductivity at the field scale

    NASA Astrophysics Data System (ADS)

    Gasch, Caley K.; Hengl, Tomislav; Gräler, Benedikt; Meyer, Hanna; Magney, Troy; Brown, David J.

    2015-04-01

    Dynamic soil data collected using automated sensor networks can facilitate our understanding of soil processes, but highly dimensional data may be difficult to analyze in a manner that incorporates correlation in properties through 3-dimensions and time (3D+T). We demonstrate two approaches to making continuous predictions of dynamic soil properties from fixed point observations. For this analysis, we used the Cook Farm data set, which includes hourly measurements of soil volumetric water content, temperature, and electrical conductivity at 42 points and five depths, collected over five years. We compare performance of two modeling frameworks. In the first framework we used random forest algorithms to fit a 3D+T regression model to make predictions of all three soil variables from 2- and 3-dimensional, temporal, and spatio-temporal covariates. In the second framework we developed a 3D+T kriging model after detrending the observations for depth-dependent seasonal effects. The results show that both models accurately predicted soil temperature, but the kriging model outperformed the regression model according to cross-validation; it explained 37%, 96%, and 16% of the variability in water content, temperature, and electrical conductivity respectively versus 34%, 93%, and 4% explained by the random forest model. The full random forest regression model had high goodness-of-fit for all variables, which was reduced in cross-validation. Temporal model components (i.e. day of the year) explained most of the variability in observations. The seamless predictions of 3D+T data produced from this analysis can assist in understanding soil processes and how they change through a season, under different land management scenarios, and how they relate to other environmental processes.

  7. A Non-Linear Inversion for the Global 3-D Electrical Conductivity Distribution in the Upper to Mid-Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Schultz, A.

    2004-12-01

    The case for substantial heterogeneity in mantle conductivity has stimulated the development of methods for solving Maxwell's equations in a heterogeneous conducting sphere. A global 3-D frequency domain forward solver has been devised (Uyeshima & Schultz, 2000), accurate and efficient enough to be an attractive kernel of a practical inverse method. The solver employs a staggered-grid finite difference formulation in spherical coordinates. The induced fields are found as a solution to the integral form of Maxwell's equations, while the system is solved using stabilised biconjugate gradient methods. A single, accurate forward solution takes approx. 4 minutes on 5 GFLOP (peak) processor. The aim of our present research is to produce an inverse solver, to be applied to the Fujii & Schultz (2002) data set of globally-distributed EM response functions, which would reconstruct the 3-D electrical conductivity distribution in the upper to mid-mantle. Geophysical inversion is an ill-posed problem, therefore the aim is to apply suitable parameter constraints and a nonlinear search algorithm to identify candidate minima, then to apply local gradient methods around those minima. Our specific target involves designing a fast enough global optimisation routine that would allow us to produce at least one fully 3-D starting model, optimal with respect to the RMS misfit between the data and the forward solutions. A new and very flexible inverse solver has been developed utilizing parallel optimisation routines to obtain a starting model that satisfies the data. 3-D simulations have been run, the parametrization based on a spherical harmonic representation of a chess board model of varying degree and order. The inversion has demonstrated accurate fidelity in reproducing resolvable features of the test model. A study has been made of the reduction in fidelity as the number and distribution of observatory sites on the Earth's surface is degraded. An inversion of the Fujii & Schultz

  8. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  9. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  10. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %.

  11. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %. PMID:25384188

  12. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Semenov, Alexey

    2012-06-01

    We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.

  13. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration. PMID:25630631

  14. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration.

  15. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  16. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  17. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  18. Assessing the RELAPS-3D Heat Conduction Enclosure Model

    SciTech Connect

    McCann, Larry D.

    2008-09-30

    Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

  19. 3D stability analysis of Rayleigh-Bénard convection of a liquid metal layer in the presence of a magnetic field—effect of wall electrical conductivity

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Dimitrios; Pelekasis, Nikos A.

    2014-10-01

    Rayleigh-Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three-dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electrical conductivity of the cavity walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and increases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha 2 signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, cH + Ha -1. When poor conducting Hartmann walls are considered, cH ≪ 1, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electrical conductivity of the Hartmann

  20. Implications of 3D electrical conductivity beneath the Payun Matru basalt province in western Argentina (36.5S, 69.5W)

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Burd, A.; Mackie, R.; Favetto, A.; Pomposiello, C.

    2009-12-01

    To understand geologic processes that shaped western North America in the early Cenozoic, it is useful to look at southern South America, where similar processes such as flat-slab subduction and intraplate basaltic volcanism are active today. Payún Matrú is a very large shield volcano east of the Andes at 36.5 S 69.5 W. It is the largest feature of the “Payunia” basalt province that covers about 15,000 sq km. The most recent activity may have been about 1,000 years ago. Lava chemistry has evolved with time. Despite being only 150 km east of the axis of the Andean Southern Volcanic Zone, the younger lavas are essentially OIB. We have collected 38 long period magnetolluric (MT) sites in an array that extends beyond the Payunia basalts to investigate the source of magma. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) have been inverted for smoothest log resistivity using a 3D non-linear conjugate gradient (NLCG) algorithm. The model includes the Atlantic and Pacific oceans, which both significantly affect the data. The image shows the isosurface at 30 Ohm-m together with the locations of sites (inverted triangles), earthquakes deeper than 50 km (filled circles) and volcanoes with geological recent activity (normal triangles). The result is that Payún Matrú (the large triangle) lies at the northern end of a conductive finger at the top of the mantle. This finger has a pimple that rises into the upper crust just west of the caldera. The finger appears to originate in anomalously conductive mantle deeper than 150 km that extends south and to the east (away from the Andes). If this conductor is due to fully interconnected basalt partial melt, the region inside this isosurface has more than 3% partial melt. This structure appears to rule out such processes as crustal delamination or a vertical plume for this volcanic province. It also suggests that the lithosphere east of the asthenospheric wedge under the Andes is

  1. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  2. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  3. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.

    PubMed

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative "dark" modes. These 3D conductive "dark" modes strongly interfere with the "bright" resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  4. Modeling Electric Current Flow in 3D Fractured Media

    NASA Astrophysics Data System (ADS)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  5. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  6. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  7. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  8. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  9. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    PubMed Central

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-01-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109

  10. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  11. Contribution of 3-D electrical resistivity tomography for landmines detection

    NASA Astrophysics Data System (ADS)

    Metwaly, M.; El-Qady, G.; Matsushima, J.; Szalai, S.; Al-Arifi, N. S. N.; Taha, A.

    2008-12-01

    Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic) landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR), and metal detector (MD) techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT) technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  12. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  13. Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect

    2001-10-24

    NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.

  14. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  15. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  16. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

  17. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  18. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  19. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  20. Polymers that Conduct Electricity.

    ERIC Educational Resources Information Center

    Edelson, Edward

    1983-01-01

    Although polymers are regarded as electrical insulators, it was discovered that they can be made to conduct electricity. This discovery has opened vast new practical and theoretical areas for exploration by physicists and chemists. Research studies with these conducting polymers and charge-transfer salts as well as possible applications are…

  1. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  2. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  4. Photopolymerization of 3D conductive polypyrrole structures via digital light processing

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.

    2016-04-01

    The intrinsically conductive polymer polypyrrole is conventionally synthesized as monolithic films that exhibit significant actuation strains when subjected to an applied electric potential. Though numerous linear and bending actuators based on polypyrrole films have been investigated, the limitations inherent to planar film geometries inhibit the realization of more complex behaviours. Hence, three-dimensional polypyrrole structures are sought to greatly expand the potential applications for conductive polymer actuators. This research aims to develop a novel additive manufacturing method for the fabrication of three-dimensional structures of conductive polypyrrole. In this investigation, radiation-curing techniques are employed by means of digital light processing (DLP) technology. DLP is an additive manufacturing technique where programmed light patterns emitted from a dedicated source are used to selectively cure a specially formulated polymer resin. Successive curing operations lead to a layered 3D structure into which fine features may be incorporated. Energy dispersive spectroscopy (EDS) is subsequently employed to examine the unique microstructural features of the resultant 3D printed polymer morphology in order to elucidate the nature of the conductivity. These polymer microstructures are highly desirable since actuation response times are highly dependent on ion transport distances, and hence the ability to fabricate fine features offers a potential mechanism to improve actuator performance.

  5. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. PMID:26992060

  6. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction.

    PubMed

    Molinari, Marc; Cox, Simon J; Blott, Barry H; Daniell, Geoffrey J

    2002-02-01

    Non-linear electrical impedance tomography reconstruction algorithms usually employ the Newton-Raphson iteration scheme to image the conductivity distribution inside the body. For complex 3D problems, the application of this method is not feasible any more due to the large matrices involved and their high storage requirements. In this paper we demonstrate the suitability of an alternative conjugate gradient reconstruction algorithm for 3D tomographic imaging incorporating adaptive mesh refinement and requiring less storage space than the Newton-Raphson scheme. We compare the reconstruction efficiency of both algorithms for a simple 3D head model. The results show that an increase in speed of about 30% is achievable with the conjugate gradient-based method without loss of accuracy.

  7. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  8. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  9. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  10. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.

    PubMed

    Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin

    2016-05-01

    3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads. PMID:26953811

  11. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  12. Electrical Conductivity in Textiles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  13. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  14. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  15. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. PMID:27167030

  16. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations.

  17. Electrically conductive ceramic powders

    NASA Astrophysics Data System (ADS)

    Lu, Yanxia

    1999-11-01

    Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and

  18. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  19. Electrically conductive alternating copolymers

    DOEpatents

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  20. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.

    PubMed

    Xu, Xiang; Li, Hui; Zhang, Qiangqiang; Hu, Han; Zhao, Zongbin; Li, Jihao; Li, Jingye; Qiao, Yu; Gogotsi, Yury

    2015-04-28

    Three-dimensional (3D) graphene aerogels (GA) show promise for applications in supercapacitors, electrode materials, gas sensors, and oil absorption due to their high porosity, mechanical strength, and electrical conductivity. However, the control, actuation, and response properties of graphene aerogels have not been well studied. In this paper, we synthesized 3D graphene aerogels decorated with Fe3O4 nanoparticles (Fe3O4/GA) by self-assembly of graphene with simultaneous decoration by Fe3O4 nanoparticles using a modified hydrothermal reduction process. The aerogels exhibit up to 52% reversible magnetic field-induced strain and strain-dependent electrical resistance that can be used to monitor the degree of compression/stretching of the material. The density of Fe3O4/GA is only about 5.8 mg cm(-3), making it an ultralight magnetic elastomer with potential applications in self-sensing soft actuators, microsensors, microswitches, and environmental remediation. PMID:25792130

  1. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  2. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  3. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  4. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels

    PubMed Central

    Chiang, Min-Yu; Hsu, Yao-Wen; Hsieh, Hsin-Yi; Chen, San-Yuan; Fan, Shih-Kang

    2016-01-01

    Formation of multifunctional, heterogeneous, and encoded hydrogel building blocks, or microgels, by crosslinking and assembly of microgels are two essential steps in establishing hierarchical, complicated, and three-dimensional (3D) hydrogel architectures that recapitulate natural and biological structures or originate new materials by design. However, for the variety of the hydrogel materials crosslinked differently and for the varied scales of microgels and architectures, the formation and assembly processes are usually performed separately, which increases the manufacturing complexity of designed hydrogel materials. We show the construction of hydrogel architectures through programmable formation and assembly on an electromicrofluidic platform, adopting two reciprocal electric manipulations (electrowetting and dielectrophoresis) to manipulate varied objects (i) in multiple phases, including prepolymer liquid droplets and crosslinked microgels, (ii) on a wide range of scales from micrometer functional particles or cells to millimeter-assembled hydrogel architectures, and (iii) with diverse properties, such as conductive and dielectric droplets that are photocrosslinkable, chemically crosslinkable, or thermally crosslinkable. Prepolymer droplets, particles, and dissolved molecules are electrically addressable to adjust the properties of the microgel building blocks in liquid phase that subsequently undergo crosslinking and assembly in a flexible sequence to accomplish heterogeneous and seamless hydrogel architectures. We expect the electromicrofluidic platform to become a general technique to obtain 3D complex architectures.

  5. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.

    PubMed

    Duan, Shasha; Yang, Ke; Wang, Zhihui; Chen, Mengting; Zhang, Ling; Zhang, Hongbo; Li, Chunzhong

    2016-01-27

    The combination of carbon nanomaterial with three-dimensional (3D) porous polymer substrates has been demonstrated to be an effective approach to manufacture high-performance stretchable conductive materials (SCMs). However, it remains a challenge to fabricate 3D-structured SCMs with outstanding electrical conductivity capability under large strain in a facile way. In this work, the 3D printing technique was employed to prepare 3D porous poly(dimethylsiloxane) (O-PDMS) which was then integrated with carbon nanotubes and graphene conductive network and resulted in highly stretchable conductors (OPCG). Two types of OPCG were prepared, and it has been demonstrated that the OPCG with split-level structure exhibited both higher electrical conductivity and superior retention capability under deformations, which was illustrated by using a finite element method. The specially designed split-level OPCG is capable of sustaining both large strain and repeated deformations showing huge potential in the application of next-generation stretchable electronics.

  6. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    NASA Astrophysics Data System (ADS)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  7. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  8. Fabrication of a 3D electrically small antenna using holographic photolithography

    NASA Astrophysics Data System (ADS)

    Toriz-Garcia, J. J.; Cowling, J. J.; Williams, G. L.; Bai, Q.; Seed, N. L.; Tennant, A.; McWilliam, R.; Purvis, A.; Soulard, F. B.; Ivey, P. A.

    2013-05-01

    We describe the novel fabrication of a 3D electrical small antenna and its subsequent characterization. The patterning of meander lines conformed onto a hemispherical substrate is achieved by 3D holographic photolithography, which uses time-division multiplexing of a series of iteratively optimized computer-generated holograms. The meander lines have a line width of 100 µm and line separation of 400 µm, with a line pitch of 500 µm and a total meander length of 145 mm. The working frequency is found to be 2.06 GHz, with an efficiency of 46%. This work demonstrates a new method for the fabrication of 3D conformal antennas.

  9. Electrically Conductive Paints for Satellites

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Wolf, R. E.; Ray, C.

    1977-01-01

    A program was conducted to develop and test electrically conductive paint coatings for spacecraft. A wide variety of organic and inorganic coatings were formulated using conductive binders, conductive pigments, and similar approaches. Z-93, IITRI's standard specification inorganic thermal control coating, exhibits good electrical properties and is a very space-stable coating system. Several coatings based on a conductive pigment (antimony-doped tin oxide) in silicone and silicate binders offer considerable promise. Paint systems using commercially available conductive polymers also appear to be of interest, but will require substantial development. Evaluations were made based on electrical conductivity, paint physical properties, and the stability of spectral reflectance in space environment testing.

  10. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  11. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  12. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong

    2015-06-01

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by

  13. Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Oliver, Anthony Brandon

    2010-01-01

    This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.

  14. 3D conductivity image of a young continental rift: Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, W.; Caldwell, T. G.; Bibby, H. M.; Bennie, S. L.

    2009-04-01

    The Taupo Volcanic Zone (TVZ), in the North Island, New Zealand is a continental back arc rift associated with the subduction of the Pacific Plate under the Australian Plate and is characterised by the eruption of large volumes of rhyolitic magma during the last 1.6 Ma and an exceptionally high present-day heat flow. Data from 220 magnetotelluric soundings covering the central (rhyolitic) part of the TVZ were analysed using 3D inverse resistivity modelling and phase tensor visualisation techniques. Modelling results compare well with the thickness of conductive volcaniclastic material in filling the rift basin and calderas and expected from observed gravity anomalies. Phase tensor ellipticity correlates well with the resistivity gradient in the 3D inversion model showing how the phase data control the inversion and allowing identification of which structures are, or are not, resolved by the data. The inverse modelling results show a zone of high conductivity in the lower crust and upper-mantle along the central rift-axis that correlates with a zone of high phase observed at long periods. An unusual feature of the MT data at periods of 3-30s is the large phase tensor skew angle values that coincide with the margins of a localized gravity high in the centre of the survey area. This feature appears to be caused by the interaction of a thick near surface layer of high conductive volcaniclastic material with conductive structures at greater depth.

  15. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  16. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  17. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    NASA Astrophysics Data System (ADS)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  18. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  19. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.

  20. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  1. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  2. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  3. A simplified 3D model of whole heart electrical activity and 12-lead ECG generation.

    PubMed

    Sovilj, Siniša; Magjarević, Ratko; Lovell, Nigel H; Dokos, Socrates

    2013-01-01

    We present a computationally efficient three-dimensional bidomain model of torso-embedded whole heart electrical activity, with spontaneous initiation of activation in the sinoatrial node, incorporating a specialized conduction system with heterogeneous action potential morphologies throughout the heart. The simplified geometry incorporates the whole heart as a volume source, with heart cavities, lungs, and torso as passive volume conductors. We placed four surface electrodes at the limbs of the torso: V R , V L , V F and V GND and six electrodes on the chest to simulate the Einthoven, Goldberger-augmented and precordial leads of a standard 12-lead system. By placing additional seven electrodes at the appropriate torso positions, we were also able to calculate the vectorcardiogram of the Frank lead system. Themodel was able to simulate realistic electrocardiogram (ECG) morphologies for the 12 standard leads, orthogonal X, Y, and Z leads, as well as the vectorcardiogram under normal and pathological heart states. Thus, simplified and easy replicable 3D cardiac bidomain model offers a compromise between computational load and model complexity and can be used as an investigative tool to adjust cell, tissue, and whole heart properties, such as setting ischemic lesions or regions of myocardial infarction, to readily investigate their effects on whole ECG morphology.

  4. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  5. Toward A 3-D Picture of Hydraulic Conductivity With Multilevel Slug Tests

    NASA Astrophysics Data System (ADS)

    McElwee, C. D.; McElwee, C. D.; Ross, H. C.

    2001-12-01

    The GEMS (Geohydrologic Experiment and Monitoring Site) field area has been established (in the Kansas River valley near Lawrence, Kansas) for a variety of reasons relating to research and teaching in hydrogeology at the University of Kansas. Over 70 wells have been installed for various purposes. The site overlies an alluvial aquifer with a total thickness of about 70 feet. The water table is typically about 20 feet below the surface, giving a total saturated thickness of about 50 feet. The upper part of the aquifer is finer material consisting of silt and clay. Typically, the lower 35 feet of the aquifer is sand and gravel. A number of wells through out the site are fully screened through the sand and gravel aquifer. Some of these fully screened wells are larger diameters; however, most wells are constructed of 2 inch PVC casing. Slug tests are widely used in hydrogeology to measure hydraulic conductivity. Over the last several years we have been conducting research to improve the slug test method. We have previously reported the detailed structure of hydraulic conductivity that can be seen in a 5 inch well (McElwee and Zemansky, EOS, v. 80, no. 46, p. F397, 1999) at this site, using multilevel slug tests. The existing 2 inch, fully screened wells are spread out over the site and offer the opportunity for developing a 3-D picture of the hydraulic conductivity distribution. However, it is difficult to develop a system that allows multilevel slug tests to be done accurately and efficiently in a 2 inch well. This is especially true in regions of very high hydraulic conductivity, where the water velocity in the casing will be relatively high. The resistance caused by frictional forces in the equipment must be minimized and a model taking account of these forces must be used. We have developed a system (equipment, software, and technique) for performing multilevel slug tests in 2 inch wells. Some equipment configurations work better than others. The data that we have

  6. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  7. 3-D Time-lapse Electrical Resistivity Monitoring of Injected CO2 in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Doetsch, J.; Vest Christiansen, A.; Auken, E.; Fiandaca, G.; Graham Cahill, A.

    2013-12-01

    Contamination of potable groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment, we investigate if surface electrical resistivity tomography (ERT) can detect dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and 10 m and monitored its migration using 320 electrodes on a 126 m × 20 m surface grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis using geostatistical techniques for noise estimation and data interpolation to compensate for intermittent instrument failure. We estimate a time-dependent noise level for each ERT configuration, taking data variation and measurement frequency into account. A baseline inversion reveals the geology at the site consisting of aeolian sands near the surface and glacial sands below 5 m depth. Directly following the injection, we image the CO2 gas phase in the aquifer as an increase in resistivity and the higher water saturation in the unsaturated zone as a decrease in resistivity. At later times, the 2-D and 3-D time-lapse inversions clearly image the dissolved CO2 plume with decreased electrical resistivity values. We can image the geochemical changes induced by the dissolved CO2 until the end of the acquisition, 120 days after the injection start. During these 120 days, the CO2 migrates about 40 m in the expected groundwater flow direction (towards south-west). Water electrical conductivity (EC) sampling using 68 sensors in 31 wells allows for very good verification of the ERT results. Water EC and ERT results generally agree very well, with the water sampling showing some fine scale variations that cannot be resolved by the ERT. The ERT images have their strength in outlining the plume's shape in three dimensions and in being able to image the plume outside the well field. These results highlight the potential for imaging

  8. Electromagnetic Scattering From a Rectangular Cavity Recessed in a 3-D Conducting Surface

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Reddy, C. J.

    1995-01-01

    The problem of electromagnetic (EM) scattering from an aperture backed by a rectangular cavity recessed in a three-dimensional conducting body is analyzed using the coupled field integral equation approach. Using the free-space Green's function, EM fields scattered outside the cavity are determined in terms of (1) an equivalent electric surface current density flowing on the three-dimensional conducting surface of the object including the cavity aperture and (2) an equivalent magnetic surface current density flowing over the aperture only. The EM fields inside the cavity are determined using the waveguide modal expansion functions. Making the total tangential electric and magnetic fields across the aperture continuous and subjecting the total tangential electric field on the outer conducting three-dimensional surface of the object to zero, a set of coupled integral equations is obtained. The equivalent electric and magnetic surface currents are then obtained by solving the coupled integral equation using the Method of Moments. The numerical results on scattering from rectangular cavities embedded in various three-dimensional objects are compared with the results obtained by other numerical techniques.

  9. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  10. Electrical conductivity of chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Duba, AL; Didwall, E. M.; Burke, G. J.; Sonett, C. P.

    1987-01-01

    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 orders of magnitude greater than rock forming minerals such as olivine for temperatures up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at the grain boundaries. Much of this carbon is produced by pyrolyzation of hydrocarbons at temperatures in excess of 150 C. As the temperature increases, light hydrocarbons are driven off and a carbon-rich residue or char migrates to the grain boundaries enhancing electrical conductivity. Assuming that carbon was present at the grain boundaries in the material which comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance during a hypothetical T-Tauri phase of the sun. Input conductivity data for the meteorite parent body were the present carbonaceous chondrite values for temperatures up to 840 C and the electrical conductivity values for olivine above 840 C.

  11. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  12. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  13. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  14. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  15. Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

    NASA Astrophysics Data System (ADS)

    Sigala, R.; Smerieri, A.; Schüz, A.; Camorani, P.; Erokhin, V.

    2013-10-01

    Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

  16. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  17. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  18. Rehand: Realistic electric prosthetic hand created with a 3D printer.

    PubMed

    Yoshikawa, Masahiro; Sato, Ryo; Higashihara, Takanori; Ogasawara, Tsukasa; Kawashima, Noritaka

    2015-01-01

    Myoelectric prosthetic hands provide an appearance with five fingers and a grasping function to forearm amputees. However, they have problems in weight, appearance, and cost. This paper reports on the Rehand, a realistic electric prosthetic hand created with a 3D printer. It provides a realistic appearance that is same as the cosmetic prosthetic hand and a grasping function. A simple link mechanism with one linear actuator for grasping and 3D printed parts achieve low cost, light weight, and ease of maintenance. An operating system based on a distance sensor provides a natural operability equivalent to the myoelectric control system. A supporter socket allows them to wear the prosthetic hand easily. An evaluation using the Southampton Hand Assessment Procedure (SHAP) demonstrated that an amputee was able to operate various objects and do everyday activities with the Rehand.

  19. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  20. Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?

    NASA Astrophysics Data System (ADS)

    Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.

    2010-04-01

    Aims: We study the particle acceleration at a magnetic null point in the solar corona, considering self-consistent magnetic fields, plasma flows and the corresponding convective electric fields. Methods: We calculate the electromagnetic fields by 3-D magnetohydrodynamic (MHD) simulations and expose charged particles to these fields within a full-orbit relativistic test-particle approach. In the 3-D MHD simulation part, the initial magnetic field configuration is set to be a potential field obtained by extrapolation from an analytic quadrupolar photospheric magnetic field with a typically observed magnitude. The configuration is chosen so that the resulting coronal magnetic field contains a null. Driven by photospheric plasma motion, the MHD simulation reveals the coronal plasma motion and the self-consistent electric and magnetic fields. In a subsequent test particle experiment the particle energies and orbits (determined by the forces exerted by the convective electric field and the magnetic field around the null) are calculated in time. Results: Test particle calculations show that protons can be accelerated up to 30 keV near the null if the local plasma flow velocity is of the order of 1000 km s-1 (in solar active regions). The final parallel velocity is much higher than the perpendicular velocity so that accelerated particles escape from the null along the magnetic field lines. Stronger convection electric field during big flare explosions can accelerate protons up to 2 MeV and electrons to 3 keV. Higher initial velocities can help most protons to be strongly accelerated, but a few protons also run the risk to be decelerated. Conclusions: Through its convective electric field and due to magnetic nonuniform drifts and de-magnetization process, the 3-D null can act as an effective accelerator for protons but not for electrons. Protons are more easily de-magnetized and accelerated than electrons because of their larger Larmor radii. Notice that macroscopic MHD

  1. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  2. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  3. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  4. Full 3-D TLM simulations of the Earth-ionosphere cavity: Effect of conductivity on the Schumann resonances

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, S.; Salinas, A.; Fornieles, J.; Portí, J.; Lichtenegger, H. I. M.

    2016-06-01

    Schumann resonances can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. Results from a full 3-D model of the Earth-ionosphere electromagnetic cavity based on the Transmission-Line Modeling (TLM) method are presented. A Cartesian scheme with homogeneous cell size of 10 km is used to minimize numerical dispersion present in spherical schemes. Time and frequency domain results have been obtained to study the resonance phenomenon. The effect of conductivity on the Schumann resonances in the cavity is investigated by means of numerical simulations, studying the transition from resonant to nonresonant response and setting the conductivity limit for the resonances to develop inside the cavity. It is found that the transition from resonant to nonresonant behavior occurs for conductivity values above roughly 10-9 S/m. For large losses in the cavity, the resonances are damped, but, in addition, the peak frequencies change according to the local distance to the source and with the particular electromagnetic field component. These spatial variations present steep variations around each mode's nodal position, covering distances around 1/4 of the mode wavelength, the higher modes being more sensitive to this effect than the lower ones. The dependence of the measured frequency on the distance to the source and particular component of the electric field offers information on the source generating these resonances.

  5. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  6. Small oscillations of a 3D electric dipole in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    del Pino, L. A.; Atenas, B.; Curilef, S.

    2016-05-01

    The classical behavior of a 3D electric dipole in the presence of a uniform magnetic field is studied in the small oscillations approximation. Using the Lagrangian formulation, the equations of motion are obtained, as well as their solutions and constants of motion. Normal modes of oscillation and their corresponding normal coordinates are obtained. Furthermore, the existence of a type of bound states without turning points, so-called trapped states conjectured by Troncoso and Curilef [Eur. J. Phys 27 (2006) 1315-1322], is investigated.

  7. 3D Stationary electric current density in a spherical tumor treated with low direct current: an analytical solution.

    PubMed

    Jiménez, Rolando Placeres; Pupo, Ana Elisa Bergues; Cabrales, Jesús Manuel Bergues; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Nava, Juan José Godina; Aguilera, Andrés Ramírez; Mateus, Miguel Angel O'Farril; Jarque, Manuel Verdecia; Brooks, Soraida Candida Acosta

    2011-02-01

    Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.

  8. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  9. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  10. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    logging, porosity varies by a factor of 2.5 whilst hydraulic conductivity varies by 2 to 3 orders of magnitude. In addition, a 3D numerical reconstruction of the internal structure of the fault zone inferred from borehole imagery has been built to estimate the permeability tensor variations. First results indicate that hydraulic conductivity values calculated for this structure are 2 to 3 orders of magnitude above those measured in situ. Such high values are due to the imaging method that only takes in to account open fractures of simple geometry (sine waves). Even though improvements are needed to handle more complex geometry, outcomes are promising as the fault damaged zone clearly appears as the highest permeability zone, where stress analysis show that the actual stress state may favor tensile reopening of fractures. Using shale samples cored from the different internal structures of the fault zone, we aim now to characterize the advection and diffusion using laboratory petrophysical tests combined with radial and through-diffusion experiments.

  11. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.

    PubMed

    Jana, Debanjan; Roy, Sourav; Panja, Rajeswar; Dutta, Mrinmoy; Rahaman, Sheikh Ziaur; Mahapatra, Rajat; Maikap, Siddheswar

    2015-01-01

    The performances of conductive-bridging random access memory (CBRAM) have been reviewed for different switching materials such as chalcogenides, oxides, and bilayers in different structures. The structure consists of an inert electrode and one oxidized electrode of copper (Cu) or silver (Ag). The switching mechanism is the formation/dissolution of a metallic filament in the switching materials under external bias. However, the growth dynamics of the metallic filament in different switching materials are still debated. All CBRAM devices are switching under an operation current of 0.1 μA to 1 mA, and an operation voltage of ±2 V is also needed. The device can reach a low current of 5 pA; however, current compliance-dependent reliability is a challenging issue. Although a chalcogenide-based material has opportunity to have better endurance as compared to an oxide-based material, data retention and integration with the complementary metal-oxide-semiconductor (CMOS) process are also issues. Devices with bilayer switching materials show better resistive switching characteristics as compared to those with a single switching layer, especially a program/erase endurance of >10(5) cycles with a high speed of few nanoseconds. Multi-level cell operation is possible, but the stability of the high resistance state is also an important reliability concern. These devices show a good data retention of >10(5) s at >85°C. However, more study is needed to achieve a 10-year guarantee of data retention for non-volatile memory application. The crossbar memory is benefited for high density with low power operation. Some CBRAM devices as a chip have been reported for proto-typical production. This review shows that operation current should be optimized for few microamperes with a maintaining speed of few nanoseconds, which will have challenges and also opportunities for three-dimensional (3D) architecture. PMID:25977660

  12. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  13. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  14. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    NASA Astrophysics Data System (ADS)

    Li, Yu-yun; Xiong, Bo; Li, Zheng

    2016-09-01

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p-n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc.

  15. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  16. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  17. Internal Structure of Periglacial Landforms: Assessment using 3D Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Emmert, Adrian; Kneisel, Christof

    2015-04-01

    The occurrence of internal heterogeneities within periglacial landforms (e.g. frost table topography or varying ice content) is in most cases not inferable from the surface. Hence, to develop an enhanced understanding of the interaction between surface and subsurface processes, it is necessary to analyse the internal structure of different periglacial landforms and landform elements. The assessment of the internal structure is provided by the application of three-dimensional Electrical Resistivity Imaging (ERI). ERI is the technique of merging datum points from several parallel and perpendicular performed two-dimensional ERT (Electrical Resistivity Tomography) measurements and inverting the data set with a 3D inversion algorithm (sometimes also referred to as quasi-3D ERT). The application of this method has proven to be a valuable tool for mapping the spatial extent of isolated permafrost bodies and associated subsurface conditions. In this contribution, we present results from four ERI measurements, carried out in summer 2014 at different investigation sites in the Swiss Alps: Three measurements were performed on pebbly rockglaciers of different size and topographical position and one measurement was performed on a solifluction slope. Each of the 3D survey grids consists of 17 to 32 single 2D ERT surveys (Dipol-Dipol or Wenner-Schlumberger array) and covers an area of between 6000 m² and 7000 m², depending on the specific survey grid set-up. The inversions of the data sets were performed using the two different inversion algorithms of the software products "RES3DINV" and "BERT" (Boundless Electrical Resistivity Tomography) for a comparative analysis and to further support the geomorphological interpretation of the geophysical models. Each of the resulting resistivity models shows strong small-scale spatial heterogeneities between the investigated landforms but also within landform elements. For the investigated rockglacier sites, these structures include

  18. Recent development of 3D imaging laser sensor in Mitsubishi Electric Corporation

    NASA Astrophysics Data System (ADS)

    Imaki, M.; Kotake, N.; Tsuji, H.; Hirai, A.; Kameyama, S.

    2013-09-01

    We have been developing 3-D imaging laser sensors for several years, because they can acquire the additional information of the scene, i.e. the range data. It enhances the potential to detect unwanted people and objects, the sensors can be utilized for applications such as safety control and security surveillance, and so forth. In this paper, we focus on two types of our sensors, which are high-frame-rate type and compact-type. To realize the high-frame-rate type system, we have developed two key devices: the linear array receiver which has 256 single InAlAs-APD detectors and the read-out IC (ROIC) array which is fabricated in SiGe-BiCMOS process, and they are connected electrically to each other. Each ROIC measures not only the intensity, but also the distance to the scene by high-speed analog signal processing. In addition, by scanning the mirror mechanically in perpendicular direction to the linear image receiver, we have realized the high speed operation, in which the frame rate is over 30 Hz and the number of pixels is 256 x 256. In the compact-type 3-D imaging laser sensor development, we have succeeded in downsizing the transmitter by scanning only the laser beam with a two-dimensional MEMS scanner. To obtain wide fieldof- view image, as well as the angle of the MEMS scanner, the receiving optical system and the large area receiver are needed. We have developed the large detecting area receiver that consists of 32 rectangular detectors, where the output signals of each detector are summed up. In this phase, our original circuit evaluates each signal level, removes the low-level signals, and sums them, in order to improve the signalto- noise ratio. In the following paper, we describe the system configurations and the recent experimental results of the two types of our 3-D imaging laser sensors.

  19. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  20. Electric-dipole allowed and intercombination transitions among the 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV

    SciTech Connect

    Deb, Narayan C.; Hibbert, Alan

    2010-07-15

    Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d{sup 5}, 3d{sup 4}4s and 3d{sup 4}4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

  1. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  2. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  3. 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity.

    PubMed

    Lee, Sang-Heon; Jung, Jung-Hwan; Oh, Il-Kwon

    2014-10-15

    A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications.

  4. Observations of 3-D Electric Fields and Waves Associated With Reconnection at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.

  5. Finite Element Model of Cardiac Electrical Conduction.

    NASA Astrophysics Data System (ADS)

    Yin, John Zhihao

    1994-01-01

    In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very

  6. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    SciTech Connect

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg; Fercho, Steven

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  7. PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry.

    PubMed

    Chamakuri, Nagaiah; Kunisch, Karl; Plank, Gernot

    2016-04-01

    A computational study of an optimal control approach for cardiac defibrillation in a 3D geometry is presented. The cardiac bioelectric activity at the tissue and bath volumes is modeled by the bidomain model equations. The model includes intramural fiber rotation, axially symmetric around the fiber direction, and anisotropic conductivity coefficients, which are extracted from a histological image. The dynamics of the ionic currents are based on the regularized Mitchell-Schaeffer model. The controls enter in the form of electrodes, which are placed at the boundary of the bath volume with the goal of dampening undesired arrhythmias. The numerical optimization is based on Newton techniques. We demonstrated the parallel architecture environment for the computation of potentials on multidomains and for the higher order optimization techniques.

  8. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  9. Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses.

    PubMed

    Wright, Martin; Dillon, Peter; Pavelic, Paul; Peter, Paul; Nefiodovas, Andrew

    2002-01-01

    An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory. PMID:12236264

  10. Exact variational principle for 3-D unsteady heat conduction with second sound

    NASA Astrophysics Data System (ADS)

    Liu, Gaolian

    2006-12-01

    The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary-and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.

  11. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  12. Electrically-Conductive Polyaramid Cable And Fabric

    NASA Technical Reports Server (NTRS)

    Orban, Ralph F.

    1988-01-01

    Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.

  13. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  14. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    NASA Technical Reports Server (NTRS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  15. Effective electrical conductivity of a nonuniform plasma

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A simple nonuniformity model for calculating effective electrical conductivity and Hall parameter is proposed. The model shows that the effective conductivity can be significantly reduced by nonuniformities in the Hall parameter, even if the local conductivity is uniform.

  16. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. PMID:26479262

  17. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  18. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  19. Electrically conductive fibers thermally isolate temperature sensor

    NASA Technical Reports Server (NTRS)

    De Waard, R.; Norton, B.

    1966-01-01

    Mounting assembly provides thermal isolation and an electrical path for an unbacked thermal sensor. The sensor is suspended in the center of a plastic mounting ring from four plastic fibers, two of which are coated with an electrically conductive material and connected to electrically conductive coatings on the ring.

  20. Preparation of Electrically Conductive Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  1. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  2. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2009-06-01

    Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

  3. Microfabrication of 3D neural probes with combined electrical and chemical interfaces

    NASA Astrophysics Data System (ADS)

    John, Jessin; Li, Yuefa; Zhang, Jinsheng; Loeb, Jeffrey A.; Xu, Yong

    2011-10-01

    This paper reports a novel neural probe technology for the manufacture of 3D arrays of electrodes with integrated microchannels. This new technology is based on a silicon island structure and a simple folding procedure. This method simplifies the assembly or packaging process of 3D neural probes, leading to higher yield and lower cost. Prototypes with 3D arrays of electrodes have been successfully developed. Microchannels have been successfully integrated into the 3D neural probes via isotropic XeF2 gas phase etching and a parylene resealing process. The probes have been characterized by scanning electron microscopy imaging, optical imaging, impedance analysis, and atomic force microscopy characterization of the electrode surface. Preliminary animal tests have been carried out to demonstrate the recording functionality of the probes. Flow characteristics of the microchannels were also preliminarily measured.

  4. Electromagnetic mini arrays (EMMA project). 3D modeling/inversion for mantle conductivity in the Archaean of the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.

    2009-04-01

    Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates

  5. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  6. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  7. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  8. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  9. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam

    2014-09-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath

  10. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    PubMed

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  11. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    PubMed

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  12. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  13. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  14. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  15. The electrical conductivity and surface conduction of consolidated rock cores.

    PubMed

    Alkafeef, Saad F; Alajmi, Abdullah F

    2007-05-15

    A fully computerized high-pressure and high-temperature core holder device is simultaneously used to determine the electrical conductivity, zeta potential, and surface conductivity of consolidated rock cores in aqueous and nonaqueous systems. The total electrical conductivity of rock cores was determined by coupling streaming current and potential measurements. This shows that neglecting the surface conductivity Ksigma is crucial to converting the streaming potential into zeta potentials. It is observed that plots of the core total conductivity as a function of the electrolyte conductivity KL exhibit two behaviors. At low ionic strength, the core conductivity clearly depends on the contribution of surface conductivity behind the slip plane, whereas at higher ionic strength, the magnitude of the surface conductivity becomes negligible. The electrical conductivity of rock cores was found to be in good agreement with the O'Brien theory and the Briggs method. The contribution of the stagnant layer to the surface conductivity in nonaqueous systems has been shown to be significant. This shows that the stagnant layer displays significantly different behavior in different nonaqueous systems, depending on the core porosity and the double-layer overlap. The results indicate that the application of electrokinetics in petroleum reservoirs can provide important insights into reservoir fluid flow characterization.

  16. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  17. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.

  18. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  19. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Linde, Niklas; Pessognelli, Mirco; Green, Alan G.; Günther, Thomas

    2012-03-01

    Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240 × 40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with the underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (> 300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~ 200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.

  20. Measuring the electrical conductivity of the earth

    NASA Astrophysics Data System (ADS)

    Avants, Brian; Soodak, Dustin; Ruppeiner, George

    1999-07-01

    We describe an undergraduate experiment for measuring the electrical conductivity of the earth with a four-electrode Wenner array, at scales approaching tens of meters. When analyzed in the context of a simple two-layer model of the earth, such measurements yield information about what is underground. In our case, this is the depth of the water table and the electrical conductivity of both the upper dry layer and the lower water-saturated layer. We also performed conductivity measurements in a water tank, to test the theory in a known situation. The experiments are discussed in the context of several boundary value problems in electricity and magnetism.

  1. Electrical and thermal conductivities in dense plasmas

    SciTech Connect

    Faussurier, G. Blancard, C.; Combis, P.; Videau, L.

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  2. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  3. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    SciTech Connect

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  4. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  5. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  6. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries. PMID:27307440

  7. Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework.

    PubMed

    Wang, Yaxing; Tao, Zetian; Yin, Xuemiao; Shu, Jie; Chen, Lanhua; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-10-19

    The preparation of proton-conducting materials that are functional and stable at intermediate temperatures (393-573 K) is a focal point of fuel cell development. The purely inorganic material, HNd(IO3)4, which possesses a dense 3D framework structure, can reach a maximum of 4.6 × 10(-4) S·cm(-1) at 353 K and 95% relative humidity and exhibit a high conductivity of 8.0 × 10(-5) S·cm(-1) from 373 to 553 K under the flow of wet N2. HNd(IO3)4 exhibits a variety of improvements including high thermal stability, low solubility in water, and resistance to reducing atmosphere. The proton conductivity in such a wide temperature range originates from the intrinsic liberated protons in the structure and the resulting 1D hydrogen-bonding network confirmed by bond valence sum calculation and solid-state NMR analysis. Moreover, two different activation energies are observed in different temperature regions (0.23 eV below 373 K and 0.026 eV from 373 to 553 K), indicating that two types of proton motion are responsible for proton diffusion, as further domenstrated by temperature-dependent open-circuit voltage hysteresis in a tested fuel cell assembly as well as variable-temperature and double quantum filtered solid-state NMR measurements. PMID:26444097

  8. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  9. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10‑4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries.

  10. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  11. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Vereecken, Harry

    2016-05-01

    In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wüstebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models.

  12. [Myocardial infarction after conduction electrical weapon shock].

    PubMed

    Ben Ahmed, H; Bouzouita, K; Selmi, K; Chelli, M; Mokaddem, A; Ben Ameur, Y; Boujnah, M R

    2013-04-01

    Controversy persists over the safety of conducted electrical weapons, which are increasingly used by law enforcement agencies around the world. We report a case of 33-year-old man who had an acute inferior myocardial infarction after he was shot in the chest with an electrical weapon.

  13. Electrically Conductive White Thermal-Control Paint

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng-Hsien; Forsberg, Gustaf A.; O'Donnell, Timothy P.

    1995-01-01

    Report describes development of white thermal-control paint intended for use on spacecraft. Paint required to exhibit combination of high emittance (equal to or greater than 0.90), low absorptance (equal to or less than 0.20), and electrical conductivity sufficient to prevent charging with static electricity to potentials beyond range of plus or minus 10 V.

  14. From 1D-Multi-Layer-Conductivity-Inversion to Pseudo-3D-Imaging of Quantified Electromagnetic Induction Data Acquired at a Heterogeneous Test Site

    NASA Astrophysics Data System (ADS)

    von Hebel, Christian; Rudolph, Sebastian; Huisman, Johan A.; van der Kruk, Jan; Vereecken, Harry

    2013-04-01

    three different coil offsets in HCP and VCP measurement modes. This resulted in six high spatial resolution data sets of approximately 60000 measurements with different sensing depths. A 5 m block-kriging was applied to all six data sets to re-grid the sampling points on the same regular grid. For each grid node, the six measured apparent conductivities were used in a three-layer inversion. The three-layer inversion results of electrical conductivity thus obtained were used to derive a three-dimensional (3D) model of subsurface heterogeneity, which clearly indicated lateral and vertical conductivity changes of the subsurface that are related to changes in soil texture and soil water content.

  15. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  16. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-01

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05912g

  17. Electrical conductivity in sprite streamer channels

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.

    2010-08-01

    We study the electrical conductivity of a sprite streamer channel at three different altitudes (63 km, 70 km and 80 km). We discuss the hypothesis that the electrical conductivity stays constant along the full length of a streamer channel, contrary to expectations based on scaling laws. We then apply this hypothesis and extrapolations from a numerical electrodynamical simulation to study the air plasma kinetics after the passage of a streamer. We test two possible scenarios for the physical origin of trailing sprite emissions: a single pulse and a single pulse with a delayed re-enhancement of the electric field up to the breakdown value. Our simulations show that VLF observations agree with persistent electric fields in the sprite that last several milliseconds and that associative detachment of O- ions may significantly affect the atmospheric conductivity in the presence of sprites.

  18. Electrical conductivity of concrete containing silica fume

    SciTech Connect

    Abo El-Enein, S.A.; Kotkata, M.F.; Hanna, G.B.; Saad, M.; Abd El Razek, M.M.

    1995-12-01

    The influence of silica fume on concrete properties represents an important technical research. In general, silica fume tends to improve both mechanical characteristics and durability of concrete. Thus the electrical properties of concrete containing silica fume can be studied to clarify its physical performance during hydration. The electrical conductivity of neat cement, mortar and concrete pastes was measured during setting and hardening. The ordinary Portland cement was partially replaced by different amounts of silica fume by weight. The changes in the electrical conductivity were reported during setting and hardening after gauging with water. The results of this study showed that the electrical conductivity can be used as an indication for the setting characteristics as well as the structural changes of the hardened pastes made with and without silica fume.

  19. Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges

    PubMed Central

    Li, Yuanqing; Samad, Yarjan Abdul; Polychronopoulou, Kyriaki; Alhassan, Saeed M.; Liao, Kin

    2014-01-01

    Conductive polymer composites require a threedimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuumassisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GSepoxy composites prepared display consistent isotropic electrical conductivity around 1Sm, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GSepoxy has a 12ordersofmagnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding. PMID:24722145

  20. Electrically conductive and thermally conductive materials for electronic packaging

    NASA Astrophysics Data System (ADS)

    Liu, Zongrong

    The aim of this dissertation is to develop electrically or thermally conductive materials that are needed for electronic packaging and microelectronic cooling. These materials are in the form of coatings and are made from pastes. The research work encompasses paste formulation, studying the process of converting a paste to a conductive material, relating the processing conditions to the structure and performance, and evaluating performance attributes that are relevant to the application of these conductive materials. The research has resulted in new information that is valuable to the microelectronic industry. Work on electrically conductive materials emphasizes the development of electrical interconnection materials in the form of air-firable glass-free silver-based electrically conductive thick films, which use the Ti-Al alloy as the binder and are in contrast to conventional films that use glass as the binder. The air-firability, as enabled by minor additions of tin and zinc to the paste, is in contrast to previous glass-free films that are not firable. The recommended firing condition is 930°C in air. The organic vehicle in the paste comprises ethyl cellulose, which undergoes thermal decomposition during burnout of the paste. The ethyl cellulose is dissolved in ether, which facilitates the burnout. Excessive ethyl cellulose hinders the burnout. A higher heating rate results in more residue after burnout. The presence of silver particles facilitates drying and burnout. Firing in air gives lower resistivity than firing in oxygen. Firing in argon gives poor films. Compared to conventional films that use glass as the binder, these films, when appropriately fired, exhibit lower electrical resistivity (2.5 x 10-6 O.cm) and higher scratch resistance. Work on thermally conductive materials addresses thermal interface materials, which are materials placed at the interface between a heat sink and a heat source for the purpose of improving the thermal contact. Heat

  1. Computation of electric and magnetic stimulation in human head using the 3-D impedance method.

    PubMed

    Nadeem, Mohammad; Thorlin, Thorleif; Gandhi, Om P; Persson, Mikael

    2003-07-01

    A comparative, computational study of the modeling of transcranial magnetic stimulation (TMS) and electroconvulsive therapy (ECT) is presented using a human head model. The magnetic fields from a typical TMS coil of figure-eight type is modeled using the Biot-Savart law. The TMS coil is placed in a position used clinically for treatment of depression. Induced current densities and electric field distributions are calculated in the model using the impedance method. The calculations are made using driving currents and wave forms typical in the clinical setting. The obtained results are compared and contrasted with the corresponding ECT results. In the ECT case, a uniform current density is injected on one side of the head and extracted from the equal area on the opposite side of the head. The area of the injected currents corresponds to the electrode placement used in the clinic. The currents and electric fields, thus, produced within the model are computed using the same three-dimensional impedance method as used for the TMS case. The ECT calculations are made using currents and wave forms typical in the clinic. The electrical tissue properties are obtained from a 4-Cole-Cole model. The numerical results obtained are shown on a two-dimenaional cross section of the model. In this study, we find that the current densities and electric fields in the ECT case are stronger and deeper penetrating than the corresponding TMS quantities but both methods show biologically interesting current levels deep inside the brain. PMID:12848358

  2. Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields.

    PubMed

    Raveendran, Joshua; Wood, Jeffery A; Docoslis, Aristides

    2016-09-20

    The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment.

  3. Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields.

    PubMed

    Raveendran, Joshua; Wood, Jeffery A; Docoslis, Aristides

    2016-09-20

    The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment. PMID:27541583

  4. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  5. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2007-05-01

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured).

  6. Electrical Stimulation to Restore Vestibular Function – Development of a 3-D Vestibular Prosthesis

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.

    2009-01-01

    Patients who fail to compensate for bilateral loss of vestibular sensory function are disabled by disequilibrium and illusory movement of the visual field during head movement. An implantable prosthesis that restores vestibular sensation could significantly improve quality of life for these patients. To be effective, such a device should encode head rotation in all 3 dimensions. We describe the 3-dimensional angular vestibulo-ocular reflex of normal chinchillas and vestibular-deficient chinchillas undergoing functional electrical stimulation of the vestibular nerve. We also describe the design and fabrication of a head-mounted, 8 electrode vestibular prosthesis that encodes head movement in 3 dimensions. PMID:17281986

  7. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  8. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  9. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  10. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  11. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  12. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  13. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  14. Thermal and electrical contact conductance studies

    NASA Technical Reports Server (NTRS)

    Vansciver, S. W.; Nilles, M.

    1985-01-01

    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.

  15. Deep electrical resistivity structure of the Northwestern U. S. derived from 3-D inversion of USArray Magnetotelluric data (Invited)

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.

    2013-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in

  16. Electric conductivity of plasma in solar wind

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    One of the most important parameters in MHD description of the solar wind is the electric conductivity of plasma. There exist now two quite different approaches to the evaluation of this parameter. In the first one a value of conductivity taken from the most elaborated current theory of plasma should be used in calculations. The second one deals with the empirical, phenomenological value of conductivity. E.g.: configuration of interplanetary magnetic field, stretched by the expanding corona, depends on the magnitude of electrical conductivity of plasma in the solar wind. Knowing the main empirical features of the field configuration, one may estimate the apparent phenomenological value of resistance. The estimations show that the electrical conductivity should be approximately 10(exp 13) times smaller than that calculated by Spitzer. It must be noted that the empirical value should be treated with caution. Due to the method of its obtaining it may be used only for 'large-scale' description of slow processes like coronal expansion. It cannot be valid for 'quick' processes, changing the state of plasma, like collisions with obstacles, e.g., planets and vehicles. The second approach is well known in large-scale planetary hydrodynamics, stemming from the ideas of phenomenological thermodynamics. It could formulate real problems which should be solved by modern plasma physics, oriented to be adequate for complicated processes in space.

  17. Pulsed electrical discharge in conductive solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Vetchinin, S. P.; Pecherkin, V. Ya; Son, E. E.

    2016-09-01

    Electrical discharge in a conductive solution of isopropyl alcohol in tap water (330 μ S cm‑1) has been studied experimentally applying high voltage millisecond pulses (rise time  ∼0.4 μ \\text{s} , amplitude up to 15 kV, positive polarity) to a pin anode electrode. Dynamic current–voltage characteristics synchronized with high-speed images of the discharge were studied. The discharge was found to develop from high electric field region in the anode vicinity where initial conductive current with density  ∼100 A cm‑2 results in fast heating and massive nucleation of vapor bubbles. Discharges in nucleated bubbles then produce a highly conductive plasma region and facilitate overheating instability development with subsequent formation of a thermally ionized plasma channel. The measured plasma channel propagation speed was 3–15 m s‑1. A proposed thermal model of plasma channel development explains the low observed plasma channel propagation speed.

  18. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  19. Pulsed electrical discharge in conductive solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Vetchinin, S. P.; Pecherkin, V. Ya; Son, E. E.

    2016-09-01

    Electrical discharge in a conductive solution of isopropyl alcohol in tap water (330 μ S cm-1) has been studied experimentally applying high voltage millisecond pulses (rise time  ˜0.4 μ \\text{s} , amplitude up to 15 kV, positive polarity) to a pin anode electrode. Dynamic current-voltage characteristics synchronized with high-speed images of the discharge were studied. The discharge was found to develop from high electric field region in the anode vicinity where initial conductive current with density  ˜100 A cm-2 results in fast heating and massive nucleation of vapor bubbles. Discharges in nucleated bubbles then produce a highly conductive plasma region and facilitate overheating instability development with subsequent formation of a thermally ionized plasma channel. The measured plasma channel propagation speed was 3-15 m s-1. A proposed thermal model of plasma channel development explains the low observed plasma channel propagation speed.

  20. Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10 metallic glass by using laminated 3D micro-electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Wu, Xiao-yu; Ma, Jiang; Liang, Xiong; Lei, Jian-guo; Wu, Bo; Ruan, Shuang-chen; Wang, Zhen-long

    2016-03-01

    For obtaining 3D micro-molds with better surface quality (slight ridges) and mechanical properties, in this paper 3D micro-electrodes were fabricated and applied to micro-electrical discharge machining (micro-EDM) to process Pd40Cu30P20Ni10 metallic glass. First, 100 μm-thick Cu foil was cut to obtain multilayer 2D micro-structures and these were connected to fit 3D micro-electrodes (with feature sizes of less than 1 mm). Second, under the voltage of 80 V, pulse frequency of 0.2MHZ, pulse width of 800 ns and pulse interval of 4200 ns, the 3D micro-electrodes were applied to micro-EDM for processing Pd40Cu30P20Ni10 metallic glass. The 3D micro-molds with feature within 1 mm were obtained. Third, scanning electron microscope, energy dispersive spectroscopy and x-ray diffraction analysis were carried out on the processed results. The analysis results indicate that with an increase in the depth of micro-EDM, carbon on the processed surface gradually increased from 0.5% to 5.8%, and the processed surface contained new phases (Ni12P5 and Cu3P).

  1. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  2. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    SciTech Connect

    Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-01-12

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (εDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  3. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    PubMed

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  4. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  5. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    ERIC Educational Resources Information Center

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  6. Dislocation electrical conductivity of synthetic diamond films

    SciTech Connect

    Samsonenko, S. N. Samsonenko, N. D.

    2009-05-15

    A relationship between the electric resistance of single-crystal homoepitaxial and polycrystalline diamond films and their internal structure has been investigated. It is established that the electrical conductivity of undoped homoepitaxial and polycrystalline diamond films is directly related to the dislocation density in them. A relation linking the resistivity {rho} ({approx}10{sup 13}-10{sup 15} {omega} cm) with the dislocation density {gamma} ({approx}10{sup 14}-4 x 10{sup 16} m{sup -2}) is obtained. The character of this correlation is similar for both groups of homoepitaxial and polycrystalline diamond films. Thin ({approx}1-8 {mu}m) homoepitaxial and polycrystalline diamond films with small-angle dislocation boundaries between mosaic blocks exhibit dislocation conductivity. The activation energy of dislocation acceptor centers was calculated from the temperature dependence of the conductivity and was found to be {approx}0.3 eV. The conduction of thick diamond films (h > 10 {mu}m) with the resistivity {rho} {approx} 10{sup 8} {omega} cm is determined by the conduction of intercrystallite boundaries, which have a nondiamond hydrogenated structure. The electronic properties of the diamond films are compared with those of natural semiconductor diamonds of types IIb and Ic, in which dislocation acceptor centers have activation energies in the range 0.2-0.35 eV and are responsible for hole conduction.

  7. Electrical conductivity of acidic sulfate solution

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook

    1987-03-01

    The electrical conductivities of the aqueous solution system of H2SO4-MSO4 (involving ZnSO4, MgSO4, Na2SO4, and (NH4)2SO4), reported by Tozawa et al., were examined in terms of a (H2O) and H+ ion concentration. The equations to compute the concentrations of various species in aqueous sulfuric acid solutions containing metal sulfates were derived for a typical example of the H2SO4-ZnSO4-MgSO4-(Na2SO4)-H2O system. It was found that the H+ ion concentrations in concentrated sulfuric acid solutions corresponding to practical zinc electrowinning solutions are very high and remain almost constant with or without the addition of metal sulfates. The addition of metal sulfates to aqueous sulfuric acid solution causes a decrease in electrical conductivity, and this phenomenon is attributed to a decrease in water activity, which reflects a decrease in the amount of free water. The relationship between conductivity and water activity at a constant H+ ion concentration is independent of the kind of sulfates added. On the other hand, any increase in H+ ion concentration results in an increase in electrical conductivity. A novel method for the prediction of electrical conductivity of acidic sulfate solution is proposed that uses the calculated data of water activity and the calculated H+ ion concentration. Also, the authors examined an extension of the Robinson-Bower equation to calculate water activity in quarternary solutions based on molarity instead of molality, and found that such calculated values are in satisfactory agreement with those determined experimentally by a transpiration method.

  8. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  9. Electrically Conductive Porous Metal-Organic Frameworks.

    PubMed

    Sun, Lei; Campbell, Michael G; Dincă, Mircea

    2016-03-01

    Owing to their outstanding structural, chemical, and functional diversity, metal-organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy-related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.

  10. Electrically conductive palladium containing polyimide films

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.; Carver, V. C.; Furtsch, T. A. (Inventor)

    1982-01-01

    Lightweight, high temperature resistant, electrically conductive, palladium containing polyimide films and methods for their preparation are described. A palladium (II) ion-containing polyamic acid solution is prepared by reacting an aromatic dianhydride with an equimolar quantity of a palladium II ion-containing salt or complex and the reactant product is cast as a thin film onto a surface and cured at approximately 300 C to produce a flexible electrically conductive cyclic palladium containing polyimide. The source of palladium ions is selected from the group of palladium II compounds consisting of LiPdCl4, PdS(CH3)2Cl2Na2PdCl4, and PdCl2. The films have application to aerodynamic and space structures and in particular to the relieving of space charging effects.

  11. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  12. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor); Taylor, Larry T. (Inventor); Boston, Harold G. (Inventor)

    1996-01-01

    Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.

  13. The integration of 3D electrical resistivity tomography and ET flux measurements to characterize water mass balance in the soil-plant-atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2014-05-01

    The system of soil, vegetation, and the adjacent atmosphere is characterized by complex patterns, structures, and processes that act on a wide range of time and space scales. While the exchange of energy and water is continuous between compartments, the pertinent fluxes are strongly heterogeneous and variable in space and time. Therefore, quantitatively predicting the systems' behaviour constitutes a major challenge. Traditionally, soil moisture beneath irrigated crops has been determined using point measurement methods such as neutron probes or capacitance systems. These approaches cannot measure soil moisture at depths beyond the root-zone of plants and have limited lateral coverage. Literature results show that electrical resistivity tomography (ERT) can be used to reliable map the spatial heterogeneity in soil moisture. Here we present the application of the time-lapse non-invasive 3D micro - electrical tomography (ERT) to monitor soil-plant interactions in the root zone of an orange tree located in the Mediterranean semi-arid Sicilian (South Italy) context. The subsoil dynamics, particularly influenced by irrigation and root uptake, has been characterized a 3D ERT apparatus consisting of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, repeated ERT soil moisture measurements were collected, as well as laboratory characterization of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Plant transpiration was continuously monitored during the ERT experiment by the sap flow heat pulse (HP) method for a quantitative analysis of the mass balance in the soil-plant-atmosphere system under observation. In addition, evapo-transpiration has been continuously monitored at the same site using an eddy-correlation tower. The integration of measurements regarding soil,plant and atmosphere allows a better understanding of

  14. Modeling electric fields inside the LUX detector in 3D using 83mKr calibration data

    NASA Astrophysics Data System (ADS)

    Tvrznikova, Lucie; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) experiment is a 350 kg two-phase liquid/gas xenon time projection chamber designed for the direct detection of weakly interacting massive particles, a leading dark matter candidate. LUX operates on the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. Weekly calibrations using a homogeneous injection of a monoenergetic 83mKr source enable us to monitor xenon within the active region. For this project, a 3D model of the electric fields inside the LUX detector was created using COMSOL Multiphysics software. A simulation of electrons drifting in the detector then produces a set of computational predictions. These are then reconciled with the 83mKr data to confirm the accuracy of the field model. The result of this work is a more accurate understanding of the electric field inside the active region. This model, in conjuction with these methods, may now be used to study other phenomena such as possible surface charge buildup in detector materials.

  15. External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields.

    PubMed

    Makarov, Vladimir I; Khmelinskii, Igor

    2016-01-01

    We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.

  16. The electrical conductivity of sodium polysulfide melts

    SciTech Connect

    Meihui Wang

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  17. In vivo electrical conductivity of hepatic tumours.

    PubMed

    Haemmerich, Dieter; Staelin, S T; Tsai, J Z; Tungjitkusolmun, S; Mahvi, D M; Webster, J G

    2003-05-01

    Knowledge of electrical tissue conductivity is necessary to determine deposition of electromagnetic energy and can further be used to diagnostically differentiate between normal and neoplastic tissue. We measured 17 rats with a total of 24 tumours of the K12/TRb rat colon cancer cell line. In each animal we measured in vivo hepatic tumour and normal tissue conductivity at seven frequencies from 10 Hz to 1 MHz, at different tumour stages between 6 and 12 weeks after induction. Conductivity of normal liver tissue was 1.26 +/- 0.15 mS cm(-1) at 10 Hz, and 4.61 +/- 0.42 mS cm(-1) at 1 MHz. Conductivity of tumour was 2.69 +/- 0.91 mS cm(-1) at 10 Hz, and 5.23 +/- 0.82 mS cm(-1) at 1 MHz. Conductivity was significantly different between normal and tumour tissue (p < 0.05). We determined the percentage of necrosis and fibrosis at the measurement site. We fitted the conductivity data to the Cole-Cole model. For the tumour data we determined Spearman's correlation coefficients between the Cole-Cole parameters and age, necrosis, fibrosis and tumour volume and found significant correlation between necrosis and the Cole-Cole parameters (p < 0.05). We conclude that necrosis within the tumour and the associated membrane breakdown is likely responsible for the observed change in conductivity.

  18. Electrical Conduction in Metals and Semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Koughia, Cyril; Ruda, Harry; Johanson, Robert

    Electrical transport through materials is a large and complex field, and in this chapter we cover only a few aspects that are relevant to practical applications. We start with a review of the semi-classical approach that leads to the concepts of drift velocity, mobility and conductivity, from which Matthiessen's Rule is derived. A more general approach based on the Boltzmann transport equation is also discussed. We review the conductivity of metals and include a useful collection of experimental data. The conductivity of nonuniform materials such as alloys, polycrystalline materials, composites and thin films is discussed in the context of Nordheim's rule for alloys, effective medium theories for inhomogeneous materials, and theories of scattering for thin films. We also discuss some interesting aspects of conduction in the presence of a magnetic field (the Hall effect). We present a simplified analysis of charge transport in semiconductors in a high electric field, including a modern avalanche theory (the theory of "lucky" drift). The properties of low-dimensional systems are briefly reviewed, including the quantum Hall effect.

  19. The Anatomy of a Fumarole inferred from a 3-D High-Resolution Electrical Resistivity Image of Solfatara Hydrothermal System (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Gresse, M.; Vandemeulebrouck, J.; Chiodini, G.; Byrdina, S.; Lebourg, T.; Johnson, T. C.

    2015-12-01

    Solfatara, the most active crater in the Phlegrean Fields volcanic complex, shows since ten years a remarkable renewal of activity characterized by an increase of CO2 total degassing from 1500 up to 3000 tons/day, associated with a large ground uplift (Chiodini et al., 2015). In order to precisely image the structure of the shallow hydrothermal system, we performed an extended electrical DC resistivity survey at Solfatara, with about 40 2-D profiles of length up to 1 km, as well as soil temperature and CO2 flux measurements over the area. We then realized a 3-D inversion from the ~40 000 resistivity data points, using E4D code (Johnson et al., 2010). At large scale, results clearly delineate two contrasted structures: - A very conductive body (resistivity < 5 Ohm.m) located beneath the Fangaia mud pools, and likely associated to a mineralized liquid rich plume. - An elongated more resistive body (20-30 Ohm.m) connected to the main fumarolic area and interpreted as the gas reservoir feeding the fumaroles. At smaller scale, our resistivity model originally highlights the 3-D anatomy of a fumarole and the interactions between condensate layers and gas chimneys. This high-resolution image of the shallow hydrothermal structure is a new step for the modeling of this system.

  20. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP.

  1. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. PMID:26572457

  2. Inductive Measurement of Plasma Jet Electrical Conductivity

    NASA Technical Reports Server (NTRS)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  3. Kinetic theory of electrical conductivity in plasmas

    SciTech Connect

    Boercker, D.B.

    1981-04-01

    A recently developed quantum kinetic theory for time-correlation functions is applied to the calculation of the electrical conductivity in dense, strongly coupled plasmas. In the weak-collision limit the theory generalizes the Ziman expression to finite temperatures while, for strong collisions, it generalizes the result of Gould and of Williams and DeWitt to include strong ion coupling. Numerical results which compare the effects that strong ion coupling, bound (core) electrons, and strong collisions have upon the collision frequency are also presented.

  4. Numerical recovery of certain discontinuous electrical conductivities

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1991-01-01

    The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.

  5. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  6. Anisotropy of electrical conductivity in dry olivine

    SciTech Connect

    Du Frane, W L; Roberts, J J; Toffelmier, D A; Tyburczy, J A

    2005-04-13

    [1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.

  7. Sintering Behavior and Effect of Silver Nanowires on the Electrical Conductivity of Electrically Conductive Adhesives.

    PubMed

    Xie, H; Xiong, N N; Wang, Y H; Zhao, Y Z; Li, J Z

    2016-01-01

    In this paper, two kinds of silver nanowires with a 160 nm average diameter ranging from 30 to 90 µm length and a 450 nm average diameter up to 100 µm length were successfully synthesized by a polyol process with FeCl3 and Na₂S as reaction inhibitor, respectively. The experimental results indicate that the morphologies and sintering behaviors of both of silver nanowires are impacted by glutaric acid and sintering temperature. The isotropically conductive adhesives (ICAs) filled with micro-sized silver flakes and silver nanowires as hybrid fillers were fabricated and the electrical properties were investigated based on the fraction of the silver nanowires of the total of silver fillers and the curing temperature, etc. The in situ monitoring the variation in electrical resistance of the ICAs explores that silver nanowires have influence on the curing behavior of the ICAs. Silver nanowires synthesized with Na2S as reaction inhibitor and treated with glutaric acid can significantly improve the electrical conductivity of the ICAs in the case of the low loading of silver fillers in the appropriate proportion range of the weight ratio of micro-sized silver flakes and silver nanowires, primarily as a result of connecting effect. When the loading of silver fillers in the ICAs is high, the electrical conductivity is also enhanced slightly in the case of the proper fraction of silver nanowires of the total of silver fillers. The effect of the curing temperature on the electrical conductivity relates to the fraction of silver nanowires and the total loading of silver fillers. The electrical conductivity of the ICAs filled with micro-sized silver flakes and silver nanowires synthesized with FeCl₃ as reaction inhibitor is greatly damaged, indicating that the size of silver nanowires also is one of main factor to impact the electrical conductivity of the ICAs doped with silver nanowires. The electrical property of the ICAs filled with micro-sized silver flakes and silver

  8. Sintering Behavior and Effect of Silver Nanowires on the Electrical Conductivity of Electrically Conductive Adhesives.

    PubMed

    Xie, H; Xiong, N N; Wang, Y H; Zhao, Y Z; Li, J Z

    2016-01-01

    In this paper, two kinds of silver nanowires with a 160 nm average diameter ranging from 30 to 90 µm length and a 450 nm average diameter up to 100 µm length were successfully synthesized by a polyol process with FeCl3 and Na₂S as reaction inhibitor, respectively. The experimental results indicate that the morphologies and sintering behaviors of both of silver nanowires are impacted by glutaric acid and sintering temperature. The isotropically conductive adhesives (ICAs) filled with micro-sized silver flakes and silver nanowires as hybrid fillers were fabricated and the electrical properties were investigated based on the fraction of the silver nanowires of the total of silver fillers and the curing temperature, etc. The in situ monitoring the variation in electrical resistance of the ICAs explores that silver nanowires have influence on the curing behavior of the ICAs. Silver nanowires synthesized with Na2S as reaction inhibitor and treated with glutaric acid can significantly improve the electrical conductivity of the ICAs in the case of the low loading of silver fillers in the appropriate proportion range of the weight ratio of micro-sized silver flakes and silver nanowires, primarily as a result of connecting effect. When the loading of silver fillers in the ICAs is high, the electrical conductivity is also enhanced slightly in the case of the proper fraction of silver nanowires of the total of silver fillers. The effect of the curing temperature on the electrical conductivity relates to the fraction of silver nanowires and the total loading of silver fillers. The electrical conductivity of the ICAs filled with micro-sized silver flakes and silver nanowires synthesized with FeCl₃ as reaction inhibitor is greatly damaged, indicating that the size of silver nanowires also is one of main factor to impact the electrical conductivity of the ICAs doped with silver nanowires. The electrical property of the ICAs filled with micro-sized silver flakes and silver

  9. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  10. A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy

    SciTech Connect

    Silva, V.C.; Meunier, G.; Foggia, A.

    1995-05-01

    A 3-D scheme based on the Finite Element Method, which takes electric and magnetic anisotropy into consideration, has been developed for computing eddy-current losses caused by stray magnetic fields in laminated iron cores of large transformers and generators. The model is applied to some laminated iron-core samples and compared with equivalent solid-iron cases.

  11. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  12. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  13. Chapter A6. Section 6.3. Specific Electrical Conductance

    USGS Publications Warehouse

    Radtke, Dean B.; Davis, Jerri V.; Wilde, Franceska D.

    2005-01-01

    Electrical conductance is a measure of the capacity of a substance to conduct an electrical current. The specific electrical conductance (conductivity) of water is a function of the types and quantities of dissolved substances it contains, normalized to a unit length and unit cross section at a specified temperature. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of conductivity in ground and surface waters.

  14. Tri-Dimensional Electric Resistivity Tomography (ERT-3D) Technique, an Efficient Tool to Unveil the Subsoil of Archaeological Structures

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Vargas, D.; Cifuentes-Nava, G.; HernaNdez-Quintero, J. E.; Tejero, A.

    2014-12-01

    Three-Dimensional Electrical Resistivity Tomography techniques (ERT-3D) have demonstrated to be an efficient tool to study the subsurface of areas of archaeological interest by special arrays designed to 'illuminate' the subsoil beneath the structure under study. 'L'- and 'Corner'-arrays are applied to design alternative electrode geometries, which attempt to cover the subsurface with enough resistivity observations underneath the studied target. Two examples are presented where novel geometries can be applied to investigate the subsoil of two important pyramids in Mexico. First, the archaeological site of Cuicuilco is studied. The area is found towards the southern portion of the Mexican Basin. This pyramid presents a circular structure of 110 m in diameter and a total height of 25 m. The region is partially covered by the lava flows that came from an eruptive event form the Xitle Volcano 1500 years ago. The geophysical study was carried out at the base of the pyramid. 48 electrodes were deployed along a circular transect, with an electrode separation of 5.4 m. A total of 1716 apparent resistivity observations were measured. The inverted model computed is obtained with an investigation depth of 30 m, approximately (Figure 1, in color). A resistive anomaly can be observed towards the central portion of the model. This anomaly can be associated to a burial chamber, excavated by the archaeologists. The second example corresponds to the pyiramid El Castillo, located in the archaeological site of Chichen Itza, in the southern lowlands of Mexico, within the Yucatan Peninsula. Previous GPR studies carried out within the pyramid's Plaza provided evidences of a buried tunnel excavated within the limestone rocks. Such feature seemed to run beneath the eastern flank of the pyramide. The geophysical study was carried out by employing 96 flat-surface electrodes, which surrounded the edifice forming a square geometry. A total of 5,350 apparent resistivity observations were

  15. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, Stanley B.; Raue, Donald J.

    1982-01-01

    A magnetic flowmeter includes first and second tube sections each having ls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. The magnets are provided in matched pairs spaced 180.degree. apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  16. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, S.B.; Raue, D.J.

    1980-08-18

    A magnetic flowmeter includes first and second tube sections each having walls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. Two magnets are provided in matched pairs spaced 180/sup 0/ apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  17. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun

    2014-10-01

    Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.

  18. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    PubMed

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications. PMID:25474162

  19. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  20. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  1. 3D printing of a multifunctional nanocomposite helical liquid sensor

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Zhuang; Yang, Xuelu; Heuzey, Marie-Claude; Therriault, Daniel

    2015-04-01

    A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents.A multifunctional 3D liquid sensor made of a PLA/MWCNT nanocomposite and shaped as a freeform helical structure was fabricated by solvent-cast 3D printing. The 3D liquid sensor featured a relatively high electrical conductivity, the functionality of liquid trapping due to its helical configuration, and an excellent sensitivity and selectivity even for a short immersion into solvents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00278h

  2. Temporal stability of electrical conductivity in a sandy soil

    NASA Astrophysics Data System (ADS)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  3. Regional conductivity structures of the northwestern segment of the North American Plate derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Kelbert, A.

    2010-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia

  4. Relating relative hydraulic and electrical conductivity in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Mawer, Chloe; Knight, Rosemary; Kitanidis, Peter K.

    2015-01-01

    Numerical modeling was used to generate pore-scale structures with different structural properties. They were partially saturated according to wetting and drainage regimes using morphological operations for a range of saturations. The hydraulic and electrical conductivities of the resulting partially saturated grain packs were numerically computed to produce relative hydraulic conductivity versus saturation and relative electrical conductivity versus saturation curves. The relative hydraulic conductivities were then compared to the relative electrical conductivities for the same saturations and it was found that relative hydraulic conductivity could be expressed as relative electrical conductivity to a power law exponent, β. This exponent β was not correlated to porosity, specific surface area, or tortuosity. It did change according to whether the soil was wetting or draining. However, a β value of 2.1 reproduced relative hydraulic conductivity from relative electrical conductivity with little added error. The effects of surface conduction on the observed power law relationship due to either low fluid electrical conductivity or increased clay content were analyzed. The relationship was found to hold for fluid conductivities typical of groundwater and for clay content of less than 5% if the clays were layered perpendicular to electrical flow. The relationship breaks down for electrical flow parallel to clay layers, which makes the choice of electrode arrangement important in cases where clay may be present. This relationship can be used with secondary pressure or saturation data to characterize a soil's hydraulic conductivity curve.

  5. Synthesis and electrical conductivity of multilayer silicene

    SciTech Connect

    Vogt, P. E-mail: bruno.grandidier@isen.iemn.univ-lille1.fr; Bruhn, T.; Capiod, P.; Berthe, M.; Grandidier, B. E-mail: bruno.grandidier@isen.iemn.univ-lille1.fr; Resta, A.; De Padova, P.; Le Lay, G.

    2014-01-13

    The epitaxial growth and the electrical resistance of multilayer silicene on the Ag(111) surface has been investigated. We show that the atomic structure of the first silicene layer differs from the next layers and that the adsorption of Si induces the formation of extended silicene terraces surrounded by step bunching. Thanks to the controlled contact formation between the tips of a multiple probe scanning tunneling microscope and these extended terraces, a low sheet resistance, albeit much higher than the electrical resistance of the underlying silver substrate, has been measured, advocating for the electrical viability of multilayer silicene.

  6. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  7. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Non-Contact Electrical Conductivity Measurement Technique for Molten Metals

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    A non-contact technique of measuring the electrical conductivity (or resistivity) of conducting liquids while they are levitated by the high temperature electrostatic levitator in a high vacuum is reported.

  9. Electrical conductivity of Cs2CuCl4 crystals

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-05-01

    The electrical conductivity of Cs2CuCl4 single crystals, synthesized by crystallization from aqueous solutions in the CsCl-CuCl2-H2O system, has been investigated. The temperature dependence of the electrical conductivity of crystals in a temperature range of 338-584 K exhibits no anomalies. The electrical transfer activation enthalpy is Δ H σ = 0.72 ± 0.05 eV and the conductivity is σ = 3 × 10-4 S/cm at 584 K. The most likely carriers in Cs2CuCl4 are Cs+ cations, which transfer electric charge according to the vacancy mechanism.

  10. Polyelectrolyte multilayers impart healability to highly electrically conductive films.

    PubMed

    Li, Yang; Chen, Shanshan; Wu, Mengchun; Sun, Junqi

    2012-08-28

    Healable, electrically conductive films are fabricated by depositing Ag nanowires on water-enabled healable polyelectrolyte multilayers. The easily achieved healability of the polyelectrolyte multilayers is successfully imparted to the Ag nanowire layer. These films conveniently restore electrical conductivity lost as a result of damage by cuts several tens of micrometers wide when water is dropped on the cuts. PMID:22807199

  11. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  12. Electrical conductivity measurements of nanofluids and development of new correlations.

    PubMed

    Konakanchi, Hanumantharao; Vajjha, Ravikanth; Misra, Debasmita; Das, Debendra

    2011-08-01

    In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.

  13. Electrical conductivity measurements from the STRATCOM 8 experiment

    NASA Technical Reports Server (NTRS)

    Mitchell, J. D.; Ho, K. J.; Half, L. C.; Croskey, C. L.; Olsen, R. O.

    1978-01-01

    A blunt probe experiment for measuring electrical conductivity was flown with the STRATCOM 8 instrument package. Data were obtained by the instrument throughout the entire measurement period. A preliminary analysis of the data indicates an enhancement in conductivity associated with the krypton discharge ionization lamp, particularly in negative conductivity. The conductivity values and their altitude dependence are consistent with previous balloon and rocket results.

  14. Structural and Electrical Study of Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Dixit, Manasvi; Saxena, N. S.; Sharma, Kananbala

    2010-06-01

    Pure and oxalic acid doped conducting polymers (polyaniline and polypyrrole) were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through Scanning Electron Microscopy (SEM), which provides information about the surface topography of polymers. I-V characteristics have been recorded at room temperature as well as in the temperature range from 313 K to 463 K. So obtained characteristic curves were found to be linear. Temperature dependence of conductivity suggests a semiconducting nature in polyaniline samples with increase in temperature, whereas oxalic acid doped polypyrrole sample suggests a transition from semiconducting to metallic nature with the increase of temperature.

  15. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  16. Electrically conductive lines on cellulose nanopaper for flexible electrical devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Ming-Chun; Kim, Changjae; Nogi, Masaya; Suganuma, Katsuaki

    2013-09-01

    Highly conductive circuits are fabricated on nanopapers composed of densely packed 15-60 nm wide cellulose nanofibers. Conductive materials are deposited on the nanopaper and mechanically sieved through the densely packed nanofiber networks. As a result, their conductivity is enhanced to the level of bulk silver and LED lights are successfully illuminated via these metallic conductive lines on the nanopaper. Under the same deposition conditions, traditional papers consisting of micro-sized pulp fibers produced very low conductivity lines with non-uniform boundaries because of their larger pore structures. These results indicate that advanced, lightweight and highly flexible devices can be realized on cellulose nanopaper using continuous deposition processes. Continuous deposition on nanopaper is a promising approach for a simple roll-to-roll manufacturing process.

  17. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  18. Electrical and Mechanical Properties of Through-Silicon Vias and Bonding Layers in Stacked Wafers for 3D Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Hwang, Sung-Hwan; Kim, Byoung-Joon; Lee, Ho-Young; Joo, Young-Chang

    2012-02-01

    Thermal stress issues in a three-dimensional (3D) stacked wafer system were examined using finite-element analysis of the stacked wafers. This paper elucidates the effects of the bonding dimensions on mechanical failure and the keep-away zone, where devices cannot be located because of the stress in the Si. The key factors in decreasing the thermal strain were the bonding diameter and thickness. When the bonding diameter decreased from 40 μm to 12 μm, the equivalent strain decreased by 83%. It is noteworthy that the keep-away zone also decreased from 17 μm to zero when the bonding diameter decreased from 40 μm to 12 μm. When the bonding thickness doubled, the equivalent strain decreased by 44%. The effects of the dimensions and arrangement of through-silicon vias (TSV) were also analyzed. Small TSV diameter and pitch are important to decrease the equivalent strain, especially when the amount of Cu per unit volume is fixed. When the TSV diameter and pitch decreased fourfold, the equivalent strain decreased by 70%. The effects of TSV height and the number of die stacks were not significant, because the underfill acted as a buffer against thermal strain.

  19. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine; Roberts, Jeffrey James

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  20. Temperature dependence of electrical conductivity and lunar temperatures

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.; Strangway, D. W.; Sharpe, H.; Frisillo, A. L.

    1974-01-01

    Metallic conduction mechanicsms are probably not important in lunar materials because of the small amounts of free metal and metallic oxides present. This is confirmed by the extremely low conductivities measured to date and the fact that the conductivity increases with temperature. The major conduction mechanicsm appears to be ionic. This conduction mechanism is very strongly controlled by temperature, by deviations from stoichiometry, by electric field strengths, and by oxygen fugacity.

  1. Electrochemical relaxation at electrically conducting polymers

    NASA Astrophysics Data System (ADS)

    Nateghi, M. R.; zarandi, M. B.

    2008-08-01

    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  2. Electrical conductivity of zirconia stabilized with scandia and yttria

    SciTech Connect

    Kaneko, Hiroyuki; Jin, Fuxue; Taimatsu, Hitoshi . Dept. of Materials Engineering and Applied Chemistry); Kusakabe, Hirotatsu . Tsukuba Research Lab.)

    1993-03-01

    Electrical conductivity of zirconia stabilized with scandia and yttria (Sc[sub 2]O[sub 3] + Y[sub 2]O[sub 3] = 8 mol%) has been measured by the complex impedance method in the temperature range 573 to 1,173 K. With increasing Sc[sub 2]O[sub 3] concentration, electrical conductivity increases at temperatures above 640K, but it decreases below this temperature. Electrical conductivity in the electrolytes examined is a result of two processes: an activation energy of 59 to 79 kJ/mol predominant at high temperatures and an activation energy of 109 to 125 kJ/mol predominant at low temperatures.

  3. Effect of Ligament Morphology on Electrical Conductivity of Porous Silver

    NASA Astrophysics Data System (ADS)

    Zuruzi, Abu Samah; Mazulianawati, Majid Siti

    2016-08-01

    We investigate the effect of ligament morphology on electrical conductivity of open cell porous silver (Ag). Porous Ag was formed when silver nanoparticles in an organic phase were annealed at 150°C for durations ranging from 1 to 5 min. Electrical conductivity of porous Ag was about 20% of bulk value after 5 min annealing. Porous Ag was modeled as a collection of Kelvin cell (truncated octahedrons) structures comprised of conjoined conical ligaments and spherical vertices. An analytical expression for electrical conductivity was obtained. Electrical conductivity normal to hexagonal faces of the unit cell was computed. Our model indicates contribution of grain boundary to electrical resistance increases significantly after the first minute of annealing and plateaus thereafter. Using experimental electrical conductivity data as an input, the model suggests that the ratio, n, of surfaces of one half of a conjoined cone ligament is between 0.7 and 1.0. Average deviation from experimentally determined relative electrical conductivity, Δσ r, was minimal when n = 0.9.

  4. Electrical conductivity and Equation of State from Measurements of a Tamped Electrically Exploded Foil

    NASA Astrophysics Data System (ADS)

    Ruden, Edward; Amdahl, David; Cooksey, Rufus; Domonkos, Matthew; Robinson, Paul; Analla, Francis; Brown, Darwin; Kostora, Mark; Camacho, Frank

    2013-10-01

    Results are presented for an experiment that produces and diagnoses dynamic surface conditions of homogeneous warm dense matter (WDM) to infer intrinsic bulk properties such as density, pressure, temperature, specific energy, electrical conductivity, and emissivity in the ranges of up to few eV and down to 0.1 solid density-typical of those encountered in single shot pulsed power device electrodes. The goal is to validate ab initio models of matter encountered for predictive modeling of such devices. In the test whose results are presented here, the WDM is produced by Ohmically heating and exploding an 80 μm Al foil placed between two fused quartz tampers by the discharge of a 36 μF capacitor bank charged to 30.1 kV and discharged in 2.55 μs to a peak load current of 460 kA. Measurements are presented from two division of amplitude polarimeters which operate at 532 nm and 1064 nm, a complementary pyrometer which measures the spectral radiance ratio at those wavelengths, a long-range 660 nm photonic Doppler velocimeter, and a B-dot probe array from which the aforementioned intrinsic properties may be inferred. Available results are compared to a 3-D MHD ALEGRA simulation of the full dynamic load and return conductor geometry with a two-loop external coupled circuit.

  5. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    Apuani, T.; Giani, G. P.; d'Attoli, M.; Fischanger, F.; Morelli, G.; Ranieri, G.; Santarato, G.

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  6. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography.

    PubMed

    Apuani, T; Giani, G P; d'Attoli, M; Fischanger, F; Morelli, G; Ranieri, G; Santarato, G

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  7. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  8. Conductivity and electric field variations with altitude in the stratosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1991-01-01

    Data regarding electric field, derived current density, and conductivity are presented for two balloons from the Electrodynamics of the Middle Atmosphere experiment which underwent the longest period of daily altitude variation. The magnetic L values range from 4.3 to 9.5 for the 18 days of Southern Hemisphere statistics, and the average conductivity and vertical electric fields are given. Simultaneous measurements of the average conductivity scale height and the vertical electric-field scale height indicate that vertical current density does not vary with altitude in the 10-28-km range. The measured conductivity varies significantly at a given altitude on a particular day, and some conductivity data sets are similar to other measurements between 10 and 30 km. Comparisons of the measured data to predictions from models of stratospheric conductivity demonstrate significant discrepancies.

  9. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  10. Electrical conductivity as a constraint on lower mantle thermo-chemical structure

    NASA Astrophysics Data System (ADS)

    Deschamps, Frédéric; Khan, Amir

    2016-09-01

    Electrical conductivity of the Earth's mantle depends on both temperature and compositional parameters. Radial and lateral variations in conductivity are thus potentially a powerful means to investigate its thermo-chemical structure. Here, we use available electrical conductivity data for the major lower mantle minerals, bridgmanite and ferropericlase, to calculate 3D maps of lower mantle electrical conductivity for two possible models: a purely thermal model, and a thermo-chemical model. Both models derive from probabilistic seismic tomography, and the thermo-chemical model includes, in addition to temperature anomalies, variations in volume fraction of bridgmanite and iron content. The electrical conductivity maps predicted by these two models are clearly different. Compared to the purely thermal model, the thermo-chemical model leads to higher electrical conductivity, by about a factor 2.5, and stronger lateral anomalies. In the lowermost mantle (2000-2891 km) the thermo-chemical model results in a belt of high conductivity around the equator, whose maximum value reaches ∼120% of the laterally-averaged value and is located in the low shear-wave velocity provinces imaged in tomographic models. Based on our electrical conductivity maps, we computed electromagnetic response functions (C-responses) and found, again, strong differences between the C-responses for purely thermal and thermo-chemical models. At periods of 1 year and longer, C-responses based on thermal and thermo-chemical models are easily distinguishable. Furthermore, C-responses for thermo-chemical model vary geographically. Our results therefore show that long-period (1 year and more) variations of the magnetic field may provide key insights on the nature and structure of the deep mantle.

  11. Manipulating connectivity and electrical conductivity in metallic nanowire networks.

    PubMed

    Nirmalraj, Peter N; Bellew, Allen T; Bell, Alan P; Fairfield, Jessamyn A; McCarthy, Eoin K; O'Kelly, Curtis; Pereira, Luiz F C; Sorel, Sophie; Morosan, Diana; Coleman, Jonathan N; Ferreira, Mauro S; Boland, John J

    2012-11-14

    Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.

  12. Measurement of Electrical Conductivity for a Biomass Fire

    PubMed Central

    Mphale, Kgakgamatso; Heron, Mal

    2008-01-01

    A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples to measure fuel surface temperature and used as a cavity for microwaves with a laboratory quality 2-port vector network analyzer to determine electrical conductivity from S-parameters. Electrical conductivity for vegetation material flames is important for numerical prediction of flashover in high voltage power transmission faults research. Vegetation fires that burn under high voltage transmission lines reduce flashover voltage by increasing air electrical conductivity and temperature. Analyzer determined electrical conductivity ranged from 0.0058 - 0.0079 mho/m for a fire with a maximum temperature of 1240 K. PMID:19325812

  13. Electrical Circuit Analogues of Thermal Conduction and Diffusion

    ERIC Educational Resources Information Center

    Tomlin, D. H.; Fullarton, G. K.

    1978-01-01

    After briefly reviewing equations of conduction and diffusion, and voltage and charge in electrical circuits, a simple experiment is given that allows students practical experience in a theoretical realm of physics. (MDR)

  14. Metallization and electrical conductivity of hydrogen in Jupiter.

    PubMed

    Nellis, W J; Weir, S T; Mitchell, A C

    1996-08-16

    Electrical conductivities of molecular hydrogen in Jupiter were calculated by scaling electrical conductivities measured at shock pressures in the range of 10 to 180 gigapascals (0.1 to 1.8 megabars) and temperatures to 4000 kelvin, representative of conditions inside Jupiter. Jupiter's magnetic field is caused by convective dynamo motion of electrically conducting fluid hydrogen. The data imply that Jupiter should become metallic at 140 gigapascals in the fluid, and the electrical conductivity in the jovian molecular envelope at pressures up to metallization is about an order of magnitude larger than expected previously. The large magnetic field is produced in the molecular envelope closer to the surface than previously thought. PMID:8688072

  15. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  16. Thermal conductivity and electrical resistivity of porous materials

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1972-01-01

    Process for determining thermal conductivity and electrical resistivity of porous materials is described. Characteristics of materials are identified and used in development of mathematical models. Limitations of method are examined.

  17. Temperature-dependent electrical conductivity of soda-lime glass

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy; Vertrees, T. H.

    1993-01-01

    The objective of this educational exercise was to demonstrate the difference between the electrical conductivity of metals and ceramics. A list of the equipment and supplies and the procedure for the experiment are presented.

  18. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  19. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  20. Electrically pumped microdisk lasers with semitransparent conducting pyrolytic carbon film

    NASA Astrophysics Data System (ADS)

    Moiseev, E. I.; Polubavkina, Yu S.; Kryzhanovskaya, N. V.; Kulagina, M. M.; Zadiranov, Yu M.; Maximov, M. V.; Komissarenko, F. E.; Kaplas, T.; Svirko, Yu P.; Silvennoinen, M.; Lipovskii, A. A.; Zubov, F. I.; Zhukov, A. E.

    2016-08-01

    Electrically driven microdisk lasers with top contacts made of a semitransparent conducting pyrolytic carbon film are developed. Electrical properties of the pyrolytic carbon contact to a p-type doped GaAs epitaxial layer are studied. Room temperature electroluminescence spectra from an array of the microdisk lasers and a single 27 μm in diameter microdisk laser are demonstrated.

  1. Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu

    2015-12-01

    Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential

  2. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  3. Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Doetsch, Joseph; Fiandaca, Gianluca; Christiansen, Anders Vest; Gazoty, Aurélie; Cahill, Aaron Graham; Jakobsen, Rasmus

    2014-02-01

    Contamination of groundwater by leaking CO2 is a potential risk of carbon sequestration. With the help of a field experiment in western Denmark, we investigate to what extent surface electrical resistivity tomography (ERT) can detect and image dissolved CO2 in a shallow aquifer. For this purpose, we injected CO2 at a depth of 5 and 10 m and monitored its migration using 320 electrodes on a 126 m × 25 m surface grid. A fully automated acquisition system continuously collected data and uploaded it into an online database. The large amount of data allows for time-series analysis using geostatistical techniques for noise estimation and data interpolation to compensate for intermittent instrument failure. We estimate a time-dependent noise level for each ERT configuration, taking data variation and measurement frequency into account.

  4. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2014-03-01

    The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  5. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  6. Heat capacity, electrical and thermal conductivity of silicene

    NASA Astrophysics Data System (ADS)

    Feyzi, Azra; Chegel, Raad

    2016-09-01

    We investigate the electronic heat capacity, electrical and thermal conductivity of monolayer planar and buckled silicon sheets (silicene) through tight binding approximation and Kubo-Greenwood formula. Applying and increasing dopant atoms to the system leads to opening a gap in the band structures and density of states that causes to decrease (increase) the heat capacity before (after) the Schottky anomaly. The electrical and electronic thermal conductivity of doped silicene reduces with increasing impurity strength.

  7. Electrical Conductivity of the Lower-Mantle Ferropericlase

    SciTech Connect

    Lin, J F; Weir, S T; Jackson, D D; Evans, W J; Vohra, Y K; Qiu, W; Yoo, C S

    2007-04-19

    Electrical conductivity of the lower-mantle ferropericlase-(Mg{sub 0.75},Fe{sub 0.25})O has been studied using designer diamond anvils to pressures over one megabar and temperatures up to 500 K. The electrical conductivity of (Mg{sub 0.75},Fe{sub 0.25})O gradually rises by an order of magnitude up to 50 GPa but decreases by a factor of approximately three between 50 to 70 GPa. This decrease in the electrical conductivity is attributed to the electronic high-spin to low-spin transition of iron in ferropericlase. That is, the electronic spin transition of iron results in a decrease in the mobility and/or density of the charge transfer carriers in the low-spin ferropericlase. The activation energy of the low-spin ferropericlase is 0.27 eV at 101 GPa, similar to that of the high-spin ferropericlase at relatively low temperatures. Our results indicate that low-spin ferropericlase exhibits lower electrical conductivity than high-spin ferropericlase, which needs to be considered in future geomagnetic models for the lower mantle. The extrapolated electrical conductivity of the low-spin ferropericlase, together with that of silicate perovskite, at the lower mantle pressure-temperature conditions is consistent with the model electrical conductivity profile of the lower mantle.

  8. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    NASA Technical Reports Server (NTRS)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  9. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  10. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  11. Highly compressible 3D periodic graphene aerogel microlattices.

    PubMed

    Zhu, Cheng; Han, T Yong-Jin; Duoss, Eric B; Golobic, Alexandra M; Kuntz, Joshua D; Spadaccini, Christopher M; Worsley, Marcus A

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  12. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  13. Massively-parallel electrical-conductivity imaging of hydrocarbonsusing the Blue Gene/L supercomputer

    SciTech Connect

    Commer, M.; Newman, G.A.; Carazzone, J.J.; Dickens, T.A.; Green,K.E.; Wahrmund, L.A.; Willen, D.E.; Shiu, J.

    2007-05-16

    Large-scale controlled source electromagnetic (CSEM)three-dimensional (3D) geophysical imaging is now receiving considerableattention for electrical conductivity mapping of potential offshore oiland gas reservoirs. To cope with the typically large computationalrequirements of the 3D CSEM imaging problem, our strategies exploitcomputational parallelism and optimized finite-difference meshing. Wereport on an imaging experiment, utilizing 32,768 tasks/processors on theIBM Watson Research Blue Gene/L (BG/L) supercomputer. Over a 24-hourperiod, we were able to image a large scale marine CSEM field data setthat previously required over four months of computing time ondistributed clusters utilizing 1024 tasks on an Infiniband fabric. Thetotal initial data misfit could be decreased by 67 percent within 72completed inversion iterations, indicating an electrically resistiveregion in the southern survey area below a depth of 1500 m below theseafloor. The major part of the residual misfit stems from transmitterparallel receiver components that have an offset from the transmittersail line (broadside configuration). Modeling confirms that improvedbroadside data fits can be achieved by considering anisotropic electricalconductivities. While delivering a satisfactory gross scale image for thedepths of interest, the experiment provides important evidence for thenecessity of discriminating between horizontal and verticalconductivities for maximally consistent 3D CSEM inversions.

  14. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  15. Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Se,Te)3

    NASA Astrophysics Data System (ADS)

    Jeffries, J. R.; Butch, N. P.; Vohra, Y. K.; Weir, S. T.

    2015-03-01

    The group V-VI compounds—like Bi2Se3, Sb2Te3, or Bi2Te3—have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi,Sb)2(Te,Se)3 compound. Similar to some of its sister compounds, the (Bi,Sb)2(Te,Se)3 pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases.

  16. A Multi-channel Semicircular Canal Neural Prosthesis Using Electrical Stimulation to Restore 3D Vestibular Sensation

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Patel, Amit H.

    2009-01-01

    Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the 3 semicircular canals in a normal ear, such a device should at least transduce 3 orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multi-channel vestibular prosthesis that encodes head movement in 3 dimensions as pulse-frequency-modulated electrical stimulation of 3 or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocular reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode’s targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior. PMID:17554821

  17. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  18. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    SciTech Connect

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  19. Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration

    SciTech Connect

    Newman, G.A.; Commer, M.

    2009-06-01

    Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.

  20. Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability

    NASA Astrophysics Data System (ADS)

    Chen, Guiqiang; Liu, Yanxia; Liu, Fei; Zhang, Xiao

    2014-08-01

    A three-dimensional (3D), free-standing graphene foam was prepared by plasma-enhanced chemical vapor deposition on nickel-foam. The prepared graphene foam was found to consist of few-layered vertically-aligned graphene sheets with highly graphite structure. Owing to the 3D interconnected porous nanostructures, the graphene foam exhibited a high electrical conductivity of 125 S/cm and a large surface area of 625.4 cm2/g. For practical application, we prepared the graphene foam/epoxy composites showing a maximum conductivity of 196 S/m at 2.5 vol.% filler loading, and a rather low percolation threshold of 0.18 vol.%. Furthermore, the derived graphene oxide foam exhibited an excellent absorption capability (177.6 mg/g for As(V), 399.3 mg/g for Pb(II)) and recyclability (above 90% removal efficiency after five cycles) for the removal of heavy metal ions. The present study reveals that the multifunctional graphene foam may broaden the graphene-based materials for the applications in electrically conductive composites and environmental cleanup.

  1. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  2. The electrical conduction variation in stained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  3. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  4. Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer.

    PubMed

    Dhara, Barun; Nagarkar, Sanjog S; Kumar, Jitender; Kumar, Vikash; Jha, Plawan Kumar; Ghosh, Sujit K; Nair, Sunil; Ballav, Nirmalya

    2016-08-01

    Redox-active pyrrole (Py) monomers were intercalated into 1D nanochannels of [Cd(NDC)0.5(PCA)]·Gx (H2NDC = 2,6-napthalenedicarboxylic acid, HPCA = 4-pyridinecarboxylic acid, G = guest molecules) (1) - a fluorescent 3D MOF (λem = 385 nm). Subsequent activation of 1⊃Py upon immersing into iodine (I2) solution resulted in an increment of the bulk electrical conductivity by ∼9 orders of magnitude. The unusual increase in conductivity was attributed to the formation of highly oriented and conducting polypyrrole (PPy) chains inside 1D nanochannels and specific host-guest interaction in 1⊃PPy thereof. The Hall-effect measurements suggested 1⊃PPy to be an n-type semiconductor material with remarkably high-carrier density (η) of ∼1.5 × 10(17) cm(-3) and mobility (μ) of ∼8.15 cm(2) V(-1) s(-1). The fluorescence property of 1 was almost retained in 1⊃PPy with concomitant exciplex-type emission at higher wavelength (λem = 520 nm). The here-presented results on [MOF⊃Conducting Polymer] systems in general will serve as a prototype experiment toward rational design for the development of highly conductive yet fluorescent MOF-based materials for various optoelectronic applications. PMID:27404432

  5. Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer.

    PubMed

    Dhara, Barun; Nagarkar, Sanjog S; Kumar, Jitender; Kumar, Vikash; Jha, Plawan Kumar; Ghosh, Sujit K; Nair, Sunil; Ballav, Nirmalya

    2016-08-01

    Redox-active pyrrole (Py) monomers were intercalated into 1D nanochannels of [Cd(NDC)0.5(PCA)]·Gx (H2NDC = 2,6-napthalenedicarboxylic acid, HPCA = 4-pyridinecarboxylic acid, G = guest molecules) (1) - a fluorescent 3D MOF (λem = 385 nm). Subsequent activation of 1⊃Py upon immersing into iodine (I2) solution resulted in an increment of the bulk electrical conductivity by ∼9 orders of magnitude. The unusual increase in conductivity was attributed to the formation of highly oriented and conducting polypyrrole (PPy) chains inside 1D nanochannels and specific host-guest interaction in 1⊃PPy thereof. The Hall-effect measurements suggested 1⊃PPy to be an n-type semiconductor material with remarkably high-carrier density (η) of ∼1.5 × 10(17) cm(-3) and mobility (μ) of ∼8.15 cm(2) V(-1) s(-1). The fluorescence property of 1 was almost retained in 1⊃PPy with concomitant exciplex-type emission at higher wavelength (λem = 520 nm). The here-presented results on [MOF⊃Conducting Polymer] systems in general will serve as a prototype experiment toward rational design for the development of highly conductive yet fluorescent MOF-based materials for various optoelectronic applications.

  6. A Simulation Study of Electrical Fiber Composite Conductivity

    NASA Astrophysics Data System (ADS)

    Mezdour, D.; Sahli, S.

    2008-11-01

    Percolation concept has been used in this study to estimate the amount of conductive fibers embedded in polymeric matrix, necessary to establish conduction in this kind of composites. The resistance of composite materials is calculated by simulating composite samples with different size, containing conductive fibers with various lengths Calculation is based on detecting conductive pathways through the insulating matrix, these pathways are assumed to be resistances in parallel. Electrical resistance curves showed a percolative behavior of the samples versus volume fraction of filler. Lower conduction thresholds are obtained for fiber aspect ratio of 20 and sample size of 100. The electrical resistivity and the conduction thresholds of the carbon fiber reinforced polycarbonate composites have been characterized. Simulation results are in good agreement with an experimental result found in the literature.

  7. Detection of temperature distribution via recovering electrical conductivity in MREIT

    NASA Astrophysics Data System (ADS)

    In Oh, Tong; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; In Kwon, Oh; Woo, Eung Je

    2013-04-01

    In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C.

  8. Detection of temperature distribution via recovering electrical conductivity in MREIT.

    PubMed

    Oh, Tong In; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; Kwon, Oh In; Woo, Eung Je

    2013-04-21

    In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C.

  9. Detection of temperature distribution via recovering electrical conductivity in MREIT.

    PubMed

    Oh, Tong In; Kim, Hyung Joong; Jeong, Woo Chul; Chauhan, Munish; Kwon, Oh In; Woo, Eung Je

    2013-04-21

    In radiofrequency (RF) ablation or hyperthermia, internal temperature measurements and tissue property imaging are important to control their outputs and assess the treatment effect. Recently, magnetic resonance electrical impedance tomography (MREIT), as a non-invasive imaging method of internal conductivity distribution using an MR scanner, has been developed. Its reconstruction algorithm uses measured magnetic flux density induced by injected currents. The MREIT technique has the potential to visualize electrical conductivity of tissue with high spatial resolution and measure relative conductivity variation according to the internal temperature change based on the fact that the electrical conductivity of biological tissues is sensitive to the internal temperature distribution. In this paper, we propose a method to provide a non-invasive alternative to monitor the internal temperature distribution by recovering the electrical conductivity distribution using the MREIT technique. To validate the proposed method, we design a phantom with saline solution and a thin transparency film in a form of a hollow cylinder with holes to create anomalies with different electrical and thermal conductivities controlled by morphological structure. We first prove the temperature maps with respect to spatial and time resolution by solving the thermal conductivity partial differential equation with the real phantom experimental environment. The measured magnetic flux density and the reconstructed conductivity distributions using the phantom experiments were compared to the simulated temperature distribution. The relative temperature variation of two testing objects with respect to the background saline was determined by the relative conductivity contrast ratio (rCCR,%). The relation between the temperature and conductivity measurements using MREIT was approximately linear with better accuracy than 0.22 °C. PMID:23552880

  10. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-15

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO{sub 3})(quin)]{sub n} (1) and [Ag{sub 8}(HL){sub 2}(H{sub 2}O){sub 4}(mpyz)]·3H{sub 2}O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H{sub 6}L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10{sup −4} Scm{sup −1} (1) and 1.6×10{sup −4} Scm{sup −1} (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied. - Graphical abstract: Two new 1D and 3D coordination polymers of Ag(I) have been synthesized and characterized by X-ray analysis. The electrical, luminescence and thermal properties have been studied. - Highlights: • 1 is 2D layered while 2 present a 3D polymeric architecture. • The network in 2 is stabilized by argentophilic interactions and hydrogen bonding. • Electrical conductivity measurement is quite interesting. • Argentophilic interaction and intra-ligand π{sup ⁎}–π CT explains emission behavior of 2.

  11. Electric and thermal conductivities of quenched neutron star crusts

    NASA Technical Reports Server (NTRS)

    Ogata, Shuji; Ichimaru, Setsuo

    1990-01-01

    The electric and thermal conductivities in the outer crustal matter of a neutron star quenched into a solid state by cooling are estimated using a Monte Carlo simulation of freezing transition for dense plasmas. The conductivities are calculated by the precise evaluation of the scattering integrals, using the procedure of Ichimaru et al. (1983) and Iyetomi and Ichimaru (1983). The results predict the conductivities lower, by a factor of about 3, than those with the single-phonon approximation.

  12. Continental growth on Early Earth: Crustal electrical conductivity models of the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Weckmann, U.; Kutter, S.; De Wit, M.

    2014-12-01

    The Barberton Greenstone Belt (BGB, South Africa) is one of the few Archean remnants where the tectonic evolution of the Early Earth can be studied. The first formation of the crust is a controversially discussed topic among geoscientists. Tectonics on the Early Earth might have been similar to the plate movement and their driving forces that we observe today. However, regarding that some fundamental conditions like the thermal setting were considerably different at this time other processes like vertical mass transport might have played the governing role in tectonics. Therefore contrasting evolutionary models of the BGB exist, mainly based on a number of geological and petrological studies. However, there is only little information on its deeper architecture. For a better understanding of past processes and the character of the tectonic regime which led to the formation of the BGB, magnetotelluric (MT) surveys were carried out as a part of the German-South African Inkaba yeAfrica research initiative. At approximately 200 MT sites aligned along six profiles (approx. 80 to 110 km length) data was collected during two field experiments in 2009 and 2010. The MT method images the electrical conductivity of rocks and is particularly sensitive to imprints of tectonic processes resulting in persistent mineralization e.g. along shear planes. Against the surrounding of significantly conductive geological units like the Phanerozoic Transvaal cover, the rocks of the BGB are generally characterized by high electrical resistivities. Particularly plutons such as the Dalmein Pluton can be traced deeply into the crust. Contrary, faults of the BGB appear as zones of high conductivity down to a depth of 5 to 10 km. We will present 3D inversion results indicating an extension of the plutons of the western BGB beneath the Transvaal cover and a sharp conductivity contrast of the BGB compared to the eastern batholiths. We will discuss existing models of the evolution of the BGB in view

  13. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  14. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  15. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    PubMed

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  16. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation.

    PubMed

    Carraro, Ugo; Edmunds, Kyle J; Gargiulo, Paolo

    2015-03-11

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  17. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  18. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  19. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  20. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  1. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes.

    PubMed

    Sun, Mingrui; Agarwal, Pranay; Zhao, Shuting; Zhao, Yi; Lu, Xiongbin; He, Xiaoming

    2016-08-16

    Dielectrophoresis (DEP) has been widely explored to separate cells for various applications. However, existing DEP devices are limited by the high cost associated with the use of noble metal electrodes, the need of high-voltage electric field, and/or discontinuous separation (particularly for devices without metal electrodes). We developed a DEP device with liquid electrodes, which can be used to continuously separate different types of cells or particles based on positive DEP. The device is made of polydimethylsiloxane (PDMS), and ionic liquid is used to form the liquid electrodes, which has the advantages of low cost and easy fabrication. Moreover, the conductivity gradient is utilized to achieve the DEP-based on-chip cell separation. The device was used to separate polystyrene microbeads and PC-3 human prostate cancer cells with 94.7 and 1.2% of the cells and microbeads being deflected, respectively. This device is also capable of separating live and dead PC-3 cancer cells with 89.8 and 13.2% of the live and dead cells being deflected, respectively. Moreover, MDA-MB-231 human breast cancer cells could be separated from human adipose-derived stem cells (ADSCs) using this device with high purity (81.8 and 82.5% for the ADSCs and MDA-MB-231 cells, respectively). Our data suggest the great potential of cell separation based on conductivity-induced DEP using affordable microfluidic devices with easy operation.

  2. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  3. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  4. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  5. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  6. Electrical conduction measurement of thiol modified DNA molecules

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Hwang, S. W.; Ahn, D.

    2003-09-01

    We present a novel transport measurement of 60 base pairs of poly(dG)-poly(dC) DNA molecules. Thiol-terminated DNA molecules are chemically anchored at the surface of a Au nanoparticle and this DNA attached Au nanoparticle is self-trapped in between Au nanoelectrodes to make an electrical conduction channel. It provides an automatic electrical conduction channel consisting of electrode-DNA-nanoparticle-DNA-electrode. Due to robust bonding of thiol and Au, this transport channel is stable and reliable. The current-voltage characteristics measured from our device show a nonlinear behavior with voltage gaps comparable to previous experiment using the same molecules.

  7. Electrical conductivity measurements on silicate melts using the loop technique

    NASA Technical Reports Server (NTRS)

    Waff, H. S.

    1976-01-01

    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  8. Biomass-Based Mechanically Strong and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors.

    PubMed

    Zhao, Hai-Bo; Yuan, Lei; Fu, Zhi-Bing; Wang, Chao-Yang; Yang, Xi; Zhu, Jia-Yi; Qu, Jing; Chen, Hong-Bing; Schiraldi, David A

    2016-04-20

    A novel biomass-based mechanically strong and electrically conductive polymer aerogel was fabricated from aniline and biodegradable pectin. The strong hydrogen bonding interactions between polyaniline (PANI) and pectin resulted in a defined structure and enhanced properties of the aerogel. All the resultant aerogels exhibited self-surppoted 3D nanoporous network structures with high surface areas (207-331m(2)/g) and hierarchical pores. The results from electrical conductivity measurements and compressive tests revealed that these aerogels also had favorable conductivities (0.002-0.1 S/m) and good compressive modulus (1.2-1.4 MPa). The aerogel further used as electrode for supercapacitors showed enhanced capacitive performance (184 F/g at 0.5 A/g). Over 74% of the initial capacitance was maintained after repeating 1000 cycles of the cylic voltammetry test, while the capacitance retention of PANI was only 57%. The improved electrochemical performance may be attributed to the combinative properties of good electrical conductivity, BET surface areas, and stable nanoporous structure of the aerogel. Thus, this aerogel shows great potential as electrode materials for supercapacitors. PMID:27045343

  9. Carbonatite melts and electrical conductivity in the asthenosphere.

    PubMed

    Gaillard, Fabrice; Malki, Mohammed; Iacono-Marziano, Giada; Pichavant, Michel; Scaillet, Bruno

    2008-11-28

    Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts. PMID:19039132

  10. Carbonatite melts and electrical conductivity in the asthenosphere.

    PubMed

    Gaillard, Fabrice; Malki, Mohammed; Iacono-Marziano, Giada; Pichavant, Michel; Scaillet, Bruno

    2008-11-28

    Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.

  11. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  12. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-07-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (ΔT) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  13. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  14. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  15. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOEpatents

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  16. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  17. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  18. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments. PMID:27672627

  19. Numerical studies of geomagnetically induced electric field on seafloor and near coastal zones incorporated with heterogeneous conductivity distributions

    NASA Astrophysics Data System (ADS)

    Goto, Tada-nori

    2015-12-01

    Abrupt changes of geomagnetic field can make large induced electric field and resultant electric current on the earth, which is called as geomagnetically induced current (GIC). It can yield damages to pipelines, cables, and other architectures. For understanding the phenomena and future risks of GIC, it is necessary to evaluate how the sub-surface electrical conductivity structure is important for the GIC because the heterogeneous conductivity structure in the crust and mantle affects the induced electrical current locally. The hazard prediction based on the homogeneous earth may result in the underestimation. Here, I introduce possible cases of geomagnetically induced electric field (GIE) on seafloor and near coastal areas, based on numerical forward simulations on one-, two-, and three-dimensional (1-D, 2-D, and 3-D) earth's structure including the sea layer. On the 1-D case, I show the possible amplitude of GIE on the seafloor, far from the coastal area. The second case study comes from 2-D forward simulation, in which the straightly elongated coastal line is assumed, and various sub-surface and sub-seafloor conductivity structures are imposed. The numerical results suggest that the amplitude of GIE on land becomes more than two times larger than that of the homogeneous earth without the sea layer. The width of land zone with larger GIE is about 20 km from the coast. In forward modeling with a simplified 3-D bathymetry, land electric field near the bay area increases with about ten times larger than that of the inland one. The seafloor GIE near the peninsula area also indicates about four times larger value than that of the other area at the same water depth. These phenomena can be explained by the boundary charge along the coastal area. I conclude that 3-D earth's conductivity structure including the realistic bathymetry and sub-surface and sub-seafloor structures should be essential and focused for the hazard assessment of GIC.

  20. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  1. Time resolved strain dependent morphological study of electrically conducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Mitchell, Geoffrey; Mateus, Artur; Kamma-Lorger, Christina S.

    2015-10-01

    An efficient and reliable method is introduced to understand the network behaviour of nano-fillers in a polymeric matrix under uniaxial strain coupled with small angle x-ray scattering measurements. The nanoparticles (carbon nanotubes) are conductive and the particles form a percolating network that becomes apparent source of electrical conduction and consequently the samples behave as a bulk conductor. Polyurethane based nanocomposites containing 2% w/w multiwall carbon nanotubes are studied. The electrical conductivity of the nanocomposite was (3.28×10-5s/m).The sample was able to be extended to an extension ratio of 1.7 before fracture. A slight variation in the electrical conductivity is observed under uniaxial strain which we attribute to the disturbance of conductive pathways. Further, this work is coupled with in- situ time resolved small angle x-ray scattering measurements using a synchrotron beam line to enable its measurements to be made during the deformation cycle. We use a multiscale structure to model the small angle x-ray data. The results of the analysis are interpreted as the presence of aggregates which would also go some way towards understanding why there is no alignment of the carbon nanotubes.

  2. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.

    PubMed

    Randeniya, Lakshman K; Bendavid, Avi; Martin, Philip J; Tran, Canh-Dung

    2010-08-16

    Unique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal-CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self-fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu-CNT and Au-CNT composite yarns prepared by this method have metal-like electrical conductivities (2-3 x 10(5) S cm(-1)) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30-50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.

  3. Electrical conductivity anomalies associated with circular lunar maria

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.

    1979-01-01

    A strong anisotropy is observed in magnetic field fluctuations measured by the Lunokhod 2 magnetometer located on the eastern edge of Mare Serenitatis. This anisotropy can be explained by a regional anomaly in the subsurface electrical conductivity distribution associated with the mare similar to the proposed conductivity anomaly associated with Mare Imbrium. The Serenitatis magnetic field anisotropy is compared to the field fluctuation measured by the Apollo 16 magnetometer 1100 km to the south, and this comparison indicates that the subsurface conductivity distribution can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Serenitatis. The decrease in electrical conductivity of the upper mantle beneath the mare may result from lower temperatures due to transport of thermal energy and radioactive heat sources to the surface during mare flooding. This proposed anomaly, along with that proposed for Mare Imbrium, strengthens the possibility of regional anomalies in electrical conductivity associated with all circular lunar maria.

  4. Consequences of electrical conductivity in an orb spider's capture web

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Edmonds, Donald

    2013-12-01

    The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.

  5. Consequences of electrical conductivity in an orb spider's capture web.

    PubMed

    Vollrath, Fritz; Edmonds, Donald

    2013-12-01

    The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action. PMID:24323174

  6. The mechanical and the electrical properties of conducting polypyrrole fibers

    NASA Astrophysics Data System (ADS)

    Foroughi, J.; Ghorbani, S. R.; Peleckis, G.; Spinks, G. M.; Wallace, G. G.; Wang, X. L.; Dou, S. X.

    2010-05-01

    The mechanical and the electrical properties of polypyrrole (PPy) fibers and electrochemically deposited PPy films were studied. It was found that the PPy fibers showed a significantly higher strength than the PPy films due to better orientation of the molecular structure. The electrochemically prepared PPy films had a higher electrical conductivity than that of the fibers at high temperature. At low temperature, the PPy fibers showed the higher conductivity. The conductivity results were analyzed in the frame of the three-dimensional variable range hopping model. The results showed that at room temperature the average hopping distance for the fibers was about 4 Å while for the films it increases to about 5.7 Å. This corresponds to about 1 and 2 monomer units in length for the fiber and film samples, respectively.

  7. Evaluation of electrical transverse conductivity of the unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, M.

    2016-01-01

    In this paper, a technique for the calculation of the electrical transverse conductivity of unidirectional carbon fiber reinforced polymer (CFRP), based on Markov chains, is proposed. Inspired by the microscopic cross-sectional structure of CFRP, an electrical percolation system is constructed. The effective transverse conductivity is derived from an equivalent conductance of the percolation network. To achieve such a determination, a notion of escape probability associated to absorbing Markov chains is applied. The obtained results are compared with those given by percolation theory; and also with published experimental data. Our results are shown to be in good agreement with the references. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  8. Spatial Variability of Electrical Conductivity in North Mississippi Loamy Soils

    NASA Astrophysics Data System (ADS)

    Twombly, J. E.; Fancher, C. W.; Sleep, M. D.; Aufman, M. S.; Holland, J. V.; Holt, R. M.; Kuszmaul, J. S.

    2004-05-01

    The use of non-contact electrical geophysical methods, such as electromagnetic induction (EM), to characterize and quantify spatial and temporal variations in soil properties is appealing due to low operational costs, rapid measurements, and device mobility. These methods are sensitive to soil electrical conductivity, which can vary with soil moisture, clay content, soil salinity, and the presence of electrically conductive minerals. We conducted a preliminary study to evaluate the controls on EM response in loamy soils present at the University of Mississippi (UM) Soil Moisture Observatory (SMO). The 5 acre SMO is located in a former agricultural field at the UM Biological Field Station, a 740 acre tract of land located 11 miles from the UM campus in Oxford, Mississippi. EM responses were surveyed along two intersecting transects using a Geonics EM38. The apparent electrical conductivity (EC) of the soil was determined in both a vertical and horizontal dipole position, which correspond to deep (~1m) and shallow (~0.5) measurements, respectively. Continuous soil samples were recovered from the transect points and analyzed for soil properties. Except for a weak negative correlation with moisture content, we found little direct correlation between EC and measured soil properties. EC variograms from surveys conducted on different dates consistently show a similar structure. Following a week of rain, three EM 38 surveys were conducted, each a week apart. During this survey period, a nearby meteorological station reported no significant precipitation, and the soils were drying. All EC variograms show similar spatial structures but decreasing amounts of variability consistent with drying and redistribution of soil moisture. These results suggest that soil physical properties, not soil moisture, control the spatial distribution of EC. Temporal variations in the variograms indicate a complex relationship between soil moisture and EC.

  9. Electrical conductivity in two mixed-valence liquids.

    PubMed

    Yao, Wenzhi; Kelley, Steven P; Rogers, Robin D; Vaid, Thomas P

    2015-06-01

    Two different room-temperature liquid systems were investigated, both of which conduct a DC electrical current without decomposition or net chemical transformation. DC electrical conductivity is possible in both cases because of the presence of two different oxidation states of a redox-active species. One system is a 1 : 1 molar mixture of n-butylferrocene (BuFc) and its cation bis(trifluoromethane)sulfonimide salt, [BuFc(+)][NTf2(-)], while the other is a 1 : 1 molar mixture of TEMPO and its cation bis(trifluoromethane)sulfonimide salt, [TEMPO(+)][NTf2(-)]. The TEMPO-[TEMPO(+)][NTf2(-)] system is notable in that it is an electrically conducting liquid in which the conductivity originates from an organic molecule in two different oxidation states, with no metals present. Single-crystal X-ray diffraction of [TEMPO(+)][NTf2(-)] revealed a complex structure with structurally different cation-anion interactions for cis- and trans [NTf2(-)] conformers. The electron transfer self-exchange rate constant for BuFc/BuFc(+) in CD3CN was determined by (1)H NMR spectroscopy to be 5.4 × 10(6) M(-1) s(-1). The rate constant allowed calculation of an estimated electrical conductivity of 7.6 × 10(-5)Ω(-1) cm(-1) for BuFc-[BuFc(+)][NTf2(-)], twice the measured value of 3.8 × 10(-5)Ω(-1) cm(-1). Similarly, a previously reported self-exchange rate constant for TEMPO/TEMPO(+) in CH3CN led to an estimated conductivity of 1.3 × 10(-4)Ω(-1) cm(-1) for TEMPO-[TEMPO(+)][NTf2(-)], a factor of about 3 higher than the measured value of 4.3 × 10(-5)Ω(-1) cm(-1).

  10. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties.

  11. Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab

    NASA Astrophysics Data System (ADS)

    Guo, Xinzhuan; Yoshino, Takashi

    2013-05-01

    Electrical conductivities of dense hydrous magnesium silicates (DHMS), phase A, super-hydrous phase B (SuB) and phase D, were measured by means of impedance spectroscopy in the frequency range of 10-1-106 Hz at temperatures up to 775, 700 and 700 K and pressures of 10, 18 and 22 GPa, respectively. For all phases, the increase in electrical conductivity (σ) with temperature follows the Arrhenian formula: σ=σ0exp(-(ΔH/kT)). The pre-exponential factors (σ0) and activation enthalpies (ΔH) of phase A, SuB and phase D yield values of 7.28±0.82 S/m and 0.77±0.01 eV, 292±48 S/m and 0.83±0.01 eV and 1342±154 and 0.75±0.01 eV, respectively. Higher pressure DHMS phases show higher conductivity values. The electrical conductivities of phase D and super hydrous phase B are about two and one orders of magnitude higher than that of phase A in the same temperature range, respectively. Although the proton conduction is considered to be a dominant mechanism, there is no clear relationship between water content and conductivity. Rather the conductivity of DHMS phase is closely related to the O⋯O distance. The conductivity-depth profiles for a cold subduction zone were constructed based on the phase proportion predicted in the descending slab. The results show distinctly lower conductivity values than those geophysically observed beneath the northeastern China and the Philippine Sea, where the cold slab stagnates in the mantle transition zone. Consequently, the DHMS phases themselves cannot be a main contributor to enhance the conductivity in the stagnant slab. Dehydration of the stagnant slab would strongly enhance the conductivities in the transition zone beneath northeastern China and Philippine Sea.

  12. Electrically conducting novel polymer films containing pi-stacks

    NASA Astrophysics Data System (ADS)

    Duan, Robert Gang

    1997-12-01

    The primary focus of this thesis is to expand our knowledge of ion radicals of π-dimers and π- stacks in solutions and apply these insights in the development and understanding of new electrically conducting polymers. Two types of the conducting polymers were investigated. The first is the conducting polymer composites embedded with π-stacks of ion radicals. Flexible and air stable n-typed conducting thin films were prepared from imide/poly(vinyl alcohol) aqueous solutions. Conducting thin films of terthiophene/poly(methyl methacrylate) were cast from hexafluoro-2-propanol. Effects of casting conditions on the morphology and conductivity of the films were investigated. These films were fully characterized by UV- vis, NIR, IR, XRD, SEM and ESR. In the second type of conducting polymer system, PAMAM dendrimers generation 1 through 5 were peripherally modified with cationically substituted naphthalene diimide anion radicals. NMR, UV, IR, CV and Elemental Analysis were used to characterize modified dendrimers. Reduction with sodium dithionite in solution showed anion radicals were aggregated into π-dimers and π- stacks. Formamide was used to cast conducting dendrimer films. ESCA, SEM and optical microscope were used to study the composition and the morphology of the films. XRD showed complete amorphous nature of these films. NIR revealed that the π-stack aggregation depend strongly on the casting temperature and the degree of reduction. Four- probe co-liner conductivity of the films is on the order of 10-2 to 10-1/ S/ cm-1. ESR and conductivity measurements also revealed the isotropic nature of the conductivity. Conductivity/humidity relationship was discovered by accidental breathing over the films. Using a home-made controlled humidity device and PACERTM hygrometer, the conductivity of the films can be varied quickly and reversibly within two orders of a magnitude. This phenomenon was probed with NIR, XRD and quartz crystal microbalance techniques. These

  13. Effect of electrically conducting walls on rotating magnetoconvection

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Weeks, Mark; Roberts, Paul

    2004-06-01

    In an experiment carried out by Aurnou and Olson [J. Fluid Mech. 430, 283 (2001)] thermal convection in a liquid gallium layer in the presence of a uniform vertical magnetic field was investigated. The critical Rayleigh number at the onset of magnetoconvection was determined as a function of the Chandrasekhar number Q (the ratio of the Lorentz force to the viscous force) and the Taylor number Ta (the squared ratio of the Coriolis force to the viscous force). In the experimental apparatus, the upper and lower boundaries of the liquid gallium layer were electrically conducting copper plate walls. This paper presents a study of the effect of electrically conducting walls on rotating magnetoconvection. It is shown that the electrical properties of the walls have significant effects on the characteristics of rotating magnetoconvection when both the Chandrasekhar number Q and the Taylor number Ta are sufficiently large. It is demonstrated that, as a consequence of the electrically conducting walls, oscillatory magnetoconvection can become steady and the critical Rayleigh number can change by as much as 60%. The problem of convectively driven Alfvén waves in a rotating fluid layer in the presence of a uniform vertical magnetic field is discussed in an appendix.

  14. Conductivity and electrical studies of plasticized carboxymethyl cellulose based proton conducting solid biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Isa, M. I. N.; Noor, N. A. M.

    2015-12-01

    In this paper, a proton conducting solid biopolymer electrolytes (SBE) comprises of carboxymethyl cellulose (CMC) as polymer host, ammonium thiocyanate (NH4SCN) as doping salt and ethylene carbonate (EC) as plasticizer has been prepared via solution casting technique. Electrical Impedance Spectroscopy (EIS) was carried out to study the conductivity and electrical properties of plasticized CMC-NH4SCN SBE system over a wide range of frequency between 50 Hz and 1 MHz at temperature range of 303 to 353 K. Upon addition of plasticizer into CMC-NH4SCN SBE system, the conductivity increased from 10-5 to 10-2 Scm-1. The highest conductivity was obtained by the electrolyte containing 10 wt.% of EC. The conductivity of plasticized CMC-NH4SCN SBE system by various temperatures obeyed Arrhenius law where the ionic conductivity increased as the temperature increased. The activation energy, Ea was found to decrease with enhancement of EC concentration. Dielectric studies for the highest conductivity electrolyte obeyed non-Debye behavior. The conduction mechanism for the highest conductivity electrolyte was determined by employing Jonsher's universal power law and thus, can be represented by the quantum mechanical tunneling (QMT) model.

  15. Oscillations of electrical conductivity in single bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Toimil-Molares, M. E.; Karim, S.; Neumann, R.

    2008-03-01

    Bismuth nanowires were electrochemically deposited in ion track-etched polycarbonate membranes. Single wires with diameters ranging between 70 and 550nm were created in membranes with one single nanopore and their electrical resistance was investigated while leaving them embedded in the template. The specific electrical conductivity oscillates as a function of wire diameter. The modulations are discussed on the basis of quantum-size effects which lead to a splitting of the energy bands into subbands and, thus, cause an oscillation of the density of states at the Fermi level depending on the diameter.

  16. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF

  17. Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    NASA Astrophysics Data System (ADS)

    Jamilpanah, Pouya; Pahlavanzadeh, Hassan; Kheradmand, Amanj

    2016-09-01

    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of nanoparticles in the fluid increases thermal conductivity, as it was predicted in all theoretical models. On the other hand, nano viscosity increases as the weight fraction increases while it decreases as temperature goes up. Electrical conductivity also increases with raising the temperature and weight fraction. Theoretical models were studied to predict Thermal conductivity, viscosity, and electrical conductivity of the nanofluid.

  18. Thermal and Electrical Conductivity Probe for Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm.

    The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left).

    In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive

    indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.

  19. Spatial-decomposition analysis of electrical conductivity in ionic liquid.

    PubMed

    Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2014-12-28

    The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1 μs in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale.

  20. Electrical conductivity of aqueous solutions of aluminum salts

    NASA Astrophysics Data System (ADS)

    Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M.

    2005-03-01

    We present experimental measurements of the specific electrical conductivity (σ) in aqueous solutions of aluminum salts at different temperatures, covering all salt concentrations from saturation to infinite dilution. The salts employed were AlCl3 , AlBr3 , AlI3 , and Al(NO3)3 , which present a 1:3 relationship between the electrical charges of anion and cation. In addition, we have measured the density in all ranges of concentrations of the four aqueous electrolyte solutions at 298.15K . The measured densities show an almost linear behavior with concentration, and we have fitted it to a second order polynomial with very high degree of approximation. The measurement of the specific conductivity at constant temperature reveals the existence of maxima in the conductivity vs concentration curves at molar concentrations around 1.5M for the three halide solutions studied, and at approximately 2M for the nitrate. We present a theoretical foundation for the existence of these maxima, based on the classical Debye-Hückel-Onsager hydrodynamic mean-field framework for electrical transport and its high concentration extensions, and also a brief consideration of ionic frictional coefficients using mode-coupling theory. We also found that the calculated values of the equivalent conductance vary in an approximately linear way with the square root of the concentration at concentrations as high as those where the maximum of σ appears. Finally, and for completeness, we have measured the temperature dependence of the electrical conductivity at selected concentrations from 283to353K , and performed a fit to an exponential equation of the Vogel-Fulcher-Tamman type. The values of the calculated temperatures of null mobility of the four salts are reported.

  1. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  2. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles.

    PubMed

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-01-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 10(5) S m(-1)) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333

  4. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-03-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m-1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors.

  5. Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles

    PubMed Central

    Han, Joong Tark; Choi, Sua; Jang, Jeong In; Seol, Seung Kwon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-01-01

    Nanocarbon-based conducting fibres have been produced using solution- or dry-spinning techniques. Highly conductive polymer-composite fibres containing large amounts of conducting nanomaterials have not been produced without dispersants, however, because of the severe aggregation of conducting materials in high-concentration colloidal solutions. Here we show that highly conductive (electrical conductivity ~1.5 × 105 S m−1) polymer-composite fibres containing carbon nanotubes and silver nanowires can be fabricated via a conventional solution-spinning process without any other treatment. Spinning dopes were fabricated by a simple mixing of a polyvinyl alcohol solution in dimethylsulfoxide with a paste of long multi-walled carbon nanotubes dispersed in organic solvents, assisted by quadruple hydrogen-bonding networks and an aqueous silver nanowire dispersion. The high electrical conductivity of the fibre was achieved by rearrangement of silver nanowires towards the fibre skin during coagulation because of the selective favourable interaction between the silver nanowires and coagulation solvents. The prepared conducting fibres provide applications in electronic textiles such as a textile interconnector of light emitting diodes, flexible textile heaters, and touch gloves for capacitive touch sensors. PMID:25792333

  6. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kim, Sang Won; Kim, Jeongmin; Kim, Un Jeong; Im, Kyuhyun; Park, Jong-Jin; Sung, Bong June

    2016-05-01

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs upon uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.

  7. The deep lunar electrical conductivity profile - Structural and thermal inferences

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Herbert, F.; Sonett, C. P.

    1982-01-01

    Simultaneous lunar surface and orbital magnetometer records are reexamined, to ascertain intervals which may be suitable for measuring lunar inductive response in the solar wind and terrestrial magnetosheath. Power spectral estimates of the response tangent to the lunar surface, defined in terms of transfer and gain functions, are obtained for the 0.0001-0.01 Hz frequency range. The maximum consistency of estimates from different time intervals is found when the initial analysis is limited to the tangential direction of maximum incident power, or that direction in which the ratio of signal to background noise is greatest. Spherically symmetric plasma confinement theory is used in the interpretation of transfer function data, by way of forward model calculations, under the assumption of continuous electrical conductivity increase with depth. Results are presented for internal electrical conductivity profile, metallic core radius, and selenotherm limits.

  8. Electrical Conductivity Measurements on Hydrous Carbonate Melts at Mantle Pressure

    NASA Astrophysics Data System (ADS)

    Sifre, D.; Gaillard, F.

    2012-04-01

    Electromagnetic methods image mantle regions in the asthenosphere with elevated conductivity (0.1 to 1 S.m-1), which constrasts with the conductivity of dry olivine (10-2 to 10-3 S.m-1). A correct interpretation of the petrological nature of the conductive mantle is critical for our understanding of mantle geodynamics because such conductive regions indicate mantle rocks with physical and chemical properties that importantly deviates from the canonical peridotites. For decades, such anomalously high mantle conductivities have been attributed to mineralogical defects associated to few tens of ppm water incorporated in olivine. Most recent experimental surveys, however, refute this hydrous olivine model. Conductive mantle regions could then reflect partial melting. The presence of melts in the Earth's mantle has long been proved by geochemical observations and experimental petrology on peridotite rocks. The requirement for melting in the asthenospheric mantle is the presence of volatile species (water, carbon dioxide, halogens). Small melt fractions are then produced by small volatile contents and they are the first liquids produced by melting magma. This study reports electrical conductivity measurements on such melts at mantle pressure and temperature. We investigated on melt chemical compositions produced by melting of peridotite that would interact with CO2-H2O and Cl. Such melts are carbonatite melts, carbonated silicate melts, hydrous carbonate melts, hydrous basalts. A new system allowing in situ electrical conductivity measurements in piston cylinder has been deployed. This design has been specifically adapted to perfom measurements on liquid samples with elevated electrical conductivities. The chemical compositions investigated are pure liquid CaCO3 and CaMg(CO3)2, to which, cloride (as salts), silicate (as basalts) and water (as brucite) have been added. Experiments have been realized at 1.5 and 2.7 GPa pressure and temperature of 1000-1700° C. Impedance

  9. Electrically Conductive Thick Film Made from Silver Alkylcarbamates

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan

    2010-10-01

    A homogeneous electrically conductive silver paste without solid or particle phase was developed using silver alkylcarbamates [(C n H2 n-1NHCOO)2Ag, n ≤ 4] as the precursor of the functional phase. The silver alkylcarbamates were light insensitive and had a low decomposition temperature (below 200°C). The paste was a non-Newtonian fluid with viscosity significantly depending on the content of the thickening agent ethyl cellulose. Array patterns with a resolution of 20 μm were obtained using this paste by a micropen direct-writing method. After the paste with about 48 wt.% silver methylcarbamate [(CH3NHCOO)2Ag] precursor was sintered at 180°C for 15 min, an electrically conductive network consisting of more than 95 wt.% silver was formed, and was found to have a volume electrical resistivity on the order of 10-5 Ω cm and a sheet electrical resistivity on the order of 10-2-10-3 Ω/□. The cohesion strength within the sintered paste and the adhesion strength between the sintered paste layer and the alumina ceramic substrate were tested according to test method B of the American Society for Testing and Materials standard D3359-08. None of the sintered paste layer was detached under the test conditions, and the cohesion and adhesion strengths met the highest grade according to the standard.

  10. Alternative methods for determining the electrical conductivity of core samples.

    PubMed

    Lytle, R J; Duba, A G; Willows, J L

    1979-05-01

    Electrode configurations are described that can be used in measuring the electrical conductivity of a core sample and that do not require access to the core end faces. The use of these configurations eliminates the need for machining the core ends for placement of end electrodes. This is because the conductivity in the cases described is relatively insensitive to the length of the sample. We validated the measurement technique by comparing mathematical models with actual measurements that were made perpendicular and paralled to the core axis of granite samples.

  11. Compensation Effect in Electrical Conduction Process: Effect of Substituent Group

    NASA Astrophysics Data System (ADS)

    Mitra, Bani; Misra, T. N.

    1987-05-01

    The semiconductive properties of Vitamin A acid (Retinoic Acid), a long chain conjugated polyene, were studied as a function of the adsorption of different vapours. A compensation effect was observed in the electrical conduction process; unlike that in Vitamin A alcohol and Vitamin A acetate the compensation temperature was observed on the lower side of the experimental temperature (T0≈285 K). It is concluded that the terminal \\diagdown\\diagupC=0 group conjugated to the polyene chain plays an important role in the manifestation of the compensation effect. Various conduction parameters have been evaluated.

  12. Temperature dependence of the electrical conductivity of imidazolium ionic liquids.

    PubMed

    Leys, Jan; Wübbenhorst, Michael; Preethy Menon, Chirukandath; Rajesh, Ravindran; Thoen, Jan; Glorieux, Christ; Nockemann, Peter; Thijs, Ben; Binnemans, Koen; Longuemart, Stéphane

    2008-02-14

    The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion.

  13. Orbital dynamics of two electrically charged conducting spheres

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Brent K.; Meyer, Deseree A.; Atkins, Brad M.; Franks, Gavin A.; Fuchs, Joshua T.; Li, Lulu; Sliger, Chase W.; Thompson, Jennifer E.

    2010-10-01

    The similar forms of Coulomb's law of electrostatics and Newton's law of gravitation suggest that two oppositely charged spheres can orbit each other by means of the electrostatic force. We demonstrate electrostatic binary orbits using two oppositely charged graphite coated Styrofoam® spheres. The experiment was conducted on the NASA aircraft Weightless Wonder which simulates weightless conditions. Videos of 23 orbital attempts were analyzed to investigate the dynamics and orbital stability of the two sphere system. The results support predictions of a recently developed theory that establishes criteria for stable orbits between two conducting, electrically charged spheres.

  14. Method for electrically isolating an electrically conductive member from another such member

    DOEpatents

    Tsang, K.L.; Chen, Y.

    1984-02-09

    The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.

  15. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  16. The electrical conductivity of silicate liquids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Scipioni, R.; Stixrude, L. P.

    2015-12-01

    Could the Earth have had a silicate dynamo early in its history? One requirement is that the electrical conductivity of silicate liquids be sufficiently high. However, very little is known about this property at the extreme conditions of pressure and temperature that prevailed in the magma ocean. We have computed from first principles molecular dynamics simulations the dc conductivity of liquid Silica SiO2 at pressure and temperature conditions spanning those of the magma ocean and super-Earth interiors. We find semi-metallic values of the conductivity at conditions typical of the putative basal magma ocean in the Early Earth. The variation of the conductivity with pressure and temperature displays interesting behavior that we rationalize on the basis of the closing the pseudo-gap at the Fermi level. For temperatures lower than T < 20,000 K electrical conductivity exhibits a maximum at intermediate compressions. We further explain this behavior in terms of stuctural changes that occur in silica liquid at high pressure; we find that the structure approaches that of the iso-electronic rare earth element Ne. We compare with Hugoniot data, including the equation of state, heat capacity, and reflectivity. The behavior of the heat capacity is different to that inferred from multiple Hugoniot experiments. These differences and the effect of including exact exchange on the calculations are discussed. Our results have important consequences for magnetic field generation in the early Earth and super-Earths.

  17. On the electrical conductivity of Ti-implanted alumina

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Park, H.-K.; Phillips, L.; Yu, K. M.; Brown, I. G.

    2012-03-15

    Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10{sup 16} cm{sup -2} and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10{sup 16} cm{sup -2}. The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory.

  18. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.

    PubMed

    Ivorra, Antoni; Al-Sakere, Bassim; Rubinsky, Boris; Mir, Lluis M

    2009-10-01

    Electroporation is the phenomenon in which cell membrane permeability is increased by exposing the cell to short high-electric-field pulses. Reversible electroporation treatments are used in vivo for gene therapy and drug therapy while irreversible electroporation is used for tissue ablation. Tissue conductivity changes induced by electroporation could provide real-time feedback of the treatment outcome. Here we describe the results from a study in which fibrosarcomas (n = 39) inoculated in mice were treated according to different electroporation protocols, some of them known to cause irreversible damage. Conductivity was measured before, within the pulses, in between the pulses and for up to 30 min after treatment. Conductivity increased pulse after pulse. Depending on the applied electroporation protocol, the conductivity increase after treatment ranged from 10% to 180%. The most significant conclusion from this study is the fact that post-treatment conductivity seems to be correlated with treatment outcome in terms of reversibility.

  19. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  20. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.

    PubMed

    Kranjc, M; Bajd, F; Serša, I; Miklavčič, D

    2014-06-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage-current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes.

  1. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  2. Electrical conductivity changes during irreversible electroporation treatment of brain cancer.

    PubMed

    Garcia, Paulo A; Rossmeisl, John H; Davalos, Rafael V

    2011-01-01

    Irreversible electroporation (IRE) is a new minimally invasive technique to kill tumors and other undesirable tissue in a non-thermal manner. During an IRE treatment, a series of short and intense electric pulses are delivered to the region of interest to destabilize the cell membranes in the tissue and achieve spontaneous cell death. The alteration of the cellular membrane results in a dramatic increase in electrical conductivity during IRE as in other electroporation-based-therapies. In this study, we performed the planning and execution of an IRE brain cancer treatment using MRI reconstructions of the tumor and a multichannel array that served as a stereotactic fiducial and electrode guide. Using the tumor reconstructions within our numerical simulations, we developed equations relating the increase in tumor conductivity to calculated currents and volumes of tumor treated with IRE. We also correlated the experimental current measured during the procedure to an increase in tumor conductivity ranging between 3.42-3.67 times the baseline conductivity, confirming the physical phenomenon that has been detected in other tissues undergoing similar electroporation-based treatments. PMID:22254416

  3. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.

    PubMed

    Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola

    2016-11-01

    In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. PMID:27516283

  4. What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene-Semiconductor Composite-Based Photocatalysis?

    PubMed

    Weng, Bo; Xu, Yi-Jun

    2015-12-23

    The extraordinary electrical conductivity of graphene has been widely regarded as the bible in literature to explain the activity enhancement of graphene-semiconductor composite photocatalysts. However, from the viewpoint of an entire composite-based artificial photosynthetic system, the significant matter of photocatalytic performance of graphene-semiconductor composite system is not just a simple and only issue of excellent electrical conductivity of graphene. Herein, the intentional design of melamine resin monomers functionalized three-dimensional (3D) graphene (donated as MRGO) with significantly deteriorated electrical conductivity enables us to independently focus on studying the geometry effect of MRGO on the photocatalytic performance of graphene-semiconductor composite. By coupling semiconductor CdS with graphene, including MRGO and reduced graphene oxide (RGO), it was found that the CdS-MRGO composites exhibit much higher visible light photoactivity than CdS-RGO composites although the electrical conductivity of MRGO is remarkably much lower than that of RGO. The comparison characterizations evidence that such photoactivity enhancement is predominantly attributed to the restacking-inhibited 3D architectural morphology of MRGO, by which the synergistic effects of boosted separation and transportation of photogenerated charge carriers and increased adsorption capacity can be achieved. Our work highlights that the significant matter of photocatalytic performance of graphene-semiconductor composite is not a simple issue on how to harness the electrical conductivity of graphene but the rational ensemble design of graphene-semiconductor composite, which includes the integrative optimization of geometrical and electrical factors of individual component and the interface composition. PMID:26624808

  5. What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene-Semiconductor Composite-Based Photocatalysis?

    PubMed

    Weng, Bo; Xu, Yi-Jun

    2015-12-23

    The extraordinary electrical conductivity of graphene has been widely regarded as the bible in literature to explain the activity enhancement of graphene-semiconductor composite photocatalysts. However, from the viewpoint of an entire composite-based artificial photosynthetic system, the significant matter of photocatalytic performance of graphene-semiconductor composite system is not just a simple and only issue of excellent electrical conductivity of graphene. Herein, the intentional design of melamine resin monomers functionalized three-dimensional (3D) graphene (donated as MRGO) with significantly deteriorated electrical conductivity enables us to independently focus on studying the geometry effect of MRGO on the photocatalytic performance of graphene-semiconductor composite. By coupling semiconductor CdS with graphene, including MRGO and reduced graphene oxide (RGO), it was found that the CdS-MRGO composites exhibit much higher visible light photoactivity than CdS-RGO composites although the electrical conductivity of MRGO is remarkably much lower than that of RGO. The comparison characterizations evidence that such photoactivity enhancement is predominantly attributed to the restacking-inhibited 3D architectural morphology of MRGO, by which the synergistic effects of boosted separation and transportation of photogenerated charge carriers and increased adsorption capacity can be achieved. Our work highlights that the significant matter of photocatalytic performance of graphene-semiconductor composite is not a simple issue on how to harness the electrical conductivity of graphene but the rational ensemble design of graphene-semiconductor composite, which includes the integrative optimization of geometrical and electrical factors of individual component and the interface composition.

  6. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  7. Electrical conduction phenomena in coked industrial reforming catalysts

    SciTech Connect

    Daveau, S.; Bonanos, N.

    1997-02-01

    Industrial Pt/Al{sub 2}O{sub 3} reforming catalysts containing up to 26 wt% of carbon have been studied by admittance spectroscopy. Spectra obtained on heating in nitrogen in the range 200--500 C displayed low frequency relaxations, which were interpreted in terms of a network of carbon islands linked by surface ionic conduction. During subsequent cooling, these features disappeared, suggesting that they were generated by dissociation of strongly bound water. Isothermal ac measurements in nitrogen showed that the conductance was determined by the carbon content. Similar measurements made in dilute oxygen showed that the conductance decreased with burn-off of carbon. Analysis of gases evolved on heating revealed aqueous and chloride species, originating from acid sites on the catalyst support. The results suggest that electrical techniques could be used to characterize coked reforming catalysts.

  8. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  9. Testing and Optimization of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)

    2001-01-01

    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  10. Electrically conductive gold- and copper-metallized DNA origami nanostructures.

    PubMed

    Geng, Yanli; Pearson, Anthony C; Gates, Elisabeth P; Uprety, Bibek; Davis, Robert C; Harb, John N; Woolley, Adam T

    2013-03-12

    This work demonstrates the use of a circuit-like DNA origami structure as a template to fabricate conductive gold and copper nanostructures on Si surfaces. We improved over previous results by using multiple Pd seeding steps to increase seed uniformity and density. Our process has also been characterized through atomic force microscopy, particle size distribution analysis, and scanning electron microscopy. We found that four successive Pd seeding steps yielded the best results for electroless metal plating on DNA origami. Electrical resistance measurements were done on both Au- and Cu-metallized nanostructures, with each showing ohmic behavior. Gold-plated DNA origami structures made under optimal conditions had an average resistivity of 7.0 × 10(-5) Ω·m, whereas copper-metallized structures had a resistivity as low as 3.6 × 10(-4) Ω·m. Importantly, this is the first demonstration of electrically conductive Cu nanostructures fabricated on either DNA or DNA origami templates. Although resistivities for both gold and copper samples were larger than those of the bulk metal, these metal nanostructures have the potential for use in electrically connecting small structures. In addition, these metallized objects might find use in surface-enhanced Raman scattering experiments.

  11. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    PubMed

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  12. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  13. Intrinsic high electrical conductivity of stoichiometric SrNb O3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Oka, Daichi; Hirose, Yasushi; Nakao, Shoichiro; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-01

    SrV O3 and SrNb O3 are perovskite-type transition-metal oxides with the same d1 electronic configuration. Although SrNb O3 (4 d1 ) has a larger d orbital than SrV O3 (3 d1 ), the reported electrical resistivity of SrNb O3 is much higher than that of SrV O3 , probably owing to nonstoichiometry. In this paper, we grew epitaxial, high-conductivity stoichiometric SrNb O3 using pulsed laser deposition. The growth temperature strongly affected the Sr/Nb ratio and the oxygen content of the films, and we obtained stoichiometric SrNb O3 at a very narrow temperature window around 630 °C. The stoichiometric SrNb O3 epitaxial thin films grew coherently on KTa O3 (001) substrates with high crystallinity. The room-temperature resistivity of the stoichiometric film was 2.82 ×10-5Ω cm , one order of magnitude lower than the lowest reported value of SrNb O3 and comparable with that of SrV O3 . We observed a T -square dependence of resistivity below T*=180 K and non-Drude behavior in near-infrared absorption spectroscopy, attributable to the Fermi-liquid nature caused by electron correlation. Analysis of the T -square coefficient A of resistivity experimentally revealed that the 4 d orbital of Nb that is larger than the 3 d ones certainly contributes to the high electrical conduction of SrNb O3 .

  14. The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Fratta, Dante; Wang, Yu-Hsing

    2015-03-01

    Statistical models have been widely used in soil science, hydrogeology and geotechnical engineering to predict the hydraulic conductivity of unsaturated soils. However, no effective method is available yet for the determination of the associated model parameters such as the tortuosity factor q. Considering the analogy between water flow and electrical current flow in a porous medium, in this study, we proposed to improve the predictive capability of statistical models by determining the tortuosity factor q using electrical conductivity (EC) measurements. We first developed a theoretical hydraulic-electrical conductivity (K-EC) relationship for unsaturated soils based on the bundle of capillary tubes model. This K-EC relationship was then used to form a new unsaturated soil EC model, which was verified using published experimental data. The tortuosity factor q can then be determined by fitting the new EC model to soil EC measurements. Experimental data of six soils were used to test the effectiveness of this method and it was shown that the prediction was significantly improved when compared with the one using the commonly suggested value q = 0.5. The associated root-mean-square-deviation (RMSD) between measurements and predictions is only 0.28 when q is obtained by using our proposed method. In contrast, the RMSD is 0.97 when q is simply assumed as 0.5.

  15. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  16. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  17. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  18. The bedrock electrical conductivity structure of Northern Ireland

    NASA Astrophysics Data System (ADS)

    Beamish, David

    2013-08-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the conductivity estimates using a lithological classification of the bedrock formations. A 1:250k geological classification of the data is performed leading to a 56 unit lithological and geostatistical analysis of the conductivity information. The central moments (medians) of the classified data are used to provide a new digital bedrock conductivity map of Northern Ireland with values ranging from 0.32 to 41.36 mS m-1. This baseline map of conductivities displays a strong correspondence with an existing 4 quadrant, chrono-geological description of Northern Ireland. Once defined, the baseline conductivity map allows departures from the norm to be assessed across each specific lithological unit. Bulk electrical conductivity is controlled by a number of petrophysical parameters and it is their variation that is assessed by the procedures employed. The igneous rocks are found to display the largest variability in conductivity values and many of the statistical distributions are multi-modal. A sequence of low-value modes in these data are associated with intrusives within volcanic complexes. These and much older Neoproterzoic rocks appear to represent very low porosity formations that may be the product of rapid cooling during emplacement. By way of contrast, extensive flood basalts (the Antrim lavas) record a well-defined and much higher median value (12.24 mS m-1) although they display complex spatial behaviour in detail. Sedimentary rocks appear to follow the broad behaviours anticipated

  19. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  20. Electrical conductivity of insulating polymer nanoscale layers: environmental effects.

    PubMed

    Bliznyuk, Valery; Galabura, Yuriy; Burtovyy, Ruslan; Karagani, Pranay; Lavrik, Nickolay; Luzinov, Igor

    2014-02-01

    As electronic devices are scaled down to submicron sizes, it has become critical to obtain uniform and robust insulating nanoscale polymer films. For that reason, we address the electrical properties of grafted polymer layers made of poly(glycidyl methacrylate), polyacrylic acid, poly(2-vinylpyridine), and polystyrene with thicknesses of 10-20 nm. It was found that layers insulating under normal ambient conditions can display a significant increase in conductivity as the environment changes. Namely, we demonstrated that the in-plane electrical conductivity of the polymer grafted layers can be changed by at least two orders of magnitude upon exposure to water or organic solvent vapors. Conductive properties of all polymer grafted films under study could also be significantly enhanced with an increase in temperature. The observed phenomenon makes possible the chemical design of polymer nanoscale layers with reduced or enhanced sensitivity to the anticipated change in environmental conditions. Finally, we demonstrated that the observed effects could be used in a micron-sized conductometric transducing scheme for the detection of volatile organic solvents.

  1. Miniatuization of the flowing fluid electric conductivity loggingtec hnique

    SciTech Connect

    Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William

    2005-10-19

    An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.

  2. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  3. Gas-Tolerant Device Senses Electrical Conductivity of Liquid

    NASA Technical Reports Server (NTRS)

    O'Connor, Edward W.

    2005-01-01

    The figure depicts a device for measuring the electrical conductivity of a flowing liquid. Unlike prior such devices, this one does not trap gas bubbles entrained in the liquid. Usually, the electrical conductivity of a liquid is measured by use of two electrodes immersed in the liquid. A typical prior device based on this concept contains large cavities that can trap gas. Any gas present between or near the electrodes causes a significant offset in the conductivity reading and, if the gas becomes trapped, then the offset persists. Extensive tests on two-phase (liquid/ gas) flow have shown that in the case of liquid flowing along a section of tubing, gas entrained in the liquid is not trapped in the section as long as the inner wall of the section is smooth and continuous, and the section is the narrowest tubing section along the flow path. The design of the device is based on the foregoing observation: The electrodes and the insulators separating the electrodes constitute adjacent parts of the walls of a tube. The bore of the tube is machined to make the wall smooth and to provide a straight flow path from the inlet to the outlet. The diameter of the electrode/insulator tube assembly is less than the diameter of the inlet or outlet tubing. An outer shell contains the electrodes and insulators and constitutes a leak and pressure barrier. Any gas bubble flowing through this device causes only a momentary conductivity offset that is filtered out by software used to process the conductivity readings.

  4. Measurements of middle-atmosphere electric fields and associated electrical conductivities

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.; Mitchell, J. D.

    1981-01-01

    A simple antenna for measuring the vertical electric field in the 'middle atmosphere' has been flown on a number of rocket-launched parachute-borne payloads. The data from the first nine such flights, launched under a variety of geophysical conditions, are presented, along with electrical conductivities measured simultaneously. The data include indications of layered peaks of several volts per meter in the mesospheric field at high and low latitudes in situations of relatively low conductivity. During an auroral 'REP' event the electric field reversed direction in the lower stratosphere, accompanied by a substantial enhancement in conductivity. The data generally do not confirm speculations based only on the extension of the thunderstorm circuit from below or the mapping of ionospheric and magnetospheric fields from above, but seem to require, in addition, internal generation processes in the middle atmosphere.

  5. A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation

    SciTech Connect

    Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

    2014-05-01

    As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

  6. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  7. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  8. Formulation of electrically conductive, thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Shai, M. C.

    1977-01-01

    Formulation of electrically conductive, thermal-control coatings was undertaken for use on the International Sun Earth Explorer (ISEE) spacecraft. Unsuccessful formulation efforts as well as the successful use of oxide pigments fired at 1175 C are described. Problems attributed to reactivity of specific coating vehicles exposed to high humidity are discussed. Measurement and testing methods, including resulting data are mentioned, but the emphasis, in this report, is placed on coating formulation and application techniques. Methods of varying, as desired, optical properties are also described as well as formulations of white, low-absorptance coatings.

  9. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  10. Estimation of electrical conductivity of a layered spherical head model using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Fernández-Corazza, M.; von-Ellenrieder, N.; Muravchik, C. H.

    2011-12-01

    Electrical Impedance Tomography (EIT) is a non-invasive method that aims to create an electrical conductivity map of a volume. In particular, it can be applied to study the human head. The method consists on the injection of an unperceptive and known current through two electrodes attached to the scalp, and the measurement of the resulting electric potential distribution at an array of sensors also placed on the scalp. In this work, we propose a parametric estimation of the brain, scalp and skull conductivities using EIT over an spherical model of the head. The forward problem involves the computation of the electric potential on the surface, for given the conductivities and the injection electrode positions, while the inverse problem consists on estimating the conductivities given the sensor measurements. In this study, the analytical solution to the forward problem based on a three layer spherical model is first described. Then, some measurements are simulated adding white noise to the solutions and the inverse problem is solved in order to estimate the brain, skull and scalp conductivity relations. This is done with a least squares approach and the Nelder-Mead multidimensional unconstrained nonlinear minimization method.

  11. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  12. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films

    PubMed Central

    Worfolk, Brian J.; Andrews, Sean C.; Park, Steve; Reinspach, Julia; Liu, Nan; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications. PMID:26515096

  13. Electrical conduction in nanodomains in congruent lithium tantalate single crystal

    SciTech Connect

    Cho, Yasuo

    2014-01-27

    The electrical current flow behavior was investigated for nanodomains formed in a thin congruent lithium tantalate (LiTaO{sub 3}) single-crystal plate. When the nanodomains were relatively large, with diameters of about 100 nm, current flow was detected along the domain wall. However, when they were about 40 nm or smaller, the current flowed through the entire nanodomain. Schottky-like rectifying behavior was observed. Unlike the case of LiNbO{sub 3}, optical illumination was not required for current conduction in LiTaO{sub 3}. A clear temperature dependence of the current was found indicating that the conduction mechanism for nanodomains in LiTaO{sub 3} may involve thermally activated carrier hopping.

  14. Electrical conductivity measurements on disk-shaped samples.

    PubMed

    de Boor, J; Zabrocki, K; Frohring, J; Müller, E

    2014-07-01

    We have developed a sample holder design that allows for electrical conductivity measurements on a disk-shaped sample. The sample holder design is based on and compatible with popular measurement systems that are currently restricted to bar-shaped samples. The geometrical correction factors which account for the adjusted measurement configuration were calculated using finite element modeling for a broad range of sample and measurement geometries. We also show that the modeling results can be approximated by a simple analytical fit function with excellent accuracy. The proposed sample holder design is compatible with a concurrent measurement of the Seebeck coefficient. The chosen sample geometry is furthermore compatible with a thermal conductivity measurement using a laser flash apparatus. A complete thermoelectric characterization without cutting the sample is thus possible.

  15. Interplanetary double-shock ensembles with anomalous electrical conductivity

    NASA Technical Reports Server (NTRS)

    Dryer, M.

    1972-01-01

    Similarity theory is applied to the case of constant velocity, piston-driven, shock waves. This family of solutions, incorporating the interplanetary magnetic field for the case of infinite electric conductivity, represents one class of experimentally observed, flare-generated shock waves. This paper discusses the theoretical extension to flows with finite conductivity (presumably caused by unspecified modes of wave-particle interactions). Solutions, including reverse shocks, are found for a wide range of magnetic Reynolds numbers from one to infinity. Consideration of a zero and nonzero ambient flowing solar wind (together with removal of magnetic considerations) enables the recovery of earlier similarity solutions as well as numerical simulations. A limited comparison with observations suggests that flare energetics can be reasonably estimated once the shock velocity, ambient solar wind velocity and density, and ambient azimuthal Alfven Mach number are known.

  16. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Duba, A.

    1986-01-01

    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 magnitudes greater than rock forming minerals such as Olivine up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at grain boundaries. The environment in the wake of the space station can be exploited to produce conditions which will allow pyrolysis of carbonaceous chondrites. An experimental package consisting of a one square meter shield attached to a 15 cm diameter by 40 cm long furnace and tied to a conductance bridge, furnace controller, and digital voltmeter inside the space station via umbilical cable could make the required measurements. Since heating rates as low as 0.1 C/hour are required to study kinetics of the pyrolysis reations which are the cause of the high conductivity of the carbonaceous chondrites, experimental times up to 3 months will be needed.

  17. Study for Electric Device Assembly Process Using Conductive Adhesive

    NASA Astrophysics Data System (ADS)

    Fujino, Junji

    Electric devices with semiconductors are applied to all apparatus including substation equipment, transport machines, home electronics, and cellular phones. Power modules deal large current, and high frequency/optical modules control GHz band signals. As a result, these semiconductors have more than 100 times heat density of memory or MPU chips. Pb-rich high temperature solder and expensive Au-rich solder are applied to these modules, however, thermal stress might be a problem not only for long-term reliability but also for the initial characteristics. The authors studied the assembly of these electric devices using conductive adhesive as a substitute bonding material. We proved that atmospheric aluminum oxides caused electric resistance and that power chips with long rectangle sides over 10 mm have a much larger thermal resistance than theoretical values. We found that it is effective to scratch and remove these oxides through transferred adhesive on aluminum electrodes and to diebond them onto the solder projection previously formed on the die pads.

  18. Printability and Electrical Conductivity of UV Curable MWCNT Ink

    NASA Astrophysics Data System (ADS)

    Ortega, Ada; Park, Byungwoo; Kim, Nam Soo

    2015-03-01

    Composites reinforced with multiwalled carbon nanotubes (MWCNT) in a photosensitive acrylic matrix were successfully synthesized and their printing, rheological, and electrical behavior was characterized. The shape of the reinforcement MWCNT particles was analyzed by transmission electron microscopy. The MWCNT were mixed in the acrylic polymer at increasing concentrations until the percolation threshold was determined at 2 wt.% with a conductivity of 4.26 × 10-4 S/cm. The large increase in viscosity with addition of MWCNT showed the need for a printing system capable of dispensing solutions of up to 613 × 103 cp. Lines were printed with a precision dispensing system mounted in computer controlled x-y-z stages, while an integrated ultraviolet light emission diode dot with a single wavelength of 385 nm cured seconds after the ink was dispensed. The wetting properties of the composite with respect to polyester, polyethylene terephthalate, polyimide, and paper films were analyzed with a goniometer. The relationship between the contact angle, pattern accuracy, and electrical conductivity was determined for each substrate.

  19. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  20. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  1. Electrical conductivity of shocked water from Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2005-07-01

    We present Density Functional Theory (DFT) calculations of water in a region of phase space of interest in shock experiments. The onset of electrical conductivity in shocked water is determined by ionic conductivity, with the electron contribution dominating at higher pressures. The ionic contribution to the conduction is calculated from proton diffusion (Green-Kubo formula) and the electronic contribution is calculated using the Kubo-Greenwood formula [1]. The calculations are performed with VASP, a plane-wave pseudopotential code. At 2000K and a density of 2.3 g/cc, we find a significant dissociation of water into H, OH, and H3O, not only intermittent formation of OH - H3O pairs as suggested earlier for 2000 K and 1.95 g/cc [2]. The calculated conductivity is compared to experimental data [3]. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Safety Administration under contract DE-AC04-94AL85000. This project was supported by the Sandia LDRD office. [1] M. P. Desjarlais, J. D. Kress, and L. A. Collins; Phys. Rev. B 66, 025401 (2002). [2] E. Schwegler, et al. Phys. Rev. Lett. 87, 265501 (2001). [3] P.M. Celliers, et. al. Physics of Plasmas 11, L41 (2004).

  2. Electrical conductivity of shocked water from density functional theory.

    SciTech Connect

    Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

    2005-07-01

    We present Density Functional Theory (DFT) calculations of water in a region of phase space of interest in shock experiments. The onset of electrical conductivity in shocked water is determined by ionic conductivity, with the electron contribution dominating at higher pressures. The ionic contribution to the conduction is calculated from proton diffusion (Green-Kubo formula) and the electronic contribution is calculated using the Kubo-Greenwood formula [1]. The calculations are performed with VASP, a plane-wave pseudopotential code. At 2000K and a density of 2.3 g/cc, we find a significant dissociation of water into H, OH, and H3O, not only intermittent formation of OH - H3O pairs as suggested earlier for 2000 K and 1.95 g/cc [2]. The calculated conductivity is compared to experimental data [3]. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Safety Administration under contract DE-AC04-94AL85000. This project was supported by the Sandia LDRD office. [1] M. P. Desjarlais, J. D. Kress, and L. A. Collins; Phys. Rev. B 66, 025401 (2002). [2] E. Schwegler, et al. Phys. Rev. Lett. 87, 265501 (2001). [3] P.M. Celliers, et. al. Physics of Plasmas 11, L41 (2004).

  3. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V). PMID:17174677

  4. Electric pulp tester conductance through various interface media.

    PubMed

    Mickel, André K; Lindquist, Kimberly A D; Chogle, Sami; Jones, Jefferson J; Curd, Francis

    2006-12-01

    A conducting media is necessary when using an electric pulp tester (EPT). The objective of this study was to observe differences in conductance through various media. We hypothesized that variations in current conductance through different media exist. The pulp chamber of a freshly extracted premolar was exposed, and the cathode of a voltmeter was inserted into the pulpal tissue. The anode was coupled to the EPT handpiece. The measurement taken during dry (no interface media) EPT tip-to-tooth contact was 0 V, which served as negative control. EPT tip directly touching the cathode measured 3.9V and served as positive control. A number of media readily available in the dental office were tested. Data was analyzed using single factor ANOVA. Listerine (3.3) conducted the most voltage (p<0.5). Of nonliquids, K-Y Brand UltraGel and Crest Baking Soda & Peroxide Whitening Tartar Control toothpaste recorded significantly (p<0.05) higher voltage readings (1.4 V).

  5. Synthesis and applications of electrically conducting polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize

  6. Fast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure

    PubMed Central

    2016-01-01

    Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garnets and garnets in general. In this study, single-crystal X-ray diffraction confirms the presence of space group I4̅3d also for Li7–3xFexLa3Zr2O12. The crystal structure was characterized by X-ray powder diffraction, single-crystal X-ray diffraction, neutron powder diffraction, and Mößbauer spectroscopy. The crystal–chemical behavior of Fe3+ in Li7La3Zr2O12 is very similar to that of Ga3+. The symmetry reduction seems to be initiated by the ordering of Fe3+ onto the tetrahedral Li1 (12a) site of space group I4̅3d. Electrochemical impedance spectroscopy measurements showed a Li-ion bulk conductivity of up to 1.38 × 10–3 S cm–1 at room temperature, which is among the highest values reported for this group of materials. PMID:27570369

  7. Gellan gum-graft-polyaniline--An electrical conducting biopolymer.

    PubMed

    Karthika, J S; Vishalakshi, B; Naik, Jagadish

    2016-01-01

    Grafting of polyaniline (PANI) on to gellan gum (GG) was carried out in the presence of catalytic amount of ammonium peroxydisulfate (APS) as oxidant/initiator under mild acidic conditions by microwave irradiation technique. The grafting condition was optimized by varying the microwave power, exposure time and the composition of the reaction mixture. The graft copolymer GG-g-PANI was characterized by FTIR, TGA, UV/vis, (1)H NMR and SEM techniques. The characteristic peaks at 1506, 1462, 1070 and 830 cm(-1) in the IR spectrum and signals at 7.3, 7.2, 7.1 and 4.0 δ in the (1)H NMR spectrum confirms the grafting process. The TGA data reveals GG-g-PANI to be thermally less stable than GG. The optimum grafting was observed when the reaction mixture containing 0.066 mmol APS, 0.1M aniline, 1M hydrochloric acid and 0.1g/dL GG was exposed to 80 W microwave power for 40s. The DC and AC conductivity of the GG-g-PANI were measured using the 'Two-point probe' method based on which the dielectric properties were evaluated. GG-g-PANI exhibited appreciable electrical conductivity, which increased with the extent of grafting. The results indicate threefold increase in DC conductivity of graft copolymer as compared to GG.

  8. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  9. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. PMID:27214752

  10. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites

    NASA Astrophysics Data System (ADS)

    Brigandi, Paul James

    The use of multiphase polymer blends provides unique morphologies and properties to reduce the percolation concentration and increase conductivity of carbon-based polymer composites. These systems offer improved conductivity, temperature stability and selective distribution of the conductive filler through unique morphologies at significantly lower conductive filler concentration. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The polymer blend phase morphology, filler distribution, electrical conductivity, and rheological properties of CB-filled PP/PMMA/EAA conductive polymer composites were determined. Thermodynamic and kinetic parameters were found to influence the morphology development and final composite properties. The morphology and CB distribution were found to be kinetically driven when annealed for a short period of time following the shear-intensive mixing process, whereas the three-phase polymer blend morphology is driven by thermodynamics when given sufficient time under high temperature annealing conditions in the melt state. At short annealing times, the CB distribution was influenced by the compounding sequence where the CB was added after being premixed with one of the polymer phases or directly added to the three phase polymer melt, but again was thermodynamically driven at longer annealing times with the CB migrating to the EAA phase. The resistivity was found to decrease by a statistically significant amount to similar levels for all of the composite systems with increasing annealing time, providing evidence of gradual phase coalescence to a tri-continuous morphology and CB migration. The addition of CB via the PP and EAA masterbatch results in significantly faster percolation and lower resistivity compared to when added direct to the system during compounding after 30 minutes annealing by a statistically significant amount. Dynamic oscillatory shear rheology using

  11. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOEpatents

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  12. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  13. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  14. Formulation of electrically conductive thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Shai, M. C.

    1978-01-01

    The development and formulation of electrically conductive thermal control coating was undertaken for use on the International Sun Earth Explorer spacecraft. The primary effort was to develop a coating with a bulk resistivity of less than 100,000 ohm/sqm, an optical absorptance of approximately 0.55, and a normal emittance of 0.90. The required stability in space called for a bulk resistivity of less than 100,000 ohm/sq m, an absorptance of less than 0.67, and a normal emittance of 0.90 after exposure to approximately 4 x 10 to the 16th proton/sq cm of solar-wind particles and 5300 equivalent sun-hours. These exposures represent 2 years of ISEE flight conditions. Both the unsuccessful formulation efforts and the successful use of oxide pigments fired at 1448 K are described. Problems relative to the reactivity of specific coating vehicles exposed to high humidity are discussed.

  15. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  16. Electrical conductivity of intermediate magmas from Uturuncu Volcano (Bolivia)

    NASA Astrophysics Data System (ADS)

    Laumonier, Mickael; Gaillard, Fabrice; Sifre, David

    2015-04-01

    Magmas erupted at Uturuncu volcano (South Bolivia) comes from the Altiplano-Puna Magma Body (APMB, Chile-Bolivia), a crustal massive body of 80 km long by 10 km thick located at ~ 35 km depth named. Recent magneto telluric surveys reveal a resistivity lower than 1 ohm.m due to the presence of melt which could result in the reactivation of the volcano. In order to better constrain the resistivity profiles and thus the conditions of magma storage of the APMB, we have performed in situ electrical measurements on natural dacites and andesites from Uturuncu with a 4-wire set up in a piston cylinder and internally heated pressure vessel. The range of temperature (500 to 1300°C), pressure (0.3 to 2 Gpa), and the various water contents covers the respective ranges occurring at natural conditions. The results show that the conductivity increases with the temperature and the water content but slightly decreases with the pressure. Then a model was built from these results so as to help in (i) interpreting the electrical signature of natural magmas, (ii) constraining their conditions (chemical composition, temperature, pressure, water content, melt fraction) from the source to the storage location and (iii) providing information on the interior structure of a volcano and its reservoir.

  17. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Duba, AL

    1987-01-01

    Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

  18. 2D and 3D Electrical Resistivity Tomography imaging of earthquake related ground deformations at the Ancient Roman Forum and Isis Temple of Baelo Claudia (Cádiz, South Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.

    2010-05-01

    The ancient roman city of Baelo Claudia has been subject of several papers on earthquake environmental effects (EEE) and well as earthquake archaeological effects (EAE). During the field training course on archaeoseismology and palaeoseismology conducted in September 2009 (INQUA-IGCP567 Workshop) held at Baelo Claudia, four Electric Resistivity Tomography (ERT) profiles were carried out, by the teams of the Salamanca University (Spain), RWTH Aachen University (Germany) and the Geological Survey of Spain (IGME). ERT surveys were developed in the eastern side of the ancient roman Forum across the unexcavated sector of the archaeological site heading on the 1st Century AD Isis Temple. Each ERT profile was constituted by a 48 multielectrode array with spacing of 2 m resulting in a total length of investigation of around 384 m. ERT lines were separated 10 m each other resulting in a total research area of 3840 m2 to a mean investigation depth of 16 m. The selected survey configurations were Pole-Dipole and Wenner in order to get detailed information about lateral resistivity contrasts, but with a reasonable depth of investigation. The resulting 2D resistivity pseudosections clearly display deformations of the buried roman pavements which propagated in depth within the pre-roman clayey substratum of the Bolonia Bay area.. 3D modelling of the 2D pseudosections indicates that the observed deformations are related to near-surface landsliding, being possible to calculate the minimum volume of mobilized material. ERT 3D imaging allow to refine previous GPR surveys conducted at this same area and to get a subsurface picture of ground deformations caused by repeated earthquakes during the 1st and 3rd Centuries AD. Preliminary calculated volume for the mobilized materials affecting the foundations of the Isis Temple and Forum clearly points to a minimum ESI-07 VIII Intensity validating previous research in the zone. This study has been supported by the Spanish Research Projects

  19. Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method

    PubMed Central

    Dalir, Nemat

    2014-01-01

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. PMID:27433511

  20. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  1. Relationships Between Electrical Conductivity - Water Content, Water Potential and Unsaturated Hydraulic Conductivity for Three Soils

    NASA Astrophysics Data System (ADS)

    Ruy, S.; Doussan, C.

    2006-05-01

    In soil physics, water retention and hydraulic conductivity are key parameters for predicting water fluxes in soils. Determination of these hydrodynamic characteristics in the lab, particularly unsaturated hydraulic conductivity, is most often complicated, time consuming and error-prone. These difficulties often prohibit the examination of numerous soil samples for determining these parameters as would be necessary to get a good estimation of the field variability. In this case, an indirect and easy to measure variable, closely linked to water retention or hydraulic conductivity, would be helpful in the assessment of these parameters. Electrical conductivity (EC) is a good candidate for such a variable because, in a porous medium, its magnitude is largely determined by the number of water filled pores and their connectivity. Relationships between water content (or saturation) and EC have been established both from empirical or theoretical point of view for some time. However, relationships between EC and unsaturated hydraulic conductivity are much more scarce, as are experimental data. We present relationships between EC and water content or water potential for three soil types: a clay loam, a sandy loam and a sand. We also present experimental relationships between EC and unsaturated hydraulic conductivity. The soil were cored undisturbed in the field and water retention was measured together with E. Hydraulic conductivity was calculated from the Wind evaporation method and from steady state measurements for low suctions. Mercury porosimetry measurements were also performed after the experiments. Water saturation reasonably follows a power-law relationship with relative EC (EC/ECsat). Exponents of the power law being around 3 - 3.5 for the clay loam, 1.1 - 1.7 for the sandy loam and 8 - 12 for the sand (for matric potentials between 0 and -80 cm in the latter case). Variation of the relative EC with the log of water potential shows a S-shape, with an almost linear

  2. Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2016-05-01

    We study electrical and thermal conductivities of degenerate electrons emitting and absorbing phonons in a strongly magnetized crystalline neutron star crust. We take into account modification of the phonon spectrum of a Coulomb solid of ions caused by a strong magnetic field. Boltzmann transport equation is solved using a generalized variational method. The ensuing 3D integrals over the transferred momenta are evaluated by two different numerical techniques, the Monte Carlo method and a regular integration over the first Brillouin zone. The results of the two numerical approaches are shown to be in a good agreement. An appreciable growth of electrical and thermal resistivities is reported at quantum and intermediate temperatures T ≲ 0.1Tp (Tp is the ion plasma temperature) in a wide range of chemical compositions and mass densities of matter even for moderately magnetized crystals ωB ˜ ωp (ωB and ωp are the ion cyclotron and plasma frequencies). This effect is due to an appearance of a soft (ω ∝ k2) phonon mode in the magnetized ion Coulomb crystal, which turns out to be easier to excite than acoustic phonons characteristic of the field-free case. These results are important for modelling magneto-thermal evolution of neutron stars.

  3. Application of solar quiet day (Sq) current in determining mantle electrical-depth conductivity structure - A review

    NASA Astrophysics Data System (ADS)

    Okeke, Francisca N.; Obiora, Daniel N.

    2016-02-01

    This study has extensively reviewed the application of solar quiet day (Sq) current variation in determining mantle electrical-depth conductivity structure, in a number of countries and various hemispheres. The review includes basic theories and methods of analysis. There are few recent works on the determination of mantle conductivity-depth structure using Sq current. Results obtained have yielded very interesting and exciting information, hence, the need for this review. This review is expected to throw more light to the understanding of effects of Sq on mantle conductivity. There is evidence of controversy and marked differences in conductivity variation in the mantle when different methods are applied, from available literature on the application of Sq on mantle electrical depth conductivity. Other methods applying 1-D, 2-D and 3-D were also reviewed and hence, we recommend the need of combining the above methods with Sq method in future work for more robust results. We have discovered that findings emanating from this work could lead to more understanding of application of Sq current in determining mantle electrical depth conductivity structure.

  4. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  5. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications.

  6. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  7. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  8. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-05-17

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core. PMID:22495307

  9. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  10. Shape corrections for 3D EIT

    NASA Astrophysics Data System (ADS)

    Paridis, Kyriakos; Lionheart, William R. B.

    2010-04-01

    Movement of the boundary in biomedical Electrical Impedance Tomography (EIT) has been always a source of error in image reconstruction. In the case of pulmonary EIT, where the patient's chest shape changes during respiration, this is inevitable, so it is essential to be able to correct for shape changes and consequently avoid artifacts. Assuming that the conductivity is isotropic, an assumption that is reasonable for lung tissue but admittedly violated for muscle, the boundary shape up to a Möbius transformation (conformal mapping) as well as the conductivity can theoretically be determined by 3D EIT data. While in two dimensions the space of conformal mappings are infinite dimensional, in the three dimensional case the Möbius transformations are given by a finite number of parameters. In this paper, we concentrate on the three dimensional case and take a linear approximation. We will give results of numerical studies analogous to the two dimensional work of Boyle et al on the effect of electrode movement and shape error in 3D EIT.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the

  13. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  14. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids

    NASA Astrophysics Data System (ADS)

    Kole, Madhusree; Dey, T. K.

    2013-02-01

    Stable and well dispersed functionalized graphene-ethylene glycol (EG) + distilled water nanofluids having graphene nano-sheets (GnS) volume concentration between 0.041 and 0.395 vol. % are prepared without any surfactant. Graphene nano-sheets are prepared from high purity graphite powder by Hummers method followed by exfoliation and reduction by hydrogen gas. Thus, obtained hydrogen exfoliated graphene (HEG) is then functionalized using acid. The graphene nano-sheets are characterized using XRD, TEM, Raman spectroscopy, and FTIR spectroscopy. Thermal conductivity and viscosity measurements are performed both as a function of graphene loading and temperature between 10 and 70 °C. Thermal conductivity enhancement of ˜15% for a loading of 0.395 vol. % f-HEG is observed at room temperature. The measured nanofluid's thermal conductivity is explained well in terms of the expression derived by Nan et al. (J. Appl. Phys. 81, 6692 (1997)), which considers matrix-additive interface contact resistance of mis-oriented ellipsoidal particles. The viscosity of the prepared f-HEG nanofluids and the base fluid (EG + distilled water) displays non-Newtonian behaviour with the appearance of shear thinning and nearly 100% enhancement compared to the base fluid (EG + DI water) with f-HEG loading of 0.395 vol. %. Known theoretical models for nanofluid's viscosity fail to explain the observed f-HEG volume concentration dependence of the nanofluid's viscosity. Temperature dependence of the studied nanofluid between 10 and 70 °C is explained well by the correlations proposed earlier for nanofluids with spherical nanoparticles. Electrical conductivity of the f-HEG nanofluids shows significant enhancement of ˜8620% for 0.395 vol. % loading of f-HEG in a base fluid of 70:30 mixture of EG and distilled water.

  15. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  16. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  17. Experimental study of critical exponents of electrical conductivity in a two-dimensional continuum percolation system

    PubMed

    Okazaki; Horibe; Maruyama; Miyazima

    2000-06-01

    In this paper an experimental study is presented for critical exponents of electrical conductivity in an inverse Swiss-cheese model. Filled circles are drawn on random positions of square paper in drawing ink with an X-Y plotter, and electrical resistance between both opposite sides is measured automatically by the use of general purpose interface bus system. Electrical conductivity is obtained from the inverse of the electrical resistance. Electrical conductivity in a bond process is also measured with the same system. It is confirmed that the critical exponent of electrical conductivity of a continuum two-dimensional inverse Swiss-cheese model is different from that of a discrete one.

  18. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGES

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  19. Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)

    SciTech Connect

    Niwa, Eiki; Maeda, Hiroki; Uematsu, Chie; Hashimoto, Takuya

    2015-10-15

    Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-free new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.

  20. New soluble electrically conductive n-substituted polyanilines

    SciTech Connect

    Mikhael, M.G.; Padias, A.B.; Hall, H.K. Jr.

    1996-10-01

    The solubility of polyaniline {open_quotes}emeraldine base{close_quotes} (Pan-EB) was modified through substituting the N-hydrogen atoms of polyaniline by various acyl and benzyl groups. Pan-EB was allowed to react with benzoyl chloride, p-t-butylbenzoyl chloride or pivaloyl chloride in N,N{prime}-dimethylpropylene urea (DMPU). While the benzoyl and pivaloyl derivatives showed very poor solubility in common organic solvents, the p-t-butylbenzoyl derivative is readily soluble in THF, chloroform, DMSO, etc. Benzyl chlorides, did not react with Pan-EB in absence of bases. The nitrogen anion of Pan-EB, obtained from reaction of the polymer with NaH, reacted with p-t-butylbenzyl chloride to produce a soluble, high molecular weight, electrically conductive (4.3 x 10{sup -1} S cm{sup - 1}) Pan derivative. The reaction conditions were critical. High NaH concentration and long reaction time led to insoluble crosslinked products, which was explained by the competitive addition of the nitrogen anions to the C=C of the quinonimine rings (Michael addition). Successful N-anion trapping requires sufficiently electrophilic reagent such as benzyl chlorides.

  1. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant. PMID:26222837

  2. Electrically Conductive Diamond Membrane for Electrochemical Separation Processes.

    PubMed

    Gao, Fang; Nebel, Christoph E

    2016-07-20

    Electrochemically switchable selective membranes play an important role in selective filtration processes such as water desalination, industrial waste treatment, and hemodialysis. Currently, membranes for these purposes need to be optimized in terms of electrical conductivity and stability against fouling and corrosion. In this paper, we report the fabrication of boron-doped diamond membrane by template diamond growth on quartz fiber filters. The morphology and quality of the diamond coating are characterized via SEM and Raman spectroscopy. The membrane is heavily boron doped (>10(21) cm(-3)) with >3 V potential window in aqueous electrolyte. By applying a membrane potential against the electrolyte, the redox active species can be removed via flow-through electrolysis. Compared to planar diamond electrodes, the ∼250 times surface enlargement provided by such a membrane ensures an effective removal of target chemicals from the input electrolyte. The high stability of diamond enables the membrane to not only work at high membrane bias but also to be self-cleaning via in situ electrochemical oxidation. Therefore, we believe that the diamond membrane presented in this paper will provide a solution to future selective filtration applications especially in extreme conditions.

  3. Guar gum based biodegradable, antibacterial and electrically conductive hydrogels.

    PubMed

    Kaith, Balbir S; Sharma, Reena; Kalia, Susheel

    2015-04-01

    Guar gum-polyacrylic acid-polyaniline based biodegradable electrically conductive interpenetrating network (IPN) structures were prepared through a two-step aqueous polymerization. Hexamine and ammonium persulfate (APS) were used as a cross linker-initiator system to crosslink the poly(AA) chains on Guar gum (Ggum) backbone. Optimum reaction conditions for maximum percentage swelling (7470.23%) were time (min) = 60; vacuum (mmHg) = 450; pH = 7.0; solvent (mL) = 27.5; [APS] (mol L(-1)) = 0.306 × 10(-1); [AA] (mol L(-1)) = 0.291 × 10(-3) and [hexamine] (mol L(-1))=0.356 × 10(-1). The semi-interpenetrating networks (semi-IPNs) were converted into IPNs through impregnation of polyaniline chains under acidic and neutral conditions. Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques were used to characterize the semi-IPNs and IPNs. Synthesized semi-IPNs and IPNs were further evaluated for moisture retention in different soils, antibacterial and biodegradation behavior. PMID:25660656

  4. Electrically Conductive Diamond Membrane for Electrochemical Separation Processes.

    PubMed

    Gao, Fang; Nebel, Christoph E

    2016-07-20

    Electrochemically switchable selective membranes play an important role in selective filtration processes such as water desalination, industrial waste treatment, and hemodialysis. Currently, membranes for these purposes need to be optimized in terms of electrical conductivity and stability against fouling and corrosion. In this paper, we report the fabrication of boron-doped diamond membrane by template diamond growth on quartz fiber filters. The morphology and quality of the diamond coating are characterized via SEM and Raman spectroscopy. The membrane is heavily boron doped (>10(21) cm(-3)) with >3 V potential window in aqueous electrolyte. By applying a membrane potential against the electrolyte, the redox active species can be removed via flow-through electrolysis. Compared to planar diamond electrodes, the ∼250 times surface enlargement provided by such a membrane ensures an effective removal of target chemicals from the input electrolyte. The high stability of diamond enables the membrane to not only work at high membrane bias but also to be self-cleaning via in situ electrochemical oxidation. Therefore, we believe that the diamond membrane presented in this paper will provide a solution to future selective filtration applications especially in extreme conditions. PMID:27396448

  5. Analytic electrical-conductivity tensor of a nondegenerate Lorentz plasma

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Gerdin, G. A.; Fehl, D. L.

    2002-10-01

    We have developed explicit quantum-mechanical expressions for the conductivity and resistivity tensors of a Lorentz plasma in a magnetic field. The expressions are based on a solution to the Boltzmann equation that is exact when the electric field is weak, the electron-Fermi-degeneracy parameter Θ>>1, and the electron-ion Coulomb-coupling parameter Γ/Z<<1. (Γ is the ion-ion coupling parameter and Z is the ion charge state.) Assuming a screened 1/r electron-ion scattering potential, we calculate the Coulomb logarithm in the second Born approximation. The ratio of the term obtained in the second approximation to that obtained in the first is used to define the parameter regime over which the calculation is valid. We find that the accuracy of the approximation is determined by Γ/Z and not simply the temperature, and that a quantum-mechanical description can be required at temperatures orders of magnitude less than assumed by Spitzer [Physics of Fully Ionized Gases (Wiley, New York, 1962)]. When the magnetic field B=0, the conductivity is identical to the Spitzer result except the Coulomb logarithm ln Λ1=(ln χ1- 1/2)+[(2Ze2/λmev2e1)(ln χ1-ln 24/3)], where χ1≡2meve1λ/ħ, me is the electron mass, ve1≡(7kBT/me)1/2, kB is the Boltzmann constant, T is the temperature, λ is the screening length, ħ is Planck's constant divided by 2π, and e is the absolute value of the electron charge. When the plasma Debye length λD is greater than the ion-sphere radius a, we assume λ=λD otherwise we set λ=a. The B=0 conductivity is consistent with measurements when Z>~1, Θ>~2, and Γ/Z<~1, and in this parameter regime appears to be more accurate than previous analytic models. The minimum value of ln Λ1 when Z>=1, Θ>=2, and Γ/Z<=1 is 1.9. The expression obtained for the resistivity tensor (B≠0) predicts that η⊥/η∥ (where η⊥ and η∥ are the resistivities perpendicular and parallel to the magnetic field) can be as much as 40% less than previous analytic

  6. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried

  7. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  8. Measurement of Electrical Conductivity into Tomato Cultivation Beds using Small Insertion Type Electrical Conductivity Sensor Designed for Agriculture

    NASA Astrophysics Data System (ADS)

    Kawashima, Kazuko; Futagawa, Masato; Ban, Yoshihiro; Asano, Yoshiyuki; Sawada, Kazuaki

    Our group has studied on-site monitoring sensor for agricultural field. An electrical conductivity (EC) sensor had been fabricated using Si integrated circuit technology. EC information of solutions shows ion concentrations dissolving in water, and can be used as the index of nutrient concentration for plants. So, it is important to measure EC in real time and on site. Because our EC sensor (5mm×5mm in size) is smaller than other commercial ones (several centimeters), it is easy to insert and achieve measurement in rock wool. In this study, our sensor measured long term EC values in tomato cultivation soil and rock wool medium. At first, we calibrated a relationship between output voltages and EC values on the sensor. The sensor was confirmed about enough EC measurement range from 8 to 969mS/m. In long period measurement, the sensor was confirmed about continuous operation for over five months, and intermittent measurement for over a year. In measurement in the cultivation soil, the sensor indicated that water was kept and diffused in the soil. In contrast, it was found that water diffused without keeping in it in rock wool medium. We confirmed our small EC sensor is useful for on-site monitoring and analysis of solution concentration distribution in several kinds of cultivation bed in real time.

  9. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    allowed for a new processing of a wide dataset acquired during three different international Antarctic campaigns supported by the Italian Antarctic Project: the BACKTAM, WIBEM and WISE expeditions. The qualitative analysis of the induction arrows, in the period range 20-170 s, reveals an approximately 2D regional electrical conductivity pattern with a clear differentiation between the three Terrains crossed by the GDS transect we have re-analized: the Robertson Bay, the Bowers and the Wilson Terrain. Bi-dimensional conductivity models, jointly with magnetic and gravimetric profiles, suggest a differentiation of the investigated area in three crustal sectors separated by the Daniels Range and the Bowers Mts., in close relation with main known structural lineaments; to the West, a deep conductivity anomaly is associated with the transition to the Wilkes Subglagial Basin. We deem that such anomaly, together with the magnetic and gravimetric signatures, is compatible with an extensional regime in the eastern margin of the WSB. References Rizzello, D., Armadillo, E., Manzella, A."Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates, over wide time and space scales". EGU 2013 General Assembly, Wien - poster presentation.

  10. Microstructural Inhomogeneity of Electrical Conductivity in Subcutaneous Fat Tissue

    PubMed Central

    Kruglikov, Ilja L.

    2015-01-01

    Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT. PMID:25734656

  11. Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Bouras, Ioannis; Greiner, Carsten; Xu, Zhe

    2014-11-01

    Electric conductivity is sensitive to effective cross sections among the particles of the partonic medium. We investigate the electric conductivity of a hot plasma of quarks and gluons, solving the relativistic Boltzmann equation. In order to extract this transport coefficient, we employ the Green-Kubo formalism and, independently, a method motivated by the classical definition of electric conductivity. To this end we evaluate the static electric diffusion current upon the influence of an electric field. Both methods give identical results. For the first time, we obtain numerically the Drude electric conductivity formula for an ultrarelativistic gas of quarks and gluons employing constant isotropic binary cross sections. Furthermore, we extract the electric conductivity for a system of massless quarks and gluons including screened binary and inelastic, radiative 2 ↔3 perturbative QCD scattering. Comparing with recent lattice results, we find an agreement in the temperature dependence of the conductivity.

  12. High thermal conductivity connector having high electrical isolation

    DOEpatents

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  13. Materials and methods for autonomous restoration of electrical conductivity

    DOEpatents

    Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil

    2014-03-25

    An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.

  14. Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Kamada, Seiji; Zhao, Chengcheng; Ohtani, Eiji; Hirao, Naohisa

    2016-01-01

    Electrical conductivity measurements of bridgmanite with various Al contents and a constant Mg# of 90 were performed at temperatures ranging from room temperature up to 2000 K at pressures of 26-28 GPa in a Kawai-type multianvil apparatus by impedance spectroscopy analysis. The incorporation of Al into bridgmanite raises its electrical conductivity significantly, but it is a small conductivity variation with respect to the quantity of Al. Synchrotron Mössbauer spectroscopy of recovered samples showed significant amounts of ferric iron in aluminous bridgmanite. The mobility of the charge carriers in bridgmanite was calculated based on the conductivity and the Fe3+/ΣFe ratio. The relationship between the logarithm of the electrical conductivity and the reciprocal temperature is consistent with Fe2+-Fe3+ electron hopping (small polarons) as the dominant conduction mechanism at low temperatures (<1400 K) and ionic conduction at higher temperatures (>1600 K). By taking various conduction mechanisms into account, we develop an electrical conductivity model for aluminous bridgmanite as a function of the Al and Fe contents. The small polaron conduction model indicates that the electrical conductivity of aluminous bridgmanite has a maximum at around 0.06 Al atoms per formula unit, and any further increase in the Al content in bridgmanite reduces the conductivity. In contrast, the ionic conduction model indicates that the electrical conductivity simply increases with increasing Al content. The resulting conductivity of Al-bearing bridgmanite first increases up to 0.06 Al atoms per formula unit and then remains constant or increases with increasing Al content at higher temperatures. The increase in conductivity observed in the uppermost part of the lower mantle by electromagnetic studies can be explained by the gradual decomposition of majorite garnet. The deeper lower mantle conductivity would be controlled by small polaron conduction because of the large positive

  15. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  16. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  17. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  18. Design and fabrication of a 3D-structured gold film with nanopores for local electric field enhancement in the pore.

    PubMed

    Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy

    2016-02-12

    Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.

  19. Evaluation of saline tracer performance during electrical conductivity groundwater monitoring

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Prommer, Henning; Pasti, Luisa; Palpacelli, Stefano; Colombani, Nicolò

    2011-04-01

    Saline solutions are the most commonly used hydrological tracers, because they can be easily and economically monitored by in situ instrumentation such as electrical conductivity (EC) loggers in wells or by geoelectrical measurements. Unfortunately, these low-cost techniques only provide information on the total concentration of ions in solution, i.e., they cannot resolve the ionic composition of the aqueous solution. This limitation can introduce a bias in the estimation of aquifer parameters where sorption phenomena between saline tracers and sediments become relevant. In general, only selected anions such as Cl - and Br - are recognised to be transported unretarded and they are referred to as conservative tracers or mobile anions. However, cations within the saline tracer may interact with the soil matrix through a range of processes such as ion exchange, surface complexation and via physical mass-transfer phenomena. Heterogeneous reactions with minerals or mineral surfaces may not be negligible where aquifers are composed of fine alluvial sediments. The focus of the present study was to examine and to quantify the bias between the aquifer parameters estimated during model-based interpretation of experimental data of EC measurements of saline tracer relative to the aquifer parameters found by specific measurements (i.e. via ionic chromatography, IC) of truly conservative species. To accomplish this, column displacement experiments with alluvial aquifer materials collected from the Po lowlands (Italy) were performed under water saturated conditions. The behaviour of six selected, commonly used saline tracers (i.e., LiCl, KCl, and NaCl; LiBr, KBr, and NaBr) was studied and the data analysed by inverse modelling. The results demonstrate that the use of EC as a tracer can lead to an erroneous parameterisation of the investigated porous media, if the reactions between solute and matrix are neglected. In general, errors were significant except for KCl and KBr, which

  20. Evaluation of saline tracer performance during electrical conductivity groundwater monitoring.

    PubMed

    Mastrocicco, Micòl; Prommer, Henning; Pasti, Luisa; Palpacelli, Stefano; Colombani, Nicolò

    2011-04-25

    Saline solutions are the most commonly used hydrological tracers, because they can be easily and economically monitored by in situ instrumentation such as electrical conductivity (EC) loggers in wells or by geoelectrical measurements. Unfortunately, these low-cost techniques only provide information on the total concentration of ions in solution, i.e., they cannot resolve the ionic composition of the aqueous solution. This limitation can introduce a bias in the estimation of aquifer parameters where sorption phenomena between saline tracers and sediments become relevant. In general, only selected anions such as Cl(-) and Br(-) are recognised to be transported unretarded and they are referred to as conservative tracers or mobile anions. However, cations within the saline tracer may interact with the soil matrix through a range of processes such as ion exchange, surface complexation and via physical mass-transfer phenomena. Heterogeneous reactions with minerals or mineral surfaces may not be negligible where aquifers are composed of fine alluvial sediments. The focus of the present study was to examine and to quantify the bias between the aquifer parameters estimated during model-based interpretation of experimental data of EC measurements of saline tracer relative to the aquifer parameters found by specific measurements (i.e. via ionic chromatography, IC) of truly conservative species. To accomplish this, column displacement experiments with alluvial aquifer materials collected from the Po lowlands (Italy) were performed under water saturated conditions. The behaviour of six selected, commonly used saline tracers (i.e., LiCl, KCl, and NaCl; LiBr, KBr, and NaBr) was studied and the data analysed by inverse modelling. The results demonstrate that the use of EC as a tracer can lead to an erroneous parameterisation of the investigated porous media, if the reactions between solute and matrix are neglected. In general, errors were significant except for KCl and KBr, which

  1. Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.

    2012-12-01

    We have used high-quality electromagnetic data obtained through the EarthScope USArray project to obtain detailed three-dimensional images of electrical resistivity / conductivity in the crust and upper mantle beneath the Snake River Plain/Yellowstone (SRP/Y) volcanic province (Idaho and Wyoming, United States). The lowest resistivities in the area can only plausibly be explained by partial melt and/or fluids, providing valuable new information about the distribution of these phases deep within the Earth beneath the volcanic system. Unexpectedly, in light of the mantle plume models often used to explain Yellowstone volcanism, the electromagnetic data imply that there is no interconnected melt in the lower crust and uppermost mantle directly beneath the modern Yellowstone caldera. Instead, low resistivities consistent with 1-3% melt in the uppermost mantle (depths of 40-80 km) extend at least 200 km southwest of Yellowstone. Shallower areas of reduced resistivity extend upward into the mid-crust around the edges of the seemingly impermeable Snake River Plain province, including beneath Yellowstone. We suggest that the elevated temperatures beneath the active volcanic center have resulted in greater permeability, allowing magma to ascend to shallower depths and pool in the crust. Little melt is entering the system from below at present, perhaps due to intermittency of supply. We describe these results in the context of larger scale electrical resistivity and seismic tomography models of the western US and employ joint interpretation to formulate hypotheses that would explain this unexpected melt distribution beneath the SRP/Y. Our 3-D model is available at http://www.iris.edu/dms/products/emc/models/SRPY-MT.htm

  2. Signature of Carrier-Induced Ferromagnetism in Ti1-xCoxO2-δ: Exchange Interaction between High-Spin Co2+ and the Ti 3d Conduction Band

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.; Shibata, A.; Son, J.-Y.; Takubo, K.; Mizokawa, T.; Toyosaki, H.; Fukumura, T.; Kawasaki, M.

    2006-01-01

    X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti1-xCoxO2-δ to reveal the electronic structure. The Co 2p core-level spectra indicate that the Co ions take the high-spin Co2+ configuration, consistent with substitution on the Ti site. The high-spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t2g band and the t2g states of the high-spin Co+2. These observations support the argument that room temperature ferromagnetism in Ti1-xCoxO2-δ is intrinsic.

  3. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    -distributions of σb. These, in turn, may be translated to many σw values by applying the σw-σb-θ calibration relationship obtained in the laboratory by using the TDR probes. A field experiment was conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari - Italy). The experiment consisted of three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped by a dripper irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii) an ERT apparatus in the Wenner configuration array. Overall, 17 measurement campaigns were carried out. Monitoring along transects also allowed to evaluate the role of different smaller and larger scale heterogeneities on the electrical conductivity measured by the two different sensors. Because of the different variability patterns and structure of the ERT and TDR data due to the different observation windows, a site-by-site comparison of the corresponding readings may not reveal the actual correlation between the σb values deduced by ERT measurements on one side and the TDR data on the other. In order to make TDR and ERT data actually comparable, we analyzed the effect of the different observation windows of the two sensors on the different spatial and temporal variability observed in the two data series. Specifically, the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.

  4. Intercomponent momentum transport and electrical conductivity of collisionless plasma

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    Based on the Lenard-Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Maxwellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron-ion drift velocities.

  5. Phase Diagrams of Electric-Fduced Aggregation in Conducting Colloids

    NASA Technical Reports Server (NTRS)

    Khusid, B.; Acrivos, A.

    1999-01-01

    Under the application of a sufficiently strong electric field, a suspension may undergo reversible phase transitions from a homogeneous random arrangement of particles into a variety of ordered aggregation patterns. The surprising fact about electric-field driven phase transitions is that the aggregation patterns, that are observed in very diverse systems of colloids, display a number of common structural features and modes of evolution thereby implying that a universal mechanism may exist to account for these phenomena. It is now generally believed that this mechanism emanates from the presence of the long-range anisotropic interactions between colloidal particles due to their polarization in an applied field. But, in spite of numerous applications of the electric-field-driven phenomena in biotechnology, separation, materials engineering, chemical analysis, etc. our understanding of these phenomena is far from complete. Thus, it is the purpose of the proposed research to develop a theory and then test experimentally, under normal- and low-gravity conditions, the accuracy of the theoretical predictions regarding the effect of the synergism of the interparticle electric and hydrodynamic interactions on the phase diagram of a suspension. The main results from our theoretical studies performed to-date enable one to trace how the variations of the electrical properties of the constituent materials influence the topology of the suspension phase diagram and then, by using an appropriate phase diagram, to evaluate how the electric-field-induced transformations will depend on the frequency and the strength of the applied field.

  6. Mechanism of electrical conductivity in an irradiated polyimide

    NASA Technical Reports Server (NTRS)

    Ries, H. R.; Harries, W. L.; Long, S. A. T.; Long, E. R., Jr.

    1989-01-01

    A polyimide was exposed to 1.0 MeV electron radiation. The radiation-induced radical density and dc conductivity were measured at various post-irradiation times. The radiation-induced radical density was found to be correlated to the increased dc conductivity through a hopping model of conductivity. The post-irradiation radical species were identified.

  7. SAR analysis of the improved resonant cavity applicator with electrical shield and water bolus for deep tumors by a 3-D FEM.

    PubMed

    Shindo, Yasuhiro; Iseki, Y; Yokoyama, K; Arakawa, J; Watanabe, K; Kato, K; Kubo, M; Uzuka, T; Takahashi, H

    2012-01-01

    This paper discusses the improvements of the re-entrant resonant cavity applicator, such as an electromagnetic shield and a water bolus for concentrating heating energy on deep tumors in an abdominal region of the human body. From our previous study, it was found that the proposed heating system using the resonant cavity applicator, was effective for heating brain tumors and also for heating other small objects. However, when heating the abdomen with the developed applicator, undesirable areas such as the neck, arm, hip and breast were heated. Therefore, we have improved the resonant cavity applicator to overcome these problems. First, a cylindrical shield made of an aluminum alloy was installed inside the cavity. It was designed to protect non-tumorous areas from concentrated electromagnetic fields. Second, in order to concentrate heating energy on deep tumors inside the human body, a water bolus was installed around the body. Third, the length of the lower inner electrode was changed to control the heating area. In this study, to evaluate the effectiveness of the proposed methods, specific absorption rate (SAR) distributions were calculated by FEM with the 3-D anatomical human body model reconstructed from MRI images. From these results, it was confirmed that the improved heating system was effective to non-invasively heat abdominal deep tumors.

  8. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  9. The electrical conductivity of the strongly defective HgCr2Se4 single crystals

    NASA Astrophysics Data System (ADS)

    Gron, T.; Duda, H.; Krajewski, A.; Kusz, J.; Warczewski, J.; Nikiforov, K. G.

    The effect of vacancies on the electrical conductivity in HgCr2 Se-4 spinels is considered. For this purpose the X-ray studies, the electrical conductivity and the thermopower measurements and the calculation of the vacancy model were used. The above investigations showed that: 1) the single crystals under study are p-type semiconductors, 2) the as grown and vacuum annealed single crystals exhibit Arrhenius plot of the electrical conductivity, 3) the copper doping single crystals reveal the jump of the electrical conductivity near Curie temperature, and 4) the strong defectiveness of the spinel structure makes the magnon excitations impossible below the Curie temperature.

  10. Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling

    NASA Astrophysics Data System (ADS)

    Ichihara, Hiroshi; Mogi, Toru; Tanimoto, Kengo; Yamaya, Yusuke; Hashimoto, Takeshi; Uyeshima, Makoto; Ogawa, Yasuo

    2016-04-01

    The Hidaka collision zone, where the Kurile and northeastern (NE) Japan arcs collide, provides a useful study area for elucidating the processes of arc-continent evolution and inland earthquakes. To produce an image of the collision structure and elucidate the mechanisms of anomalously deep inland earthquakes such as the 1970 Hidaka earthquake (M6.7), we conducted magnetotelluric observations and generated a three-dimensional resistivity distribution in the southern part of the Hidaka collision zone. The modeled resistivity was characterized by a high resistivity area in the upper crust of the Kurile arc corresponding to metamorphic rocks. The model also showed conductive zones beneath the center of the collision zone. The boundary between the resistive and conductive areas corresponds geometrically to the Hidaka main thrust, which is regarded as the arc-arc boundary. The correspondence supports the collision model that the upper-middle part of crust in the Kurile arc is obducting over the NE Japan arc. The conductive areas were interpreted as fluid-filled zones associated with collision processes and upwelling of dehydrated fluid from the subducting Pacific slab. The fluid flow possibly contributes to over-pressurized conduction that produces deep inland earthquakes. We also observed a significant conductive anomaly beneath the area of Horoman peridotite, which may be related to the uplift of mantle materials to the surface.

  11. Electrical conductivity of polyvinyl alcohol-multiwall carbon nanotubes composites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2013-06-01

    The dc and ac conductivity of polyvinyl alcohol (PVA)-multiwalled carbon nanotube (MWNT) nanocomposites prepared by solution casting were investigated by employing dielectric relaxation spectroscopy in broad frequency range (0.1 Hz-10 MHz) at room temperature as a function of the conductive weight fraction (p) ranging from 0 to 2wt.%. The frequency dependence of the measured conductivity obeys the universal dynamic response (UDR); a dc plateau followed, by the power law above a critical frequency (fc).

  12. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe

    NASA Astrophysics Data System (ADS)

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A.; Dunstan, Dave E.; Hartley, Patrick G.; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  13. Study of electrical conductivity response upon formation of ice and gas hydrates from salt solutions by a second generation high pressure electrical conductivity probe.

    PubMed

    Sowa, Barbara; Zhang, Xue Hua; Kozielski, Karen A; Dunstan, Dave E; Hartley, Patrick G; Maeda, Nobuo

    2014-11-01

    We recently reported the development of a high pressure electrical conductivity probe (HP-ECP) for experimental studies of formation of gas hydrates from electrolytes. The onset of the formation of methane-propane mixed gas hydrate from salt solutions was marked by a temporary upward spike in the electrical conductivity. To further understand hydrate formation a second generation of window-less HP-ECP (MkII), which has a much smaller heat capacity than the earlier version and allows access to faster cooling rates, has been constructed. Using the HP-ECP (MkII) the electrical conductivity signal responses of NaCl solutions upon the formation of ice, tetrahydrofuran hydrates, and methane-propane mixed gas hydrate has been measured. The concentration range of the NaCl solutions was from 1 mM to 3M and the driving AC frequency range was from 25 Hz to 5 kHz. This data has been used to construct an "electrical conductivity response phase diagrams" that summarize the electrical conductivity response signal upon solid formation in these systems. The general trend is that gas hydrate formation is marked by an upward spike in the conductivity at high concentrations and by a drop at low concentrations. This work shows that HP-ECP can be applied in automated measurements of hydrate formation probability distributions of optically opaque samples using the conductivity response signals as a trigger.

  14. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  15. Electrical Conductance of Bolted Copper Joints for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Blondelle, F.; Sultan, A.; Collin, E.; Godfrin, H.

    2014-06-01

    We present the results of electric contact resistance measurements at low temperatures on copper-to-copper bolted joints. Our accurate and systematic data display a rather small dispersion, and may be a useful tool for cryogenic applications like pulse-tubes, dilution refrigerators and nuclear refrigerators.

  16. Different clinical electrodes achieve similar electrical nerve conduction block

    NASA Astrophysics Data System (ADS)

    Boger, Adam; Bhadra, Narendra; Gustafson, Kenneth J.

    2013-10-01

    Objective. We aim to evaluate the suitability of four electrodes previously used in clinical experiments for peripheral nerve electrical block applications. Approach. We evaluated peripheral nerve electrical block using three such clinical nerve cuff electrodes (the Huntington helix, the Case self-sizing Spiral and the flat interface nerve electrode) and one clinical intramuscular electrode (the Memberg electrode) in five cats. Amplitude thresholds for the block using 12 or 25 kHz voltage-controlled stimulation, onset response, and stimulation thresholds before and after block testing were determined. Main results. Complete nerve block was achieved reliably and the onset response to blocking stimulation was similar for all electrodes. Amplitude thresholds for the block were lowest for the Case Spiral electrode (4 ± 1 Vpp) and lower for the nerve cuff electrodes (7 ± 3 Vpp) than for the intramuscular electrode (26 ± 10 Vpp). A minor elevation in stimulation threshold and reduction in stimulus-evoked urethral pressure was observed during testing, but the effect was temporary and did not vary between electrodes. Significance. Multiple clinical electrodes appear suitable for neuroprostheses using peripheral nerve electrical block. The freedom to choose electrodes based on secondary criteria such as ease of implantation or cost should ease translation of electrical nerve block to clinical practice.

  17. Electrochemical intercalation and electrical conductivity of graphite fibers

    NASA Technical Reports Server (NTRS)

    Besenhard, J. O.; Fritz, H. P.; Moehwald, H.; Nickl, J. J.

    1982-01-01

    Lamellar compounds of graphite fibers were prepared by electrochemical intercalation. The dependence of the electrical resistance on the intercalate concentration was determined by a quasi simultaneous method. A factor 30 decrease of the relative fiber resistance was obtained with fluorosulfuric acid.

  18. Electrical conductivity of diopside: evidence for oxygen vacancies

    USGS Publications Warehouse

    Huebner, J.S.; Voigt, D.E.

    1988-01-01

    Impedance spectra for two natural single crystals of diopside were obtained at 800 to 1300??C and 1-bar pressure over the frequency range 0.001 Hz to 100 kHz in a system closed to all components but oxygen. At both higher and lower fO2 values, no fO2 dependence of conductivity was observed, indicating the presence of different conduction mechanisms. At temperatures less than 1000??C, the activation energy is 1.3 eV, also suggesting a different conduction mechanism. Thus, at least four regimes are necessary to describe the conductivity of this diopside in T-fO2 space. The approximately -1/(7 ?? 1) value of d(log ??)/d(log fO2) in a high-temperature geologic region suggests a reaction by which oxygen vacancies control the conductivity. This relatively pure diopside is much less conducting than olivine or orthopyroxene. A second diopside with greater Fe content but otherwise similar in composition to the near-end-member diopside, is more conducting, has a smaller activation energy (1.0 eV) over the range 1050 to 1225??C, and shows only a weak negative fO2 dependence; suggesting that oxygen vacancies are present but are not the dominant defect in controlling the conductivity. -from Authors

  19. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  20. The Electrical Conductivity Of Partly Ionized Helium Plasma

    SciTech Connect

    Sreckovic, Vladimir A.; Ignjatovic, Ljubinko; Mihajlov, A. A.

    2007-04-23

    In this paper we analyzed atoms influence on electro conductivity, partially ionized helium plasma, in temperature region 5 000 K - 40 000 K and pressure 0.1 - 10 atm. Electro conductivity was calculated using 'Frost like' formula and Random Phase Approximation method and Semi-Classical (SC) approximation.