Science.gov

Sample records for 3-d finite difference

  1. HEMP 3D -- a finite difference program for calculating elastic-plastic flow

    SciTech Connect

    Wilkins, M.L.

    1993-05-26

    The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time. Presented here is an update of the 1975 report on the HEMP 3D numerical technique. The present report includes the sliding surface routines programmed by Robert Gulliford.

  2. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  3. An Analysis on 3d Marine Csem Responses Based on a Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Han, N.; Nam, M.; Kim, H.

    2010-12-01

    Three-dimensional (3D) marine controlled-source electromagnetic (CSEM) data are analyzed using a modeling algorithm based on a finite difference method. The algorithm employs the secondary-field formulation of a vector Helmholtz equation for electric fields to avoid singularity problems. Primary fields are calculated analytically using a numerical filter for the Hankel transform for a three-layered 1D background model, that consists of air, sea and sub-seafloor; the model includes the air layer to consider air waves. Several numerical filters for the Hankel transform are compared in terms of their accuracy and computation time. Using the analytically-calculated primary fields, we compute secondary fields using a finite difference method with a staggered grid. The grid defines electric fields along cell edges while magnetic fields at cell faces. We verified the developed modeling algorithm using not only 1D analytic solutions but also responses for a 3D model, that are computed by other algorithms. Using disk models, this study analyzes marine CSEM data for horizontal and vertical electric and magnetic dipole sources to determine the most effective source-receiver configuration for the exploration of 3D thin and resistive hydrocarbon targets. Numerical results show that marine CSEM has exciting potential for oilfield characterization. Further, air waves should be properly considered in modeling and interpretation of marine CSEM data because they have great effects on marine CSEM data. For an analysis on bathymetry effects, a stepwise-bathymetry model was constructed. Bathymetry causes significant effects on marine CSEM data because transmitter and receivers are located very far each other. We propose a bathymetry correction method for a proper interpretation of marine CSEM data distorted by bathymetry.

  4. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  5. A time-space domain stereo finite difference method for 3D scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie

    2016-11-01

    The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).

  6. 3D Finite-Difference Modeling of Scattered Teleseismic Wavefields in a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Morozov, I. B.; Zheng, H.

    2005-12-01

    For a teleseismic array targeting subducting crust in a zone of active subduction, scattering from the zone underlying the trench result in subhorizontally-propagating waves that could be difficult to distinguish from converted P- and S- wave backscattered from the surface. Because back-scattered modes often provide the most spectacular images of subducting slabs, it is important to understand their differences from the arrivals scattered from the trench zone. To investigate the detailed teleseismic wavefield in a subduction zone environment, we performed a full-waveform, 3-D visco-elastic finite-difference modeling of teleseismic wave propagation using a Beowulf cluster. The synthetics show strong scattering from the trench zone, dominated by the mantle and crustal P-waves propagating at 6.2-8.1.km/s and slower. These scattered waves occupy the same time and moveout intervals as the backscattered modes, and also have similar amplitudes. Although their amplitude decay characters are different, with the uncertainties in the velocity and density structure of the subduction zone, unambiguous distinguishing of these modes appears difficult. However, under minimal assumptions (in particular, without invoking slab dehydration), recent observations of receiver function amplitudes decreasing away from the trench favor the interpretation of trench-zone scattering.

  7. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  8. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  9. Rayleigh Wave Numerical Dispersion in a 3D Finite-Difference Algorithm

    NASA Astrophysics Data System (ADS)

    Preston, L. A.; Aldridge, D. F.

    2010-12-01

    A Rayleigh wave propagates laterally without dispersion in the vicinity of the plane stress-free surface of a homogeneous and isotropic elastic halfspace. The phase speed is independent of frequency and depends only on the Poisson ratio of the medium. However, after temporal and spatial discretization, a Rayleigh wave simulated by a 3D staggered-grid finite-difference (FD) seismic wave propagation algorithm suffers from frequency- and direction-dependent numerical dispersion. The magnitude of this dispersion depends critically on FD algorithm implementation details. Nevertheless, proper gridding can control numerical dispersion to within an acceptable level, leading to accurate Rayleigh wave simulations. Many investigators have derived dispersion relations appropriate for body wave propagation by various FD algorithms. However, the situation for surface waves is less well-studied. We have devised a numerical search procedure to estimate Rayleigh phase speed and group speed curves for 3D O(2,2) and O(2,4) staggered-grid FD algorithms. In contrast with the continuous time-space situation (where phase speed is obtained by extracting the appropriate root of the Rayleigh cubic), we cannot develop a closed-form mathematical formula governing the phase speed. Rather, we numerically seek the particular phase speed that leads to a solution of the discrete wave propagation equations, while holding medium properties, frequency, horizontal propagation direction, and gridding intervals fixed. Group speed is then obtained by numerically differentiating the phase speed with respect to frequency. The problem is formulated for an explicit stress-free surface positioned at two different levels within the staggered spatial grid. Additionally, an interesting variant involving zero-valued medium properties above the surface is addressed. We refer to the latter as an implicit free surface. Our preliminary conclusion is that an explicit free surface, implemented with O(4) spatial FD

  10. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  11. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  12. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance

  13. 3-D geoelectrical modelling using finite-difference: a new boundary conditions improvement

    NASA Astrophysics Data System (ADS)

    Maineult, A.; Schott, J.-J.; Ardiot, A.

    2003-04-01

    Geoelectrical prospecting is a well-known and frequently used method for quantitative and non-destructive subsurface exploration until depths of a few hundreds metres. Thus archeological objects can be efficiently detected as their resistivities often contrast with those of the surrounding media. Nevertheless using the geoelectrical prospecting method has long been restricted due to inhability to model correctly arbitrarily-shaped structures. The one-dimensional modelling and inversion have long been classical, but are of no interest for the majority of field data, since the natural distribution of resistivity is rarely homogeneous or tabular. Since the 1970's some authors developed discrete methods in order to solve the two and three-dimensional problem, using mathematical tools such as finite-element or finite-difference. The finite-difference approach is quite simple, easily understandable and programmable. Since the work of Dey and Morrison (1979), this approach has become quite popular. Nevertheless, one of its major drawbacks is the difficulty to establish satisfying boundary conditions. Recently Lowry et al. (1989) and Zhao and Yedlin (1996) suggested some refinements on the improvement of the boundary problem. We propose a new betterment, based on the splitting of the potential into two terms, the potential due to a reference tabular medium and a secondary potential caused by a disturbance of this medium. The surface response of a tabular medium has long been known (see for example Koefoed 1979). Here we developed the analytical solution for the electrical tabular potential everywhere in the medium, in order to establish more satisfying boundary conditions. The response of the perturbation, that is to say the object of interest, is then solved using volume-difference and preconditioned conjugate gradient. Finally the grid is refined one or more times in the perturbed domain in order to ameliorate the precision. This method of modelling is easy to implement

  14. Multitasking 3-D forward modeling using high-order finite difference methods on the Cray X-MP/416

    SciTech Connect

    Terki-Hassaine, O.; Leiss, E.L.

    1988-01-01

    The CRAY X-MP/416 was used to multitask 3-D forward modeling by the high-order finite difference method. Flowtrace analysis reveals that the most expensive operation in the unitasked program is a matrix vector multiplication. The in-core and out-of-core versions of a reentrant subroutine can perform any fraction of the matrix vector multiplication independently, a pattern compatible with multitasking. The matrix vector multiplication routine can be distributed over two to four processors. The rest of the program utilizes the microtasking feature that lets the system treat independent iterations of DO-loops as subtasks to be performed by any available processor. The availability of the Solid-State Storage Device (SSD) meant the I/O wait time was virtually zero. A performance study determined a theoretical speedup, taking into account the multitasking overhead. Multitasking programs utilizing both macrotasking and microtasking features obtained actual speedups that were approximately 80% of the ideal speedup.

  15. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  16. Preliminary simulation of a M6.5 earthquake on the Seattle Fault using 3D finite-difference modeling

    USGS Publications Warehouse

    Stephenson, William J.; Frankel, Arthur D.

    2000-01-01

    A three-dimensional finite-difference simulation of a moderate-sized (M 6.5) thrust-faulting earthquake on the Seattle fault demonstrates the effects of the Seattle Basin on strong ground motion in the Puget lowland. The model area includes the cities of Seattle, Bremerton and Bellevue. We use a recently developed detailed 3D-velocity model of the Seattle Basin in these simulations. The model extended to 20-km depth and assumed rupture on a finite fault with random slip distribution. Preliminary results from simulations of frequencies 0.5 Hz and lower suggest amplification can occur at the surface of the Seattle Basin by the trapping of energy in the Quaternary sediments. Surface waves generated within the basin appear to contribute to amplification throughout the modeled region. Several factors apparently contribute to large ground motions in downtown Seattle: (1) radiation pattern and directivity from the rupture; (2) amplification and energy trapping within the Quaternary sediments; and (3) basin geometry and variation in depth of both Quaternary and Tertiary sediments

  17. Testing the SH1D Assumption for Geotechnical Site and Basin Response Using 3D Finite Difference Modeling

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.

    2015-12-01

    Current state-of-practice of geotechnical site response and soil-structure analyses generally assume a vertically propagating horizontally polarized plane wave is incident on a plane-layered (one-dimensional) soil column. Ground motions representing the wavefield incident to the bedrock base of the soil column are developed from observed and sometimes scaled time-histories or synthesized by various methods. The site-specific ground motion at the surface is then computed from the response of the soil column to the bedrock incident wavefield, possibly including non-linear response of the geotechnical near-surface. This is the so-called SH1D assumption. While this approach is widely used, it ignores important complexities of the incident wavefield. Specifically, the standard approach assumes: 1) the incident wavefield is only composed of vertically propagating body waves; 2) ignores oblique incidence; and 3) neglects the three-component nature of the wavefield that includes surface waves and rotational motions. Surface waves often carry much of the seismic energy and can excite all three components of motion. Therefore, it seems most appropriate to include the most representative characterization of the incident wavefield in site-specific analyses. We are performing parametric studies with three-dimensional (3D) elastic finite difference simulations to compare the near-surface response of sedimentary basins to horizontally polarized planes (arbitrary incident) and point source (double couple) earthquakes. Simulations involve simple, parametric representations of basin geometries and layered material properties of the sedimentary basin and surrounding hard rock. We compare the frequency-dependent site response for different excitations and attempt to quantify the differences between the plane-wave and fully 3D basin response.

  18. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  19. Numerical dispersion, stability, and phase-speed for 3D time-domain finite-difference seismic wave propagation algorithms

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Aldridge, D. F.; Symons, N. P.

    2005-12-01

    Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed

  20. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  1. An efficient method of 3-D elastic full waveform inversion using a finite-difference injection method for time-lapse imaging

    NASA Astrophysics Data System (ADS)

    Borisov, Dmitry; Singh, Satish C.; Fuji, Nobuaki

    2015-09-01

    Seismic full waveform inversion is an objective method to estimate elastic properties of the subsurface and is an important area of research, particularly in seismic exploration community. It is a data-fitting approach, where the difference between observed and synthetic data is minimized iteratively. Due to a very high computational cost, the practical implementation of waveform inversion has so far been restricted to a 2-D geometry with different levels of physics incorporated in it (e.g. elasticity/viscoelasticity) or to a 3-D geometry but using an acoustic approximation. However, the earth is three-dimensional, elastic and heterogeneous and therefore a full 3-D elastic inversion is required in order to obtain more accurate and valuable models of the subsurface. Despite the recent increase in computing power, the application of 3-D elastic full waveform inversion to real-scale problems remains quite challenging on the current computer architecture. Here, we present an efficient method to perform 3-D elastic full waveform inversion for time-lapse seismic data using a finite-difference injection method. In this method, the wavefield is computed in the whole model and is stored on a surface above a finite volume where the model is perturbed and localized inversion is performed. Comparison of the final results using the 3-D finite-difference injection method and conventional 3-D inversion performed within the whole volume shows that our new method provides significant reductions in computational time and memory requirements without any notable loss in accuracy. Our approach shows a big potential for efficient reservoir monitoring in real time-lapse experiments.

  2. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  3. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    NASA Technical Reports Server (NTRS)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  4. 3-D Finite Element Code Postprocessor

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  5. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.

    PubMed

    Yang, Chun; Tang, Dalin; Atluri, Satya

    2011-01-01

    Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression

  6. Effect of Implant Height Differences on Different Attachment Types and Peri-Implant Bone in Mandibular Two-Implant Overdentures: 3D Finite Element Study.

    PubMed

    Ozan, Oguz; Ramoglu, Serhat

    2015-06-01

    Implant-supported overdentures with self-aligning attachment systems are preferred to improve the stability and retention of complete dentures. The positioning of the implant attachments is a very important aspect of two-implant overdentures in obtaining better stress distribution. Therefore, the objective of this study was to compare two different attachment systems in a two-implant overdenture by evaluating the stress distributions in peri-implant bone and stresses on the attachments with positioning at different height levels using the 3D FEA method. Six models with ball attachments and 6 models with locator attachments-totaling 12 models (including 2 controls)-with the left implant positioned unilaterally at different height levels were subjected to 3 loading conditions (anterior, right posterior, and left posterior). Data for Von Misses stresses were produced numerically, color coded, and compared among the models for attachments and peri-implant cortical bone. The configurations in which implants presented 3 mm height differences in the bone level showed the most successful results in the peri-implant bone. When stresses on the attachments were compared, greater stress values were obtained from the ball attachments. As a conclusion, the configurations with a considerable (3 mm) height difference between quadrants of the mandible in the anterior segment showed the most successful results in the peri-implant bone. On the contrary, peak stress values around the implant observed from the models with less (1 mm) bone height difference may require leveling of the bone during surgery. However, these findings should be corroborated with clinical studies.

  7. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  8. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  9. 3D finite element modeling of sliding wear

    NASA Astrophysics Data System (ADS)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  10. STEALTH: a Lagrange explicit finite-difference code for solid, structural, and thermohydraulic analysis. Volume 8B. STEALTH/WHAMSE: a 3-D fluid-structure interaction code

    SciTech Connect

    Not Available

    1984-10-01

    STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structure response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.

  11. 3D Finite Element Trajectory Code with Adaptive Meshing

    NASA Astrophysics Data System (ADS)

    Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien

    2004-11-01

    Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.

  12. Finite element solver for 3-D compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, K. C.; Reddy, J. N.

    1986-01-01

    The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.

  13. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  14. A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem

    PubMed Central

    Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D.

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  15. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  16. Finite Element Analysis of Mechanical Properties of 3D Four-directional Rectangular Braided Composites—Part 2: Validation of the 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Dian-Sen; Fang, Dai-Ning; Lu, Zi-Xing; Yang, Zhen-Yu; Jiang, Nan

    2010-08-01

    In the first part of the work, we have established a new parameterized three-dimensional (3D) finite element model (FEM) which precisely simulated the spatial configuration of the braiding yarns and considered the cross-section deformation as well as the surface contact relationship between the yarns. This paper presents a prediction of the effective elastic properties and the meso-scale mechanical response of 3D braided composites to verify the validation of the FEM. The effects of the braiding parameters on the mechanical properties are investigated in detail. By analyzing the deformation and stress nephogram of the model, a reasonable overall stress field is provided and the results well support the strength prediction. The results indicate it is convenient to predict all the elastic constants of 3D braided composites with different parameters simultaneously using the FEM. Moreover, the FEM can successfully predict the meso-scale mechanical response of 3D braided composites containing periodical structures.

  17. Beam and Truss Finite Element Verification for DYNA3D

    SciTech Connect

    Rathbun, H J

    2007-07-16

    The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.

  18. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0

  19. Stabilized finite elements for 3D reactive flows

    NASA Astrophysics Data System (ADS)

    Braack, M.; Richter, Th.

    2006-07-01

    Objective of this work is the numerical solution of chemically reacting flows in three dimensions described by detailed reaction mechanism. The contemplated problems include, e.g. burners with 3D geometry. Contrary to the usual operator splitting method the equations are treated fully coupled with a Newton solver. This leads to the necessity of the solution of large linear non-symmetric, indefinite systems. Due to the complexity of the regarded problems we combine a variety of numerical methods, as there are goal-oriented adaptive mesh refinement, a parallel multigrid solver for the linear systems and economical stabilization techniques for the stiff problems.By blocking the solution components for every ansatz function and applying special matrix structures for each block of degrees of freedom, we can significantly reduce the required memory effort without worsening the convergence. Considering the Galerkin formulation of the regarded problems this is established by using lumping of the mass matrix and the chemical source terms. However, this technique is not longer feasible for standard stabilized finite elements as for instance Galerkin least squares techniques or streamline diffusion. Those stabilized schemes are well established for Navier-Stokes flows but for reactive flows, they introduce many further couplings into the system compared to Galerkin formulations. In this work, we discuss this issue in connection with combustion in more detail and propose the local projection stabilization technique for reactive flows. Beside the robustness of the arising linear systems we are able to maintain the problem-adapted matrix structures presented above. Finally, we will present numerical results for the proposed methods. In particular, we simulate a methane burner with a detailed reaction system involving 15 chemical species and 84 elementary reactions.

  20. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  1. LaMEM: a massively parallel 3D staggered-grid finite-difference code for coupled nonlinear themo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2015-04-01

    This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of

  2. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  3. A 3D finite element ALE method using an approximate Riemann solution

    DOE PAGES

    Chiravalle, V. P.; Morgan, N. R.

    2016-08-09

    Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less

  4. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.

    PubMed

    Lee, W; Kim, T-S; Cho, M; Lee, S

    2005-01-01

    In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.

  5. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  6. Finite Element Analysis of Meniscal Anatomical 3D Scaffolds: Implications for Tissue Engineering

    PubMed Central

    Moroni, L; Lambers, F.M; Wilson, W; van Donkelaar, C.C; de Wijn, JR; Huiskesb, R; van Blitterswijk, C.A

    2007-01-01

    Solid Free-Form Fabrication (SFF) technologies allow the fabrication of anatomical 3D scaffolds from computer tomography (CT) or magnetic resonance imaging (MRI) patients’ dataset. These structures can be designed and fabricated with a variable, interconnected and accessible porous network, resulting in modulable mechanical properties, permeability, and architecture that can be tailored to mimic a specific tissue to replace or regenerate. In this study, we evaluated whether anatomical meniscal 3D scaffolds with matching mechanical properties and architecture are beneficial for meniscus replacement as compared to meniscectomy. After acquiring CT and MRI of porcine menisci, 3D fiber-deposited (3DF) scaffolds were fabricated with different architectures by varying the deposition pattern of the fibers comprising the final structure. The mechanical behaviour of 3DF scaffolds with different architectures and of porcine menisci was measured by static and dynamic mechanical analysis and the effect of these tissue engineering templates on articular cartilage was assessed by finite element analysis (FEA) and compared to healthy conditions or to meniscectomy. Results show that 3DF anatomical menisci scaffolds can be fabricated with pore different architectures and with mechanical properties matching those of natural menisci. FEA predicted a beneficial effect of meniscus replacement with 3D scaffolds in different mechanical loading conditions as compared to meniscectomy. No influence of the internal scaffold architecture was found on articular cartilage damage. Although FEA predictions should be further confirmed by in vitro and in vivo experiments, this study highlights meniscus replacement by SFF anatomical scaffolds as a potential alternative to meniscectomy. PMID:19662124

  7. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    NASA Astrophysics Data System (ADS)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-09-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  8. 3D Finite Element Study on: Bar Splinted Implants Supporting Partial Denture in the Reconstructed Mandible

    PubMed Central

    El-Anwar, Mohamed; Ghali, Rami; Aboelnagga, Mona

    2016-01-01

    AIM: This study aimed to estimate the stress patterns induced by the masticatory loads on a removable prosthesis supported and retained by bar splinted implants placed in the reconstructed mandible with two different clip materials and without clip, in the fibula-jaw bone and prosthesis using finite element analysis. METHODS: Two 3D finite element models were constructed, that models components were modeled on commercial CAD/CAM software then assembled into finite element package. Vertical loads were applied simulating the masticatory forces unilaterally in the resected site and bilaterally in the central fossa of the lower first molar as 100N (tension and compression). Analysis was based on the assumption full osseointegration between different types of bones, and between implants and fibula while fixing the top surface of the TMJ in place. RESULTS: The metallic bar connecting the three implants is insensitive to the clips material. Its supporting implants showed typical behavior with maximum stress values at the neck region. Fibula and jaw bone showed stresses within physiologic, while clips material effect seems to be very small due to its relatively small size. CONCLUSION: Switching loading force direction from tensile to compression did-not change the stresses and deformations distribution, but reversed their sign from positive to negative. PMID:27275353

  9. Finite-element-based discretization and regularization strategies for 3-D inverse electrocardiography.

    PubMed

    Wang, Dafang; Kirby, Robert M; Johnson, Chris R

    2011-06-01

    We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite-element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also, in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite-element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L(2) norm and thereby achieves consistent regularization in multiscale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3-D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems.

  10. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  11. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot.

  12. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011

  13. Finite-element simulation of flanging in the deform 3D software package

    NASA Astrophysics Data System (ADS)

    Vostrov, V. N.; Kononov, P. V.

    2016-05-01

    The results of a finite element simulation of the rolling of cylindrical workpieces using the DEFORM 3D software package are presented. The curve of the limiting plasticity of L63 brass that corresponds to various schemes of the state of stress in a workpiece is plotted. The deformation paths of the characteristic regions in a rolled part are calculated.

  14. BOPACE 3-D (the Boeing Plastic Analysis Capability for 3-dimensional Solids Using Isoparametric Finite Elements)

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Straayer, J. W.

    1975-01-01

    The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.

  15. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  16. Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.

    2013-06-01

    The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.

  17. The Use of Direct Solver in Vector Finite Element Modeling for Calculating 3-D Magnetotelluric Responses

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2016-08-01

    In this work, we seek numerical solution of 3-D Magnetotelluric (MT) using edge- based finite element method. This approach is a variant of standard finite element method and commonly referred as vector finite-element (VFE) method. Nonphysical solutions usually occurred when the solution is sought using standard finite element which is a node based element. Vector finite element attempt to overcome those nonphysical solutions by using the edges of the element as vector basis. The proposed approach on solving second order Maxwell differential equation of 3-D MT is using direct solver rather than iterative method. Therefore, divergence correction to accelerate the rate of convergence for its iterative solution is no longer needed. The utilization of direct solver has been verified previously for correctness by comparing the resulting solution to those given by analytical solution, as well as the solution come from the other numerical methods, for earth layered model, 2-D models and COMMEMI 3D-2 model. In this work, further verification resulted from recent comparison model of Dublin Test Model 1 (DTM1) is presented.

  18. A 3D discontinuous Galerkin finite-element method for teleseismic modelling.

    NASA Astrophysics Data System (ADS)

    monteiller, vadim; Beller, Stephen; Nolet, Guust; Operto, Stephane; Virieux, Jean

    2014-05-01

    The massive development of dense seismic arrays and the rapide increase in computing capacity allow today to consider application of full waveform inversion of teleseismic data for high-resolution lithospheric imaging. We present an hybrid numerical method that allows for the modelling of short period telesismic waves in 3D lithospheric target with the discontinuous Galerkin finite elements method, opennig the possibility to perform waveform inversion of seismograms recorded by dense regional broadband arrays. In order to reduce the computational cost of the forward-problem, we developed a method that relies on multi-core parallel computing and computational-domain reduction. We defined two nested levels for parallelism based on MPI library, which are managed by two MPI communicators. Firstly, we use a domain partitionning strategy, assigning one subdomain to one cpu and, secondly we distribute telesismic sources on different copies of the partitioned domain. However, despite the supercomputer ability, the forward-problem remains expensive for telesismic configuration especially when 3D numerical methods are considered. In order to perform the forward problem in a reasonable amount of time, we reduce the computational domain in which full waveform modelling is performed. We defined a 3D regional domain located below the seismological network that is embeded in a background homogeneous or axisymetric model, in which the seismic wavefield can be computed efficiently. The background wavefield is used to compute the full wavefield in the 3D regional domain using the so-called total-field/scattered-field technique (Alterman & Karal (1968),Taflove & Hagness (2005)), which relies on the decomposition of the wavefield into a background and a scattered wavefields. The computational domain is subdivided intro three subdomains: an outer domain formed by the perfectly-mathed absorbing layers, an intermediate zone in which only the outgoing wavefield scattered by the

  19. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  20. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  1. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    PubMed Central

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham sadat

    2015-01-01

    Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Materials and Methods: Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance: A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use. PMID:26622275

  2. 3D finite element analysis of porous Ti-based alloy prostheses.

    PubMed

    Mircheski, Ile; Gradišar, Marko

    2016-11-01

    In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price.

  3. Application of edge-based finite elements and vector ABCs in 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    A finite element absorbing boundary condition (FE-ABC) solution of the scattering by arbitrary 3-D structures is considered. The computational domain is discretized using edge-based tetrahedral elements. In contrast to the node-based elements, edge elements can treat geometries with sharp edges, are divergence-less, and easily satisfy the field continuity condition across dielectric interfaces. They do, however, lead to a higher unknown count but this is balanced by the greater sparsity of the resulting finite element matrix. Thus, the computation time required to solve such a system iteratively with a given degree of accuracy is less than the traditional node-based approach. The purpose is to examine the derivation and performance of the ABC's when applied to 2-D and 3-D problems and to discuss the specifics of our FE-ABC implementation.

  4. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  5. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  6. A Multi-Compartment 3-D Finite Element Model of Rectocele and Its Interaction with Cystocele

    PubMed Central

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O. L.

    2015-01-01

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as POP-Q point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  7. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele.

    PubMed

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E; Ashton-Miller, James A; DeLancey, John O L

    2015-06-25

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as pelvic organ prolapse quantification system (POP-Q) point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment.

  8. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele.

    PubMed

    Luo, Jiajia; Chen, Luyun; Fenner, Dee E; Ashton-Miller, James A; DeLancey, John O L

    2015-06-25

    We developed a subject-specific 3-D finite element model to understand the mechanics underlying formation of female pelvic organ prolapse, specifically a rectocele and its interaction with a cystocele. The model was created from MRI 3-D geometry of a healthy 45 year-old multiparous woman. It included anterior and posterior vaginal walls, levator ani muscle, cardinal and uterosacral ligaments, anterior and posterior arcus tendineus fascia pelvis, arcus tendineus levator ani, perineal body, perineal membrane and anal sphincter. Material properties were mostly from the literature. Tissue impairment was modeled as decreased tissue stiffness based on previous clinical studies. Model equations were solved using Abaqus v 6.11. The sensitivity of anterior and posterior vaginal wall geometry was calculated for different combinations tissue impairments under increasing intraabdominal pressure. Prolapse size was reported as pelvic organ prolapse quantification system (POP-Q) point at point Bp for rectocele and point Ba for cystocele. Results show that a rectocele resulted from impairments of the levator ani and posterior compartment support. For 20% levator and 85% posterior support impairments, simulated rectocele size (at POP-Q point: Bp) increased 0.29 mm/cm H2O without apical impairment and 0.36 mm/cm H2O with 60% apical impairment, as intraabdominal pressures increased from 0 to 150 cm H2O. Apical support impairment could result in the development of either a cystocele or rectocele. Simulated repair of posterior compartment support decreased rectocele but increased a preexisting cystocele. We conclude that development of rectocele and cystocele depend on the presence of anterior, posterior, levator and/or or apical support impairments, as well as the interaction of the prolapse with the opposing compartment. PMID:25757664

  9. A 3-D implicit finite-volume model of shallow water flows

    NASA Astrophysics Data System (ADS)

    Wu, Weiming; Lin, Qianru

    2015-09-01

    A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values.

  10. Validation Studies of the Finite Orbit Width version of the CQL3D code

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2014-10-01

    The Finite-Orbit-Width (FOW) version of the CQL3D bounce-averaged Fokker-Planck (FP) code has been further developed and tested. The neoclassical radial transport appears naturally in this version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R,Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The main challenge is the internal boundary conditions (IBC) which add many elements into the matrix of coefficients for the solution of FPE on the computational grid, effectively making it a non-banded matrix (but still sparse). Steady state runs have been achieved at NERSC supercomputers in typically 10 time steps. Validation tests are performed for NSTX conditions, but using different scaling factors of equilibrium magnetic field, from 0.5 to 8.0. The bootstrap current calculations for ions show a reasonable agreement of current density profiles with Sauter et al. model equations which are based on 1st order expansion, although the magnitudes of currents may differ by up to 30%. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  11. Finite Element Analysis of Thermo-Mechanical Properties of 3D Braided Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Li-li; Xu, Guo-dong; Cheng, Su; Lu, Xia-mei; Zeng, Tao

    2014-04-01

    This paper presents a modified finite element model (FEM) to investigate the thermo-mechanical properties of three-dimensional (3D) braided composite. The effective coefficients of thermal expansion (CTE) and the meso-scale mechanical response of 3D braided composites are predicted. The effects of the braiding angle and fiber volume fraction on the effective CTE are evaluated. The results are compared to the experimental data available in the literature to demonstrate the accuracy and reliability of the present method. The tensile stress distributions of the representative volume element (RVE) are also outlined. It is found that the stress of the braiding yarn has a significant increase with temperature rise; on the other hand, the temperature change has an insignificant effect on the stress of the matrix. In addition, a rapid decrease in the tensile strength of 3D braided composites is observed with the increase in temperature. It is revealed that the thermal conditions have a significant effect on the strength of 3D braided composites. The present method provides an effective tool to predict the stresses of 3D braided composites under thermo-mechanical loading.

  12. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  13. surf3d: A 3-D finite-element program for the analysis of surface and corner cracks in solids subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1993-01-01

    A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.

  14. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  15. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  16. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    PubMed

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy.

  17. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  18. GENSURF: A mesh generator for 3D finite element analysis of surface and corner cracks in finite thickness plates subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1992-01-01

    A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.

  19. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  20. The numerical integration and 3-D finite element formulation of a viscoelastic model of glass

    SciTech Connect

    Chambers, R.S.

    1994-08-01

    The use of glasses is widespread in making hermetic, insulating seals for many electronic components. Flat panel displays and fiber optic connectors are other products utilizing glass as a structural element. When glass is cooled from sealing temperatures, residual stresses are generated due to mismatches in thermal shrinkage created by the dissimilar material properties of the adjoining materials. Because glass is such a brittle material at room temperature, tensile residual stresses must be kept small to ensure durability and avoid cracking. Although production designs and the required manufacturing process development can be deduced empirically, this is an expensive and time consuming process that does not necessarily lead to an optimal design. Agile manufacturing demands that analyses be used to reduce development costs and schedules by providing insight and guiding the design process through the development cycle. To make these gains, however, viscoelastic models of glass must be available along with the right tool to use them. A viscoelastic model of glass can be used to simulate the stress and volume relaxation that occurs at elevated temperatures as the molecular structure of the glass seeks to equilibrate to the state of the supercooled liquid. The substance of the numerical treatment needed to support the implementation of the model in a 3-D finite element program is presented herein. An accurate second-order, central difference integrator is proposed for the constitutive equations, and numerical solutions are compared to those obtained with other integrators. Inherent convergence problems are reviewed and fixes are described. The resulting algorithms are generally applicable to the broad class of viscoelastic material models. First-order error estimates are used as a basis for developing a scheme for automatic time step controls, and several demonstration problems are presented to illustrate the performance of the methodology.

  1. 3D imaging of soil pore network: two different approaches

    NASA Astrophysics Data System (ADS)

    Matrecano, M.; Di Matteo, B.; Mele, G.; Terribile, F.

    2009-04-01

    Pore geometry imaging and its quantitative description is a key factor for advances in the knowledge of physical, chemical and biological soil processes. For many years photos from flattened surfaces of undisturbed soil samples impregnated with fluorescent resin and from soil thin sections under microscope have been the only way available for exploring pore architecture at different scales. Earlier 3D representations of the internal structure of the soil based on not destructive methods have been obtained using medical tomographic systems (NMR and X-ray CT). However, images provided using such equipments, show strong limitations in terms of spatial resolution. In the last decade very good results have then been obtained using imaging from very expensive systems based on synchrotron radiation. More recently, X-ray Micro-Tomography has resulted the most widely applied being the technique showing the best compromise between costs, resolution and size of the images. Conversely, the conceptually simpler but destructive method of "serial sectioning" has been progressively neglected for technical problems in sample preparation and time consumption needed to obtain an adequate number of serial sections for correct 3D reconstruction of soil pore geometry. In this work a comparison between the two methods above has been carried out in order to define advantages, shortcomings and to point out their different potential. A cylindrical undisturbed soil sample 6.5cm in diameter and 6.5cm height of an Ap horizon of an alluvial soil showing vertic characteristics, has been reconstructed using both a desktop X-ray micro-tomograph Skyscan 1172 and the new automatic serial sectioning system SSAT (Sequential Section Automatic Tomography) set up at CNR ISAFOM in Ercolano (Italy) with the aim to overcome most of the typical limitations of such a technique. Image best resolution of 7.5 µm per voxel resulted using X-ray Micro CT while 20 µm was the best value using the serial sectioning

  2. Robust 3D face recognition by local shape difference boosting.

    PubMed

    Wang, Yueming; Liu, Jianzhuang; Tang, Xiaoou

    2010-10-01

    This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. PMID:20724762

  3. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    NASA Astrophysics Data System (ADS)

    Aristovich, K. Y.; Khan, S. H.

    2010-07-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  4. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahdi Esmaily; Vignon-Clementel, Irene E.; Figliola, Richard; Marsden, Alison L.; Modeling Of Congenital Hearts Alliance (Mocha) Investigators

    2013-07-01

    Implementation of boundary conditions in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. The use of elaborate closed-loop lumped parameter network (LPN) models of the heart and the circulatory system as boundary conditions for computational fluid dynamics (CFD) simulations can provide valuable global dynamic information, particularly for patient specific simulations. In this paper, the necessary formulation for coupling an arbitrary LPN to a finite element Navier-Stokes solver is presented. A circuit analogy closed-loop LPN is solved numerically, and pressure and flow information is iteratively passed between the 0D and 3D domains at interface boundaries, resulting in a time-implicit scheme. For Neumann boundaries, an implicit method, regardless of the LPN, is presented to achieve the desired stability and convergence properties. Numerical procedures for passing flow and pressure information between the 0D and 3D domains are described, and implicit, semi-implicit, and explicit quasi-Newton formulations are compared. The issue of divergence in the presence of backflow is addressed via a stabilized boundary formulation. The requirements for coupling Dirichlet boundary conditions are also discussed and this approach is compared in detail to that of the Neumann coupled boundaries. Having the option to select between Dirichlet and Neumann coupled boundary conditions increases the flexibility of current framework by allowing a wide range of components to be used at the 3D-0D interface.

  5. A detailed 3D finite element analysis of the peeling behaviour of a gecko spatula.

    PubMed

    Sauer, Roger A; Holl, Matthias

    2013-01-01

    This paper presents a detailed finite element analysis of the adhesion of a gecko spatula. The gecko spatulae form the tips of the gecko foot hairs that transfer the adhesional and frictional forces between substrate and foot. The analysis is based on a parameterised description of the 3D geometry of the spatula that only requires 12 parameters. The adhesion is described by a nonlinear computational contact formulation that accounts for the van der Waals interaction between spatula and substrate. The spatula adhesion model is implemented using an enriched contact finite element formulation recently developed by the first author. The finite element model is then used to simulate the peeling behaviour of the gecko spatula under applied vertical and rotational loading for various model parameters. Variations of the material stiffness, adhesional strength and range, stiction, spatula size and spatula inclination are considered to account for the natural variation of spatula properties. The study demonstrates that the spatula can function over a wide range of conditions. The computed pull-off forces are in agreement with experimental results reported in the literature. The study also examines the energy required for the spatula pull-off. The proposed model is ideal to study the influence of substrate roughness on the spatula adhesion, as is finally demonstrated.

  6. 3D finite element model of RF heating: novel nonablative cutaneous therapy

    NASA Astrophysics Data System (ADS)

    Pham, Linda; Pope, Karl A.

    2003-06-01

    This study presents a finite element model of a non-ablative RF tissue heating system for dermatological applications. The Thermage ThermaCool TC System consists of a capacitively coupled treatment tip, handpiece, RF generator, and cryogen delivery system. Various electrode geometries were created to generate uniform thermal profiles at specific depths in the tissue. The optimal thermal treatment depth for a clinical indication is influenced by factors such as tissue thickness for a given anatomical location, the desired target for heating in that tissue, and anesthesia factors. Electrodes of ¼, 1, and 1½cm2 area were evaluated for depth of treatment. A 3D multi-physics finite element model was developed to simulate RF heating in tissue. The program coupled electrical and thermal models to predict the electric field produced and the consequent heating. The electrical portion of the model was verified using an electric field mapping system. The thermal section of the model was confirmed via thermocouple measurements for cooling and infrared imaging measurements for RF heating. The FEM model produced electrical and thermal predictions that were verified with experimental measurements. The finite element model shows significant potential as a predictive R&D tool to assist in RF electrode design and reduce product development time.

  7. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  8. 3D Finite Time Lyapunov Exponents in a left ventricle laboratory model

    NASA Astrophysics Data System (ADS)

    Grazia Badas, Maria; Espa, Stefania; Fortini, Stefania; Querzoli, Giorgio

    2015-05-01

    Finite Time Lyapunov Exponents (FTLEs) are a powerful means to infer characteristic features of the flow that cannot be revealed by other Eulerian criteria. Recently FTLEs are becoming popular also in the medical context, for instance in the analysis of vascular flow measured by means of Magnetic Resonance Imaging. However, many of the FTLE experimental works are based only on two-dimensional velocity fields, moreover those computed on in-vivo data cannot be obtained under controlled and repeatable conditions. Here we present the 3D FTLE evolution inside a Left Ventricle (LV) laboratory model mimicking physiological human conditions. The investigation of FTLE fields highlights distinctive features of the cardiac flow and gives an insight on the physiological development of the Lagrangian Coherent Structures (LCS) that optimize the LV refill.

  9. 3D finite element analysis on esthetic indirect dental restorations under thermal and mechanical loading.

    PubMed

    Cornacchia, Tulimar P M; Las Casas, Estevam B; Cimini, Carlos Alberto; Peixoto, Rodrigo G

    2010-11-01

    Thermo-mechanical finite element analyses in 3-D models are described for determination of the stress levels due to thermal and mechanical loads in a healthy and restored tooth. Transient thermo-mechanical analysis simulating the ingestion of cold and hot drinks was performed to determine the temperature distribution in the models of the teeth, followed by linear elastic stress analyses. The thermal loads were applied on the occlusal and lingual surfaces. Subsequently, coupled variation of the temperature and mastication loading was considered. The vertical loading was distributed at occlusal points, adding up to 180 N. Maximum stresses were verified in resin restoration under thermal loads. When studying coupled effect of mechanical loading with that arising from thermal effects, higher tensile stress values occurred in porcelain restorations, especially at the restoration-dentin interface. Regions of high tensile stress were detected and their possible clinical significance with respect to restoration damage and microleakage were discussed.

  10. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  11. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  12. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.

  13. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845

  14. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.

  15. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  16. Seismic-acoustic finite-difference wave propagation algorithm.

    SciTech Connect

    Preston, Leiph; Aldridge, David Franklin

    2010-10-01

    An efficient numerical algorithm for treating earth models composed of fluid and solid portions is obtained via straightforward modifications to a 3D time-domain finite-difference algorithm for simulating isotropic elastic wave propagation.

  17. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  18. Numerical modeling of elastic waves in inhomogeneous anisotropic media using 3D-elastodynamic finite integration technique

    NASA Astrophysics Data System (ADS)

    Chinta, Prashanth K.; Mayer, K.; Langenberg, K. J.

    2012-05-01

    Nondestructive Evaluation (NDE) of elastic anisotropic media is very complex because of directional dependency of elastic stiffness tensor. Modeling of elastic waves in such materials gives us intuitive knowledge about the propagation and scattering phenomena. The wave propagation in three dimensional space in anisotropic media gives us the deep insight of the transition of the different elastic wave modes i.e. mode conversion, and scattering of these waves because of inhomogeneities present in the material. The numerical tool Three Dimensional-Elastodynamic Finite Integration Technique (3D-EFIT) has been proved to be a very efficient tool for the modeling of elastic waves in very complex geometries. The 3D-EFIT is validated using the analytical approach based on the Radon transform. The simulation results of 3D-EFIT applied to inhomogeneous austenitic steel welds and wood structures are presented. In the first application the geometry consists of an austenitic steel weld that joins two isotropic steel blocks. The vertical transversal isotropic (VTI) austenitic steel is used. The convolutional perfectly matched layers are applied at the boundaries that are supported by isotropic steel. In the second application the wave propagation in the orthotropic wooden structure with an air cavity inside is investigated. The wave propagation results are illustrated using time domain elastic wave snapshots.

  19. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone

    PubMed Central

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar–canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30–50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in

  20. FERM3D: A finite element R-matrix electron molecule scattering code

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  1. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  2. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.

    2016-08-01

    A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.

  3. A new 3D finite element model of the IEC 60318-1 artificial ear

    NASA Astrophysics Data System (ADS)

    Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; DeArcas, Guillermo; Recuero, Manuel

    2008-08-01

    The artificial ear specified in IEC 60318-1 is used for the measurement of headphones and has been designed to present an acoustic load equivalent to that of normal human ears. In this respect it is specified in terms of an acoustical impedance, and modelled by a lumped parameter approach. However, this has some inherent frequency limitations and becomes less valid as the acoustic wavelength approaches the characteristic dimensions within the device. In addition, when sound propagates through structures such as narrow tubes, annular slits or over sharp corners, noticeable thermal and viscous effects take place causing further departure from the lumped parameter model. A new numerical model has therefore been developed, which gives proper consideration to the aforementioned effects. Both kinds of losses can be simulated by means of the LMS Virtual Lab acoustic software which facilitates finite and boundary element modelling of the whole artificial ear. A full 3D model of the artificial ear has therefore been developed based on key dimensional data found in IEC 60318-1. The model has been used to calculate the acoustical impedance, and the results compared with the corresponding data determined from the lumped parameter model. The numerical simulation of the artificial ear has been shown to provide realistic results, and is a powerful tool for developing a detailed understanding of the device. It is also proving valuable in the revision of IEC 60318-1 that is currently in progress.

  4. Finite element modeling of a 3D coupled foot-boot model.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei

    2011-12-01

    Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military.

  5. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  6. A thermographic approach for surface crack depth evaluation through 3D finite element modeling

    NASA Astrophysics Data System (ADS)

    Basheer, Mohammed; PV, Nithin; Ravindran, Parag; Balasubramaniam, Krishnan

    2015-03-01

    Laser Thermography has been reported earlier by several researchers as a tool for detecting surface breaking cracks in metals. A high energy laser (pulsed Nd-YAG) was used to produce a highly localized thermal spot from which heat diffuses (predominantly) in the radial direction. The crack that is perpendicular to the surface and close to this thermal spot will perturb the lateral heat flow and this disturbance can be observed by an IR camera. The laser spot is then scanned over a region to map the crack; this allows remote imaging of crack morphology even in elevated temperatures. The present study involves a 3D finite element simulation using COMSOL Multiphysics as a tool to simulate the thermal flow from a pulsed laser source in the proximity of a crack. The modeling helped to understand the various parameters affecting the thermal images of laser heated spots. The influence of depth of the crack on temperature changes across the crack and the relationship between crack depth and temperature changes due to the crack was simulated and subsequently validated experimentally.

  7. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  8. 3D Finite Element Analysis of Some Structural Modified PC Sleeper with the Vibration Characteristics between Sleeper and Ballast

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira

    The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.

  9. 3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis

    NASA Astrophysics Data System (ADS)

    Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav

    2016-07-01

    Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin (~2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.

  10. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 3: Systems' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.

  11. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  12. A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf

    USGS Publications Warehouse

    Walters, R.A.; Foreman, M.G.G.

    1992-01-01

    This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased

  13. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  14. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  15. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis.

    PubMed

    Eraslan, Oğuz; Inan, Ozgür

    2010-08-01

    The biomechanical behavior of implant thread plays an important role on stresses at implant-bone interface. Information about the effect of different thread profiles upon the bone stresses is limited. The purpose of this study was to evaluate the effects of different implant thread designs on stress distribution characteristics at supporting structures. In this study, three-dimensional (3D) finite element (FE) stress-analysis method was used. Four types of 3D mathematical models simulating four different thread-form configurations for a solid screw implant was prepared with supporting bone structure. V-thread (1), buttress (2), reverse buttress (3), and square thread designs were simulated. A 100-N static axial occlusal load was applied to occlusal surface of abutment to calculate the stress distributions. Solidworks/Cosmosworks structural analysis programs were used for FE modeling/analysis. The analysis of the von Mises stress values revealed that maximum stress concentrations were located at loading areas of implant abutments and cervical cortical bone regions for all models. Stress concentration at cortical bone (18.3 MPa) was higher than spongious bone (13.3 MPa), and concentration of first thread (18 MPa) was higher than other threads (13.3 MPa). It was seen that, while the von Mises stress distribution patterns at different implant thread models were similar, the concentration of compressive stresses were different. The present study showed that the use of different thread form designs did not affect the von Mises concentration at supporting bone structure. However, the compressive stress concentrations differ by various thread profiles.

  16. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Zhebel, E.; Minisini, S.

    2014-02-01

    We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant-Friedrichs-Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the mass-lumped elements of degree one and three allow for larger time steps.

  17. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker-Planck code

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Harvey, R. W.

    2016-11-01

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker-Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit to the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.

  18. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  19. A Simulation of crustal deformation around sourthwest Japan using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Oma, T.; Ito, T.; Sasajima, R.

    2015-12-01

    In southwest Japan, the Philippine Sea plate is subducting beneath the Amurian plate at the Nankai Trough. Megathrust earthquakes have been occurred with recurrence intervals of about 100-150 years. Previous studies have estimated co-seismic slip distribution at the 1944 Tokankai and the 1946 Nankai earthquakes and interplate plate coupling along the Nankai Trough. Many of previous studies employed a homogeneous elastic half space or elastic and viscoelastic layers structure. However, these assumptions as mentioned above are inadequate, since inhomogeneous structure is exceled in the real earth result from subducting plate. Therefore, in order to estimate the effect of inhomogeneous structure on the crustal deformation, we calculate crustal deformation due to Megathrust earthquake using 3-dimensional Finite Element Method (FEM). We use FEM software PyLith v2.1. In this study, we construct a finite element mesh with the region of 3000km(SW) × 2300km(NS) × 400km(depth) cover Japanese Islands, using Cubit 13.0. This mesh is considered topography, the Philippine Sea plate, the Pacific plate, Moho discontinuity, and curvature of the earth. In order to examine differences of surface displacement between inhomogeneous and homogeneous structures, we use co-seismic slip distribution of the 1944 and 1946 earthquakes estimated by Sagiya and Thatcher (1999). In result, surface elastic response under inhomogeneous structure becomes 30% larger than it's homogeneous structure at the Muroto cape. This difference indicates that co-seismic slip or plate coupling distribution estimated from Green's function under an assumption of homogeneous structure is overestimated. Then, we calculate viscoelastic response assuming Maxwell rheology model and viscosity as 1×1019. As a result, predicted horizontal velocity of viscoelastic response due to the events corresponds to 10 % of observed present deformation. It suggest that spatial pattern of plate coupling might be change when we

  20. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Xiong, Bin; Han, Muran; Zhdanov, Michael

    2014-12-01

    This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system of finite element equations is solved using a quasi-minimum residual method with a Jacobian preconditioner. We have applied the developed algorithm to compute a typical MCSEM response over a 3D model of a hydrocarbon reservoir located in both isotropic and anisotropic mediums. The modeling results are in a good agreement with the solutions obtained by the integral equation method.

  1. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom

    PubMed Central

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T.

    2011-01-01

    Purpose: The authors previously introduced a methodology to generate a realistic three-dimensional (3D), high-resolution, computer-simulated breast phantom based on empirical data. One of the key components of such a phantom is that it provides a means to produce a realistic simulation of clinical breast compression. In the current study, they have evaluated a finite element (FE) model of compression and have demonstrated the effect of a variety of mechanical properties on the model using a dense mesh generated from empirical breast data. While several groups have demonstrated an effective compression simulation with lower density finite element meshes, the presented study offers a mesh density that is able to model the morphology of the inner breast structures more realistically than lower density meshes. This approach may prove beneficial for multimodality breast imaging research, since it provides a high level of anatomical detail throughout the simulation study. Methods: In this paper, the authors describe methods to improve the high-resolution performance of a FE compression model. In order to create the compressible breast phantom, dedicated breast CT data was segmented and a mesh was generated with 4-noded tetrahedral elements. Using an explicit FE solver to simulate breast compression, several properties were analyzed to evaluate their effect on the compression model including: mesh density, element type, density, and stiffness of various tissue types, friction between the skin and the compression plates, and breast density. Following compression, a simulated projection was generated to demonstrate the ability of the compressible breast phantom to produce realistic simulated mammographic images. Results: Small alterations in the properties of the breast model can change the final distribution of the tissue under compression by more than 1 cm; which ultimately results in different representations of the breast model in the simulated images. The model

  2. Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation

    NASA Astrophysics Data System (ADS)

    Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.

    2015-12-01

    Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.

  3. Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows

    NASA Technical Reports Server (NTRS)

    Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.

    1999-01-01

    A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.

  4. A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1980-01-01

    The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

  5. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  6. Simulation of ultrasonic NCF composites testing using 3D finite element model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-04-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation.

  7. NIKE3D: an implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids

    SciTech Connect

    Hallquist, J.O.

    1981-01-01

    A user's manual is provided for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the large deformation static and dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node constant pressure solid elements. Bandwidth minimization is optional. Post-processors for NIKE3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories.

  8. Finite element method for accurate 3D simulation of plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Burger, Sven; Zschiedrich, Lin; Pomplun, Jan; Schmidt, Frank

    2010-02-01

    Optical properties of hybrid plasmonic waveguides and of low-Q cavities, formed by waveguides of finite length are investigated numerically. These structures are of interest as building-blocks of plasmon lasers. We use a time-harmonic finite-element package including a propagation-mode solver, a resonance-mode solver and a scattering solver for studying various properties of the system. Numerical convergence of all used methods is demonstrated.

  9. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  10. 3-d finite element model development for biomechanics: a software demonstration

    SciTech Connect

    Hollerbach, K.; Hollister, A.M.; Ashby, E.

    1997-03-01

    Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.

  11. Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences.

    PubMed

    Tanaka, Kara S; Lightdale-Miric, Nina

    2016-08-01

    ➤The prohibitive cost of cutting-edge prostheses prevents many children with a limb difference from obtaining them; however, new developments in 3-dimensional (3D) printing have the potential to increase the accessibility, customization, and procurement of such devices.➤Children with upper limb differences are ideal candidates for currently available 3D-printed devices because they quickly damage and outgrow prostheses, and the low cost of 3D printing makes repairs and upgrades substantially more affordable.➤Physicians and medical practitioners should become familiar with the possibilities of 3D-printed devices in order to determine the benefits and utility for their patients. PMID:27489324

  12. Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences.

    PubMed

    Tanaka, Kara S; Lightdale-Miric, Nina

    2016-08-01

    ➤The prohibitive cost of cutting-edge prostheses prevents many children with a limb difference from obtaining them; however, new developments in 3-dimensional (3D) printing have the potential to increase the accessibility, customization, and procurement of such devices.➤Children with upper limb differences are ideal candidates for currently available 3D-printed devices because they quickly damage and outgrow prostheses, and the low cost of 3D printing makes repairs and upgrades substantially more affordable.➤Physicians and medical practitioners should become familiar with the possibilities of 3D-printed devices in order to determine the benefits and utility for their patients.

  13. DYNA3D Finite Element Analysis of Steam Explosion Loads on a Pedestal Wall Design

    SciTech Connect

    Noble, C R

    2007-01-18

    The objective of this brief report is to document the ESBWR pedestal wall finite element analyses that were performed as a quick turnaround effort in July 2005 at Lawrence Livermore National Laboratory and describe the assumptions and failure criteria used for these analyses [Ref 4]. The analyses described within are for the pedestal wall design that included an internal steel liner. The goal of the finite element analyses was to assist in determining the load carrying capacity of the ESBWR pedestal wall subjected to an impulsive pressure generated by a steam explosion.

  14. Edge-based finite elements and vector ABCs applied to 3D scattering

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1992-01-01

    An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.

  15. 3D Finite Element Modelling for the investigation of the cavity effect in extensometric rock-deformation measurements

    NASA Astrophysics Data System (ADS)

    Kis, M.; Detzky, G.; Koppán, A.

    2012-04-01

    phenomenon in general. Authors calculated the deformations of a simple-geometry 3D cavity, which is caused by variable gravity loads. Dependence of the cavity effect on changing of distinct elastic properties in categorized models has been investigated. Authors introduced qualifying parameter fields calculated using the results of the FE modelling (nodal displacements as a model answer for the gravity load), in order to characterize the effect. Modelling results can be used as an estimation not only for the absolute cavity effect rate of the intended arrangement, furthermore the sensitivity of the given system against a particular geometric property. As an application example finite element modelling were carried out in order to estimate the influence of the complicated cavity system surrounding the "Budapest-Matyashegy" Gravity and Geodynamical Observatory of the Eotvos Lorand Geophysical Institute of Hungary.

  16. Simulating hydroplaning of submarine landslides by quasi 3D depth averaged finite element method

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio; Battista Crosta, Giovanni

    2014-05-01

    G.B. Crosta, H. J. Chen, and F.V. De Blasio Dept. Of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Milano, Italy Klohn Crippen Berger, Calgary, Canada Subaqueous debris flows/submarine landslides, both in the open ocean as well as in fresh waters, exhibit extremely high mobility, quantified by a ratio between vertical to horizontal displacement of the order 0.01 or even much less. It is possible to simulate subaqueous debris flows with small-scale experiments along a flume or a pool using a cohesive mixture of clay and sand. The results have shown a strong enhancement of runout and velocity compared to the case in which the same debris flow travels without water, and have indicated hydroplaning as a possible explanation (Mohrig et al. 1998). Hydroplaning is started when the snout of the debris flow travels sufficiently fast. This generates lift forces on the front of the debris flow exceeding the self-weight of the sediment, which so begins to travel detached from the bed, literally hovering instead of flowing. Clearly, the resistance to flow plummets because drag stress against water is much smaller than the shear strength of the material. The consequence is a dramatic increase of the debris flow speed and runout. Does the process occur also for subaqueous landslides and debris flows in the ocean, something twelve orders of magnitude larger than the experimental ones? Obviously, no experiment will ever be capable to replicate this size, one needs to rely on numerical simulations. Results extending a depth-integrated numerical model for debris flows (Imran et al., 2001) indicate that hydroplaning is possible (De Blasio et al., 2004), but more should be done especially with alternative numerical methodologies. In this work, finite element methods are used to simulate hydroplaning using the code MADflow (Chen, 2014) adopting a depth averaged solution. We ran some simulations on the small scale of the laboratory experiments, and secondly

  17. Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements

    NASA Astrophysics Data System (ADS)

    Talebi, Hossein; Saputra, Albert; Song, Chongmin

    2016-08-01

    While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.

  18. Simulation of 3D tumor cell growth using nonlinear finite element method.

    PubMed

    Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi

    2016-01-01

    We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth. PMID:26213205

  19. Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements

    NASA Astrophysics Data System (ADS)

    Talebi, Hossein; Saputra, Albert; Song, Chongmin

    2016-10-01

    While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.

  20. A 3D finite element simulation model for TBM tunnelling in soft ground

    NASA Astrophysics Data System (ADS)

    Kasper, Thomas; Meschke, Günther

    2004-12-01

    A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright

  1. Development of a 3D finite element model evaluating air-coupled ultrasonic measurements of nonlinear Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.

    2016-02-01

    This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.

  2. Visual Short-Term Memory Benefit for Objects on Different 3-D Surfaces

    ERIC Educational Resources Information Center

    Xu, Yaoda; Nakayama, Ken

    2007-01-01

    Visual short-term memory (VSTM) plays an important role in visual cognition. Although objects are located on different 3-dimensional (3-D) surfaces in the real world, how VSTM capacity may be influenced by the presence of multiple 3-D surfaces has never been examined. By manipulating binocular disparities of visual displays, the authors found that…

  3. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  4. Image forces on 3d dislocation structures in crystals of finite volume

    SciTech Connect

    El-Azab, A.

    1999-07-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  5. Image Forces on 3-D Dislocation Structures in Crystals of Finite Volume

    SciTech Connect

    El-Azab, Anter ); V.V. Bulatov

    1999-01-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  6. Repositioning accuracy of two different mask systems-3D revisited: Comparison using true 3D/3D matching with cone-beam CT

    SciTech Connect

    Boda-Heggemann, Judit . E-mail: judit.boda-heggemann@radonk.ma.uni-heidelberg.de; Walter, Cornelia; Rahn, Angelika; Wertz, Hansjoerg; Loeb, Iris; Lohr, Frank; Wenz, Frederik

    2006-12-01

    Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 {+-} 0.152 cm (intracranial) and 0.586 {+-} 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 {+-} 0.174 cm (intracranial) and 0.726 {+-} 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 {+-} 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 {+-} 0.074 cm, and was 0.134 {+-} 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask

  7. Visualization methods for high-resolution, transient, 3-D, finite element situations

    SciTech Connect

    Christon, M.A.

    1995-01-10

    Scientific visualization is the process whereby numerical data is transformed into a visual form to augment the process of discovery and understanding. Visualizing the data generated by large-scale, transient, three-dimensional finite element simulations poses many challenges due to geometric complexity, the presence of multiple materials and multiple element types, and the inherent unstructured nature of the meshes. In this paper, the direct use of finite element data structures, nodal assembly procedures, and element interpolants for volumetric adaptive surface extraction, surface rendering, vector grids and particle tracing is discussed. A brief description of a {open_quotes}direct-to-disk{close_quotes} animation system is presented, and case studies which demonstrate the use of isosurfaces, vector plots, cutting planes, reference surfaces and particle tracing are then discussed in the context of several case studies for transient incompressible viscous flow, and acoustic fluid-structure interaction simulations. An overview of the implications of massively parallel computers on visualization is presented to highlight the issues in parallel visualization methodology, algorithms. data locality and the ultimate requirements for temporary and archival data storage and network bandwidth.

  8. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    SciTech Connect

    Kılıç, Emre Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  9. The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D

    SciTech Connect

    Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.

    2011-01-01

    Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.

  10. Finite Element Analysis of 2.5D Woven Composites, Part I: Microstructure and 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Song, Jian; Wen, Weidong; Cui, Haitao; Zhang, Hongjian; Xu, Ying

    2016-02-01

    A new parameterized finite element model, called the Full-cell model, has been established based on the practical microstructure of 2.5D angle-interlock woven composites. This model considering the surface layer structure can predict the mechanical properties and estimate the structural performance such as the fiber volume fraction and inclination angle. According to introducing a set of periodic boundary condition, a reasonable overall stress field and periodic deformation are obtained. Furthermore, the model investigates the relationships among the woven parameters and elastic moduli, and shows the structural variation along with the corresponding woven parameters. Comparing the results calculated by FEM with the experiments, the veracity of calculation and reasonability based on the Full-cell model are confirmed. In the meantime, the predicted results based on the Full-cell model are more closed to the test results compared to those based on the Inner-cell model.

  11. Orthodontic intrusion of maxillary incisors: a 3D finite element method study

    PubMed Central

    Saga, Armando Yukio; Maruo, Hiroshi; Argenta, Marco André; Maruo, Ivan Toshio; Tanaka, Orlando Motohiro

    2016-01-01

    Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL) in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1); bilaterally between the brackets of central and lateral incisors (LOAD 2); bilaterally distal to the brackets of lateral incisors (LOAD 3); bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4). Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution. PMID:27007765

  12. Towards increased speed computations in 3D moving eddy current finite element modelling

    SciTech Connect

    Allen, N.; Rodger, D.; Coles, P.C.; Street, S.; Leonard, P.J.

    1995-11-01

    Attractive and drag forces on such devices as magnetically levitated (MAGLEV) vehicles and magnetic bearings are crucially dependent on induced eddy currents. Here, a finite element scheme used to model eddy current problems with motional velocity is described here. The formulation is a variation on the A {minus} {psi} method. An additional Minkowski-transformation term is required to take into account the velocity. However, computational instability arises when the velocity increases to the point that the first order velocity terms severely dominate the second order diffusion terms. The method presented here uses upwinding to help regain stability. An additional degree of stability is inserted at higher speeds by using a lower speed result as an initial vector. This leads to a reduced permeability in saturated regions which counter-balances to some extent the increase in velocity. The method is validated by experimental measurement.

  13. Finite element methods of analysis for 3D inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime

    1990-01-01

    The applicants have developed a finite element based approach for the solution of three-dimensional compressible flows. The procedure enables flow solutions to be obtained on tetrahedral discretizations of computational domains of complex form. A further development was the incorporation of a solution adaptive mesh strategy in which the adaptivity is achieved by complete remeshing of the solution domain. During the previous year, the applicants were working with the Advanced Aerodynamics Concepts Branch at NASA Ames Research Center with an implementation of the basic meshing and solution procedure. The objective of the work to be performed over this twelve month period was the transfer of the adaptive mesh technology and also the undertaking of basic research into alternative flow algorithms for the Euler equations on unstructured meshes.

  14. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  15. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  16. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction. PMID:24992729

  17. Bone stress and strain modification in diastema closure: 3D analysis using finite element method.

    PubMed

    Geramy, Allahyar; Bouserhal, Joseph; Martin, Domingo; Baghaeian, Pedram

    2015-09-01

    The aim of this study was to analyse the stress and strain distribution in the alveolar bone between two central incisors in the process of diastema closure with a constant force. A 3-dimensional computer modeling based on finite element techniques was used for this purpose. A model of an anterior segment of the mandible containing cortical bone, spongy bone, gingivae, PDL and two central incisors with a bracket in the labial surface of each tooth were designed. The von Mises stress and strain was evaluated in alveolar bone along a path of nodes defined in a cresto-apical direction in the midline between two teeth. It was observed that stress and strain of alveolar bone increased in midline with a constant force to close the diastema regardless of the type of movement in gradual steps of diastema closure, however the stress was higher in the tipping movement than the bodily so it can be suggested that a protocol of force system modification should be introduced to compensate for the stress and strain changes caused by the reduced distance to avoid the unwanted stress alteration during the diastema closure. PMID:26277458

  18. On domain decomposition preconditioner of BPS type for finite element discretizations of 3D elliptic equations

    NASA Astrophysics Data System (ADS)

    Korneev, V. G.

    2012-09-01

    BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.

  19. A 3D High-Order Unstructured Finite-Volume Algorithm for Solving Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A three-dimensional finite-volume algorithm based on arbitrary basis functions for time-dependent problems on general unstructured grids is developed. The method is applied to the time-domain Maxwell equations. Discrete unknowns are volume integrals or cell averages of the electric and magnetic field variables. Spatial terms are converted to surface integrals using the Gauss curl theorem. Polynomial basis functions are introduced in constructing local representations of the fields and evaluating the volume and surface integrals. Electric and magnetic fields are approximated by linear combinations of these basis functions. Unlike other unstructured formulations used in Computational Fluid Dynamics, the new formulation actually does not reconstruct the field variables at each time step. Instead, the spatial terms are calculated in terms of unknowns by precomputing weights at the beginning of the computation as functions of cell geometry and basis functions to retain efficiency. Since no assumption is made for cell geometry, this new formulation is suitable for arbitrarily defined grids, either smooth or unsmooth. However, to facilitate the volume and surface integrations, arbitrary polyhedral cells with polygonal faces are used in constructing grids. Both centered and upwind schemes are formulated. It is shown that conventional schemes (second order in Cartesian grids) are equivalent to the new schemes using first degree polynomials as the basis functions and the midpoint quadrature for the integrations. In the new formulation, higher orders of accuracy are achieved by using higher degree polynomial basis functions. Furthermore, all the surface and volume integrations are carried out exactly. Several model electromagnetic scattering problems are calculated and compared with analytical solutions. Examples are given for cases based on 0th to 3rd degree polynomial basis functions. In all calculations, a centered scheme is applied in the interior, while an upwind

  20. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  1. Experimental Investigation and 3D Finite Element Prediction of Temperature Distribution during Travelling Heat Sourced from Oxyacetylene Flame

    NASA Astrophysics Data System (ADS)

    Umar Alkali, Adam; Lenggo Ginta, Turnad; Majdi Abdul-Rani, Ahmad

    2015-04-01

    This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases.

  2. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  3. A new 3D finite element model of the IEC 60318-1 artificial ear: II. Experimental and numerical validation

    NASA Astrophysics Data System (ADS)

    Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus

    2012-12-01

    In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.

  4. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.

    PubMed

    Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine

    2014-01-01

    The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols. PMID:25570875

  5. Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test.

    PubMed

    Ramos Verri, Fellippo; Santiago Junior, Joel Ferreira; de Faria Almeida, Daniel Augusto; de Oliveira, Guilherme Bérgamo Brandão; de Souza Batista, Victor Eduardo; Marques Honório, Heitor; Noritomi, Pedro Yoshito; Pellizzer, Eduardo Piza

    2015-01-01

    The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p<0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p>0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p<0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p<0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue.

  6. Online 3D terrain visualisation using Unity 3D game engine: A comparison of different contour intervals terrain data draped with UAV images

    NASA Astrophysics Data System (ADS)

    Hafiz Mahayudin, Mohd; Che Mat, Ruzinoor

    2016-06-01

    The main objective of this paper is to discuss on the effectiveness of visualising terrain draped with Unmanned Aerial Vehicle (UAV) images generated from different contour intervals using Unity 3D game engine in online environment. The study area that was tested in this project was oil palm plantation at Sintok, Kedah. The contour data used for this study are divided into three different intervals which are 1m, 3m and 5m. ArcGIS software were used to clip the contour data and also UAV images data to be similar size for the overlaying process. The Unity 3D game engine was used as the main platform for developing the system due to its capabilities which can be launch in different platform. The clipped contour data and UAV images data were process and exported into the web format using Unity 3D. Then process continue by publishing it into the web server for comparing the effectiveness of different 3D terrain data (contour data) draped with UAV images. The effectiveness is compared based on the data size, loading time (office and out-of-office hours), response time, visualisation quality, and frame per second (fps). The results were suggest which contour interval is better for developing an effective online 3D terrain visualisation draped with UAV images using Unity 3D game engine. It therefore benefits decision maker and planner related to this field decide on which contour is applicable for their task.

  7. 3D finite element analysis of immediate loading of single wide versus double implants for replacing mandibular molar

    PubMed Central

    Desai, Shrikar R.; Karthikeyan, I.; Gaddale, Reetika

    2013-01-01

    Purpose: The purpose of this finite element study was to compare the stresses, strains, and displacements of double versus single implant in immediate loading for replacing mandibular molar. Materials and Methods: Two 3D FEM (finite element method) models were made to simulate implant designs. The first model used 5-mm-wide diameter implant to support a single molar crown. The second model used 3.75-3.75 double implant design. Anisotropic properties were assigned to bone model. Each model was analyzed with single force magnitude (100 N) in vertical axis. Results: This FEM study suggested that micromotion can be controlled better for double implants compared to single wide-diameter implants. The Von Mises stress for double implant showed 74.44% stress reduction compared to that of 5-mm implant. The Von Mises elastic strain was reduced by 61% for double implant compared to 5-mm implant. Conclusion: Within the limitations of the study, when the mesiodistal space for artificial tooth is more than 12.5 mm, under immediate loading, the double implant support should be considered. PMID:24554890

  8. A two-scale model for frictional cracks in 3D fractured brittle media with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Liu, F.; Borja, R. I.

    2009-12-01

    Stress concentration induced by the heterogeneity in brittle geomaterials is generally considered as the driving force in the evolution of the microstructure (such as the crack and pore microstructure). Specifically, modeling heterogeneity is key to properly predicting the nucleation, coalescence and propagation of micro-cracks in brittle solids. In this paper, we propose a two-scale model for frictional cracks in fractured brittle media. The major crack in the study domain is modeled at a macro level, while the micro-cracks are modeled at a finer scale. The macro-scale behavior is described by a standard boundary value problem. The finer-scale problem is modeled using the notion of representative elementary volume (REV) consisting of a solid volume with distributed micro-cracks. Periodic boundary condition and small strain formulation are assumed in the finer-scale analysis. The scale bridging mechanism is borrowed from the standard homogenization technique. The proposed model is implemented with the extended finite element method. The macro stress at each Gauss point in the finite element formulation is computed as the volume average of finer-scale stresses in each corresponding REV. The macro tangent operator is computed using a perturbation method. For 3D problems, six independent linear perturbation analyses are carried out for each numerical integration point. Our numerical examples capture the nucleation and coalescence of micro-cracks, which can be used to infer the potential propagation direction of the major crack.

  9. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations

    NASA Astrophysics Data System (ADS)

    Coutand, Daniel; Shkoller, Steve

    2014-01-01

    We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time "splash" (or "splat") singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.

  10. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  11. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis.

    PubMed

    Shurbaji Mozayek, Rami; Allaf, Mirza; B Abuharb, Mohammad

    2016-01-01

    Background. Long span is seen in many clinical situations. Treatmentplanning options of these cases are difficult and may require FPD, RPD or ISP. Each option has its own disadvantages, including mechanical problems, patient comfort and cost. This article will evaluate the stress distribution of a different treatment option, which consists of adding a single sup-porting implant to the FPD by using 3D finite element analysis. Methods. Three models, each consisting of 5 units, were created as follows: 1. Tooth Pontic Pontic Pontic Tooth; 2. Tooth Pontic Implant Pontic Tooth; 3. Tooth Pontic Pontic Implant Tooth. An axial force was applied to the prostheses by using 3D finite element method and stresses were evaluated. Results. The maximum stress was found in the prostheses in all the models; the highest stress values in all the shared components of the models were almost similar. Stress in implants was lower in the second model than the third one. Conclusion. Adding a supporting implant in long-span FPD has no advantages while it has the disadvantages of complicating treatment and the complications that may occur to the implant and surrounding bone. PMID:27429723

  12. Efficacy of adding a supporting implant in stress distribution of long-span fixed partial dentures: a 3D finite element analysis

    PubMed Central

    Shurbaji Mozayek, Rami; Allaf, Mirza; B. Abuharb, Mohammad

    2016-01-01

    Background. Long span is seen in many clinical situations. Treatmentplanning options of these cases are difficult and may require FPD, RPD or ISP. Each option has its own disadvantages, including mechanical problems, patient comfort and cost. This article will evaluate the stress distribution of a different treatment option, which consists of adding a single sup-porting implant to the FPD by using 3D finite element analysis. Methods. Three models, each consisting of 5 units, were created as follows: 1. Tooth Pontic Pontic Pontic Tooth; 2. Tooth Pontic Implant Pontic Tooth; 3. Tooth Pontic Pontic Implant Tooth. An axial force was applied to the prostheses by using 3D finite element method and stresses were evaluated. Results. The maximum stress was found in the prostheses in all the models; the highest stress values in all the shared components of the models were almost similar. Stress in implants was lower in the second model than the third one. Conclusion. Adding a supporting implant in long-span FPD has no advantages while it has the disadvantages of complicating treatment and the complications that may occur to the implant and surrounding bone. PMID:27429723

  13. Coupling Between Microstrip Lines with Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Dalton, Edan; Tentzeris, Emmanouil M.; Papapolymerou, John; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Three-dimensional circuits built upon multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave/millimeter-wave integrated circuits on complementary metal oxide semiconductor (CMOS) (low resistivity) Si wafers. Thin film microstrip lines (TFMS) with finite width ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines are susceptible to high levels of coupling, which degrades circuit performance. In this paper, Finite Difference Time Domain (FDTD) analysis and experimental measurements are used to show that the ground planes must be connected by via holes to reduce coupling in both the forward and backward directions.

  14. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    PubMed Central

    Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  15. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures.

    PubMed

    Pavarino, E; Neves, L A; Machado, J M; de Godoy, M F; Shiyou, Y; Momente, J C; Zafalon, G F D; Pinto, A R; Valêncio, C R

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  16. Finite Gyroradius Effects in the Plasma Environment Near Titan: 3D Hybrid Modeling of the T5 Encounter

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Sarantos, M.

    2012-12-01

    In this report we discuss the results of a 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere for the T5 encounter. The T5 flyby is the only encounter when the two main ionizing sources of Titan's atmosphere, solar radiation and corotating plasma, align quasi-anti-parallel. The model is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid (see e.g. [4]). Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. The first results of our hybrid modeling show a strong asymmetry in the background (H+, O+) and pickup (H2+, N2+, CH4+) ion density profiles. Such strong asymmetry cannot be explained by a single-fluid multi-species 3D MHD model [5], which includes complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455, 2010. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann. Geophys., 25, 2359

  17. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  18. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.

  19. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    NASA Astrophysics Data System (ADS)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  20. Finite element simulation and analytical modeling of 3D multi scale diffusion in nanocomposites with permeable stacks

    NASA Astrophysics Data System (ADS)

    Greco, A.; Maffezzoli, A.

    2016-01-01

    This work is aimed to study the mass transport in 3D nanocomposites, characterized by the presence of permeable lamellar stacks, by means of finite element (FE) analysis. To this purpose, a geometric model was developed, based on a random distribution of non-interpenetrating stacks, each one made of regularly spaced platelets, which are considered representative of an intercalated nanocomposite. The morphological features of the stacks are the number of lamellae and the thickness of lamellar galleries, which determine the thickness, and therefore the aspect ratio. FE simulation results showed the relevance of diffusion within stack, and therefore the unsuitableness of the assumption of stack impermeability. The diffusion behavior of nanocomposites made of permeable stacks was modeled by considering the probability of collision of diffusing particles on the stack surface. For a random orientation of stacks, the developed analytical model showed an excellent agreement with the FE simulation results. It was shown that other analytical models found in literature are not able to capture the dependence of diffusivity on the morphology of intercalated nanocomposites. The developed analytical model allowed estimating the error arising from the assumption of impermeable stacks in the estimation of nanofiller aspect ratio from experimental diffusivity data.

  1. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 1: Theoretical manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1991-01-01

    Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.

  2. 3D finite element and experimental study of the size requirements for measuring toughness on tempered martensitic steels

    NASA Astrophysics Data System (ADS)

    Mueller, P.; Spätig, P.

    2009-06-01

    The fracture properties of the tempered martensitic steel Eurofer97, which is among the main candidates for fusion power plant structural applications, were studied with two sizes of pre-cracked compact specimens (0.35T C(T) and 0.87T C(T)). The fracture toughness behavior was characterized within the temperature range -80 to -40 °C. The ductile-to-brittle transition reference temperature, as defined in the ASTM standard E1921, was around T0 ≈ -75 °C. At -60 °C, it was found that two sets of toughness data obtained with 0.35T and 0.87T C(T) specimens are not consistent with the size adjustments recommended in the ASTM standard. It was then shown that the underlying reason of this inconsistency is an inappropriate specimen size limit of the ASTM standard for this type of steel. From published fracture toughness data on the tempered martensitic steel F82H steel, similar results were also highlighted. 3D finite elements simulations of the compact specimens were performed to compare the stresses and deformations at the onset of fracture. A local approach model based on the attainment of a critical stress and a critical volume was used to study the constraint loss phenomenon. Within the framework of this model, the strong toughness increase by reducing the specimen size could be satisfactorily explained.

  3. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  4. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  5. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites.

    PubMed

    Ausiello, P; Apicella, A; Davidson, C L; Rengo, S

    2001-10-01

    The combination of diverse materials and complex geometry makes stress distribution analysis in teeth very complicated. Simulation in a computerized model might enable a study of the simultaneous interaction of the many variables. A 3D solid model of a human maxillary premolar was prepared and exported into a 3D-finite element model (FEM). Additionally, a generic class II MOD cavity preparation and restoration was simulated in the FEM model by a proper choice of the mesh volumes. A validation procedure of the FEM model was executed based on a comparison of theoretical calculations and experimental data. Different rigidities were assigned to the adhesive system and restorative materials. Two different stress conditions were simulated: (a) stresses arising from the polymerization shrinkage and (b) stresses resulting from shrinkage stress in combination with vertical occlusal loading. Three different cases were analyzed: a sound tooth, a tooth with a class II MOD cavity, adhesively restored with a high (25 GPa) and one with a low (12.5GPa) elastic modulus composite. The cusp movements induced by polymerization stress and (over)-functional occlusal loading were evaluated. While cusp displacement was higher for the more rigid composites due to the pre-stressing from polymerization shrinkage, cusp movements turned out to be lower for the more flexible composites in case the restored tooth which was stressed by the occlusal loading. This preliminary study by 3D FEA on adhesively restored teeth with a class II MOD cavity indicated that Young's modulus values of the restorative materials play an essential role in the success of the restoration. Premature failure due to stresses arising from polymerization shrinkage and occlusal loading can be prevented by proper selection and combination of materials. PMID:11522306

  6. 3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta.

    PubMed

    Sotelo, Julio; Urbina, Jesus; Valverde, Israel; Tejos, Cristian; Irarrazaval, Pablo; Andia, Marcelo E; Uribe, Sergio; Hurtado, Daniel E

    2016-06-01

    Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.

  7. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    NASA Astrophysics Data System (ADS)

    Kajzer, A.; Pozorski, J.; Szewc, K.

    2014-08-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  8. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  9. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Hamann-Reinus, A.; Kitzmann, D.; Kunze, M.; Langematz, U.; von Paris, P.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2015-06-01

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface, since life as we know it needs liquid water at least during a part of its life cycle. The potential presence of liquid water on a planetary surface depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars (F, G, and K-type stars) upon the climate of Earth-like extrasolar planets and their potential habitability by applying a state-of-the-art three-dimensional (3D) Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances (and corresponding orbital periods) where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results obtained have been compared to those of a one-dimensional (1D) radiative convective climate model to investigate the approximation of global mean 3D results by those of 1D models. The different stellar spectral energy distributions lead to different surface temperatures and due to ozone heating to very different vertical temperature structures. As previous 1D studies we find higher surface temperatures for the Earth-like planet around the K-type star, and lower temperatures for the planet around the F-type star compared to an Earth-like planet around the Sun. However, this effect is more pronounced in the 3D model results than in the 1D model because the 3D model accounts for feedback processes such as the ice-albedo and the water vapor feedback. Whether the

  10. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  11. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    ERIC Educational Resources Information Center

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  12. A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy

    SciTech Connect

    Silva, V.C.; Meunier, G.; Foggia, A.

    1995-05-01

    A 3-D scheme based on the Finite Element Method, which takes electric and magnetic anisotropy into consideration, has been developed for computing eddy-current losses caused by stray magnetic fields in laminated iron cores of large transformers and generators. The model is applied to some laminated iron-core samples and compared with equivalent solid-iron cases.

  13. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  14. 3D finite element analysis of a metallic sphere scatterer comparison of first and second order vector absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, V. N.; Webb, J. P.

    1993-03-01

    A 3D vector analysis of plane wave scattering by a metallic sphere using finite elements and Absorbing Boundary Conditions (ABCs) is presented. The ABCs are applied on the outer surface that truncates the infinitely extending domain. Mixed order curvilinear covariantprojection elements are used to avoid spurious corruptions. The second order ABC is superior to the first at no extra computational cost. The errors due to incomplete absorption decrease as the outer surface is moved further away from the scatterer. An error of about 1% in near-field values was obtained with the second order ABC, when the outer surface was less than half a wavelength from the scatterer. Une analyse tridimensionnelle vectorielle de la diffusion d'onde plane sur une sphère métallique utilisant des éléments finis et des Conditions aux Limites Absorbantes (CLA) est présentée. Les CLA sont appliquées sur la surface exteme tronquant le domaine s'étendant à l'infini. Des éléments curvilignes mixtes utilisant des projections covariantes sont utilisés pour éviter des solutions parasites. La CLA de second ordre est supérieure à celle de premier ordre sans effort de calcul additionnel. Les erreurs dues à l'absorption incomplète décroissent à mesure que l'on déplace la surface externe à une distance croissante du diffuseur. Un taux d'erreur d'environ 1 % dans les valeurs du champ proche a été obtenu avec les CLA de second ordre lorsque la surface externe était placée à une distance inférieure à une demi-longueur de la source de diffusion.

  15. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media. User`s manual, Version 1.0

    SciTech Connect

    Holford, D.J.

    1994-01-01

    This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.

  16. Stochastic finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Smith, Steven Michael

    2011-12-01

    This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.

  17. Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis?

    PubMed

    Verri, Fellippo Ramos; Cruz, Ronaldo Silva; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto de Faria; Verri, Ana Caroline Gonçales; Lemos, Cleidiel Aparecido de Araújo; Santiago Júnior, Joel Ferreira; Pellizzer, Eduardo Piza

    2016-11-01

    The aim of this study was to assess stress/strain of different implant modeling simplifications by 3D-FEA. Three variation of external hexagon implant (Ø3.75 × 10 mm) supporting one molar crown were simulated: A (no threads); B (slightly threads simplification); C (original design). 200 N (axial) and 100 N (oblique) were applied. Cortical bone was evaluated by maximum principal stress and microstrain qualitatively and quantitatively (ANOVA and Tukey post hoc (p < 0.05)). Higher stress levels (p < 0.05) were observed in model A. Models B and C presented similar stress transmission. It was possible to conclude that slightly simplification should be used for studies evaluating stress transferring for bone tissue.

  18. Statistical 3D shape analysis of gender differences in lateral ventricles

    NASA Astrophysics Data System (ADS)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  19. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  20. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Dong, Chanjuan; Yang, Li; Lv, Yonggang

    2015-07-29

    A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with

  1. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude. PMID:26646289

  2. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

  3. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  4. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  5. Slip Distribution of the 2011 Tohoku-oki Earthquake obtained by Geodetic and Tsunami Data and with a 3-D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, F.; Trasatti, E.; Lorito, S.; Ito, Y.; Piatanesi, A.; Lanucara, P.; Hirata, K.; D'Agostino, N.; Cocco, M.

    2012-12-01

    The rupture process of the Great 2011 Tohoku-oki earthquake has been particularly well studied by using an unprecedented collection of geophysical data. There is a general agreement among the different source models obtained by modeling seismological, geodetic and tsunami data. A slip patch of nearly 40÷50 meters has been imaged and located around and up-dip from the hypocenter by most of published models, while some differences exist in the slip pattern retrieved at shallow depths near the trench, likely due to the different resolving power of distinct data sets and to the adopted fault geometry. It is well known that the modeling of great subduction earthquakes requires the use of 3-D structural models in order to properly account for the effects of topography, bathymetry and the geometrical variations of the plate interface as well as for the effects of elastic contrasts between the subducting plate and the continental lithosphere. In this study we build a 3-D Finite Element (FE) model of the Tohoku-oki area in order to infer the slip distribution of the 2011 earthquake by performing a joint inversion of geodetic (GPS and seafloor observations) and tsunami (ocean bottom pressure sensors, DART and GPS buoys) data. The FE model is used to compute the geodetic and tsunami Green's functions. In order to understand how geometrical and elastic heterogeneities control the inferred slip distribution of the Tohoku-oki earthquake, we compare the slip patterns obtained using both homogeneous and heterogeneous structural models. The goal of this study is to better constrain the slip distribution and the maximum slip amplitudes. In particular, we aim to focus on the rupture process in the shallower part of the fault plane and near the trench, which is crucial to model the tsunami data and to assess the tsunamigenic potential of earthquakes in this region.

  6. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  7. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  8. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  9. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  10. Arena3D: visualizing time-driven phenotypic differences in biological systems

    PubMed Central

    2012-01-01

    Background Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. Results Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive

  11. 3D histogram visualization in different color spaces with application in color clustering classification

    NASA Astrophysics Data System (ADS)

    Marcu, Gabriel G.; Abe, Satoshi

    1995-04-01

    The paper presents a dynamically visualization procedure for 3D histogram of color images. The procedure runs for RGB, YMC, HSV, HSL device dependent color spaces and for Lab, Luv device independent color spaces and it is easily extendable to other color spaces if the analytical form of color transformations is available. Each histogram value is represented in the color space as a colored ball, in a position corresponding to the place of color in the color space. The paper presents the procedures for nonlinear ball normalization, ordering of drawing, space edges drawing, translation, scaling and rotation of the histogram. The 3D histogram visualization procedure can be used in different applications described in the second part of the paper. It enables to get a clear representation of the range of colors of one image, to derive and compare the efficiency of different clusterization procedures for color classification, to display comparatively the gamut of different color devices, to select the color space for an optimal mapping procedure of the outside gamut colors for minimizing the hue error, to detect bad-alignment in RGB planes for a sequential process.

  12. FDIPS: Finite Difference Iterative Potential-field Solver

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; van der Holst, Bartholomeus; Huang, Zhenguang

    2016-06-01

    FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

  13. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  14. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance

    NASA Astrophysics Data System (ADS)

    Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.

    2009-06-01

    3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.

  15. Deriving 3d Point Clouds from Terrestrial Photographs - Comparison of Different Sensors and Software

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Mokroš, Martin; Lange, Julia; Petschko, Helene; Prasicek, Günther; Oude Elberink, Sander

    2016-06-01

    Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. While PhotoScan and Pix4D offer the user-friendliest workflows, they are also "black-box" programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.

  16. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  17. Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.

    1992-01-01

    This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.

  18. Stress Analysis of a Class II MO-Restored Tooth Using a 3D CT-Based Finite Element Model

    PubMed Central

    Chan, Yiu Pong; Tang, Chak Yin; Gao, Bo

    2012-01-01

    A computational method has been developed for stress analysis of a restored tooth so that experimental effort can be minimized. The objectives of this study include (i) developing a method to create a 3D FE assembly model for a restored tooth based on CT images and (ii) conducting stress analysis of the restored tooth using the 3D FE model established. To build up a solid computational model of a tooth, a method has been proposed to construct a 3D model from 2D CT-scanned images. Facilitated with CAD tools, the 3D tooth model has been virtually incorporated with a Class II MO restoration. The tooth model is triphasic, including the enamel, dentin, and pulp phases. To mimic the natural constraint on the movement of the tooth model, its corresponding mandible model has also been generated. The relative high maximum principal stress values were computed at the surface under loading and in the marginal region of the interface between the restoration and the tooth phases. PMID:22844287

  19. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  20. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis.

    PubMed

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D'Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-06-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate 'space-frame' skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics.

  1. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis

    PubMed Central

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D’Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-01-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate ‘space-frame’ skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics. PMID:18510503

  2. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis.

    PubMed

    Moreno, Karen; Wroe, Stephen; Clausen, Philip; McHenry, Colin; D'Amore, Domenic C; Rayfield, Emily J; Cunningham, Eleanor

    2008-06-01

    The Komodo dragon (Varanus komodoensis) displays a unique hold and pull-feeding technique. Its delicate 'space-frame' skull morphology differs greatly from that apparent in most living large prey specialists and is suggestive of a high degree of optimization, wherein use of materials is minimized. Here, using high-resolution finite element modelling based on dissection and in vivo bite and pull data, we present results detailing the mechanical performance of the giant lizard's skull. Unlike most modern predators, V. komodoensis applies minimal input from the jaw muscles when butchering prey. Instead it uses series of actions controlled by postcranial muscles. A particularly interesting feature of the performance of the skull is that it reveals considerably lower overall stress when these additional extrinsic forces are added to those of the jaw adductors. This remarkable reduction in stress in response to additional force is facilitated by both internal and external bone anatomy. Functional correlations obtained from these analyses also provide a solid basis for the interpretation of feeding ecology in extinct species, including dinosaurs and sabre-tooth cats, with which V. komodoensis shares various cranial and dental characteristics. PMID:18510503

  3. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity

    NASA Astrophysics Data System (ADS)

    Yao, Hepeng; Luan, Tian; Li, Chen; Zhang, Yin; Ma, Zhaoyuan; Chen, Xuzong

    2016-01-01

    Pursuing ultralow temperature 3D atom gas under microgravity conditions is one of the popular topics in the field of ultracold research. Many groups around the world are using, or are planning to use, delta-kick cooling (DKC) in microgravity. Our group has also proposed a two-stage crossed beam cooling (TSCBC) method that also provides a path to picokelvin temperatures. In this paper, we compare the characteristics of TSCBC and DKC for producing a picokelvin system in microgravity. Using a direct simulation Monte Carlo (DSMC) method, we simulate the cooling process of 87Rb using the two different cooling techniques. Under the same initial conditions, 87Rb can reach 7 pK in 15 s using TSCBC and 75 pK in 5.1 s with DKC. The simulation results show that TSCBC can reach lower temperatures compared with DKC, but needs more time and a more stable laser.

  4. New finite difference formulas for numerical differentiation

    NASA Astrophysics Data System (ADS)

    Khan, Ishtiaq Rasool; Ohba, Ryoji

    2000-12-01

    Conventional numerical differentiation formulas based on interpolating polynomials, operators and lozenge diagrams can be simplified to one of the finite difference approximations based on Taylor series, and closed-form expressions of these finite difference formulas have already been presented. In this paper, we present new finite difference formulas, which are more accurate than the available ones, especially for the oscillating functions having frequency components near the Nyquist frequency. Closed-form expressions of the new formulas are given for arbitrary order. A comparison of the previously available three types of approximations is given with the presented formulas. A computer program written in MATHEMATICA, based on new formulas is given in the appendix for numerical differentiation of a function at a specified mesh point.

  5. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  6. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  7. Applications of an exponential finite difference technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Keith, Theo G., Jr.

    1988-01-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  8. Finite difference computation of blast diffraction

    NASA Astrophysics Data System (ADS)

    Hillier, R.; Graham, J. M. R.

    1985-07-01

    This paper discusses the use of numerical finite difference methods for predicting flow fields in which a shock or blast wave is diffracted at a sharp edge. Three different types of method are studied: Donor Cell differencing with and without Flux Corrected Transport, a Finite Volume method with an explicit artificial viscosity and Runge-Kutta time stepping, and a second order upwind method based on the solution of a Riemann wave problem at cell interfaces. In the case of weak shock waves a comparison is made with the flow field predicted by acoustic theory including flow separation. Results for stronger shocks are also presented.

  9. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to…

  10. FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0

    USGS Publications Warehouse

    Durbin, Timothy J.; Bond, Linda D.

    1998-01-01

    This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.

  11. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  12. Non-linear 3D evaluation of different oral implant-abutment connections.

    PubMed

    Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M

    2012-12-01

    Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.

  13. Seismic imaging using finite-differences and parallel computers

    SciTech Connect

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  14. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  15. Study of the tsunamigenic rupture process of the 2011 Tohoku earthquake using a 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Romano, Fabrizio; Trasatti, Elisa; Lorito, Stefano; Piromallo, Claudia; Piatanesi, Alessio; Cocco, Massimo; Murphy, Shane; Tonini, Roberto; Volpe, Manuela; Brizuela, Beatriz

    2016-04-01

    The study of the 2011 Tohoku earthquake revealed some new aspects in the rupture process of a megathrust event. Indeed, despite its magnitude Mw 9.0, this earthquake was characterized by a spatially limited rupture area and, contrary to the common view that the shallow portion of the subduction interface mainly experiences aseismic slip, the seismic rupture propagated onto the Japan trench with very large slip (> 50 m). Starting from slip distributions obtained by joint inversion of tsunami and geodetic data, we discuss the sensitivity of the tsunami impact predictions to the complexity of the modelling strategy. We use numerical tools ranging from a homogeneous half-space dislocation model (considering only vertical sea-floor displacement and tsunami propagation in the linear shallow-water approximation) to the more complex 3D-FEM model (with heterogeneous elastic parameters derived from 3D seismic tomography), including horizontal displacement and non-hydrostatic dispersive tsunami modeling. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)

  16. Moduli thermalization and finite temperature effects in "big" divisor large volume D3/ D7 Swiss-cheese compactification

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2011-01-01

    In the context of Type IIB compactified on a large volume Swiss-Cheese orientifold in the presence of a mobile space-time filling D3-brane and stacks of fluxed D7-branes wrapping the "big" divisor Σ B of a Swiss-Cheese Calabi Yau in WCP 4[1, 1, 1, 6, 9], we explore various implications of moduli dynamics and discuss their couplings and decay into MSSM (-like) matter fields early in the history of universe to reach thermal equilibrium. Like finite temperature effects in O'KKLT, we observe that the local minimum of zero-temperature effective scalar potential is stable against any finite temperature corrections (up to two-loops) in large volume scenarios as well. Also we find that moduli are heavy enough to avoid any cosmological moduli problem.

  17. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    PubMed

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding.

  18. Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

    PubMed Central

    Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber

    2015-01-01

    Background: Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. Materials and Methods: A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. Results: For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Conclusion: Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer. PMID:25709676

  19. Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method.

    PubMed

    Roveri, D S; Sant'Anna, G M; Bertan, H H; Mologni, J F; Alves, M A R; Braga, E S

    2016-01-01

    This paper presents a 3D computational framework for evaluating electrostatic properties of a single field emitter characterized by the hemisphere-on-post geometry. Numerical simulations employed the finite elements method by using Ansys-Maxwell software. Extensive parametric simulations were focused on the threshold distance from which the emitter field enhancement factor (γ) becomes independent from the anode-substrate gap (G). This investigation allowed demonstrating that the ratio between G and the emitter height (h) is a reliable reference for a broad range of emitter dimensions; furthermore, results permitted establishing G/h ≥ 2.2 as the threshold condition for setting the anode without affecting γ.

  20. A 3D finite-element computation of eddy currents and losses in the stator end laminations of large synchronous machines

    SciTech Connect

    Silva, V.C.; Meunier, G.; Foggia, A.

    1996-05-01

    Eddy current losses due to axial fluxes are computed in the stator end laminations of a salient-pole synchronous machine at open-circuit operating condition. The calculation is carried out with the aid of a 3D finite-element package which uses a linear T-{phi} formulation. The domain spans a full pole pitch of the machine. The flux densities computed in the end region at points outside the stator core are compared with experimental measurements. The results and the limitations of the model are discussed.

  1. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. On nonstandard finite difference schemes in biosciences

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Dumont, Y.; Lubuma, J. M.-S.

    2012-10-01

    We design, analyze and implement nonstandard finite difference (NSFD) schemes for some differential models in biosciences. The NSFD schemes are reliable in three directions. They are topologically dynamically consistent for onedimensional models. They can replicate the global asymptotic stability of the disease-free equilibrium of the MSEIR model in epidemiology whenever the basic reproduction number is less than 1. They preserve the positivity and boundedness property of solutions of advection-reaction and reaction-diffusion equations.

  3. Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method

    NASA Astrophysics Data System (ADS)

    Voznyuk, I.; Litman, A.; Tortel, H.

    2015-08-01

    A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.

  4. Development of Femoral Head Interior Supporting Device and 3D Finite Element Analysis of its Application in the Treatment of Femoral Head Avascular Necrosis

    PubMed Central

    Xiao, Dongmin; Ye, Ming; Li, Xinfa; Yang, Lifeng

    2015-01-01

    Background The aim of this study was to develop and perform the 3D finite element analysis of a femoral head interior supporting device (FHISD). Material/Methods The 3D finite element model was developed to analyze the surface load of femoral head and analyze the stress and strain of the femoral neck, using the normal femoral neck, decompressed bone graft, and FHISD-implanted bone graft models. Results The stress in the normal model concentrated around the femoral calcar, with displacement of 0.3556±0.1294 mm. In the decompressed bone graft model, the stress concentrated on the femur calcar and top and lateral sides of femoral head, with the displacement larger than the normal (0.4163±0.1310 mm). In the FHISD-implanted bone graft model, the stress concentrated on the segment below the lesser trochanter superior to the femur, with smaller displacement than the normal (0.1856±0.0118 mm). Conclusions FHISD could effectively maintain the biomechanical properties of the femoral neck. PMID:26010078

  5. Symmetry-plane models of 3D Euler fluid equations: Analytical solutions and finite-time blowup using infinitesimal Lie-symmetry methods

    NASA Astrophysics Data System (ADS)

    Bustamante, Miguel D.

    2014-11-01

    We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.

  6. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  7. Application of a novel finite difference method to dynamic crack problems

    NASA Technical Reports Server (NTRS)

    Chen, Y. M.; Wilkins, M. L.

    1976-01-01

    A versatile finite difference method (HEMP and HEMP 3D computer programs) was developed originally for solving dynamic problems in continuum mechanics. It was extended to analyze the stress field around cracks in a solid with finite geometry subjected to dynamic loads and to simulate numerically the dynamic fracture phenomena with success. This method is an explicit finite difference method applied to the Lagrangian formulation of the equations of continuum mechanics in two and three space dimensions and time. The calculational grid moves with the material and in this way it gives a more detailed description of the physics of the problem than the Eulerian formulation.

  8. Finite element solution of 3-D turbulent Navier-Stokes equations for propeller-driven slender bodies

    NASA Astrophysics Data System (ADS)

    Thomas, Russell Hicks

    1987-12-01

    Three-dimensional turbulent flow over the aft end of a slender propeller driven body with the wake from a slender, planar appendage was calculated for 4 configurations. The finite element method in the form of the weak Galerkin formulation with the penalty method was used to solve the Reynolds averaged Navier-Stokes equations. The actual code was FIDAP, modified with a propeller body force and turbulence model, used for the solution. The turbulence model included an Inner Layer Integrated TKE model, and Outer Layer mixing length model, and a Planar Wake model. No separate boundary layer method was used for the body, rather modifications to the Integrated TKE model were made to account for the primary effects of the surface boundary layer on the flow. The flow was calculated at two levels of thrust and corresponding swirl, selfpropelled and 100 percent overthrust, as well as with selfpropelled thrust but no torque simulating an ideal rotor stator combination. Also, the selfpropelled case was calculated with a simplified turbulence model using only the Inner Layer and Planar Wake model. The results compared favorably with experiments.

  9. Stress analysis of a complete maxillary denture under various drop impact conditions: a 3D finite element study.

    PubMed

    Sunbuloglu, Emin

    2015-01-01

    Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth-denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life.

  10. Finite difference grid generation by multivariate blending function interpolation

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Spradley, L. W.

    1980-01-01

    The General Interpolants Method (GIM) code which solves the multidimensional Navier-Stokes equations for arbitrary geometric domains is described. The geometry module in the GIM code generates two and three dimensional grids over specified flow regimes, establishes boundary condition information and computes finite difference analogs for use in the GIM code numerical solution module. The technique can be classified as an algebraic equation approach. The geometry package uses multivariate blending function interpolation of vector-values functions which define the shapes of the edges and surfaces bounding the flow domain. By employing blending functions which conform to the cardinality conditions the flow domain may be mapped onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic coordinate system for the region of interest. The intrinsic coordinate system facilitates grid spacing control to allow for optimum distribution of nodes in the flow domain.

  11. Domain decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Beilina, Larisa

    2016-08-01

    We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.

  12. Deformation of forearcs caused by subduction of aseismic ridges: The role of ridge orientation and convergence direction investigated with 3D finite-element models

    NASA Astrophysics Data System (ADS)

    Zeumann, Stefanie; Hampel, Andrea

    2015-04-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To investigate the role of ridge orientation relative to the margin and convergence direction on the style of forearc deformation, we developed a series of 3D finite-elemente models, in which a rigid oceanic plate carrying the model ridge subducts beneath a deformable forearc wedge. Experiments were carried out for angles of 30°, 60° and 90° between the ridge axis and the trench and for different convergence directions. In the experiments, in which the ridge axis is parallel to the convergence direction, the ridge is stationary; in all other experiments, the ridge migrates along the margin and thus affects different regions of the forearc. Our results show that the ridge indents and uplifts the forearc in all models. For obliquely subducting ridges the displacement and strain fields become highly asymmetric regardless if the ridge is stationary or migrates along the forearc. Only if the ridge is stationary and oriented perpendicular to the margin, the deformation is symmetric relative to the ridge axis. Stationary ridges show uplift only above the ridge tip, whereas a migrating ridge causes a wave of uplift above the leading flank of the ridge followed by subsidence above the trailing flank. Horizontal strain components show domains of both extension and shortening, with extension occurring above the ridge tip and shortening above the ridge flanks. To compare our results with natural case studies, we computed additional models reflecting the setting of the stationary Cocos Ridge subducting beneath southern Costa Rica and of the Nazca Ridge, which migrates along the Peruvian margin. The results of these adjusted models are in good agreement with field observations. For the model of the Cocos Ridge the highest degree of shortening occurs normal to the margin, which coincides with the location of a thrust belt in the forearc of Costa Rica with its maximum shortening inboard

  13. TVD finite difference schemes and artificial viscosity

    NASA Technical Reports Server (NTRS)

    Davis, S. F.

    1984-01-01

    The total variation diminishing (TVD) finite difference scheme can be interpreted as a Lax-Wendroff scheme plus an upwind weighted artificial dissipation term. If a particular flux limiter is chosen and the requirement for upwind weighting is removed, an artificial dissipation term which is based on the theory of TVD schemes is obtained which does not contain any problem dependent parameters and which can be added to existing MacCormack method codes. Numerical experiments to examine the performance of this new method are discussed.

  14. Software suite for finite difference method models.

    PubMed

    Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J

    2006-01-01

    We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057

  15. Analytical finite element matrix elements and global matrix assembly for hierarchical 3-D vector basis functions within the hybrid finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, K.; Li, H.; Eibert, T. F.

    2014-11-01

    A hybrid higher-order finite element boundary integral (FE-BI) technique is discussed where the higher-order FE matrix elements are computed by a fully analytical procedure and where the gobal matrix assembly is organized by a self-identifying procedure of the local to global transformation. This assembly procedure applys to both, the FE part as well as the BI part of the algorithm. The geometry is meshed into three-dimensional tetrahedra as finite elements and nearly orthogonal hierarchical basis functions are employed. The boundary conditions are implemented in a strong sense such that the boundary values of the volume basis functions are directly utilized within the BI, either for the tangential electric and magnetic fields or for the asssociated equivalent surface current densities by applying a cross product with the unit surface normals. The self-identified method for the global matrix assembly automatically discerns the global order of the basis functions for generating the matrix elements. Higher order basis functions do need more unknowns for each single FE, however, fewer FEs are needed to achieve the same satisfiable accuracy. This improvement provides a lot more flexibility for meshing and allows the mesh size to raise up to λ/3. The performance of the implemented system is evaluated in terms of computation time, accuracy and memory occupation, where excellent results with respect to precision and computation times of large scale simulations are found.

  16. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    NASA Astrophysics Data System (ADS)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  17. Waves of 3D marine structures slamming at different initial poses in complex wind-wave-flow environments

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-sheng; Yu, Long-fei

    2016-10-01

    Aimed at the hydrodynamic response for marine structures slamming into water, based on the mechanism analysis to the slamming process, and by combining 3D N-S equation and k- ɛ turbulent kinetic equation with structure fully 6DOF motion equation, a mathematical model for the wind-fluid-solid interaction is established in 3D marine structure slamming wave at free poses and wind-wave-flow complex environments. Compared with the results of physical model test, the numerical results from the slamming wave well correspond with the experimental results. Through the mathematical model, the wave-making issue of 3D marine structure at initial pose falls into water in different complex wind, wave and flow environments is investigated. The research results show that various kinds of natural factors and structure initial poses have different influence on the slamming wave, and there is an obvious rule in this process.

  18. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    PubMed

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic

  19. 3D Simulation of an Audible Ultrasonic Electrolarynx Using Difference Waves

    PubMed Central

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper. PMID:25401965

  20. TUNED FINITE-DIFFERENCE DIFFUSION OPERATORS

    SciTech Connect

    Maron, Jason; Low, Mordecai-Mark Mac E-mail: mordecai@amnh.org

    2009-05-15

    Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem, and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale, but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number far from unity, or for numerical stabilization using hyperdiffusivity.

  1. A 3-D finite-element model for computation of temperature profiles and regions of thermal damage during focused ultrasound surgery exposures.

    PubMed

    Meaney, P M; Clarke, R L; ter Haar, G R; Rivens, I H

    1998-11-01

    Although there have been numerous models implemented for modeling thermal diffusion effects during focused ultrasound surgery (FUS), most have limited themselves to representing simple situations for which analytical solutions and the use of cylindrical geometries sufficed. For modeling single lesion formation and the heating patterns from a single exposure, good results were achieved in comparison with experimental results for predicting lesion size, shape and location. However, these types of approaches are insufficient when considering the heating of multiple sites with FUS exposures when the time interval between exposures is short. In such cases, the heat dissipation patterns from initial exposures in the lesion array formation can play a significant role in the heating patterns for later exposures. Understanding the effects of adjacent lesion formation, such as this, requires a three-dimensional (3-D) representation of the bioheat equation. Thus, we have developed a 3-D finite-element representation for modeling the thermal diffusion effects during FUS exposures in clinically relevant tissue volumes. The strength of this approach over past methods is its ability to represent arbitrarily shaped 3-D situations. Initial simulations have allowed calculation of the temperature distribution as a function of time for adjacent FUS exposures in excised bovine liver, with the individually computed point temperatures comparing favorably with published measurements. In addition to modeling these temperature distributions, the model was implemented in conjunction with an algorithm for calculating the thermal dose as a way of predicting lesion shape. Although used extensively in conventional hyperthermia applications, this thermal dose criterion has only been applied in a limited number of simulations in FUS for comparison with experimental measurements. In this study, simulations were run for focal depths 2 and 3 cm below the surface of pig's liver, using multiple

  2. Method for the determination of the modulation transfer function (MTF) in 3D x-ray imaging systems with focus on correction for finite extent of test objects

    NASA Astrophysics Data System (ADS)

    Schäfer, Dirk; Wiegert, Jens; Bertram, Matthias

    2007-03-01

    It is well known that rotational C-arm systems are capable of providing 3D tomographic X-ray images with much higher spatial resolution than conventional CT systems. Using flat X-ray detectors, the pixel size of the detector typically is in the range of the size of the test objects. Therefore, the finite extent of the "point" source cannot be neglected for the determination of the MTF. A practical algorithm has been developed that includes bias estimation and subtraction, averaging in the spatial domain, and correction for the frequency content of the imaged bead or wire. Using this algorithm, the wire and the bead method are analyzed for flat detector based 3D X-ray systems with the use of standard CT performance phantoms. Results on both experimental and simulated data are presented. It is found that the approximation of applying the analysis of the wire method to a bead measurement is justified within 3% accuracy up to the first zero of the MTF.

  3. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  4. Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation

    NASA Astrophysics Data System (ADS)

    Song, Xiaolei; Fomel, Sergey; Ying, Lexing

    2013-05-01

    We introduce a novel finite-difference (FD) approach for seismic wave extrapolation in time. We derive the coefficients of the finite-difference operator from a lowrank approximation of the space-wavenumber, wave-propagator matrix. Applying the technique of lowrank finite-differences, we also improve the finite difference scheme of the two-way Fourier finite differences (FFD). We call the new operator lowrank Fourier finite differences (LFFD). Both the lowrank FD and lowrank FFD methods can be applied to enhance accuracy in seismic imaging by reverse-time migration. Numerical examples confirm the validity of the proposed technique.

  5. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

  6. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  7. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    SciTech Connect

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  8. Finite element calculations on detailed 3D models for the superferric main magnets of the FAIR SIS100 synchrotron

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Shcherbakov, P.; Kurnyshov, R.

    2007-11-01

    The synchrotron SIS100 is one of the two basic accelerators of the future Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. This accelerator should provide high intensity U28+ and proton beams with a pulse repetition rate of 1 Hz (i.e. a ramp rate of 4 T/s). The magnetic system of the accelerator uses superferric 2.1 T dipoles of about 3 m length and 32 T/m quadrupoles of about 1 m length. The magnet coils are made of a hollow tube cable wrapped with Cu/NbTi composite wire cooled with two phase helium flow at 4.5 K. The bore dimensions were defined to 130 × 60 mm for the dipole and 135 × 65 mm for the quadrupole. We present the developed ANSYS models for different important aspects: AC loss, magnetic field quality and mechanical stability. Preliminary studies verified the approaches and these models were applied to calculate the effects for the coil, the yoke and the beam pipe structures. We outline further steps to fully describe the SIS100 magnets including mechanical and thermal properties.

  9. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  10. A positive finite-difference advection scheme

    SciTech Connect

    Hundsdorfer, W.; Koren, B.; Loon, M. van

    1995-03-01

    This paper examines a class of explicit finite-difference advection schemes derived along the method of lines. An important application field is large-scale atmospheric transport. The paper therefore focuses on the demand of positivity. For the spatial discretization, attention is confined to conservative schemes using five points per direction. The fourth-order central scheme and the family of {kappa}-schemes, comprising the second-order central, the second-order upwind, and the third-order upwind biased, are studied. Positivity is enforced through flux limiting. It is concluded that the limited third-order upwind discretization is the best candidate from the four examined. For the time integration attention is confined to a number of explicit Runge-Kutta methods of orders two to four. With regard to the demand of positivity, these integration methods turn out to behave almost equally and no best method could be identified. 16 refs., 4 figs., 4 tabs.

  11. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333

  12. Adaptive finite difference for seismic wavefield modelling in acoustic media

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.

  13. Adaptive finite difference for seismic wavefield modelling in acoustic media

    PubMed Central

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-01-01

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333

  14. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    PubMed

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-05

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme.

  15. Finite difference computation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  16. Comparison of two different surfaces for 3d model abstraction in support of remote sensing simulations

    SciTech Connect

    Pope, Paul A; Ranken, Doug M

    2010-01-01

    A method for abstracting a 3D model by shrinking a triangular mesh, defined upon a best fitting ellipsoid surrounding the model, onto the model's surface has been previously described. This ''shrinkwrap'' process enables a semi-regular mesh to be defined upon an object's surface. This creates a useful data structure for conducting remote sensing simulations and image processing. However, using a best fitting ellipsoid having a graticule-based tessellation to seed the shrinkwrap process suffers from a mesh which is too dense at the poles. To achieve a more regular mesh, the use of a best fitting, subdivided icosahedron was tested. By subdividing each of the twenty facets of the icosahedron into regular triangles of a predetermined size, arbitrarily dense, highly-regular starting meshes can be created. Comparisons of the meshes resulting from these two seed surfaces are described. Use of a best fitting icosahedron-based mesh as the seed surface in the shrinkwrap process is preferable to using a best fitting ellipsoid. The impacts to remote sensing simulations, specifically generation of synthetic imagery, is illustrated.

  17. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.

    PubMed

    Ezquerro, Francisco; Simón, Antonio; Prado, María; Pérez, Ana

    2004-01-01

    A model of the lumbar spine capable of taking into account realistic loads derived from human activity would be of great benefit in studying its normal biomechanical functioning as well as its in vivo behavior in injured and surgically altered states. This paper proposes a method to analyze the mechanical response of the lumbar spine subjected to loads derived from human activity, combining a non-linear finite element model (FEM) and an optimization-based force predicting algorithm. Loads borne by the lumbar spine at the T12-L1 level (joint loads) are first predicted with the optimization algorithm and then applied to the FEM, while a boundary condition prescribing the relative L1-sacrum rotation is imposed onto the FEM to account for three-dimensional physiological thorax-pelvis orientation. The prescribed rotation is achieved through the application of moments on L1. To account for the effect of these moments on lumbar joint loads, an iteration between the optimization technique and the FEM computation has been carried out. This method provides two main benefits over previous studies: first, it allows for the application of any 3D loading condition while considering the real 3D rotation measured between the thorax and the pelvis, and second, it makes it possible to estimate the moments that must be applied on L1 in order to maintain this rotation, taking them into account when predicting joint loads. As an example application of the method, results are presented for the lumbar spine mechanical response at the time of peak T12-L1 joint force during walking.

  18. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  19. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  20. 3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries

    NASA Astrophysics Data System (ADS)

    Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not

  1. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains

    NASA Astrophysics Data System (ADS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-11-01

    Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.

  2. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  3. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  4. Prediction of Residual Stress Distributions in Welded Sections of P92 Pipes with Small Diameter and Thick Wall based on 3D Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei

    2015-05-01

    This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.

  5. DynEarthSol3D: An Efficient and Flexible Unstructured Finite Element Method to Study Long-Term Tectonic Deformation

    NASA Astrophysics Data System (ADS)

    Tan, E.; Choi, E.; Lavier, L. L.; Calo, V. M.

    2013-12-01

    Many tectonic problems treat the lithosphere as a compressible elastic material, which can also flow viscously or break in a brittle fashion depending on the stress level applied and the temperature conditions. We present a flexible methodology to address the resulting complex material response, which imposes severe challenges on the discretization and rheological models used. This robust, adaptive, multidimensional, finite element method solves the momentum balance and the heat equation in Lagrangian form with unstructured simplicial mesh (triangles in 2D and tetrahedra in 3D). The mesh locking problem is avoided by using averaged volumetric strain rate to update the stress. The solver uses contingent mesh adaptivity in places where shear strain is focused (localization) during remeshing. A simple scheme of mesh coarsening is employed to prevent tiny elements during remeshing. Lagrangian markers are used to track multiple compositions of rocks. The code is parallelized via OpenMP with graph coloring. We detail the solver and verify it in a number of benchmark problems against analytic and numerical solutions from the literature.

  6. An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model

    NASA Astrophysics Data System (ADS)

    Ichimura, Tsuyoshi; Agata, Ryoichiro; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo; Fukahata, Yukitoshi

    2016-07-01

    As a result of the accumulation of high-resolution observation data, 3-D high-fidelity crustal structure data for large domains are becoming available. However, it has been difficult to use such data to perform elastic/viscoelastic crustal deformation analyses in large domains with quality assurance of the numerical simulation that guarantees convergence of the numerical solution with respect to the discretization size because the costs of analysis are significantly high. This paper proposes a method of constructing a high-fidelity crustal structure finite element (FE) model using high-fidelity crustal structure data and fast FE analysis to reduce the costs of analysis (based on automatic FE model generation for parallel computation, OpenMP/MPI hybrid parallel computation on distributed memory computers, a geometric multigrid, variable preconditioning and multiple precision arithmetic). Using the proposed methods, we construct 10 billion degree-of-freedom high-fidelity crustal structure FE models for the entire Japan, and conduct elastic/viscoelastic crustal deformation analysis using this model with enough high accuracy of the numerical simulation.

  7. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  8. Stochastic rank correlation: A robust merit function for 2D/3D registration of image data obtained at different energies

    PubMed Central

    Birkfellner, Wolfgang; Stock, Markus; Figl, Michael; Gendrin, Christelle; Hummel, Johann; Dong, Shuo; Kettenbach, Joachim; Georg, Dietmar; Bergmann, Helmar

    2010-01-01

    In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman’s rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general. PMID:19746775

  9. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram; Boss, Daniel; Marquet, Pierre

    2013-12-16

    Quantitative phase (QP) images of red blood cells (RBCs), which are obtained by off-axis digital holographic microscopy, can provide quantitative information about three-dimensional (3D) morphology of human RBCs and the characteristic properties such as mean corpuscular hemoglobin (MCH) and MCH surface density (MCHSD). In this paper, we investigate modifications of the 3D morphology and MCH in RBCs induced by the period of storage time for the purpose of classification of RBCs with different periods of storage by using off-axis digital holographic microscopy. The classification of RBCs based on the duration of storage is highly relevant because a long storage of blood before transfusion may alter the functionality of RBCs and, therefore, cause complications in patients. To analyze any changes in the 3D morphology and MCH of RBCs due to storage, we use data sets from RBC samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57 days, respectively. The data sets consist of more than 3,300 blood cells in eleven classes, with more than 300 blood cells per class. The classes indicate the storage period of RBCs and are listed in chronological order. Using the RBCs donated by healthy persons, the off-axis digital holographic microscopy reconstructs several quantitative phase images of RBC samples stored for eleven different periods. We employ marker-controlled watershed transform to remove the background in the RBC quantitative phase images obtained by the off-axis digital holographic microscopy. More than 300 single RBCs are extracted from the segmented quantitative phase images for each class. Such a large number of RBC samples enable us to obtain statistical distributions of the characteristic properties of RBCs after a specific period of storage. Experimental results show that the 3D morphology of the RBCs, in contrast to MCH, is essentially related to the aging of the RBCs.

  10. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    PubMed

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  11. Finite difference method for calculating three-dimensional incompressible boundary layer in curvilinear semiorthogonal coordinates

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Wu, Yulin; Mei, Zuyan

    1991-06-01

    A finite difference method for computing 3D incompressible laminar and turbulent boundary layers is presented. The curvilinear semiorthogonal coordinate system is used to express the 3D boundary layer equations. Reynolds stresses are assumed zero for the laminar boundary layer. For the turbulent boundary layer, the Reynolds stresses are expressed through an algebraic turbulence model taking into account nonisotropic eddy viscosity based on the Cebeci-Smith turbulence model and Rotta's turbulent stress formulas. The numerical solution method is described and carried out for a 3D boundary layer of a wing. The results are in good agreement with measured data. The method and its program have high accuracy, require less computer storage, are computationally fast and flexible in use.

  12. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  13. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  14. Preliminary 3-D finite element analyses of the triggering mechanism of an occasional reactivation of a large landslide in stiff clays

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Fazio, Nunzio Luciano; Vennari, Carmela; Parise, Mario

    2015-04-01

    In December 2013 a large landslide occurred along a clay slope located at the south-western outskirts of the Montescaglioso village (Basilicata, Southern Italy) as a consequence of intense and prolonged rainfalls that presumably caused a significant increment of the pore water pressures in the slope. The slope is formed of stiff clays belonging to the formation of the Subappennine Blue Clays, which are over-consolidated and characterized by medium plasticity. According to aerial photos dating back to 1950s, the slope was already affected by previous landslide processes, so that the examined landslide process can be classified as an occasional reactivation according to the well-known classification of Cruden & Varnes (1996). Also, during the last decades several man-made actions in the area resulted in strong changes in the original water surface network that could have played some role in the slope reactivation. Based on displacement data, obtained from a monitoring system installed few days after the phenomenon, and still in function, at present the landslide does not show relevant signs of activity. Preliminary 2-D and 3-D finite element analyses have been carried out to investigate the factors that controlled the mechanism of reactivation of the landslide. The numerical model has been setup based on the available topographical, geological and geomorphological information, the geotechnical properties of the involved soils and the information concerning the piezometric regime in the slope. The results indicate that the mobilized shear strength of the clays ranges between the typical post-peak and residual values for this type of material and confirmed that the strong increment of the pore water pressures in the slope induced by the exceptional rainfalls occurred in the previous days can be identified as the main triggering factor of the reactivation.

  15. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  16. TH-C-12A-08: New Compact 10 MV S-Band Linear Accelerator: 3D Finite-Element Design and Monte Carlo Dose Simulations

    SciTech Connect

    Baillie, D; St Aubin, J; Fallone, B; Steciw, S

    2014-06-15

    Purpose: To design a new compact S-band linac waveguide capable of producing a 10 MV x-ray beam, while maintaining the length (27.5 cm) of current 6 MV waveguides. This will allow higher x-ray energies to be used in our linac-MRI systems with the same footprint. Methods: Finite element software COMSOL Multiphysics was used to design an accelerator cavity matching one published in an experiment breakdown study, to ensure that our modeled cavities do not exceed the threshold electric fields published. This cavity was used as the basis for designing an accelerator waveguide, where each cavity of the full waveguide was tuned to resonate at 2.997 GHz by adjusting the cavity diameter. The RF field solution within the waveguide was calculated, and together with an electron-gun phase space generated using Opera3D/SCALA, were input into electron tracking software PARMELA to compute the electron phase space striking the x-ray target. This target phase space was then used in BEAM Monte Carlo simulations to generate percent depth doses curves for this new linac, which were then used to re-optimize the waveguide geometry. Results: The shunt impedance, Q-factor, and peak-to-mean electric field ratio were matched to those published for the breakdown study to within 0.1% error. After tuning the full waveguide, the peak surface fields are calculated to be 207 MV/m, 13% below the breakdown threshold, and a d-max depth of 2.42 cm, a D10/20 value of 1.59, compared to 2.45 cm and 1.59, respectively, for the simulated Varian 10 MV linac and brehmsstrahlung production efficiency 20% lower than a simulated Varian 10 MV linac. Conclusion: This work demonstrates the design of a functional 27.5 cm waveguide producing 10 MV photons with characteristics similar to a Varian 10 MV linac.

  17. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  18. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

    PubMed Central

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Asadpour-Zeynali, Karim

    2012-01-01

    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses. PMID:25317190

  19. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.

    PubMed

    Hirashima, Masaya; Kudo, Kazutoshi; Watarai, Koji; Ohtsuki, Tatsuyuki

    2007-01-01

    This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist flexion in all speed conditions. The study participants adjusted the angular velocities of these four motions to throw the balls at three different speeds. We also analyzed the dynamics of the 3D multijoint movements using a recently developed method called "nonorthogonal torque decomposition" that can clarify how angular acceleration about a joint coordinate axis (e.g., shoulder internal rotation) is generated by the muscle, gravity, and interaction torques. We found that the study participants utilized the interaction torque to generate larger angular velocities of the shoulder internal rotation, elbow extension, and wrist flexion. To increase the interaction torque acting at these joints, the ball throwers increased muscle torque at the shoulder and trunk but not at the elbow and wrist. These results indicates that skilled ball throwers adopted a hierarchical control in which the proximal muscle torques created a dynamic foundation for the entire limb motion and beneficial interaction torques for distal joint rotations.

  20. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  1. Shim3d Helmholtz Solution Package

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  2. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  3. Form finding and analysis of extensible membranes attached to 2-D and 3-D frames intended for micro air vehicles via experimentally validated finite element methods

    NASA Astrophysics Data System (ADS)

    Abudaram, Yaakov Jack

    This work is concerned with a new method to apply consistent and known pretension to silicone rubber membranes intended for micro air vehicles as well as an understanding in the science of developed pre-tension in membranes constrained by 2- D and 3-D frames and structures. Pre-tension has a marked effect on the static and dynamic response of membrane wings and controls the overall deflections, as such control and measurement of the membrane pre-tension is important. Two different 2-D frame geometries were fabricated to evaluate the technique. For open-cell frames, the pretension was not uniform, whereas it was for closed-cell frames. Results show developed full-field stress and strain fields as a function of membrane attachment temperature and frame geometry along with experimental iterations to prove repeatability. The membranes can be stretched to a specific pretension according to the temperature at which it adheres to frames. Strain fields in membranes attached to 3-D frames at various temperatures are modeled through FEA utilizing Abaqus to be able to predict the developed membrane deformations, stresses, and strains. Rigid frames with various curvatures are built via appropriate molds and then adhered to silicone rubber membranes and elevated to various temperatures to achieve different pre-strains for experimental validation. Additional experiments are conducted for more complex frame geometries involving both convex and concave topologies embedded within frames. Results are then compared with the Abaqus outputs to validate the accuracy of the FEA model. Highly compliant wings have been used for MAV platforms, where the wing structure is determined by some combination of carbon fiber composites and a membrane skin, adhered in between the layers of composite material. Another new technique of attaching membranes firmly on wing structures is introduced, which involves the application of a technology known as corona treatment coupled with another method of

  4. Effect of attachment types and number of implants supporting mandibular overdentures on stress distribution: a computed tomography-based 3D finite element analysis.

    PubMed

    Arat Bilhan, Selda; Baykasoglu, Cengiz; Bilhan, Hakan; Kutay, Omer; Mugan, Ata

    2015-01-01

    The objective of this study was to calculate stresses in bone tissue surrounding uncoupled and splinted implants that are induced by a bite force applied to the mandible and to determine whether the number of mandibular overdenture supporting implants in mandibular bone influence the stress distribution. A human adult edentulous mandible retrieved from a formalin fixed cadaver was used to define the geometry of finite element (FE) model and the FE model was verified with experimental measurements. Following the FE model validation, three different biting situations were simulated for the 2-, 3- and 4-implant retentive anchor as well as bar attachment overdentures under vertical loading of 100 N. As a result of the analyses, it was concluded that an increment in implant number and the splinted attachment type tended to cause lower stresses and the use of two single attachments seems to be a safe and sufficient solution for the treatment of mandibular edentulism with overdentures.

  5. Robust and efficient upwind finite-difference traveltime calculations in three dimensions

    SciTech Connect

    Schneider, W.A. Jr.

    1995-07-01

    First-arrival traveltimes in complicated 3-D geologic media may be computed robustly and efficiently using an upwind finite-difference solution of the 3-D eikonal equation. An important application of this technique is computing traveltimes for imaging seismic data with 3-D prestack Kirchhoff depth migration. The method performs radial extrapolation of the three components of the slowness vector in spherical coordinates. Traveltimes are computed by numerically integrating the radial component of the slowness vector. The original finite-difference equations are recast into unitless forms that are more stable to numerical errors. A stability condition adaptively determines the radial steps that are used to extrapolate. Computations are done in a rotated spherical coordinate system that places the small arc-length regions of the spherical grid at the earth`s surface (z = 0 plane). This improves efficiency by placing large grid cells in the central regions of the grid where wavefields are complicated, thereby maximizing the radial steps. Adaptive gridding allows the angular grid spacings to vary with radius. The computation grid is also adaptively truncated so that it does not extend beyond the predefined Cartesian traveltime grid. This grid handling improves efficiency. The method cannot compute traveltimes corresponding to wavefronts that have ``turned`` so that they propagate in the negative radial direction. Such wavefronts usually represent headwaves and are not needed to image seismic data. An adaptive angular normalization prevent this turning, while allowing lower-angle wavefront components to accurately propagate.

  6. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression.

    PubMed

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  7. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression.

    PubMed

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis.

  8. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression

    PubMed Central

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  9. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  10. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  11. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  12. Levitation Force Investigation of Bulk HTSC Above Halbach PMG with Different Cross-Section Physical Dimensions by 3D-Modeling Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Liu, Guoliang; Qin, Yujie

    2014-10-01

    The levitation force of a bulk high temperature superconductor (HTSC) over Halbach permanent magnet guideways (PMG) with different cross-section configuration is studied by numerical method. The Halbach PMG is composed of three host permanent magnets (HPMs) and two slave permanent magnets (SPMs). One cylindrical bulk HTSC with a diameter of 30 mm and height of 15 mm is used. The 3D-modeling is formulated by the H-method. The numerical resolving codes are practiced using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of bulk HTSC. By the method, the influence of the cross-section physical dimensions of Halbach PMG on the levitation forces of bulk HTSC levitated above the PMG is studied. The simulation results show that increasing the width of SPM ( can enhance the bulk HTSC levitation performance immediately under the condition of keeping the ratio of ( : the width of HPM) to between 1.6 and 1.8, the ratio of td (the height of the PMG) to between 1.2 and 1.4. By the method, the bulk HTSC better levitation performance can be expected.

  13. MRCK_3D contact detonation algorithm

    SciTech Connect

    Rougier, Esteban; Munjiza, Antonio

    2010-01-01

    Large-scale Combined Finite-Discrete Element Methods (FEM-DEM) and Discrete Element Methods (DEM) simulations involving contact of a large number of separate bod ies need an efficient, robust and flexible contact detection algorithm. In this work the MRCK-3D search algorithm is outlined and its main CPU perfonnances are evaluated. One of the most important aspects of this newly developed search algorithm is that it is applicable to systems consisting of many bodies of different shapes and sizes.

  14. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  15. Influence of Implant Position on Stress Distribution in Implant-Assisted Distal Extension Removable Partial Dentures: A 3D Finite Element Analysis

    PubMed Central

    Memari, Yeganeh; Geramy, Allahyar; Fayaz, Amir; Rezvani Habib Abadi, Shirin; Mansouri, Yasaman

    2014-01-01

    Objective: Distal extension removable partial denture is a prosthesis with lack of distal dental support with a 13-fold difference in resiliency between the mucosa and the periodontal ligament, resulting in leverage during compression forces. It may be potentially destructive to the abutments and the surrounding tissues. The aim of this study was to assess the effect of implant location on stress distribution, in distal extension implant assisted removable partial dentures. Materials and Methods: Three-dimensional models of a bilateral distal extension partially edentulous mandible containing anterior teeth and first premolar in both sides of the arch, a partial removable denture and an implant (4×10mm) were designed. With the aid of the finite element program ANSYS 8.0, the models were meshed and strictly vertical forces of 10 N were applied to each cusp tip. Displacement and von Mises Maps were plotted for visualization of results. Results: When an implant was placed in the second premolar region, the highest stress on implant, abutment tooth and cancellous bone was shown. The lowest stress was shown on implant and bone in the 1st molar area. Conclusion: Implants located in the first molar area showed the least distribution of stresses in the analyzed models. PMID:25628678

  16. Improved finite-difference vibration analysis of pretwisted, tapered beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.

  17. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    PubMed

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique.

  18. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  19. Direct simulations of turbulent flow using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Moin, Parviz

    1989-01-01

    A high-order accurate finite-difference approach is presented for calculating incompressible turbulent flow. The methods used include a kinetic energy conserving central difference scheme and an upwind difference scheme. The methods are evaluated in test cases for the evolution of small-amplitude disturbances and fully developed turbulent channel flow. It is suggested that the finite-difference approach can be applied to complex geometries more easilty than highly accurate spectral methods. It is concluded that the upwind scheme is a good candidate for direct simulations of turbulent flows over complex geometries.

  20. Assessment of DICOM Viewers Capable of Loading Patient-specific 3D Models Obtained by Different Segmentation Platforms in the Operating Room.

    PubMed

    Lo Presti, Giuseppe; Carbone, Marina; Ciriaci, Damiano; Aramini, Daniele; Ferrari, Mauro; Ferrari, Vincenzo

    2015-10-01

    Patient-specific 3D models obtained by the segmentation of volumetric diagnostic images play an increasingly important role in surgical planning. Surgeons use the virtual models reconstructed through segmentation to plan challenging surgeries. Many solutions exist for the different anatomical districts and surgical interventions. The possibility to bring the 3D virtual reconstructions with native radiological images in the operating room is essential for fostering the use of intraoperative planning. To the best of our knowledge, current DICOM viewers are not able to simultaneously connect to the picture archiving and communication system (PACS) and import 3D models generated by external platforms to allow a straight integration in the operating room. A total of 26 DICOM viewers were evaluated: 22 open source and four commercial. Two DICOM viewers can connect to PACS and import segmentations achieved by other applications: Synapse 3D® by Fujifilm and OsiriX by University of Geneva. We developed a software network that converts diffuse visual tool kit (VTK) format 3D model segmentations, obtained by any software platform, to a DICOM format that can be displayed using OsiriX or Synapse 3D. Both OsiriX and Synapse 3D were suitable for our purposes and had comparable performance. Although Synapse 3D loads native images and segmentations faster, the main benefits of OsiriX are its user-friendly loading of elaborated images and it being both free of charge and open source.

  1. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  2. An implicit finite-difference code for a two-equation turbulence model for three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Kaul, U. K.

    1985-01-01

    An implicit finite difference code was developed which solves the transport equations for the turbulence kinetic energy and its dissipation rate in generalized coordinates in three dimensions. The finite difference equations are solved using the Beam-Warming algorithm. The kinetic energy-dissipation code, KEM, provides the closure; i.e., the turbulent viscosity for calculation of either compressible or incompressible flows. Turbulent internal flow over a backward-facing step has been calculated using the present code in conjunction with the Incompressible Navier-Stokes Code, INS3D. The results are in good agreement with experiments and two dimensional computations of other researchers.

  3. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    PubMed Central

    Ropireddy, Deepak; Ascoli, Giorgio A.

    2011-01-01

    Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g., with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal cell (PC) extends thousands of synapses over macroscopic distances (∼cm). The contrasting requirements of high-resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these “potential synapses” functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto PC dendrites from the axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons. PMID:21779242

  4. Functional differences in IgG anti-polysaccharide antibodies elicited by immunization of mice with C3d versus ovalbumin conjugates of pneumococcal serotype 14 capsular polysaccharide.

    PubMed

    Hu, Yong; Test, Samuel T

    2004-11-15

    We previously have shown that conjugation of C3d to pneumococcal serotype type 14 capsular polysaccharide (PPS14) significantly enhances anti-PPS14 antibody production to a degree similar to that found when the T-dependent protein carrier ovalbumin (OVA) is coupled to PPS14. However, the anti-PPS14 antibody response to PPS14-C3d conjugates is characterized by less switching from IgM to IgG and lower serum concentrations of anti-PPS14 IgG after secondary immunization. To determine if these quantitative differences in anti-PPS14 IgG are accompanied by qualitative differences in the IgG anti-PPS14 antibodies, we performed several functional assays on serum IgG anti-PPS14 antibodies from mice immunized with PPS14-C3d or PPS14-OVA. Compared with antibodies elicited by immunization with PPS14-C3d, IgG anti-PPS14 antibodies produced after immunization with PPS14-OVA were found to have higher avidity and enhanced function as opsonins. Comparisons of avidity for IgG from serum samples obtained after primary and secondary immunization demonstrated a higher degree of avidity maturation after immunization with PPS14-OVA than with PPS14-C3d. These results suggest that PPS14-C3d conjugates are unlikely to be more efficacious than PPS14 conjugate vaccines incorporating T-dependent protein carriers.

  5. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  6. Finite-Difference Algorithms For Computing Sound Waves

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  7. Rasterizing geological models for parallel finite difference simulation using seismic simulation as an example

    NASA Astrophysics Data System (ADS)

    Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan

    2016-01-01

    3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.

  8. Selecting step sizes in sensitivity analysis by finite differences

    NASA Technical Reports Server (NTRS)

    Iott, J.; Haftka, R. T.; Adelman, H. M.

    1985-01-01

    This paper deals with methods for obtaining near-optimum step sizes for finite difference approximations to first derivatives with particular application to sensitivity analysis. A technique denoted the finite difference (FD) algorithm, previously described in the literature and applicable to one derivative at a time, is extended to the calculation of several simultaneously. Both the original and extended FD algorithms are applied to sensitivity analysis for a data-fitting problem in which derivatives of the coefficients of an interpolation polynomial are calculated with respect to uncertainties in the data. The methods are also applied to sensitivity analysis of the structural response of a finite-element-modeled swept wing. In a previous study, this sensitivity analysis of the swept wing required a time-consuming trial-and-error effort to obtain a suitable step size, but it proved to be a routine application for the extended FD algorithm herein.

  9. Functional stability of 3D8 scFv, a nucleic acid-hydrolyzing single chain antibody, under different biochemical and physical conditions.

    PubMed

    Lee, Joungmin; Park, Hyunjoon; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Byun, Sung June; Lee, Sukchan; Kwon, Myung-Hee

    2015-12-30

    3D8 single-chain Fv (scFv) is a catalytic nucleic acid antibody with anti-viral activity against a broad spectrum of viruses. Here we investigated the functional stability of 3D8 scFv to provide a basis for engineering a 3D8 scFv derivative and for developing stable formulations with improved stability and potential use as an anti-viral agent. The stability of 3D8 scFv was assessed by measuring its DNA-hydrolyzing activity under different biochemical and physical conditions using a fluorescence resonance energy transfer (FRET)-based method. In addition, the anti-influenza (H9N2) effect of 3D8 scFv was evaluated in A549 cells. 3D8 scFv was stable at 50°C for 6h at pH 7.2, for 3 days at pH 4-10 at 37°C and 30 days at pH 4-8 at 37°C. The stability was not affected by a reducing condition, freeze-thawing for up to 30 cycles, or lyophilization. Evaluation of the anti-virus effect showed that cells treated with 32-128 units of 3D8 scFv showed a 50% decrease in influenza replication compared to untreated cells. Based on its enzymatic stability in various biochemical and physical environments, 3D8 scFv holds good potential for development as an anti-viral therapeutic. PMID:26536531

  10. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  11. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  12. The effects of extracellular sugar extraction on the 3D-structure of biological soil crusts from different ecosystems

    NASA Astrophysics Data System (ADS)

    Felde, Vincent; Rossi, Federico; Colesie, Claudia; Uteau-Puschmann, Daniel; Felix-Henningsen, Peter; Peth, Stephan; De Philippis, Roberto

    2015-04-01

    Biological soil crusts (BSCs) play important roles in the hydrological cycles of many different ecosystems around the world. In arid and semi-arid regions, they alter the availability and redistribution of water. Especially in early successional stage BSCs, this feature can be attributed to the presence and characteristics of extracellular polymeric substances (EPS) that are excreted by the crusts' organisms. In a previous study, the extraction of EPS from BSCs of the SW United States lead to a significant change in their hydrological behavior, namely the sorptivity of water (Rossi et al. 2012). This was concluded to be the effect of a change in the pore structure of these crusts, which is why in this work we investigated the effect of the EPS-extraction on soil structure using 3D-computed micro-tomography (µCT). We studied different types of BSCs from Svalbard, Germany, Israel and South Africa with varying grain sizes and species compositions (from green algae to light and dark cyanobacterial crusts with and without lichens and/or mosses). Unlike other EPS-extraction methods, the one utilized here is aimed at removing the extracellular matrix from crust samples whilst acting non-destructively (Rossi et al. 2012). For every crust sample, we physically cut out a small piece (1cm) from a larger sample contained in Petri dish, and scanned it in a CT at a high resolution (voxel edge length: 7µm). After putting it back in the dish, approximately in the same former position, it was treated for EPS-extraction and then removed and scanned again in order to check for a possible effect of the EPS-extraction. Our results show that the utilized EPS-extraction method had varying extraction efficiencies: while in some cases the amount removed was barely significant, in other cases up to 50% of the total content was recovered. Notwithstanding, no difference in soil micro-structure could be detected, neither in total porosity, nor in the distribution of pore sizes, the

  13. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  14. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis

    PubMed Central

    Değer, Yalçın; Adigüzel, Özkan; Özer, Senem Yiğit; Kaya, Sadullah; Polat, Zelal Seyfioğlu; Bozyel, Bejna

    2015-01-01

    Background The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. Material/Methods The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. Results The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. Conclusions Thermal changes generated stresses in the restorative materials, tooth, and supporting structures. PMID:26615495

  15. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  16. Transient analysis of printed lines using finite-difference time-domain method

    SciTech Connect

    Ahmed, Shahid

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  17. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    SciTech Connect

    Rodgers, Arthur J.; Dreger, Douglas S.; Pitarka, Arben

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  18. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.

  19. Different effects of bladder distention on point A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer.

    PubMed

    Ju, Sang Gyu; Huh, Seung Jae; Shin, Jung Suk; Park, Won; Nam, Heerim; Bae, Sunhyun; Oh, Dongryul; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho

    2013-03-01

    This study sought to evaluate the differential effects of bladder distention on point A-based (AICBT) and three-dimensional conformal intracavitary brachytherapy (3D-ICBT) planning for cervical cancer. Two sets of CT scans were obtained for ten patients to evaluate the effect of bladder distention. After the first CT scan, with an empty bladder, a second set of CT scans was obtained with the bladder filled. The clinical target volume (CTV), bladder, rectum, and small bowel were delineated on each image set. The AICBT and 3D-ICBT plans were generated, and we compared the different planning techniques with respect to the dose characteristics of CTV and organs at risk. As a result of bladder distention, the mean dose (D50) was decreased significantly and geometrical variations were observed in the bladder and small bowel, with acceptable minor changes in the CTV and rectum. The average D2 cm(3)and D1 cm(3)showed a significant change in the bladder and small bowel with AICBT; however, no change was detected with the 3D-ICBT planning. No significant dose change in the CTV or rectum was observed with either the AICBT or the 3D-ICBT plan. The effect of bladder distention on dosimetrical change in 3D-ICBT planning appears to be minimal, in comparison with AICBT planning.

  20. Numerical Analysis of Three-Dimensional Cervical Behaviors in Posterior-Oblique Car Collisions Using 3-D Human Whole Body Finite Element Model

    NASA Astrophysics Data System (ADS)

    Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken

    Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.

  1. A stabilized mixed finite element method for shear-rate dependent non-Newtonian fluids: 3D benchmark problems and application to blood flow in bifurcating arteries

    NASA Astrophysics Data System (ADS)

    Kwack, JaeHyuk; Masud, Arif

    2014-04-01

    This paper presents a stabilized mixed finite element method for shear-rate dependent fluids. The nonlinear viscosity field is a function of the shear-rate and varies uniformly in space and in time. The stabilized form is developed via application of Variational Multiscale (VMS) framework to the underlying generalized Navier-Stokes equation. Linear and quadratic tetrahedral and hexahedral elements are employed with equal-order interpolations for the velocity and pressure fields. A variety of benchmark problems are solved to assess the stability and accuracy properties of the resulting method. The method is then applied to non-Newtonian shear-rate dependent flows in bifurcating artery geometry, and significant non-Newtonian fluid effects are observed. A comparative study of the proposed method shows that the additional computational costs due to the nonlinear shear-rate dependent viscosity are only ten percent more than the computational cost for a Newtonian model.

  2. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems

    NASA Astrophysics Data System (ADS)

    Li, Liang; Huang, Ting-Zhu; Jing, Yan-Fei; Zhang, Yong

    2010-02-01

    The incomplete Cholesky (IC) factorization preconditioning technique is applied to the Krylov subspace methods for solving large systems of linear equations resulted from the use of edge-based finite element method (FEM). The construction of the preconditioner is based on the fact that the coefficient matrix is represented in an upper triangular compressed sparse row (CSR) form. An efficient implementation of the IC factorization is described in detail for complex symmetric matrices. With some ordering schemes our IC algorithm can greatly reduce the memory requirement as well as the iteration numbers. Numerical tests on harmonic analysis for plane wave scattering from a metallic plate and a metallic sphere coated by a lossy dielectric layer show the efficiency of this method.

  3. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  4. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  5. Finite-difference lattice-Boltzmann methods for binary fluids.

    PubMed

    Xu, Aiguo

    2005-06-01

    We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910

  6. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  7. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  8. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  9. Finite element-finite difference thermal/structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.

    1992-01-01

    A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.

  10. Age and gestural differences in the ease of rotating a virtual 3D image on a large, multi-touch screen.

    PubMed

    Ku, Chao-Jen; Chen, Li-Chieh

    2013-04-01

    Providing a natural mapping between multi-touch gestures and manipulations of digital content is important for user-friendly interfaces. Although there are some guidelines for 2D digital content available in the literature, a guideline for manipulation of 3D content has yet to be developed. In this research, two sets of gestures were developed for experiments in the ease of manipulating 3D content on a touchscreen. As there typically are large differences between age groups in the ease of learning new interfaces, we compared a group of adults with a group of children. Each person carried out three tasks linked to rotating the digital model of a green turtle to inspect major characteristics of its body. Task completion time, subjective evaluations, and gesture changing frequency were measured. Results showed that using the conventional gestures for 2D object rotation was not appropriate in the 3D environment. Gestures that required multiple touch points hampered the real-time visibility of rotational effects on a large screen. While the cumulative effects of 3D rotations became complicated after intensive operations, simpler gestures facilitated the mapping between 2D control movements and 3D content displays. For rotation in Cartesian coordinates, moving one fingertip horizontally or vertically on a 2D touchscreen corresponded to the rotation angles of two axes for 3D content, while the relative movement between two fingertips was used to control the rotation angleof the third axis. Based on behavior analysis, adults and children differed in the diversity of gesture types and in the touch points with respect to the object's contours. Offering a robust mechanism for gestural inputs is necessary for universal control of such a system.

  11. Effects of Spatial Ability, Gender Differences, and Pictorial Training on Children Using 2-D and 3-D Environments to Recall Landmark Locations from Memory

    ERIC Educational Resources Information Center

    Kopcha, Theodore J.; Otumfuor, Beryl A.; Wang, Lu

    2015-01-01

    This study examines the effects of spatial ability, gender differences, and pictorial training on fourth grade students' ability to recall landmark locations from memory. Ninety-six students used Google Earth over a 3-week period to locate landmarks (3-D) and mark their location on a 2-D topographical map. Analysis of covariance on posttest scores…

  12. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  13. Modeling nuclear 'pasta' and the transition to uniform nuclear matter with the 3D Skyrme-Hartree-Fock method at finite temperature: Core-collapse supernovae

    SciTech Connect

    Newton, W. G.; Stone, J. R.

    2009-05-15

    The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density to investigate the dependence of the total energy density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure; (ii) shell effects of bound and unbound nucleons; (iii) the variety of exotic nuclear shapes that emerge, collectively termed nuclear pasta; and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In Part I of this work the calculation of the properties of inhomogeneous nuclear matter in the core collapse of massive stars is reported. Emphasis is on exploring the effects of the numerical method on the results obtained; notably, the influence of the finite cell size on the nuclear shapes and energy-density obtained. Results for nuclear matter in {beta} equilibrium in cold neutrons stars are the subject of Part II. The calculation of the band structure of unbound neutrons in neutron star matter, yielding thermal conductivity, specific heat, and entrainment parameters, is outlined in Part III. Calculations are performed at baryon number densities of n{sub b}=0.04-0.12 fm{sup -3}, a proton fraction of y{sub p}=0.3 and temperatures in the range 0-7.5 MeV. A wide variety of nuclear shapes are shown to emerge. It is suggested that thermodynamical properties change smoothly in the pasta regime up to the transition to uniform matter; at that transition, thermodynamic properties of the matter

  14. Finite difference seismic modeling of axial magma chambers

    SciTech Connect

    Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )

    1990-11-01

    The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.

  15. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  16. Fuzzy logic to improve efficiency of finite element and finite difference schemes

    SciTech Connect

    Garcia, M.D.; Heger, A.S.

    1994-05-01

    This paper explores possible applications of logic in the areas of finite element and finite difference methods applied to engineering design problems. The application of fuzzy logic to both front-end selection of computational options and within the numerical computation itself are proposed. Further, possible methods of overcoming these limitations through the application of methods are explored. Decision strategy is a fundamental limitation in performing finite element calculations, such as selecting the optimum coarseness of the grid, numerical integration algorithm, element type, implicit versus explicit schemes, and the like. This is particularly true of novice analysts who are confronted with a myriad of choices in performing a calculation. The advantage of having the myriad of options available to the analyst is, however, that it improves and optimizes the design process if the appropriate ones are selected. Unfortunately, the optimum choices are not always apparent and only through the process of elimination or prior extensive experience can the optimum choices or combination of choices be selected. The knowledge of expert analysts could be integrated into a fuzzy ``front-end`` rule-based package to optimize the design process. The use of logic to capture the heuristic and human knowledge for selecting optimum solution strategies sets the framework for these proposed strategies.

  17. Finite difference discretisation of a model for biological nerve conduction

    NASA Astrophysics Data System (ADS)

    Aderogba, A. A.; Chapwanya, M.; Jejeniwa, O. A.

    2016-06-01

    A nonstandard finite difference method is proposed for the discretisation of the semilinear FitzHugh-Nagumo reaction diffusion equation. The equation has been useful in describing, for example, population models, biological models, heat and mass transfer models, and many other applications. The proposed approach involves splitting the equation into the space independent and the time independent sub equation. Numerical simulations for the full equation are presented.

  18. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  19. A comparative investigation on recurrence formulae in finite difference methods

    NASA Astrophysics Data System (ADS)

    Haberland, Christoph; Lahrmann, Andreas

    1988-06-01

    To solve the transient heat conduction equation, the Pade approximation is introduced into the finite-difference method. But if the time step is chosen too large relative to the element size, the Euler method and the Crank-Nicolson solution lead to significant oscillations. In contrast, the full implicit scheme does not show this oscillatory behavior, but is more inaccurate. Compared to these time-stepping algorithms the weighted-time-step method presented here is seen to offer definite advantages.

  20. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  1. Evaluation of the effect of the residual bone angulation on implant-supported fixed prosthesis in mandibular posterior edentulism. Part II: 3-D finite element stress analysis.

    PubMed

    Akça, K; Iplikçioğlu, H

    2001-01-01

    Buccolingual angulation of the mandibular posterior edentulous region may affect the prosthetic load conditions, so as to cause high stress concentrated areas that may easily lead to failure. The aim of this study was to evaluate the effect of various predetermined buccolingual angulation values on stress distribution in the mandibular posterior edentulous region restored with implant-supported fixed partial dentures, using three-dimensional finite element analysis. Stress analyses were performed applying 400N oblique force to implant-supported fixed prosthesis. Stress analyses indicated tensile stress values on the buccal surface and compressive stress values on the lingual surface of cortical bone were increased as the angulation of the edentulous bone increased (especially corresponding to the cervical region of the implants). Compressive stress values, observed where two implants were placed at the second premolar and second molar regions (5-7 design) and first and second molar regions (6-7 design), respectively, were very close to or even exceeded the ultimate compressive strength of bone. It is concluded that when a definite buccolingual angulation is added to other existing risk factors such as bruxism, placing an implant for every missing tooth might reduce the high stress concentration areas. PMID:11813664

  2. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI.

    PubMed

    Fernandez, M; House, M; Jambawalikar, S; Zork, N; Vink, J; Wapner, R; Myers, K

    2016-01-01

    Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy, appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause preterm birth. Presently, there is a lack of understanding of the structural and material factors that influence the mechanical function of the cervix during pregnancy. In this study we build finite element models of the pregnant uterus, cervix, and fetal membrane based on magnetic resonance imagining data in order to examine the mechanical function of the cervix under the physiologic loading conditions of pregnancy. We calculate the mechanical loading state of the cervix for two pregnant patients: 22 weeks gestational age with a normal cervical length and 28 weeks with a short cervix. We investigate the influence of (1) anatomical geometry, (2) cervical material properties, and (3) fetal membrane material properties, including its adhesion properties, on the mechanical loading state of the cervix under physiologically relevant intrauterine pressures. Our study demonstrates that membrane-uterus interaction, cervical material modeling, and membrane mechanical properties are factors that must be deliberately and carefully handled in order to construct a high quality mechanical simulation of pregnancy.

  3. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI.

    PubMed

    Fernandez, M; House, M; Jambawalikar, S; Zork, N; Vink, J; Wapner, R; Myers, K

    2016-01-01

    Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy, appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause preterm birth. Presently, there is a lack of understanding of the structural and material factors that influence the mechanical function of the cervix during pregnancy. In this study we build finite element models of the pregnant uterus, cervix, and fetal membrane based on magnetic resonance imagining data in order to examine the mechanical function of the cervix under the physiologic loading conditions of pregnancy. We calculate the mechanical loading state of the cervix for two pregnant patients: 22 weeks gestational age with a normal cervical length and 28 weeks with a short cervix. We investigate the influence of (1) anatomical geometry, (2) cervical material properties, and (3) fetal membrane material properties, including its adhesion properties, on the mechanical loading state of the cervix under physiologically relevant intrauterine pressures. Our study demonstrates that membrane-uterus interaction, cervical material modeling, and membrane mechanical properties are factors that must be deliberately and carefully handled in order to construct a high quality mechanical simulation of pregnancy. PMID:25970655

  4. A Novel Rat Model of Orthodontic Tooth Movement Using Temporary Skeletal Anchorage Devices: 3D Finite Element Analysis and In Vivo Validation

    PubMed Central

    Stevenson, Thomas; Doschak, Michael

    2014-01-01

    The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built using μCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. For in vivo validation of the FE model, Sprague-Dawley rats (n = 25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs. PMID:25295060

  5. Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    NASA Astrophysics Data System (ADS)

    Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard

    2012-11-01

    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / η ~ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. (http://arxiv.org/abs/1205.2181) This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.

  6. Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow

    NASA Astrophysics Data System (ADS)

    Klein, Simon; Gibert, Mathieu; Bérut, Antoine; Bodenschatz, Eberhard

    2013-02-01

    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation and the rotation of finite-size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/η ≈ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ≈ 400). We show, using the mixed (particle/fluid) Eulerian second-order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.

  7. Implementation of Deterministically-Derived Hydrostatigraphic Units into a 3D Finite Element Model at the Lawrence Livermore Laboratory Superfund Site

    SciTech Connect

    Mansoor, K; Maley, M; Demir, Z; Hoffman, F

    2001-08-08

    Lawrence Livermore National Laboratory (LLNL) is a large Superfund site in California that is implementing an extensive ground water remediation program. The site is underlain by a thick sequence of heterogeneous alluvial sediments. Defining ground-water flow pathways in this complex geologic setting is difficult. To better evaluate these pathways, a deterministic approach was applied to define hydrostratigraphic units (HSUS) on the basis of identifiable hydraulic behavior and contaminant migration trends. The conceptual model based on this approach indicates that groundwater flow and contaminant transport occurs within packages of sediments bounded by thin, low-permeability confining layers. To aid in the development of the remediation program, a three-dimensional finite-element model was developed for two of the HSUS at LLNL. The primary objectives of this model are to test the conceptual model with a numerical model, and provide well field management support for the large ground-water remediation system. The model was successfully calibrated to 12 years of ground water flow and contaminant transport data. These results confirm that the thin, low-permeability confining layers within the heterogeneous alluvial sediments are the dominant hydraulic control to flow and transport. This calibrated model is currently being applied to better manage the large site-wide ground water extraction system by optimizing the location of new extraction wells, managing pumping rates for extraction wells, and providing performance estimates for long-term planning and budgeting.

  8. Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation

    PubMed Central

    Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.

    2010-01-01

    In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210

  9. A staggered-grid finite-difference scheme optimized in the time-space domain for modeling scalar-wave propagation in geophysical problems

    NASA Astrophysics Data System (ADS)

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  10. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    SciTech Connect

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  11. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  12. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  13. Introduction to finite-difference methods for numerical fluid dynamics

    SciTech Connect

    Scannapieco, E.; Harlow, F.H.

    1995-09-01

    This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.

  14. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  15. Generating meshes for finite-difference analysis using a solid modeler

    NASA Astrophysics Data System (ADS)

    Laguna, G. W.; White, W. T.; Cabral, B. K.

    1987-09-01

    One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.

  16. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  17. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  18. Holographic Interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models

    NASA Astrophysics Data System (ADS)

    Thizy, C.; Eliot, F.; Ballhause, D.; Olympio, K. R.; Kluge, R.; Shannon, A.; Laduree, G.; Logut, D.; Georges, M. P.

    2013-04-01

    Thermo-elastic distortions of composite structures have been measured by a holographic camera using a BSO photorefractive crystal as the recording medium. The first test campaign (Phase 1) was performed on CFRP struts with titanium end-fittings glued to the tips of the strut. The samples were placed in a vacuum chamber. The holographic camera was located outside the chamber and configured with two illuminations to measure the relative out-of-plane and in-plane (in one direction) displacements. The second test campaign (Phase 2) was performed on a structure composed of a large Silicon Carbide base plate supported by 3 GFRP struts with glued Titanium end-fittings. Thermo-elastic distortions have been measured with the same holographic camera used in phase 1, but four illuminations, instead of two, have been used to provide the three components of displacement. This technique was specially developed and validated during the phase 2 in CSL laboratory. The system has been designed to measure an object size of typically 250x250 mm2; the measurement range is such that the sum of the largest relative displacements in the three measurement directions is maximum 20 μm. The validation of the four-illuminations technique led to measurement uncertainties of 120 nm for the relative in-plane and out-of-plane displacements, 230 nm for the absolute in-plane displacement and 400 nm for the absolute out-of-plane displacement. For both campaigns, the test results have been compared to the predictions obtained by finite element analyses and the correlation of these results was good.

  19. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  1. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  2. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  3. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella.

    PubMed

    Vannuccini, Elisa; Paccagnini, Eugenio; Cantele, Francesca; Gentile, Mariangela; Dini, Daniele; Fino, Federica; Diener, Dennis; Mencarelli, Caterina; Lupetti, Pietro

    2016-05-15

    Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed.

  4. Macroscopic traffic modeling with the finite difference method

    SciTech Connect

    Mughabghab, S.; Azarm, A.; Stock, D.

    1996-03-15

    A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.

  5. Finite Difference Time Domain Analysis of Underwater Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Miyazaki, Ayano; Ogasawara, Hanako; Yokoyama, Tomoki; Nakamura, Toshiaki

    2006-05-01

    Much attention has been paid to the new idea of detecting objects using ocean ambient noise. This concept is called ambient noise imaging (ANI). In this study, sound fields focused by an acoustic lens system constructed with a single biconcave lens were analyzed using the finite difference time domain (FDTD) method for realizing an ANI system. The size of the lens aperture that would have sufficient resolution—for example, the beam width is 1° at 60 kHz—was roughly determined by comparing the image points and -3 dB areas of sound pressure fields generated by lenses with various apertures. Then, in another FDTD analysis, we successfully used a lens with a determined aperture to detect rigid target objects in an acoustic noise field generated by a large number of point sources.

  6. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  7. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  8. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.

    PubMed

    Abdollahi, Amir; Jiang, Zhongwei; Arabshahi, Sayyed Alireza

    2007-12-01

    The mass sensitivity of the piezoelectric surface acoustic wave (SAW) sensors is an important factor in the selection of the best gravimetric sensors for different applications. To determine this value without facing the practical problems and the long theoretical calculation time, we have shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite-element analysis (FEA) using a commercial finite-element platform. The FEA data are used to calculate the wave propagation speed, surface particle displacements, and wave energy distribution on different cuts of various piezoelectric materials. The results are used to provide a simple method for evaluation of their mass sensitivities. Meanwhile, to calculate more accurate results from FEA data, surface and bulk wave reflection problems are considered in the analyses. In this research, different cuts of lithium niobate, quartz, lithium tantalate, and langasite piezoelectric materials are applied to investigate their acoustic wave properties. Our analyses results for these materials have a good agreement with other researchers' results. Also, the mass sensitivity value for the novel cut of langasite was calculated through these analyses. It was found that its mass sensitivity is higher than that of the conventional Rayleigh mode quartz sensor.

  9. Dispersion-relation-preserving finit difference schemes for computational acoustics

    SciTech Connect

    Tam, C.K.W.; Webb, J.C. )

    1993-08-01

    Acoustics problems are governed by the linearized Euler equations. According to wave propagation theory, the number of wave modes and their wave propagation characteristics are all encoded in the dispersion relation of the governing equations. Thus one is assured that the numerical solutions of high order finite difference scheme will have the same number of wave modes (namely, the acoustic, vorticity, and entropy waves), the same wave propagation characteristics (namely, nondispersive, nondissipative, and isotropic) and the same wave speeds as those of the solutions of the Euler equations if both systems of equations have the same dispersion relations. Finite difference schemes which have the same dispersion relations as the original partial differential equations are referred to as dispersion-relation-preserving (DRP) schemes. A way to construct time marching DRP schemes by optimizing the finite difference approximations of the space and time derivatives in the wave number and frequency space is proposed. The stability of these schemes is analyzed and a sufficient condition for numerical stability is established. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed. These conditions are derived from the asymptotic solutions of the governing equations. The asymptotic solutions are found by the use of Fourier-Laplace transforms and the method of stationary phase. A sequence of numerical simulations has been carried out. These simulation are designed to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. The computed solutions agree very favorably with the exact solutions. The radiation boundary conditions perform satisfactorily causing little acoustic reflections. The outflow boundary conditions are found to be quite transparent to outgoing disturbances even when the disturbances are made up of a combination of acoustic, vorticity, and entropy waves. 26 refs., 14 figs.

  10. Compact finite difference schemes with spectral-like resolution

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    1992-01-01

    The present finite-difference schemes for the evaluation of first-order, second-order, and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes. Various boundary conditions may be invoked, and both accurate interpolation and spectral-like filtering can be accomplished by means of schemes for derivatives at mid-cell locations. This family of schemes reduces to the Pade schemes when the maximal formal accuracy constraint is imposed with a specific computational stencil. Attention is given to illustrative applications of these schemes in fluid dynamics.

  11. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  12. A finite difference approach to microstrip antenna design

    SciTech Connect

    Barth, M.J.; Bevensee, R.M.; Pennock, S.T.

    1986-12-01

    Microstrip antennas have received increased attention in recent years, due to their size and cost advantages. Analysis of the microstrip structure has proved difficult due to the presence of the dielectric substrate, particularly for complex geometries. One possible approach to a solution is the use of a finite difference computer code to model a proposed microstrip antenna design. The models are easily constructed and altered, and code versions are available which allow input impedance or far-field patterns to be calculated. Results for some simple antenna geometries will be presented.

  13. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  14. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  16. Three-dimensional finite difference viscoelastic wave modelling including surface topography

    NASA Astrophysics Data System (ADS)

    Hestholm, Stig

    1999-12-01

    I have undertaken 3-D finite difference (FD) modelling of seismic scattering fromfree-surface topography. Exact free-surface boundary conditions for arbitrary 3-D topographies have been derived for the particle velocities. The boundary conditions are combined with a velocity-stress formulation of the full viscoelastic wave equations. A curved grid represents the physical medium and its upper boundary represents the free-surface topography. The wave equations are numerically discretized by an eighth-order FD method on a staggered grid in space, and a leap-frog technique and the Crank-Nicholson method in time. I simulate scattering from teleseismic P waves by using plane incident wave fronts and real topography from a 60 x 60 km area that includes the NORESS array of seismic receiver stations in southeastern Norway. Synthetic snapshots and seismograms of the wavefield show clear conversion from P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topography, which is consistent with numerous observations. By parallelization on fast supercomputers, it is possible to model higher frequencies and/or larger areas than before.

  17. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  18. Global synthetic seismograms using a 2-D finite-difference method

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Helmberger, Don; Clayton, Robert W.; Sun, Daoyuan

    2014-05-01

    Two-dimensional (2-D) finite-difference (FD) synthetics, which fill the gap between fast 1-D analytic synthetics and time-consuming full 3-D synthetics in our ability to model seismograms, have been used in many studies. We address several issues involving 2-D FD methods in generating global synthetic seismograms. These include: (1) interfacing point source excitation for earthquakes with 2-D FD methods; (2) out-of-plane spreading corrections and (3) reducing the spherical Earth to the flattened models. The first issue is tackled using two methods, a `transparent source box' approach and a moment tensor excitation approach, where each has its own advantages. Moreover, our `source box' excitation does not have the late-time drift problem that occurred in previous studies. The out-of-plane geometric spreading correction is accounted for by estimating the ray parameter and applying a post-simulation filter to 2-D synthetics. Finally, parameters of the Earth-flattening transformation are discussed and validated. The effectiveness of this method is demonstrated by comparing our synthetics with frequency-wavenumber summation, normal-mode and 3-D spectral-element synthetics.

  19. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  20. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  1. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  2. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  3. An efficient and compact difference-frequency-generation spectrometer and its application to (12)CH(3)D/(12)CH(4) isotope ratio measurements.

    PubMed

    Tsuji, Kiyoshi; Teshima, Hiroaki; Sasada, Hiroyuki; Yoshida, Naohiro

    2010-01-01

    We have developed an efficient and compact 3.4 μm difference-frequency-generation spectrometer using a 1.55 μm distributed feedback (DFB) laser diode, a 1.06 μm DFB laser diode, and a ridge-waveguide periodically poled lithium niobate. It is continuously tunable in the 30 cm(-1) span and is applied to (12)CH(3)D/(12)CH(4) isotope ratio measurements. The suitable pair of (12)CH(3)D ν(4) (p)P(7,6) and (12)CH(4) ν(2)+ν(4) R(6) F(1)((1)) lines enabled us to determine their isotope ratio with a precision repeatability of 0.8‰ using a sample and a working standard of pure methane with an effective signal averaging time of 100 ms.

  4. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

    NASA Astrophysics Data System (ADS)

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

    2015-03-01

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  5. Finite Difference Elastic Wave Field Simulation On GPU

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Zhang, W.

    2011-12-01

    Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.

  6. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  9. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  10. Weighted average finite difference methods for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.

    2006-07-01

    A class of finite difference methods for solving fractional diffusion equations is considered. These methods are an extension of the weighted average methods for ordinary (non-fractional) diffusion equations. Their accuracy is of order (Δ x) 2 and Δ t, except for the fractional version of the Crank-Nicholson method, where the accuracy with respect to the timestep is of order (Δ t) 2 if a second-order approximation to the fractional time-derivative is used. Their stability is analyzed by means of a recently proposed procedure akin to the standard von Neumann stability analysis. A simple and accurate stability criterion valid for different discretization schemes of the fractional derivative, arbitrary weight factor, and arbitrary order of the fractional derivative, is found and checked numerically. Some examples are provided in which the new methods' numerical solutions are obtained and compared against exact solutions.

  11. Numerical stability for finite difference approximations of Einstein's equations

    SciTech Connect

    Calabrese, G. . E-mail: G.Calabrese@soton.ac.uk; Hinder, I.; Husa, S.

    2006-11-01

    We extend the notion of numerical stability of finite difference approximations to include hyperbolic systems that are first order in time and second order in space, such as those that appear in numerical relativity and, more generally, in Hamiltonian formulations of field theories. By analyzing the symbol of the second order system, we obtain necessary and sufficient conditions for stability in a discrete norm containing one-sided difference operators. We prove stability for certain toy models and the linearized Nagy-Ortiz-Reula formulation of Einstein's equations. We also find that, unlike in the fully first order case, standard discretizations of some well-posed problems lead to unstable schemes and that the Courant limits are not always simply related to the characteristic speeds of the continuum problem. Finally, we propose methods for testing stability for second order in space hyperbolic systems.

  12. A finite element study on stress distribution of two different attachment designs under implant supported overdenture

    PubMed Central

    El-Anwar, Mohamed I.; Yousief, Salah A.; Soliman, Tarek A.; Saleh, Mahmoud M.; Omar, Wael S.

    2015-01-01

    Objective This study aimed to evaluate stress patterns generated within implant-supported mandibular overdentures retained by two different attachment types: ball and socket and locator attachments. Materials and methods Commercial CAD/CAM and finite element analysis software packages were utilized to construct two 3D finite element models for the two attachment types. Unilateral masticatory compressive loads of 50, 100, and 150 N were applied vertically to the overdentures, parallel to the longitudinal axes of the implants. Loads were directed toward the central fossa in the molar region of each overdenture, that linear static analysis was carried out to find the generated stresses and deformation on each part of the studied model. Results According to FEA results the ball attachment neck is highly stressed in comparison to the locator one. On the other hand mucosa and cortical bone received less stresses under ball and socket attachment. Conclusions Locator and ball and socket attachments induce equivalent stresses on bone surrounding implants. Locator attachment performance was superior to that of the ball and socket attachment in the implants, nylon caps, and overdenture. Locator attachments are highly recommended and can increase the interval between successive maintenance sessions. PMID:26644755

  13. Elastic finite-difference method for irregular grids

    SciTech Connect

    Oprsal, I.; Zahradnik, J.

    1999-01-01

    Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.

  14. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  15. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    NASA Astrophysics Data System (ADS)

    Jeon, H. J.; Kim, D. I.; Kim, M. J.; Nguyen, X. D.; Park, D. H.; Go, J. S.

    2015-11-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times.

  16. Application of a new finite difference algorithm for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.

  17. Effects of sources on time-domain finite difference models.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2014-07-01

    Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed. PMID:24993210

  18. Finite difference modeling of Biot's poroelastic equations atseismic frequencies

    SciTech Connect

    Masson, Y.J.; Pride, S.R.; Nihei, K.T.

    2006-02-24

    Across the seismic band of frequencies (loosely defined as<10 kHz), a seismic wave propagating through a porous material willcreate flow in the pore space that is laminar; that is, in thislow-frequency "seismic limit," the development of viscous boundary layersin the pores need not be modeled. An explicit time steppingstaggered-grid finite difference scheme is presented for solving Biot'sequations of poroelasticity in this low-frequency limit. A key part ofthis work is the establishment of rigorous stability conditions. It isdemonstrated that over a wide range of porous material properties typicalof sedimentary rock and despite the presenceof fluid pressure diffusion(Biot slow waves), the usual Courant condition governs the stability asif the problem involved purely elastic waves. The accuracy of the methodis demonstrated by comparing to exact analytical solutions for both fastcompressional waves and slow waves. Additional numerical modelingexamples are also presented.

  19. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  20. Finite-difference modeling of commercial aircraft using TSAR

    SciTech Connect

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  1. Visualization of elastic wavefields computed with a finite difference code

    SciTech Connect

    Larsen, S.; Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  2. Modeling pulse driven antenna systems with finite differences

    SciTech Connect

    Barth, M.; Pennock, S.; Ziolkowski, R.; McLeod, R.

    1990-03-01

    We have developed a capability of modeling the performance of general, pulse driven, antenna systems. Our approach is to use TSAR, a three dimensional finite difference time domain (FDTD) code, to model the antenna structure and the surrounding near field environment. We then use a far field projection algorithm to obtain its far field response. Specifically, this algorithm utilizes the tangential electric and magnetic fields at a specified surface of the TSAR FDTD computational volume and calculates the resulting fields far from the equivalent magnetic and electric sources. This approach will be illustrated by considering the TEB antenna system. The system is modeled with the code and the results are compared with anechoic chamber data. 10 figs., 2 tabs.

  3. A parallel finite-difference method for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.

  4. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  5. Periprocedural 3D imaging of the left atrium and esophagus: comparison of different protocols of 3D rotational angiography of the left atrium and esophagus in group of 547 consecutive patients undergoing catheter ablation of the complex atrial arrhythmias.

    PubMed

    Starek, Zdenek; Lehar, František; Jez, Jiri; Wolf, Jiri; Kulik, Tomas; Zbankova, Alena; Novak, Miroslav

    2016-07-01

    A new method in creating 3D models of the left atrium (LA) and esophagus before catheter ablation of atrial arrhythmias is 3D rotational angiography (3DRA) of the LA. The purpose of this retrospective study was to test various acquisition protocols of the 3DRA and attempt to define the parameters influencing the success of the protocols. From August 2010 to November 2014, 3DRA of the LA using the Philips Allura FD 10 X-ray system was performed in 547 consecutive patients using right atrial and left atrial protocols. Visualization of the esophagus was performed after oral administration of a contrast agent. Patients were monitored for success (creation of a useful 3D models) and evaluated for a number of parameters affecting the success of 3DRA. The success of the RA protocol was 88.89 % with and 91.91 % without esophagus imaging. The success of the LA protocol was 97.42 % with and 94.54 % without esophagus imaging. The only factor reducing the success of the RA protocol was BMI; the LA protocol was not influenced by any factor. Ventricular fibrillation induced in two patients was successfully treated with defibrillation. 3DRA of the LA is a reliable method that supports catheter ablation of complex atrial arrhythmias. The LA protocol with esophagus imaging was significantly more reliable than the RA protocol; the other protocols were comparable. The RA protocol may be negatively affected by high BMI. Simultaneous imaging of the esophagus is safe and feasible, and the LA protocol can be recommended.

  6. Periprocedural 3D imaging of the left atrium and esophagus: comparison of different protocols of 3D rotational angiography of the left atrium and esophagus in group of 547 consecutive patients undergoing catheter ablation of the complex atrial arrhythmias.

    PubMed

    Starek, Zdenek; Lehar, František; Jez, Jiri; Wolf, Jiri; Kulik, Tomas; Zbankova, Alena; Novak, Miroslav

    2016-07-01

    A new method in creating 3D models of the left atrium (LA) and esophagus before catheter ablation of atrial arrhythmias is 3D rotational angiography (3DRA) of the LA. The purpose of this retrospective study was to test various acquisition protocols of the 3DRA and attempt to define the parameters influencing the success of the protocols. From August 2010 to November 2014, 3DRA of the LA using the Philips Allura FD 10 X-ray system was performed in 547 consecutive patients using right atrial and left atrial protocols. Visualization of the esophagus was performed after oral administration of a contrast agent. Patients were monitored for success (creation of a useful 3D models) and evaluated for a number of parameters affecting the success of 3DRA. The success of the RA protocol was 88.89 % with and 91.91 % without esophagus imaging. The success of the LA protocol was 97.42 % with and 94.54 % without esophagus imaging. The only factor reducing the success of the RA protocol was BMI; the LA protocol was not influenced by any factor. Ventricular fibrillation induced in two patients was successfully treated with defibrillation. 3DRA of the LA is a reliable method that supports catheter ablation of complex atrial arrhythmias. The LA protocol with esophagus imaging was significantly more reliable than the RA protocol; the other protocols were comparable. The RA protocol may be negatively affected by high BMI. Simultaneous imaging of the esophagus is safe and feasible, and the LA protocol can be recommended. PMID:27116237

  7. Influence of center of pressure estimation errors on 3D inverse dynamics solutions during gait at different velocities.

    PubMed

    Camargo-Junior, Franklin; Ackermann, Marko; Loss, Jefferson F; Sacco, Isabel C N

    2013-12-01

    The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 N m/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected.

  8. Numerical simulation of vortex breakdown via 3-D Euler equations

    NASA Astrophysics Data System (ADS)

    Le, T. H.; Mege, P.; Morchoisne, Y.

    1990-06-01

    The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.

  9. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  10. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  11. Hydrothermal synthesis of WO3·H2O with different nanostructures from 0D to 3D and their gas sensing properties

    NASA Astrophysics Data System (ADS)

    Yu, Yangchun; Zeng, Wen; Xu, Mengxue; Peng, Xianghe

    2016-05-01

    In this paper, WO3·H2O with different nanostructures from 0D to 3D were successfully synthesized via a simple yet cost-effective hydrothermal method with the assistance of surfactants. The structures and morphologies of products were investigated by XRD and SEM. Besides, we systematically explained the evolution process and formation mechanisms of different WO3·H2O morphologies. It is noted that both the kinds and amounts of surfactants strongly affect the formation of WO3·H2O crystals, as reflected in the tailoring of WO3·H2O morphologies. Furthermore, the gas sensing performance of the as-prepared samples towards methanol was also investigated. 3D flower-like hierarchical architecture displayed outstanding response to target gas among the four samples. We hoped our results could be of great benefit to further investigations of synthesizing different dimensional WO3·H2O nanostructures and their gas sensing applications.

  12. Thermo-mechanically coupled deformation with the finite difference method

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Raess, Ludovic; Podladchikov, Yury; Schmalholz, Stefan

    2016-04-01

    Numerous geological observations are the result of thermo-mechanical processes. In particular, tectonic processes such as ductile shear localization can be induced by the intrinsic coupling that exists between deformation, energy and rheology. In order to study these processes, we have designed two-dimensional implicit and explicit finite difference models. These models take into account a temperature-dependent power-law rheology as well as diffusion, advection, and conversion of mechanical work into heat. For implicit models, different non-linear solving strategies were implemented (implicit/explicit thermo-mechanical coupling, Picard/Newton linearisations). We model thermo-mechanically activated shear localization in lower crustal conditions using these different numerical methods. We show that all methods capture the thermo-mechanical instability and exhibit similar temporal evolution. We perform quantitative comparisons with specifically designed tests (conservation of energy, analytical solution, scaling law). For implicit approaches, we discuss the treatment of thermo-mechanical coupling (implicit/explicit) and the impact of the imposed accuracy (tolerance) of the non-linear solvers. We compare the accuracy of the explicit method with the one of the implicit methods. Numerical algorithms based on explicit methods to study thermo-mechanical shear localisation are attractive because they are easy to program and very comprehensible.

  13. Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling.

    PubMed

    Sarens, Bart; Verstraeten, Bert; Glorieux, Christ; Kalogiannakis, Georgios; Van Hemelrijck, Danny

    2010-06-01

    Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused by the stress-dependent boundary conditions at the delamination interfaces of a circular defect is also simulated by a 3-D second-order, finite-difference, staggered-grid model (displacement-stress formulation). Both the experimental and simulated data reveal an asymmetric motion of the layer above the delamination, which acts as a membrane vibrating with enhanced displacement amplitude around a finite offset displacement. The spectrum of the membrane motion is enriched with clapping-induced harmonics of the excitation frequency. In case of a sufficiently thin and soft membrane, the simulations reveal clear modal behavior at sub-harmonic frequencies caused by inelastic clapping. PMID:20529713

  14. Theoretical study of inverted sandwich type complexes of 4d transition metal elements: interesting similarities to and differences from 3d transition metal complexes.

    PubMed

    Kurokawa, Yusaku I; Nakao, Yoshihide; Sakaki, Shigeyoshi

    2012-03-01

    Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.

  15. 2-D Finite Difference Modeling of the D'' Structure Beneath the Eastern Cocos Plate: Part I

    NASA Astrophysics Data System (ADS)

    Helmberger, D. V.; Song, T. A.; Sun, D.

    2005-12-01

    The discovery of phase transition from Perovskite (Pv) to Post-Perovskite (PPv) at depth nears the lowermost mantle has revealed a new view of the earth's D'' layer (Oganov et al. 2004; Murakami et al. 2004). Hernlund et al. (2004) recently pusposed that, depending on the geotherm at the core-mantle boundary (CMB), a double-crossing of the phase boundary by the geotherm at two different depths may also occur. To explore these new findings, we adopt 2-D finite difference scheme (Helmberger and Vidale, 1988) to model wave propagation in rapidly varying structure. We collect broadband waveform data recorded by several Passcal experiments, such as La Ristra transect and CDROM transect in the southwest US to constrain the lateral variations in D'' structure. These data provide fairly dense sampling (~ 20 km) in the lowermost mantle beneath the eastern Cocos plate. Since the source-receiver paths are mostly in the same azimuth, we make 2-D cross-sections from global tomography model (Grand, 2002) and compute finite difference synthetics. We modify the lowermost mantle below 2500 km with constraints from transverse-component waveform data at epicentral distances of 70-82 degrees in the time window between S and ScS, essentially foward modeling waveforms. Assuming a velocity jump of 3 % at D'', our preferred model shows that the D'' topography deepens from the north to the south by about 120 km over a lateral distance of 300 km. Such large topography jumps have been proposed by Thomas et al. (2004) using data recorded by TriNet. In addition, there is a negative velocity jump (-3 %) 100 km above the CMB in the south. This simple model compare favorably with results from a study by Sun, Song and Helmberger (2005), who follow Sidorin et al. (1999) approach and produce a thermodynamically consistent velocity model with Pv-PPv phase boundary. It appears that much of this complexity exists in Grand's tomographic maps with rapid variation in velocities just above the D''. We also

  16. Nonlinear wave propagation using three different finite difference schemes (category 2 application)

    NASA Technical Reports Server (NTRS)

    Pope, D. Stuart; Hardin, J. C.

    1995-01-01

    Three common finite difference schemes are used to examine the computation of one-dimensional nonlinear wave propagation. The schemes are studied for their responses to numerical parameters such as time step selection, boundary condition implementation, and discretization of governing equations. The performance of the schemes is compared and various numerical phenomena peculiar to each is discussed.

  17. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

    PubMed Central

    Otani, Tomoki; Marchetto, Maria C.; Gage, Fred H.; Simons, Benjamin D.; Livesey, Frederick J.

    2016-01-01

    Summary Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. PMID:27049876

  18. Gidas-Ni-Nirenberg results for finite difference equations

    NASA Astrophysics Data System (ADS)

    McKenna, P. J.; Reichel, W.

    2007-10-01

    Are positive solutions of finite difference boundary value problems [Delta]hu=f(u) in [Omega]h, u=0 on [not partial differential][Omega]h as symmetric as the domain? To answer this question we first show by examples that almost arbitrary non-symmetric solutions can be constructed. This is in striking difference to the continuous case, where by the famous Gidas-Ni-Nirenberg theorem [B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related problems via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243] positive solutions inherit the symmetry of the underlying domain. Then we prove approximate symmetry theorems for solutions on equidistantly meshed n-dimensional cubes: explicit estimates depending on the data are given which show that the solutions become more symmetric as the discretization gets finer. The quality of the estimates depends on whether or not f(0)<0. The one-dimensional case stands out in two ways: the proofs are elementary and the estimates for the defect of symmetry are O(h) compared to O(1/log(h)) in the higher-dimensional case.

  19. A finite difference model for free surface gravity drainage

    SciTech Connect

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.

  20. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  1. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    SciTech Connect

    Shiddiqi, Hasbi Ash E-mail: h.a.shiddiqi@gmail.com; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono,; Sutiyono,; Handayani, Titi; Nugroho, Hendro

    2015-04-24

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  2. Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Rossmanith, James A.; Tang, Qi

    2014-07-01

    In this work we develop a class of high-order finite difference weighted essentially non-oscillatory (FD-WENO) schemes for solving the ideal magnetohydrodynamic (MHD) equations in 2D and 3D. The philosophy of this work is to use efficient high-order WENO spatial discretizations with high-order strong stability-preserving Runge-Kutta (SSP-RK) time-stepping schemes. Numerical results have shown that with such methods we are able to resolve solution structures that are only visible at much higher grid resolutions with lower-order schemes. The key challenge in applying such methods to ideal MHD is to control divergence errors in the magnetic field. We achieve this by augmenting the base scheme with a novel high-order constrained transport approach that updates the magnetic vector potential. The predicted magnetic field from the base scheme is replaced by a divergence-free magnetic field that is obtained from the curl of this magnetic potential. The non-conservative weakly hyperbolic system that the magnetic vector potential satisfies is solved using a version of FD-WENO developed for Hamilton-Jacobi equations. The resulting numerical method is endowed with several important properties: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as point values on the same mesh (i.e., there is no mesh staggering); (2) both the spatial and temporal orders of accuracy are fourth-order; (3) no spatial integration or multidimensional reconstructions are needed in any step; and (4) special limiters in the magnetic vector potential update are used to control unphysical oscillations in the magnetic field. Several 2D and 3D numerical examples are presented to verify the order of accuracy on smooth test problems and to show high-resolution on test problems that involve shocks.

  3. Resistance and Stress Finite Element Analysis of Different Types of Fixation for Mandibular Orthognathic Surgery.

    PubMed

    Stringhini, Diego José; Sommerfeld, Ricardo; Uetanabaro, Lucas Caetano; Leonardi, Denise Piotto; Araújo, Melissa Rodrigues; Rebellato, Nelson Luís Barbosa; Costa, Delson João da; Scariot, Rafaela

    2016-01-01

    The aim of this study was to evaluate the stress and dislodgement resistance by finite element analysis of different types of fixation in mandibular orthognathic surgery. A 3D solid finite element model of a hemi-mandible was obtained. A bilateral sagittal split osteotomy was simulated and the distal segment was advanced 5 mm forward. After the adjustment and superimposing of segments, 9 different types of osteosynthesis with 2.0 miniplates and screws were simulated: A, one 4-hole conventional straight miniplate; B, one 4-hole locking straight miniplate; C, one 4-hole conventional miniplate and one bicortical screw; D, one 4-hole locking miniplate and 1 bicortical screws; E, one 6-hole conventional straight miniplate; F, one 6-hole locking miniplate; G, two 4-hole conventional straight miniplates; H, two 4-hole locking straight miniplates; and I, 3 bicortical screws in an inverted-L pattern. In each model, forces simulating the masticatory muscles were applied. The values of stress in the plates and screws were checked. The dislodgement resistance was checked at the proximal segment since the distal segment was stable because of the screen at the occlusal tooth. The regions with the lowest and highest displacement were measured. The offset between the osteotomized segments was verified by millimeter intervals. Inverted-L with bicortical screws was the model that had the lowest dislodgment and the model with the lowest tension was the one with two conventional plates. The results suggest that the tension was better distributed in the locking miniplates, but the locking screws presented higher concentration of tension.

  4. Resistance and Stress Finite Element Analysis of Different Types of Fixation for Mandibular Orthognathic Surgery.

    PubMed

    Stringhini, Diego José; Sommerfeld, Ricardo; Uetanabaro, Lucas Caetano; Leonardi, Denise Piotto; Araújo, Melissa Rodrigues; Rebellato, Nelson Luís Barbosa; Costa, Delson João da; Scariot, Rafaela

    2016-01-01

    The aim of this study was to evaluate the stress and dislodgement resistance by finite element analysis of different types of fixation in mandibular orthognathic surgery. A 3D solid finite element model of a hemi-mandible was obtained. A bilateral sagittal split osteotomy was simulated and the distal segment was advanced 5 mm forward. After the adjustment and superimposing of segments, 9 different types of osteosynthesis with 2.0 miniplates and screws were simulated: A, one 4-hole conventional straight miniplate; B, one 4-hole locking straight miniplate; C, one 4-hole conventional miniplate and one bicortical screw; D, one 4-hole locking miniplate and 1 bicortical screws; E, one 6-hole conventional straight miniplate; F, one 6-hole locking miniplate; G, two 4-hole conventional straight miniplates; H, two 4-hole locking straight miniplates; and I, 3 bicortical screws in an inverted-L pattern. In each model, forces simulating the masticatory muscles were applied. The values of stress in the plates and screws were checked. The dislodgement resistance was checked at the proximal segment since the distal segment was stable because of the screen at the occlusal tooth. The regions with the lowest and highest displacement were measured. The offset between the osteotomized segments was verified by millimeter intervals. Inverted-L with bicortical screws was the model that had the lowest dislodgment and the model with the lowest tension was the one with two conventional plates. The results suggest that the tension was better distributed in the locking miniplates, but the locking screws presented higher concentration of tension. PMID:27224561

  5. Finite-difference numerical simulations of underground explosion cavity decoupling

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Preston, L. A.; Jensen, R. P.

    2012-12-01

    Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion

  6. Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs

    SciTech Connect

    Arnold, Anton; Geier, Jens

    2010-09-30

    We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).

  7. Contraction pre-conditioner in finite-difference electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  8. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  9. Nonlinear triggered lightning models for use in finite difference calculations

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.

    1989-01-01

    Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.

  10. Finite difference algorithm in real-time optical CD applications

    NASA Astrophysics Data System (ADS)

    Opsal, Jon L.; Chu, Hanyou; Leng, Jingmin

    2004-05-01

    In real-time optical CD applications of shallow trench isolation (STI), shallow trench removal (STR), deep trench isolation (DTI), and deep trench removal (DTR), a single recipe is required for each type of application to accommodate wide ranges of process windows by monitoring parameters such as bottom CD (BCD), middle CD (MCD), top CD (TCD) and side wall angle (SWA). The modeling of the grating profiles of silicon trenches with nitride caps requires a large number of slices (> 10) to generate smooth shapes for top rounding of the nitride, curvature of the silicon trench waist, and the silicon trench footing or undercut. The number of orders for Fourier expansion is also high (larger than 13 in the best case). With these requirements we found that the rigorous coupled wave analysis (RCWA) algorithm is generally too slow to calculate the CD profiles from the raw scatterometry spectra. In this paper we present a finite difference (FD) algorithm and its applications to real-time CD scatterometry. The mathematical analysis of the FD algorithm was published elsewhere. We demonstrate that the FD algorithm has an advantage over RCWA in terms of calculation speed (up to a factor of 10 improvement), better capture of profile shapes in comparison with cross sectional SEM (X-SEM) and more robust in terms of numerical stability. Details of comparisons between FD and RCWA will be shown for the applications of STR and DTR.

  11. Contraction preconditioner in finite-difference electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-06-01

    This paper introduces a novel approach to constructing an effective preconditioner for finite-difference (FD) electromagnetic modeling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analog of the energy equality for the anomalous electromagnetic field. A new preconditioner uses a discrete Green's function of a 1D layered background conductivity. We also developed the formulas for an estimation of the condition number of the system of FD equations preconditioned with the introduced FD contraction operator. Based on this estimation, we have established that for high contrasts, the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new preconditioner is advantageous over using the 1D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2 to 2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1D Green's function as a preconditioner.

  12. Forensic GPR: finite-difference simulations of responses from buried human remains

    NASA Astrophysics Data System (ADS)

    Hammon, William S.; McMechan, George A.; Zeng, Xiaoxian

    2000-10-01

    Time domain 2.5-D finite-difference simulations of ground-penetrating radar (GPR) responses from models of buried human remains suggest the potential of GPR for detailed non-destructive forensic site investigation. Extraction of information beyond simple detection of cadavers in forensic investigations should be possible with current GPR technology. GPR responses are simulated for various body cross-sections with different depths of burial, soil types, soil moisture contents, survey frequencies and antenna separations. Biological tissues have high electrical conductivity so diagnostic features for the imaging of human bodies are restricted to the soil/skin interface and shallow tissue interfaces. A low amplitude reflection shadow zone occurs beneath a body because of high GPR attenuation within the body. Resolution of diagnostic features of a human target requires a survey frequency of 900 MHz or greater and an increment between recording stations of 10 cm or less. Depth migration focuses field GPR data into an image that reveals accurate information on the number, dimensions, locations and orientations of body elements. The main limitation on image quality is attenuation in the surrounding soil and within the body. 3-D imaging is also feasible.

  13. Explicit 3-D Hydrodynamic FEM Program

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  14. Three-dimensional finite-difference modeling of non-linear ground notion

    SciTech Connect

    Jones, E.M.; Olsen, K.B.

    1997-08-01

    We present a hybrid finite-difference technique capable of modeling non-linear soil amplification from the 3-D finite-fault radiation pattern for earthquakes in arbitrary earth models. The method is applied to model non-linear effects in the soils of the San Fernando Valley (SFV) from the 17 January 1994 M 6.7 Northridge earthquake. 0-7 Hz particle velocities are computed for an area of 17 km by 19 km immediately above the causative fault and 5 km below the surface where peak strike-parallel, strike-perpendicular, vertical, and total velocities reach values of 71 cm/s, 145 cm/s, 152 cm/s, and 180 cm/s, respectively. Selected Green`s functions and a soil model for the SFV are used to compute the approximate stress level during the earthquake, and comparison to the values for near-surface alluvium at the U.S. Nevada Test Site suggests that the non-linear regime may have been entered. We use selected values from the simulated particle velocity distribution at 5 km depth to compute the non-linear response in a soil column below a site within the Van Norman Complex in SFV, where the strongest ground motion was recorded. Since site-specific non- linear material parameters from the SFV are currently unavailable, values are taken from analyses of observed Test Site ground motions. Preliminary results show significant reduction of spectral velocities at the surface normalized to the peak source velocity due to non-linear effects when the peak velocity increases from 32 cm/s (approximately linear case) to 64 cm/s (30-92%), 93 cm/s (7-83%), and 124 cm/s (2-70%). The largest reduction occurs for frequencies above 1 Hz.

  15. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  16. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  17. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  18. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method

    NASA Astrophysics Data System (ADS)

    Choi, S. J.; Kim, J.; Shin, S.

    2014-12-01

    In this presentation, a new non-hydrostatic (NH) dynamical core using the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization will be presented. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, we can achieve a high level of scalability. Also by using vertical FDM, we provide an easy way for coupling the dynamics and existing physics packages. The Euler equations used here are in a flux form based on the hybrid sigma hydrostatic pressure vertical coordinate, which are similar to those used in the Weather Research and Forecasting (WRF) model. Within these Euler equations, we use a time-split third-order Runge-Kutta (RK3) for the time discretization. In order to establish robustness, firstly the NH dynamical core is verified in a simplified two dimensional (2D) slice framework by conducting widely used standard benchmark tests, and then we verify the global three dimensional (3D) dynamical core on the cubed-sphere grid with several test cases introduced by Dynamical Core Model Intercomparison Project (DCMIP).

  20. Natural microseismicity investigated using double-difference tomography: a 3D look at the 2008 swarm in the Novy Kostel area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Bouchaala, F.; Vavrycuk, V.

    2012-04-01

    The Novy Kostel region in West Bohemia is an area prone to periodic bursts of natural microseismic activity. In this study, we use 476 events from the October 2008 earthquake swarm recorded on the WEBNET seismic network. The foci occurred on the northern extension of the Marianske-Lazne Fault near the town of Novy Kostel in the Czech Republic. Initial source locations indicated a rupture zone approximately 3 km along the fault with the sources spread over 4 km depth, centered at 9 km. We use the double-difference tomography method to study the fault structure by relocating the sources and inverting for the P and S velocities in the rupture region. Events are first relocated using the HypoDD program (Waldhauser and Ellsworth, 2000) using both catalog and cross-correlated datasets. These datasets, along with the absolute time picks are then used by the TomoDD program (Zhang and Thurber, 2003) to iteratively relocate the sources and invert for the 3D seismic structure. This dataset is ideal for this procedure as the cluster is very condensed and the WEBNET network offers ray coverage in all directions. The relocated events flatten onto a fault plane striking at 169 degrees NE. This fault plane has three sections with distinct dip angles. At the shallowest (up to 8 km) and deepest (10 - 11 km) parts of the fault, the dip is shallow, whereas the middle section has a steep dip angle. Most events occur at the deeper part of the middle section. The inverted velocities correspond well to results from regional seismic refraction surveys (e.g., CELEBRATION 2000). Here, more details of the 3D velocity structure are revealed. As expected, velocities to the east of the fault are overall higher, corresponding to the uplifted northern margin of the Eger Rift. Finer structures surrounding the source region are also resolved.

  1. Finite Difference Time Domain Analysis of Diffusion Equations with Nonuniform Grids for Time-Resolved Reflectance of an Optical Pulse in Three-Dimensional Scattering Medium

    NASA Astrophysics Data System (ADS)

    Tanifuji, Tadatoshi; Ichitsubo, Khota

    2005-11-01

    An integral form of diffusion equations and their finite difference time domain (FDTD) analysis have been formulated. The analysis is extended to FDTD analysis with nonuniform grids in three-dimensional (3-D) scattering medium. It has been confirmed that 600 time steps in calculation sequences of the time-resolved reflectance for 3-D medium 80 × 80 × 30 mm3 in volume is completed within 4 seconds by utilizing 23 and 43 mm3 nonuniform cubic grids, when a conventional personal computer with 3 GHz CPU clock is used. The conditions for keeping numerical accuracies comparable to those in 23 mm3 uniform grids are made clear. The proposed analysis greatly reduces time to run and memory space in 3-D scattering medium numerical analysis.

  2. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films.

    PubMed

    Baker, Bryan A; Pine, P Scott; Chatterjee, Kaushik; Kumar, Girish; Lin, Nancy J; McDaniel, Jennifer H; Salit, Marc L; Simon, Carl G

    2014-08-01

    Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-β and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. PMID:24840613

  3. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  4. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  5. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  6. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  7. DSI3D-RCS: Theory manual

    SciTech Connect

    Madsen, N.; Steich, D.; Cook, G.; Eme, B.

    1995-03-16

    The DSI3D-RCS code is designed to numerically evaluate radar cross sections on complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D-RCS code is unique for the following reasons: Allows the use of unstructured non-orthogonal grids, allows a variety of cell or element types, reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal grids are used, preserves charge or divergence locally (and globally), is conditionally stable, is non-dissipative, is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

  8. Evolution of the air/SF6 turbulent mixing zone for different lengths of SF6: shock tube visualizations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Griffond, Jerome; Souffland, Denis; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane

    2015-11-01

    A turbulent mixing zone (TMZ) is created in a vertical shock tube (based in ISAE DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a thin nitrocellulose membrane maintained flat and parallel to the shock by two wire grids. The upper grid (SF6 side) of square mesh spacing hu 1.8 or 12.1 mm is expected to seed perturbation for the Richtmyer-Meshkov instability (RMI) while the lower grid with hl 1 mm is needed to prevent the membrane from bulging prior to the shot. The experiments were carried out for different lengths L of SF6 between the initial interface and the shock tube's end plate: 10, 15, 20, 25 and 30 cm. The time resolved Schlieren image processing based on space and frequency filtering yields similar evolution for the TMZ thickness. Before reshock, the thickness grows initially fast then slows down and reaches different values (10 to 14 mm) according to L. Soon after reshock, the TMZ thickness growths rate is 21 mm/ms independently of L and hu. Numerical Schlieren images generated from 3D numerical simulations (performed at CEA DAM IDF) are analyzed as the experimental ones for L 15 and 25 cm and for hu 1.8 and 12.1 mm. The very weak experimental dependence on hu is not obtained by simulation as expected from dimensional reasoning. This discrepancy remains paradoxical.

  9. A Parallel 3D Spectral Difference Method for Solutions of Compressible Navier Stokes Equations on Deforming Grids and Simulations of Vortex Induced Vibration

    NASA Astrophysics Data System (ADS)

    DeJong, Andrew

    Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.

  10. Atomic and electronic structure of germanium clusters at finite temperature using finite difference methods

    SciTech Connect

    Chelikowsky, J.R.; Oeguet, S.; Jing, X.; Wu, K.; Stathopoulos, A.; Saad, Y.

    1996-12-31

    Determining the electronic and structural properties of semiconductor clusters is one of the outstanding problems in materials science. The existence of numerous structures with nearly identical energies makes it very difficult to determine a realistic ground state structure. Moreover, even if an effective procedure can be devised to predict the ground state structure, questions can arise about the relevancy of the structure at finite temperatures. Kinetic effects and non-equilibrium structures may dominate the structural configurations present in clusters created under laboratory conditions. The authors illustrate theoretical techniques for predicting the structure and electronic properties of small germanium clusters. Specifically, they illustrate that the detailed agreement between theoretical and experimental features can be exploited to identify the relevant isomers present under experimental conditions.

  11. Coseismic and postseismic Coulomb stress changes on intra-continental dip-slip faults and the role of viscoelastic relaxation in the lower crust: insights from 3D finite-element models

    NASA Astrophysics Data System (ADS)

    Bagge, Meike; Hampel, Andrea

    2016-04-01

    Investigating the stress interaction of faults plays a crucial role for assessing seismic hazard of a region. The calculation of Coulomb stress changes allows quantifying stress changes on so-called receiver faults in the surrounding of a source fault that was ruptured during an earthquake. Positive Coulomb stress changes bring receiver faults closer to failure, while a negative value indicates a delay of the next earthquake. Besides the coseismic ('static') stress changes, postseismic ('transient') stress changes induced by postseismic viscoelastic relaxation occur. Here we use 3D finite-element models with arrays of normal or thrust faults to study the coseismic stress changes and the stress changes arising from postseismic relaxation in the lower crust. The lithosphere is divided into an elastic upper crust, a viscoelastic lower crust and a viscoelastic lithospheric mantle. Gravity is included in the models. Driven by extension or shortening of the model, slip on the fault planes develops in a self-consistent way. We modelled an earthquake on a 40-km-long source fault with a coseismic slip of 2 m and calculated the displacement fields and Coulomb stress changes during the coseismic and postseismic phases. The results for the coseismic phase (Bagge and Hampel, Tectonophysics in press) show that synthetic receiver faults in the hanging wall and footwall of the source fault exhibit a symmetric distribution of the coseismic Coulomb stress changes on each fault, with large areas of negative stress changes but also some smaller areas of positive values. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its hanging wall and footwall undergo mostly positive stress changes. Postseismic stress changes caused by viscous flow modify the static stress changes in a way that the net Coulomb stress changes on the receiver faults change significantly through space and time. Our models allow deciphering the combined effect of stress

  12. Simulating three-dimensional seismograms in 2.5-dimensional structures by combining two-dimensional finite difference modelling and ray tracing

    NASA Astrophysics Data System (ADS)

    Miksat, J.; Müller, T. M.; Wenzel, F.

    2008-07-01

    Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor. Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.

  13. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  14. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  15. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  16. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  17. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  18. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex

    PubMed Central

    Kulkarni, Praveen; Kenkel, William; Finklestein, Seth P.; Barchet, Thomas M.; Ren, JingMei; Davenport, Mathew; Shenton, Martha E.; Kikinis, Zora; Nedelman, Mark; Ferris, Craig F.

    2015-01-01

    Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion. PMID:25955025

  19. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  20. An investigation of the accuracy of finite difference methods in the solution of linear elasticity problems

    NASA Technical Reports Server (NTRS)

    Bauld, N. R., Jr.; Goree, J. G.

    1983-01-01

    The accuracy of the finite difference method in the solution of linear elasticity problems that involve either a stress discontinuity or a stress singularity is considered. Solutions to three elasticity problems are discussed in detail: a semi-infinite plane subjected to a uniform load over a portion of its boundary; a bimetallic plate under uniform tensile stress; and a long, midplane symmetric, fiber reinforced laminate subjected to uniform axial strain. Finite difference solutions to the three problems are compared with finite element solutions to corresponding problems. For the first problem a comparison with the exact solution is also made. The finite difference formulations for the three problems are based on second order finite difference formulas that provide for variable spacings in two perpendicular directions. Forward and backward difference formulas are used near boundaries where their use eliminates the need for fictitious grid points.

  1. Automatic 3D video format detection

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  2. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  3. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  4. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.

    PubMed

    Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter

    2002-11-01

    Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.

  5. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  6. Scaling relations between bone volume and bone structure as found using 3D µCT images of the trabecular bone taken from different skeletal sites

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K.; Bauer, Jan

    2010-03-01

    According to Wolff's law bone remodels in response to the mechanical stresses it experiences so as to produce a minimal-weight structure that is adapted to its applied stresses. Here, we investigate the relations between bone volume and structure for the trabecular bone using 3D μCT images taken from different skeletal sites in vitro, namely from the distal radii (96 specimens), thoracic (73 specimens) and lumbar vertebrae (78 specimens). We determine the local structure of the trabecular network by calculating isotropic and anisotropic scaling indices (α, αz). These measures have been proven to be able to discriminate rod- from sheet-like structures and to quantify the alignment of structures with respect to a preferential direction as given by the direction of the external force. Comparing global structure measures derived from the scaling indices (mean, standard deviation) with the bone mass (BV/TV) we find that all correlations obey very accurately power laws with scaling exponents of 0.14, 0.12, 0.15 (<α>~), -0.2, -017, -0.17 (σ(αz)), 0.09, 0.05, 0.07 (<~αz>~) and -0.20, -0.11 ,-0.13 (σ(αz)) distal radius, thoracic vertebra and lumbar vertebra respectively. Thus, these relations turn out to be site-independent, albeit the mechanical stresses to which the bones of the forearm and the spine are exposed, are quite different. The similar alignment might not be in agreement with a universal validity of Wolff's law. On the other hand, such universal power law relations may allow to develop additional diagnostic means to better assess healthy and osteoporotic bone.

  7. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method.

    PubMed

    Gu, Y D; Ren, X J; Li, J S; Lake, M J; Zhang, Q Y; Zeng, Y J

    2010-06-01

    Metatarsal fracture is one of the most common foot injuries, particularly in athletes and soldiers, and is often associated with landing in inversion. An improved understanding of deformation of the metatarsals under inversion landing conditions is essential in the diagnosis and prevention of metatarsal injuries. In this work, a detailed three-dimensional (3D) finite element foot model was developed to investigate the effect of inversion positions on stress distribution and concentration within the metatarsals. The predicted plantar pressure distribution showed good agreement with data from controlled biomechanical tests. The deformation and stresses of the metatarsals during landing at different inversion angles (normal landing, 10 degree inversion and 20 degree inversion angles) were comparatively studied. The results showed that in the lateral metatarsals stress increased while in the medial metatarsals stress decreased with the angle of inversion. The peak stress point was found to be near the proximal part of the fifth metatarsal, which corresponds with reported clinical observations of metatarsal injuries.

  8. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  9. A finite-difference frequency-domain code for electromagnetic induction tomography

    SciTech Connect

    Sharpe, R M; Berryman, J G; Buettner, H M; Champagne, N J.,II; Grant, J B

    1998-12-17

    We are developing a new 3D code for application to electromagnetic induction tomography and applications to environmental imaging problems. We have used the finite-difference frequency- domain formulation of Beilenhoff et al. (1992) and the anisotropic PML (perfectly matched layer) approach (Berenger, 1994) to specify boundary conditions following Wu et al. (1997). PML deals with the fact that the computations must be done in a finite domain even though the real problem is effectively of infinite extent. The resulting formulas for the forward solver reduce to a problem of the form Ax = y, where A is a non-Hermitian matrix with real values off the diagonal and complex values along its diagonal. The matrix A may be either symmetric or nonsymmetric depending on details of the boundary conditions chosen (i.e., the particular PML used in the application). The basic equation must be solved for the vector x (which represents field quantities such as electric and magnetic fields) with the vector y determined by the boundary conditions and transmitter location. Of the many forward solvers that could be used for this system, relatively few have been thoroughly tested for the type of matrix encountered in our problem. Our studies of the stability characteristics of the Bi-CG algorithm raised questions about its reliability and uniform accuracy for this application. We have found the stability characteristics of Bi-CGSTAB [an alternative developed by van der Vorst (1992) for such problems] to be entirely adequate for our application, whereas the standard Bi-CG was quite inadequate. We have also done extensive validation of our code using semianalytical results as well as other codes. The new code is written in Fortran and is designed to be easily parallelized, but we have not yet tested this feature of the code. An adjoint method is being developed for solving the inverse problem for conductivity imaging (for mapping underground plumes), and this approach, when ready, will

  10. Superplastic forming using NIKE3D

    SciTech Connect

    Puso, M.

    1996-12-04

    The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

  11. Time-Dependent Parabolic Finite Difference Formulation for Harmonic Sound Propagation in a Two-Dimensional Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Baumeister, Kenneth J.

    1996-01-01

    An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  12. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures.

    PubMed

    Li, Yuan; Andersson, Stefan

    2016-01-01

    Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals

  13. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures

    PubMed Central

    Li, Yuan; Andersson, Stefan

    2016-01-01

    Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic varia