The 3D Flow Field Around an Embedded Planet
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin
2015-10-01
3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.
Kinematics and flow fields in 3D around swimming lamprey using light field PIV
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Techet, Alexandra H.
2016-11-01
The fully time-resolved 3D kinematics and flow field velocities around freely swimming sea lamprey are derived using 3D light field imaging PIV. Lighthill's Elongated Body Theory (EBT) predicts that swimmers with anguilliform kinematics likened to lamprey, and similarly eels, will exhibit relatively poor propulsive efficiency. However, previous experimental studies of eel locomotion utilizing 2D PIV suggest disagreement with EBT estimates of wake properties; although, the thrust force generated by such swimmers has yet to be fully resolved using 3D measurements. A light field imaging array of multiple high-speed cameras is used to perform 3D synthetic aperture PIV around ammocoete sea lamprey (Petromyzon marinus). Fluid mechanics equations are used to determine thrust force generation, leading experimental studies closer to underpinning the physical mechanisms that enable aquatic locomotion of long, slender undulatory swimmers.
Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows
NASA Astrophysics Data System (ADS)
Toloui, Mostafa; Sheng, Jian
2011-11-01
Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.
Flow Web: a graph based user interface for 3D flow field exploration
NASA Astrophysics Data System (ADS)
Xu, Lijie; Shen, Han-Wei
2010-01-01
While there have been intensive efforts in developing better 3D flow visualization techniques, little attention has been paid to the design of better user interfaces and more effective data exploration work flow. In this paper, we propose a novel graph-based user interface called Flow Web to enable more systematic explorations of 3D flow data. The Flow Web is a node-link graph that is constructed to highlight the essential flow structures where a node represents a region in the field and a link connects two nodes if there exist particles traveling between the regions. The direction of an edge implies the flow path, and the weight of an edge indicates the number of particles traveling through the connected nodes. Hierarchical flow webs are created by splitting or merging nodes and edges to allow for easy understanding of the underlying flow structures. To draw the Flow Web, we adopt force based graph drawing algorithms to minimize edge crossings, and use a hierarchical layout to facilitate the study of flow patterns step by step. The Flow Web also supports user queries to the properties of nodes and links. Examples of the queries for node properties include the degrees, complexity, and some associated physical attributes such as velocity magnitude. Queries for edges include weights, flow path lengths, existence of circles and so on. It is also possible to combine multiple queries using operators such as and , or, not. The FlowWeb supports several types of user interactions. For instance, the user can select nodes from the subgraph returned by a query and inspect the nodes with more details at different levels of detail. There are multiple advantages of using the graph-based user interface. One is that the user can identify regions of interest much more easily since, unlike inspecting 3D regions, there is very little occlusion. It is also much more convenient for the user to query statistical information about the nodes and links at different levels of detail. With
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
3-D Flow Field Diagnostics and Validation Studies using Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung Stephen; Ramachandran, Narayanan; Whitaker, Ann F. (Technical Monitor)
2002-01-01
The measurement of 3-D three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields. The effort includes diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. The advantages of STV stems from the system simplicity for building compact hardware and in software efficiency for continual near-real-time process monitoring. It also has illumination flexibility for observing volumetric flow fields from arbitrary directions. STV is based on stereoscopic CCD observations of particles seeded in a flow. Neural networks are used for data analysis. The developed diagnostic tool is tested with a simple directional solidification apparatus using Succinonitrile. The 3-D velocity field in the liquid phase is measured and compared with results from detailed numerical computations. Our theoretical, numerical, and experimental effort has shown STV to be a viable candidate for reliably quantifying the 3-D flow field in materials processing and fluids experiments.
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J
2015-11-01
We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed.
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of
LDA measurement of the passage flow field in a 3-D airfoil cascade
NASA Technical Reports Server (NTRS)
Stauter, R. C.; Fleeter, S.
1986-01-01
Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.
New Method for the Characterization of 3D Preferential Flow Paths at the Field
Technology Transfer Automated Retrieval System (TEKTRAN)
Preferential flow paths development in the field is the result of the complex interaction of multiple processes relating to the soil's structure, moisture condition, stress level, and biological activities. Visualizing and characterizing the cracking behavior and preferential paths evolution with so...
3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow
NASA Astrophysics Data System (ADS)
Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J.
2015-11-01
We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface.
Resolving the 3D velocity field inside a Roughness Sublayer in a turbulent channel flow using HPIV
NASA Astrophysics Data System (ADS)
Talapatra, Siddharth; Katz, Joseph
2010-11-01
Microscopic holographic PIV is used to measure the 3D velocity field within the roughness sublayer of a turbulent channel flow at Reτ of 3400. Recording holograms through a rough surface is facilitated by matching the optical refractive index of the rough wall with that of the working fluid, a concentrated solution of NaI in water. The pyramidal roughness height is k=0.45mm, the sample volume size is 3.2x1.8x1.8mm^3, the long dimension being in the streamwise direction, and the wall-normal range is -0.33
NASA Astrophysics Data System (ADS)
Sun, Nan; Song, Yang; Wang, Jia; Li, Zhen-hua; He, An-zhi
2012-11-01
Moiré tomography is an important technique to diagnose the flow field. However, the traditional moiré deflectometry cannot meet the requirements of Volume Moiré Tomography (VMT). In this Letter, an improved moiré deflected system based on double orthogonal gratings is introduced for real 3-D reconstruction. The proposed method could obtain the first-order partial derivatives in two vertical directions of the projection in one time. Comparing with the traditional moiré deflectometry, the proposed system is more effective and easier to realize the multi-direction data acquisition.
Numerical investigation of the 3D flow field generated by a self-propelling manta ray
NASA Astrophysics Data System (ADS)
Pederzani, Jean-Noel; Haj-Hariri, Hossein
2010-11-01
A mixed Lagrangian-Eulerian approach is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta ray. The motion of the manta ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted using the λ2 criteria; and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented on a block-structured Cartesian grid using a volume of fluid approach. To enhance the computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated for the flow around a sphere. A basic station keeping control problem for a pitching and lagging wing is also analyzed to show the capability of the code to aid in controller design and stability analysis.
Influence of shallow flow on the deep geothermal field of Berlin - Results from 3D models
NASA Astrophysics Data System (ADS)
Frick, Maximilian; Sippel, Judith; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Hassanzadegan, Alireza
2015-04-01
The goal of this study is to quantify the influence of fluid-driven heat transport on the subsurface temperature distribution of the city of Berlin, Germany. Berlin is located in the Northeast German Basin filled with several kilometers of sediments. Two of the clastic sedimentary units, namely the Middle Buntsandstein and the Sedimentary Rotliegend are of particular interest for geothermal exploration. Previous studies in the Northeast German Basin have already shown that subsurface temperature distributions are highly dependent on the geometries and properties of the geological units. Our work benefits strongly from these studies that involve numerical modeling of coupled conductive and convective heat transport. We follow a two-step approach where we first improve an existing structural model by integrating newly available 57 geological cross-sections, well data and deep seismics (down to ~4 km). Secondly, we perform a sensitivity analysis in which we investigate the effects of varying physical fluid and rock properties as well as hydraulic and thermal boundary conditions on the resulting temperature configuration. Computed temperatures are validated via comparison with existing well temperature measurements in the area. Of special interest for this study is the influence of the shallow aquifer systems on the subsurface temperature field. The major constituents of this system are the Quaternary silts and sands, the Tertiary Rupelian clay and the Tertiary sands beneath the Rupelian. These units have different hydraulic properties. The Rupelian clay represents a major aquitard in this respect hydraulically disconnecting the pre- and post-Rupelian succession. This aquitard shows a heterogeneous thickness distribution locally characterized by different hydrogeological windows (i.e. domains of no thickness) enabling intra-aquifer groundwater circulation at depth thus having a first-order effect on the shallow thermal field. As result of the simulations, we present
Field observations of swash zone flow patterns and 3D morphodynamics
Puelo, Jack A.; Holland, K. Todd; Kooney, Timothy N.; Sallenger,, Asbury H.; Edge, Billy L.
2001-01-01
Rapid video measurements of foreshore morphology and velocity were collected at Duck, NC in 1997 to investigate sediment transport processes in the swash zone. Estimates of foreshore evolution over a roughly 30 m cross-shore by 80 m alongshore study area were determined using a stereogrammetric technique. During the passage of a small storm (offshore wave heights increased from 1.4 to 2.5 m), the foreshore eroded nearly 40 cm in less than 4 hours. Dense, horizontal surface velocities were measured over a sub-region (roughly 30 m by 40 m) of the study area using a new particle image velocimetry technique. This technique was able to quantify velocities across the bore front approaching 5 m s–1 as well as the rapid velocities in the very shallow backwash flows. The velocity and foreshore topography measurements were used to test a three-dimensional energetics-based sediment transport model. Even though these data represent the most extensive and highly resolved swash measurements to date, the results showed that while the model could predict some of the qualitative trends in the observed foreshore change, it was a poor predictor of the observed magnitudes of foreshore change. Model — data comparisons differed by roughly an order of magnitude with observed foreshore changes on the order of 10's of centimeters and model predictions on the order of meters. This poor comparison suggests that future models of swash-zone sediment transport may require the inclusion of other physical processes such as bore turbulence, fluid accelerations and skewness, infiltration/exfiltration, water depth variations, and variable friction factors (to name a few).
Development of a Compact & Easy-to-Use 3-D Camera for High Speed Turbulent Flow Fields
2013-12-05
the 2-D Radon transform to 3-D space, i.e., the 3-D Radon transform. It is proposed that the 3-D Radon transform also has an inverse as does the 2-D...Nishimura, D.G., Principles of magnetic resonance imaging. 1996: Stanford University. 41. Deans, S.R., The Radon transform and some of its applications...2007: DoverPublications. com. 42. Averbuch, A. and Y. Shkolnisky, 3D Fourier based discrete Radon transform. Applied and Computational Harmonic
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Gesemann, S.; Schröder, A.
2016-09-01
Pressure gradient fields in unsteady flows can be estimated through flow measurements of the material acceleration in the fluid and the assumption of the governing momentum equation. In order to derive pressure from its gradient, almost exclusively two numerical methods have been used to spatially integrate the pressure gradient until now: first, direct path integration in the spatial domain, and second, the solution of the Poisson equation for pressure. Instead, we propose an alternative third method that integrates the pressure gradient field in Fourier space. Using a FFT function, the method is fast and easy to implement in programming languages for scientific computing. We demonstrate the accuracy of the integration scheme on a synthetic pressure field and apply it to an experimental example based on time-resolved material acceleration data from high-resolution Lagrangian particle tracking with the Shake-The-Box method.
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1985-01-01
An assessment was made of the applicability of a three dimensional boundary layer analysis of heat transfer, total pressure losses, and streamline flow patterns on the surfaces of both stationary and rotating turbine passages. In support of this effort, an analysis was developed to calculate a general nonorthogonal surface coordinate system for arbitrary three dimensional surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental pressure distributions. Calculations are presented for the pressure, endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the three dimensional boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.
NASA Astrophysics Data System (ADS)
Anderson, O. L.
1985-08-01
An assessment was made of the applicability of a three dimensional boundary layer analysis of heat transfer, total pressure losses, and streamline flow patterns on the surfaces of both stationary and rotating turbine passages. In support of this effort, an analysis was developed to calculate a general nonorthogonal surface coordinate system for arbitrary three dimensional surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental pressure distributions. Calculations are presented for the pressure, endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the three dimensional boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.
Slope instability in complex 3D topography promoted by convergent 3D groundwater flow
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.
2012-12-01
Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both
NASA Astrophysics Data System (ADS)
Krzemianowski, Z.; Puzyrewski, R.
2014-08-01
The paper presents the main parameters of the flow field behind the guide vane cascade designed by means of 2D inverse problem and following check by means of 3D commercial program ANSYS/Fluent applied for a direct problem. This approach of using different models reflects the contemporary design procedure for non-standardized turbomachinery stage. Depending on the model, the set of conservation equation to be solved differs, although the physical background remains the same. The example of computations for guide vane cascade for a low head hydraulic turbine is presented.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.
1994-01-01
An analysis of experimental laser Doppler velocimetry (LDV) data uncertainties that propagate from measurements in the tunnel coordinate system to results in the model system are provided. Calculations of uncertainties as functions of the variables that comprise the final result requires assessment of the contribution each variable makes. Such an analysis enables and necessitates the experimentalists to identify and address the contributing error sources in the experimental measurement system. This provides an opportunity to improve the quality of data derived from experimental systems. This is especially important in experiments where small changes in test conditions are expected to produce small, detectable changes in results. In addition, the need for high-quality experimental data for CFD method validation demands a thorough assessment of experimental uncertainty. Transforming from one Cartesian coordinate system to another by three sequential rotations, equations were developed to transform the variables initially obtained in the original coordinates into variables in the final coordinate system. Based on the transformation equations, propagation equations for errors in the experimentally-derived flow quantities were derived for a model at angle of attack. Experimental uncertainties were then propagated from the tunnel coordinate system into the model system.
NASA Astrophysics Data System (ADS)
Klein, Simon; Gibert, Mathieu; Bérut, Antoine; Bodenschatz, Eberhard
2013-02-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation and the rotation of finite-size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/η ≈ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ≈ 400). We show, using the mixed (particle/fluid) Eulerian second-order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.
NASA Astrophysics Data System (ADS)
Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard
2012-11-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / η ~ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. (http://arxiv.org/abs/1205.2181) This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.
Visualization of 3-D tensor fields
NASA Technical Reports Server (NTRS)
Hesselink, L.
1996-01-01
Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
3D touchable holographic light-field display.
Yamaguchi, Masahiro; Higashida, Ryo
2016-01-20
We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated.
Simulation of 3D Chaotic Electroconvection in Shear Flow
NASA Astrophysics Data System (ADS)
Davidson, Scott; Mani, Ali
2016-11-01
Electroconvection, a microscale electrohydrodynamic phenomenon with chaotic features reminiscent of turbulence, provides the dominant transport mechanism in many electrochemical processes where ions are driven through ion-selective surfaces under large applied voltages. Electrodialysis, for example, desalinates water by flowing it between layers of ion-selective membranes with alternating selectivity while an electric field is applied normal to the membranes. This process leads to alternating channels becoming enriched and depleted of ions. Despite its key importance, much about how electroconvection enhances ion transport, particularly in the presence of crossflow, remains a mystery. We present results of 3D direct numerical simulations of electroconvection in a canonical geometry of an electrolyte between an ion-selective membrane and a reservoir with periodic sides subject to applied shear flow. We analyze the effects of crossflow on both flow statistics and qualitative structures in the fully chaotic regime. Stanford Graduate Fellowship, NSF GRFP.
Recent Advances in Visualizing 3D Flow with LIC
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1998-01-01
Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
Visualizing 3D velocity fields near contour surfaces
Max, N.; Crawfis, R.; Grant, C.
1994-03-01
Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.
Light field display and 3D image reconstruction
NASA Astrophysics Data System (ADS)
Iwane, Toru
2016-06-01
Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.
A full field, 3-D velocimeter for microgravity crystallization experiments
NASA Technical Reports Server (NTRS)
Brodkey, Robert S.; Russ, Keith M.
1991-01-01
The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.
Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
Coherent structures in 3D viscous time-periodic flow
NASA Astrophysics Data System (ADS)
Znaien, J. G.; Speetjens, M. F. M.; Trieling, R. R.; Clercx, H. J. H.
2010-11-01
Periodically driven laminar flows occur in many industrial processes from food-mixing devices to micro-mixer in lab-on-a-chip systems. The present study is motivated by better understanding fundamental transport phenomena in three-dimensional viscous time-periodic flows. Both numerical simulation and three-dimensional Particle Tracking Velocimetry measurements are performed to investigate the 3D advection of a passive scalar in a lid-driven cylindrical cavity flow. The flow is forced by a time-periodic in-plane motion of one endwall via a given forcing protocol. We concentrate on the formation and interaction of coherent structures due to fluid inertia, which play an important role in 3D mixing by geometrically determining the tracer transport. The disintegration of these structures by fluid inertia reflects an essentially 3D route to chaos. Data from tracking experiments of small particles will be compared with predictions from numerical simulations on transport of passive tracers.
USM3D Predictions of Supersonic Nozzle Flow
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.
2014-01-01
This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.
NASA Technical Reports Server (NTRS)
Stanitz, J. D.
1985-01-01
The general design method for three-dimensional, potential, incompressible or subsonic-compressible flow developed in part 1 of this report is applied to the design of simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for turbomachines. The two major inputs to the program are the upstream boundary shape and the lateral velocity distribution on the duct wall. As a result of these inputs, boundary conditions are overprescribed and the problem is ill posed. However, it appears that there are degrees of compatibility between these two major inputs and that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not prescribing the shape of the upstream boundary, the problem presumably becomes well posed, but it is not clear how to formulate a practical design method under this circumstance. Nor does it appear desirable, because the designer usually needs to retain control over the upstream (or downstream) boundary shape. The problem is further complicated by the fact that, unlike the two-dimensional case, and irrespective of the upstream boundary shape, some prescribed lateral velocity distributions do not have proper solutions.
Slat Cove Unsteadiness Effect of 3D Flow Structures
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.
Natural 3D content on glasses-free light-field 3D cinema
NASA Astrophysics Data System (ADS)
Balogh, Tibor; Nagy, Zsolt; Kovács, Péter Tamás.; Adhikarla, Vamsi K.
2013-03-01
This paper presents a complete framework for capturing, processing and displaying the free viewpoint video on a large scale immersive light-field display. We present a combined hardware-software solution to visualize free viewpoint 3D video on a cinema-sized screen. The new glasses-free 3D projection technology can support larger audience than the existing autostereoscopic displays. We introduce and describe our new display system including optical and mechanical design considerations, the capturing system and render cluster for producing the 3D content, and the various software modules driving the system. The indigenous display is first of its kind, equipped with front-projection light-field HoloVizio technology, controlling up to 63 MP. It has all the advantages of previous light-field displays and in addition, allows a more flexible arrangement with a larger screen size, matching cinema or meeting room geometries, yet simpler to set-up. The software system makes it possible to show 3D applications in real-time, besides the natural content captured from dense camera arrangements as well as from sparse cameras covering a wider baseline. Our software system on the GPU accelerated render cluster, can also visualize pre-recorded Multi-view Video plus Depth (MVD4) videos on this light-field glasses-free cinema system, interpolating and extrapolating missing views.
3D Printed Micro Free-Flow Electrophoresis Device.
Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T
2016-08-02
The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Computational analysis of flow in 3D propulsive transition ducts
NASA Technical Reports Server (NTRS)
Sepri, Paavo
1990-01-01
A numerical analysis of fully three dimensional, statistically steady flows in propulsive transition ducts being considered for use in future aircraft of higher maneuverability is investigated. The purpose of the transition duct is to convert axisymmetric flow from conventional propulsion systems to that of a rectangular geometry of high aspect ratio. In an optimal design, the transition duct would be of minimal length in order to reduce the weight penalty, while the geometrical change would be gradual enough to avoid detrimental flow perturbations. Recent experiments conducted at the Propulsion Aerodynamics Branch have indicated that thrust losses in ducts of superelliptic cross-section can be surprisingly low, even if flow separation occurs near the divergent walls. In order to address the objective of developing a rational design procedure for optimal transition ducts, it is necessary to have available a reliable computational tool for the analysis of flows achieved in a sequence of configurations. Current CFD efforts involving complicated geometries usually must contend with two separate but interactive aspects: namely, grid generation and flow solution. The first two avenues of the present investigation were comprised of suitable grid generation for a class of transition ducts of superelliptic cross-section, and the subsequent application of the flow solver PAB3D to this geometry. The code, PAB3D, was developed as a comprehensive tool for the solution of both internal and external high speed flows. The third avenue of investigation has involved analytical formulations to aid in the understanding of the nature of duct flows, and also to provide a basis of comparison for subsequent numerical solutions. Numerical results to date include the generation of two preliminary grid systems for duct flows, and the initial application of PAB3D to the corresponding geometries, which are of the class tested experimentally.
Multi-planar velocimetry for 3D reconstruction of the flow
NASA Astrophysics Data System (ADS)
Falahatpisheh, Ahmad; Pedrizzetti, Gianni; Kheradvar, Arash
2012-11-01
Several extensions of PIV have been proposed for measurements of 3D fields which are restricted for full-volume quantification. We have introduced a fundamentally different solution for experimentally characterizing the incompressible and time-periodic flows in 3D, such as those found in the cardiovascular system. 2D velocity data, acquired by 2C-PIV in multiple planes, is reconstructed to a 3D velocity field taking advantage of the incompressibility of the flow. Using 2D samples instead of scanning the entire 3D domain leads to higher temporal/spatial resolutions since each slice is acquired in a 2D fashion. Hence, there is the possibility of extension to other (medical) imaging modalities that cannot employ advanced 3D optical techniques. 2C-velocimetry on two perpendicular stacks is used for 3D interpolation. The interpolated velocity field is then corrected to satisfy the incompressibility constraint by adding an irrotational velocity field that projects the velocity into a divergence-free vector field space. The method has been validated by exemplary flows having both compact and non-compact structures and different levels of noise. The results show improvements in the reliability of the reconstructed vector field. Application to cardiac flow is also verified.
Myosin IIA dependent retrograde flow drives 3D cell migration.
Shih, Wenting; Yamada, Soichiro
2010-04-21
Epithelial cell migration is an essential part of embryogenesis and tissue regeneration, yet their migration is least understood. Using our three-dimensional (3D) motility analysis, migrating epithelial cells formed an atypical polarized cell shape with the nucleus leading the cell front and a contractile cell rear. Migrating epithelial cells exerted traction forces to deform both the anterior and posterior extracellular matrix toward the cell body. The cell leading edge exhibited a myosin II-dependent retrograde flow with the magnitude and direction consistent with surrounding network deformation. Interestingly, on a two-dimensional substrate, myosin IIA-deficient cells migrated faster than wild-type cells, but in a 3D gel, these myosin IIA-deficient cells were unpolarized and immobile. In contrast, the migration rates of myosin IIB-deficient cells were similar to wild-type cells. Therefore, myosin IIA, not myosin IIB, is required for 3D epithelial cell migration.
Imaging 3D strain field monitoring during hydraulic fracturing processes
NASA Astrophysics Data System (ADS)
Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.
2016-05-01
In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.
SALE3D. ICEd-ALE Treatment of 3-D Fluid Flow
Amsden, A.A.; Ruppel, H.M.
1992-01-14
SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
3D critical layers in fully-developed turbulent flows
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
Advances toward field application of 3D hydraulic tomography
NASA Astrophysics Data System (ADS)
Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.
2011-12-01
Hydraulic tomography (HT) is a technique that shows great potential for aquifer characterization and one that holds the promise of producing 3D hydraulic property distributions, given suitable equipment. First suggested over 15 years ago, HT assimilates distributed aquifer pressure (head) response data collected during a series of multiple pumping tests to produce estimates of aquifer property variability. Unlike traditional curve-matching analyses, which assume homogeneity or "effective" parameters within the radius of influence of a hydrologic test, HT analysis relies on numerical models with detailed heterogeneity in order to invert for the highly resolved 3D parameter distribution that jointly fits all data. Several numerical and laboratory investigations of characterization using HT have shown that property distributions can be accurately estimated between observation locations when experiments are correctly designed - a property not always shared by other, simpler 1D characterization approaches such as partially-penetrating slug tests. HT may represent one of the best methods available for obtaining detailed 3D aquifer property descriptions, especially in deep or "hard" aquifer materials, where direct-push methods may not be feasible. However, to date HT has not yet been widely adopted at contaminated field sites. We believe that current perceived impediments to HT adoption center around four key issues: 1) A paucity in the scientific literature of proven, cross-validated 3D field applications 2) A lack of guidelines and best practices for performing field 3D HT experiments; 3) Practical difficulty and time commitment associated with the installation of a large number of high-accuracy sampling locations, and the running of a large number of pumping tests; and 4) Computational difficulty associated with solving large-scale inverse problems for parameter identification. In this talk, we present current results in 3D HT research that addresses these four issues
Digital holography particle image velocimetry for the measurement of 3D t-3c flows
NASA Astrophysics Data System (ADS)
Shen, Gongxin; Wei, Runjie
2005-10-01
In this paper a digital in-line holographic recording and reconstruction system was set up and used in the particle image velocimetry for the 3D t-3c (the three-component (3c), velocity vector field measurements in a three-dimensional (3D), space field with time history ( t)) flow measurements that made up of the new full-flow field experimental technique—digital holographic particle image velocimetry (DHPIV). The traditional holographic film was replaced by a CCD chip that records instantaneously the interference fringes directly without the darkroom processing, and the virtual image slices in different positions were reconstructed by computation using Fresnel-Kirchhoff integral method from the digital holographic image. Also a complex field signal filter (analyzing image calculated by its intensity and phase from real and image parts in fast fourier transform (FFT)) was applied in image reconstruction to achieve the thin focus depth of image field that has a strong effect with the vertical velocity component resolution. Using the frame-straddle CCD device techniques, the 3c velocity vector was computed by 3D cross-correlation through space interrogation block matching through the reconstructed image slices with the digital complex field signal filter. Then the 3D-3c-velocity field (about 20 000 vectors), 3D-streamline and 3D-vorticiry fields, and the time evolution movies (30 field/s) for the 3D t-3c flows were displayed by the experimental measurement using this DHPIV method and techniques.
An industrial light-field camera applied for 3D velocity measurements in a slot jet
NASA Astrophysics Data System (ADS)
Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.
2016-10-01
Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.
Optic flow aided navigation and 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Rollason, Malcolm
2013-10-01
An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.
Three-dimensional potential flows from functions of a 3D complex variable
NASA Technical Reports Server (NTRS)
Kelly, Patrick; Panton, Ronald L.; Martin, E. D.
1990-01-01
Potential, or ideal, flow velocities can be found from the gradient of an harmonic function. An ordinary complex valued analytic function can be written as the sum of two real valued functions, both of which are harmonic. Thus, 2D complex valued functions serve as a source of functions that describe two-dimensional potential flows. However, this use of complex variables has been limited to two-dimensions. Recently, a new system of three-dimensional complex variables has been developed at the NASA Ames Research Center. As a step toward application of this theory to the analysis of 3D potential flow, several functions of a three-dimensional complex variable have been investigated. The results for two such functions, the 3D exponential and 3D logarithm, are presented in this paper. Potential flows found from these functions are investigated. Important characteristics of these flows fields are noted.
Brien, Dianne L.; Reid, Mark E.
2007-01-01
base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.
Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.
Li, Gang; Guo, Lei
2012-01-01
Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Minchew, Brent; Agram, Piyush; Riel, Bryan; Simons, Mark
2016-10-01
We present a general method for retrieving time-series of three component surface velocity field vector given a set of continuous synthetic aperture radar (SAR) acquisitions collected from multiple geometries. Our algorithm extends the single-line-of-sight mathematical framework developed for time-series analysis using interferometric SAR (InSAR) to three spatial dimensions. The inversion is driven by a design matrix corresponding to a dictionary of displacement functions parameterized in time. The resulting model minimizes a cost function using a non-regularized least-squares method. We applied our method to Rutford ice stream (RIS), West Antarctica, using a set of 101 multi-track multi-angle COSMO-SkyMed displacement maps generating azimuth and range pixel offsets.
3D temperature field reconstruction using ultrasound sensing system
NASA Astrophysics Data System (ADS)
Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei
2016-04-01
3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.
Unsteady 3D flow simulations in cranial arterial tree
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George
2008-11-01
High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.
MPSalsa 3D Simulations of Chemically Reacting Flows
Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).
This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.
Note: 3D printed spheroid for uniform magnetic field generation
NASA Astrophysics Data System (ADS)
Öztürk, Y.; Aktaş, B.
2016-10-01
This article is focused on a novel and practical production method for a uniform magnetic field generator. The method involves building of a surface coil template using a desktop 3D printer and winding of a conducting wire onto the structure using surface grooves as a guide. Groove pattern was based on the parametric spheroidal helical coil formula. The coil was driven by a current source and the magnetic field inside was measured using a Hall probe placed into the holes on the printed structure. The measurements are found to be in good agreement with our finite element analysis results and indicate a fairly uniform field inside.
Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements
NASA Astrophysics Data System (ADS)
Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong
2017-04-01
Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7 × 50.0 × 14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of <1.1 mm/vector. Overall, the presented DIH-PTV method and
Recursive estimation of 3D motion and surface structure from local affine flow parameters.
Calway, Andrew
2005-04-01
A recursive structure from motion algorithm based on optical flow measurements taken from an image sequence is described. It provides estimates of surface normals in addition to 3D motion and depth. The measurements are affine motion parameters which approximate the local flow fields associated with near-planar surface patches in the scene. These are integrated over time to give estimates of the 3D parameters using an extended Kalman filter. This also estimates the camera focal length and, so, the 3D estimates are metric. The use of parametric measurements means that the algorithm is computationally less demanding than previous optical flow approaches and the recursive filter builds in a degree of noise robustness. Results of experiments on synthetic and real image sequences demonstrate that the algorithm performs well.
Advancing the field of 3D biomaterial printing.
Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N
2016-01-11
3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
3-D MHD Simulation of Oscillating Field Current Drive
NASA Astrophysics Data System (ADS)
Ebrahimi, F.; Prager, S. C.; Wright, J. C.
2000-10-01
Oscillating Field Current Drive (OFCD) is a proposed low frequency steady-state current drive technique for the Reversed Field Pinch (RFP). In OFCD toroidal and poloidal oscillating electric fields are applied with 90^circ phase difference to inject magnetic helicity. In the present work, the 3-D nonlinear, resistive MHD code DEBS is used to simulate OFCD in relaxed RFP plasmas. The present simulations are at high Lundquist number S=10^5 and low spect ratio R/a=1.5. The physics issues investigated are the response of background magnetic fluctuations to the oscillating fields, the relative contributions of the tearing mode dynamo and the oscillating fields to the current profile, and the sustainment and control of the steady-state current profile. Initial results with low amplitude oscillating fields show the expected increase in magnetic helicity and current. Results with higher amplitude will also be presented.
Gas-kinetic BGK Schemes for 3D Viscous Flow
NASA Astrophysics Data System (ADS)
Jiang, Jin; Qian, Yuehong
2009-11-01
Gas-kinetic BGK scheme developed as an Euler and Navier-Stokes solver is dated back to the early 1990s. There are now numerous literatures on the method. Here we focused on extending this approach to 3D viscous flow. Firstly, to validate the code, some test cases are carried out, including 1D Sod problem, interaction between shock and boundary layer. Then to improve its computational efficiency, two main convergence acceleration techniques, which are local time-stepping and implicit residual smoothing, have adopted and tested. The results indicate that the speed-up to convergence steady state is significant. The last is to incorporate turbulence model into current code with the increasing Reynolds number. As a proof of accuracy, the transonic flow over ONERA M6 wing and pressure distributions at various selected span-wise directions have been tested. The results are in good agreement with experimental data, which implies the extension to turbulent flow is very encouraging and of good help for further development.
3D deformation field throughout the interior of materials.
Jin, Huiqing; Lu, Wei-Yang
2013-09-01
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
3-D flame temperature field reconstruction with multiobjective neural network
NASA Astrophysics Data System (ADS)
Wan, Xiong; Gao, Yiqing; Wang, Yuanmei
2003-02-01
A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.
Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona
NASA Astrophysics Data System (ADS)
Nickeler, Dieter H.; Wiegelmann, Thomas; Karlický, Marian; Kraus, Michaela
2017-03-01
Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.
2016-10-01
3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.
3-D magnetic field calculations for wiggglers using MAGNUS-3D
Pissanetzky, S.; Tompkins, P.
1988-01-01
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.
Parallel Cartesian grid refinement for 3D complex flow simulations
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2013-11-01
A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.
3D wind field from spaceborne Doppler radar
NASA Astrophysics Data System (ADS)
Lemaître, Y.; Viltard, N.
2013-10-01
Numerous space radar missions are presently envisioned to study the water cycle in the tropics. Among them, the DYCECT (DYnamique, énergie et Cycle de l'Eau dans la Convection Tropicale) mission, a French proposal (submitted to the French CNES Agency), could embark a Doppler radar (W-band or Ka-band) with scanning possibilities onboard a low-orbiting satellite. This instrument could be implemented in addition to a Passive Microwave Radiometer (PMR), and eventually an improved ScaraB-like broadband radiometer, and a lightning detection instrument. This package will document the ice microphysics and the heat budgets. Since the microphysics and the water and energy budgets are strongly driven by the dynamics, the addition of a Doppler radar with scanning possibilities could provide valuable information (3D wind and rain fields) and a large statistic of such critical information over the entire tropics and for all the stages of development. These new information could be used to better understand the tropical convection and to improve convection parameterization relevant for cloud and climate models. It could be used also to associate direct applications such as now-casting and risk prevention. The present study focuses on the feasibility of such 3D wind field retrieval from spaceborne radar. It uses a simulator of some parts of the spaceborne radar in order i) to evaluate the sensitivity of the retrieved wind fields to the scanning strategies and sampling parameters, and to the instrumental and platform parameters and ii) to determine the best parameters providing the most accurate wind fields.
NASA Astrophysics Data System (ADS)
Zhang, Cao; Miorini, Rinaldo; Katz, Joseph
2015-11-01
A system combining tomographic PIV (TPIV) and Mach-Zehnder interferometry (MZI) simultaneously measures the time- resolved 3D flow field and 2D distribution of wall-normal deformation in a turbulent channel flow over a transparent compliant surface. This paper focuses on the experimental techniques and data analysis procedures, but includes sample results. Standard TPIV analysis resolves the log layer of the mean velocity and the linear decrease in total shear stress with distance from the wall. Single-pixel ensemble correlations reveal the buffer layer and top of the viscous sublayer. Analysis of the MZI data consists of two steps, namely critical spatial filtering of interferograms to remove noise and phase demodulation to calculate the surface shape. A new technique to improve the filtration of noise from interferograms based on spatial correlations of small windows is introduced and optimized. Taking advantage of this enhancement, the phase/deformation distribution is calculated directly from arccosines of the intensity, which avoids edge artifacts affecting spectral calculations. Validations using synthetic noisy interferograms indicate that errors associated with correlation-based enhancement are consistently lower and much less sensitive to fringe shape than spectral band-pass filtering. The experimental wavenumber-frequency spectra show that the deformation consists of patterns that are larger than the field of view, surface waves and small-scale patterns. Some of the latter are advected at the freestream velocity, but mostly at 70 % of the freestream, the mean speed at 10 % of the channel half height. Indeed, spatial correlations of the deformation with velocity components peak at this elevation.
Intuitive Visualization of Transient Flow: Towards a Full 3D Tool
NASA Astrophysics Data System (ADS)
Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph
2015-04-01
Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool
Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation.
Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed; Pihl, Michael Johannes; Hansen, Kristoffer Lindskov; Stuart, Matthias Bo; Thomsen, Carsten; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-03-01
Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.
Exploration 3-D Seismic Field Test/Native Tribes Initiative
Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon
1999-04-27
To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.
3D wind field retrieval from spaceborne Doppler radar
NASA Astrophysics Data System (ADS)
Lemaêtre, Y.; Viltard, N.
2012-11-01
Numerous space missions carrying a radar are presently envisioned, particularly to study tropical rain systems. Among those missions, BOITATA is a joint effort between Brazil (INPE/AEB) and France (CNES). The goal is to embark a Doppler radar with scanning possibilities onboard a low-orbiting satellite. This instrument should be implemented in addition to a Passive Microwave Radiometer (PMR) between 19 and 183 GHz, an improved ScaraB-like broadband radiometer, a mm/submm PMR and a lightning detection instrument. This package would be meant to document the feedback of the ice microphysics on the rain systems life cycle and on their heat and radiative budgets. Since the microphysics and the water and energy budgets are strongly driven by the dynamics, the addition of a Doppler radar with scanning possibilities could provide precious information (3D wind and rain fields). It would allow us to build a large statistics of such critical information over the entire tropics and for all the stages of development of the convection. This information could be used to better understand the tropical convection and to improve convection parameterization relevant for cloud and climate models and associated applications such as now-casting and risk prevention. The present work focuses on the feasibility to retrieve 3D winds in precipitating areas from such a radar. A simulator of some parts of the spaceborne radar is developed to estimate the precision on the retrieved wind field depending on the scanning strategies and instrumental parameters and to determine the best sampling parameters.
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
3D Magnetotelluic characterization of the Coso GeothermalField
Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika
2007-04-23
-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences
NASA Astrophysics Data System (ADS)
Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz
2009-02-01
In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.
Stratified shear flow in an inclined duct: near-instantaneous 3D velocity and density measurements
NASA Astrophysics Data System (ADS)
Partridge, Jamie; Lefauve, Adrien; Dalziel, Stuart; Linden, Paul
2016-11-01
We present results from a new experimental setup to study the exchange flow in an inclined square duct between two reservoirs containing fluids of different densities. This system can exhibit stratified shear wave motions, and has a distinct parameter threshold above which turbulence is triggered and progressively fills a larger fraction of the duct. To probe these intrinsically 3D flows, we introduce a new setup in which a traversing laser sheet allows us to obtain near-instantaneous 3D velocity and density fields. Three components of velocity are measured on successive 2D planes using stereo particle image velocimetry (PIV) with density information obtained simultaneously using laser induced fluorescence (LIF). Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".
Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow
Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward
2010-01-01
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578
Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Holotescu, Sorin
2011-06-01
The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used (realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.
Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber
NASA Astrophysics Data System (ADS)
Stuparu, Adrian; Holotescu, Sorin
2011-06-01
The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used ( realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.
3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes
NASA Astrophysics Data System (ADS)
Haw, Magnus; Bellan, Paul
2016-10-01
Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.
Flow measurements in a model centrifugal pump by 3-D PIV
NASA Astrophysics Data System (ADS)
Yang, H.; Xu, H. R.; Liu, C.
2012-11-01
PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity Wr appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity Wr moves from the pressure side to the suction side. At the same time, the tangential component velocity Wθ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.
Recent Enhancements to USM3D Unstructured Flow Solver for Unsteady Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Abdol-Hamid, Khaled S.; Chung, James J.
2004-01-01
The NASA USM3D unstructured flow solver is undergoing extensions to address dynamic flow problems in support of NASA and NAVAIR efforts to study the applicability of Computational Fluid Dynamics tools for the prediction of aircraft stability and control characteristics. The initial extensions reported herein include two second-order time stepping schemes, Detached-Eddy Simulation, and grid motion. This paper reports the initial code verification and validation assessment of the dynamic flow capabilities of USM3D. The cases considered are the classic inviscid shock-tube problem, low Reynolds number wake shedding from a NACA 0012 airfoil, high Reynolds number DES-based wake shedding from a 4-to-1 length-to-diameter cylinder, and forced pitch oscillation of a NACA 0012 airfoil with inviscid and turbulent flow.
Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces
ERIC Educational Resources Information Center
Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed
2012-01-01
The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…
3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System
Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P
2002-05-29
Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of
Rezania, Vahid; Tuszynski, Jack
2016-01-01
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Harrid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Numerical interactive grid generation for 3-D flow calculations
NASA Astrophysics Data System (ADS)
Jacobs, J. M. J. W.; Kassies, A.; Boerstoel, J. W.; Buijsen, F.; Kuijvenhoven, J. L.
1988-08-01
A method for the generation of three-dimensional block-structured grids is described. The grid generation process is decomposed into two major stages: block decomposition of the flow domain and construction of a grid in each block. Examples of grids are shown together with flow solver results. Improvements and future extensions of the present concepts are discussed.
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
Gas flow environmental and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Geil, T.; Steinhoff, J.
1983-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
Locally conservative groundwater flow in the continuous Galerkin method using 3-D prismatic patches
NASA Astrophysics Data System (ADS)
Wu, Qiang; Zhao, Yingwang; Lin, Yu-Feng F.; Xu, Hua
2016-11-01
A new procedure has been developed to improve the velocity field computed by the continuous Galerkin finite element method (CG). It enables extending the postprocessing algorithm proposed by Cordes and Kinzelbach (1992) to three-dimensional (3-D) models by using prismatic patches for saturated groundwater flow. This approach leverages a dual mesh to preserve local mass conservation and provides interpolated velocities based on consistent fluxes. To develop this 3-D approach, a triangular conservative patch is introduced by computing not only advection fluxes, but also vertical infiltrations, storage changes, and other sink or source terms. This triangular patch is then used to develop a prismatic patch, which consists of subprisms in two layers. By dividing a single two-layer patch into two separate one-layer patches, two dimensional (2-D) algorithms can be applied to compute velocities. As a consequence, each subelement is able to preserve local mass conservation. A hypothetical 3-D model is used to evaluate the precision of streamlines and flow rates generated by this approach and the FEFLOW simulation program.
Experimental 3D Asynchronous Field Programmable Gate Array (FPGA)
2015-03-01
microprocessor . 3.1. Asynchronous FPGA Overview In terms of the major building blocks, the asynchronous FPGA (AFPGA) architecture looks like a traditional...devices—from O(N1/2) to O(N1/3), where N is the number of devices in the system. 3D chip stacking has been proposed as a way to improve microprocessor
Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.
2001-01-01
A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.
Statistical Flux Tube Properties of 3D Magnetic Carpet Fields
NASA Astrophysics Data System (ADS)
Close, R. M.; Parnell, C. E.; Mackay, D. H.; Priest, E. R.
2003-02-01
The quiet-Sun photosphere consists of numerous magnetic flux fragments of both polarities that evolve with granular and supergranular flow fields. These concentrations give rise to a web of intermingled magnetic flux tubes which characterise the coronal magnetic field. Here, the nature of these flux tubes is studied. The photosphere is taken to be the source plane and each photospheric fragment is represented by a series of point sources. By analysing the potential field produced by these sources, it is found that the distribution of flux tube lengths obtained by (i) integrating forward from positive sources and (ii) tracing back from negative sources is highly dependent on the total flux imbalance within the region of interest. It is established that the relation between the footpoint separation of a flux tube and its height cannot be assumed to be linear. Where there is a significant imbalance of flux within a region, it is found that fragments of the dominant polarity will have noticeably more connections, on average, than the minority polarity fragments. Despite this difference, the flux from a single fragment of either polarity is typically divided such that (i) 60-70% connects to one opposite-polarity fragment, (ii) 25-30% goes to a further 1 to 2 opposite-polarity fragments, and (iii) any remaining flux may connect to as many as another 50 or more other opposite-polarity fragments. This is true regardless of any flux imbalance within the region. It is found that fragments connect preferentially to their nearest neighbours, with, on average, around 60-70% of flux closing down within 10 Mm of a typical fragment. Only 50% of the flux in a quiet region extends higher than 2.5 Mm above the solar surface and 5-10% extends higher than 25 Mm. The fragments that contribute to the field above this height cover a range of sizes, with even the smallest of fragments contributing to the field at heights of over 50 Mm.
Laser direct writing 3D structures for microfluidic channels: flow meter and mixer
NASA Astrophysics Data System (ADS)
Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.
2015-03-01
The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.
Study on 3-D simulation of flow and turbidity in an oxbow lake in tidal compartment
NASA Astrophysics Data System (ADS)
Yokoyama, H.; Momonoe, H.; Hamamoto, S.
2010-12-01
We aimed to make flow and turbidity simulation model for an oxbow lake in tidal compartment. The oxbow has two bottle-necks and inflow river from urban district. Bed topography of the oxbow is former meandering channel of large-basin river. Therefore characteristic of flow and water quality is complex. First, field observation was conducted to clarify the characteristics of flow and water quality in the oxbow. From observation results, flow and resuspension phenomena in the oxbow were affected by wind and tide, and the balance of the two factors changed longitudinally. Next, we built 3-D simulation model of flow which took account of the field observation results. In order to investigate effective water quality improvement, we set some test cases: condition of wind, inflow river were changed. From the simulation results, tide was the most important factor, however at the upper part of the oxbow, where the tidal power seemed to be weaker, flow and turbidity were clearly affected by the wind.
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
Islam, Md Zahurul; Tsui, Ying Yin
2016-10-03
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices
Islam, Md. Zahurul; Tsui, Ying Yin
2016-01-01
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
Magnetic Damping of g-Jitter Driven Flows: 3-D Calculations
NASA Technical Reports Server (NTRS)
Shang, D. Y.; Li, B. Q.; deGroh, H. C.
1997-01-01
A 3-D numerical model is developed to represent the oscillating natural convection induced in a cylindrical cavity filled with Ga-doped germanium with and without the presence of an external magnetic field. The model is developed based on the penalty-finite element solution of the equations describing the transport of momentum, heat and solutal element as well as the electromagnetic field distribution in the melt pool. Automatic time step control is applied to help speed up the calculations. Numerical simulations are conducted to study the convection and magnetic damping effects as a function of frequency, directions and amplitudes of g-jitter and also the direction and magnitudes of the applied magnetic fields. The results show that the g-jitter driven flow is time dependent and exhibits a complex recirculating convection pattern in three dimensions and that an applied magnetic field can be employed to suppress this deleterious convective flow and both magnitude and orientation of the applied field are important in magnetic damping of the g-jitter induced convective flows.
Numerical grid generation in 3D Euler-flow simulation
NASA Astrophysics Data System (ADS)
Boerstoel, J. W.
1988-04-01
The technical problems with grid generation are analyzed and an overview of proposed solutions is given. The usefulness of grid-generation techniques, for the numerical simulation of Euler (and Navier-Stokes) flows around complex three-dimensional aerodynamic configurations, is illustrated. It is shown that the core of the grid-generation problem is a topology problem. The following remarks are sketched: grid generation is a subtask in a numerical simulation of a flow in industrial and research environments; the design requirements of a grid generation concern the geometrical imput, the desired grid as output, the technical means to control grid resolution and quality and turnaround time performance; the construction of a blocked grid can be subdivided in a block-decomposition task and a grid-point distribution task. A technique for using connectivity relations to define conventions about local coordinate systems in edges, faces and blocks is presented. Experiences are reported and an example concerning a 96-blocked grid around a complex aerodynamic configuration is given. Concepts for improvements in the presented technique are discussed.
Synthetic benchmark for modeling flow in 3D fractured media
NASA Astrophysics Data System (ADS)
de Dreuzy, Jean-Raynald; Pichot, Géraldine; Poirriez, Baptiste; Erhel, Jocelyne
2013-01-01
Intensity and localization of flows in fractured media have promoted the development of a large range of different modeling approaches including Discrete Fracture Networks, pipe networks and equivalent continuous media. While benchmarked usually within site studies, we propose an alternative numerical benchmark based on highly-resolved Discrete Fracture Networks (DFNs) and on a stochastic approach. Test cases are built on fractures of different lengths, orientations, aspect ratios and hydraulic apertures, issuing the broad ranges of topological structures and hydraulic properties classically observed. We present 18 DFN cases, with 10 random simulations by case. These 180 DFN structures are provided and fully documented. They display a representative variety of the configurations that challenge the numerical methods at the different stages of discretization, mesh generation and system solving. Using a previously assessed mixed hybrid finite element method (Erhel et al., 2009a), we systematically provide reference flow and head solutions. Because CPU and memory requirements stem mainly from system solving, we study direct and iterative sparse linear solvers. We show that the most cpu-time efficient method is a direct multifrontal method for small systems, while conjugate gradient preconditioned by algebraic multrigrid is more relevant at larger sizes. Available results can be used further as references for building up alternative numerical and physical models in both directions of improving accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Shahraeeni, E.; Firoozabadi, A.
2012-12-01
We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.
3D Reacting Flow Analysis of LANTR Nozzles
NASA Astrophysics Data System (ADS)
Stewart, Mark E. M.; Krivanek, Thomas M.; Hemminger, Joseph A.; Bulman, M. J.
2006-01-01
This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range of O2/H2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.
Detecting particles flowing through interdigitated 3D microelectrodes.
Bianchi, Elena; Rollo, Enrica; Kilchenmann, Samuel; Bellati, Francesco M; Accastelli, Enrico; Guiducci, Carlotta
2012-01-01
Counting cells in a large microchannel remains challenging and is particularly critical for in vitro assays, such as cell adhesion assays. This paper addresses this issue, by presenting the development of interdigitated three-dimensional electrodes, which are fabricated around passivated pillarshaped silicon microstructures, to detect particles in a flow. The arrays of micropillars occupy the entire channel height and detect the passage of the particle through their gaps by monitoring changes in the electrical resistance. Impedance measurements were employed in order to characterize the electrical equivalent model of the system and to detect the passage of particles in real-time. Three different geometrical micropillar configurations were evaluated and numerical simulations that supported the experimental activity were used to characterize the sensitive volume in the channel. Moreover, the signal-to-noise-ratio related to the passage of a single particle through an array was plotted as a function of the dimension and number of micropillars.
3D simulation of coaxial carbon nanotube field effect transistor
NASA Astrophysics Data System (ADS)
Hien, Dinh Sy; Thi Luong, Nguyen; Tuan, Thi Tran Anh; Viet Nga, Dinh
2009-09-01
We provide a model of coaxial CNTFET geometry. Coaxial devices are of special interest because their geometry allows for better electrostatics. We explore the possibilities of using non-equilibrium Green's function method to get I-V characteristics for CNTFETs. This simulator also includes a graphic user interface (GUI) of Matlab. We review the capabilities of the simulator, and give examples of typical CNTFET's 3D simulations (current-voltage characteristics are a function of parameters such as the length of CNTFET, gate thickness and temperature). The obtained I-V characteristics of the CNTFET are also presented by analytical equations.
Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation
NASA Astrophysics Data System (ADS)
Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.
2014-03-01
Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
Representativeness of 2D models to simulate 3D unstable variable density flow in porous media
NASA Astrophysics Data System (ADS)
Knorr, Bastian; Xie, Yueqing; Stumpp, Christine; Maloszewski, Piotr; Simmons, Craig T.
2016-11-01
Variable density flow in porous media has been studied primarily using numerical models because it is a semi-chaotic and transient process. Most of these studies have been 2D, owing to the computational restrictions on 3D simulations, and the ability to observe variable density flow in 2D experimentation. However, it is recognised that variable density flow is a three-dimensional process. A 3D system may cause weaker variable density flow than a 2D system due to stronger dispersion, but may also result in bigger fingers and hence stronger variable density flow because of more space for fingers to coalesce. This study aimed to determine the representativeness of 2D modelling to simulate 3D variable density flow. 3D homogeneous sand column experiments were conducted at three different water flow velocities with three different bromide tracer solutions mixed with methanol resulting in different density ratios. Both 2D axisymmetric and 3D numerical simulations were performed to reproduce experimental data. Experimental results showed that the magnitude of variable density flow increases with decreasing flow rates and decreasing density ratios. The shapes of the observed breakthrough curves differed significantly from those produced by 2D axisymmetric and 3D simulations. Compared to 2D simulations, the onset of instabilities was delayed but the growth was more pronounced in 3D simulations. Despite this difference, both 2D axisymmetric and 3D models successfully simulated mass recovery with high efficiency (between 77% and 99%). This study indicates that 2D simulations are sufficient to understand integrated features of variable density flow in homogeneous sand column experiments.
3D stress field simulation for Greater Munich, Germany
NASA Astrophysics Data System (ADS)
Ziegler, Moritz; Heidbach, Oliver; Reinecker, John; Przybycin, Anna Maria; Scheck-Wenderoth, Magdalena
2016-04-01
Geotechnical applications such as tunneling, storage of waste, wellbore planning, or reservoir engineering requires detailed 3D information on the rock properties and behavior of the continuum. One of the key parameters is the contemporary crustal in-situ stress state. However, generally the availability of stress data on reservoir scale is scarce or no data exists at all. Furthermore, stress data is often limited to the orientation of the maximum horizontal stress. Hence, geomechanical-numerical modelling provides an approximation of a continuous description of the 3D in-situ stress state. We present a model workflow that shows (1) how to calibrate a regional scale model of Greater Munich with stress orientations and magnitudes mainly from borehole data and (2) how to derive from the regional model boundary conditions for a local high-resolution model of a geothermal reservoir site. This approach using two models is an alternative to the required trade-off between resolution, computational cost and a sufficient number of calibration data which is otherwise inevitable for a single model. The incorporated 3D geological models contain the topography from a digital elevation model and 6 stratigraphic units with different elasto-plastic rock properties. The local model mimics the area of a planned reservoir and its resolution is significantly higher than in the regional model and down to 10 m near the planned borehole trajectories using 21×106 tetrahedron finite elements with linear approximation functions. The uncertainties of the calibrated regional model are large since no information on the magnitude of the maximum horizontal stress is available. Even in the entire Greater Munich area only two reliable leak-off tests that deliver the magnitude of the minimum horizontal stress could be used. These uncertainties are transferred also to the local model. Hence we also show how to quantify for the workflow in general the systematic uncertainties and discuss
Integration of real-time 3D capture, reconstruction, and light-field display
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao
2015-03-01
Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.
Evolution of 3-D geologic framework modeling and its application to groundwater flow studies
Blome, Charles D.; Smith, David V.
2012-01-01
In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.
The 2D and 3D hypersonic flows with unstructured meshes
NASA Technical Reports Server (NTRS)
Thareja, Rajiv
1993-01-01
Viewgraphs on 2D and 3D hypersonic flows with unstructured meshes are presented. Topics covered include: mesh generation, mesh refinement, shock-shock interaction, velocity contours, mesh movement, vehicle bottom surface, and adapted meshes.
3D-Flow processor for a programmable Level-1 trigger (feasibility study)
Crosetto, D.
1992-10-01
A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.
NASA Astrophysics Data System (ADS)
Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin
2016-11-01
Three-dimensional PIV and PTV provides the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other commercialized 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (namely DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. Here we will report our latest work on improving DIH-PTV method through an integration of deconvolution algorithm, iterative removal method and GPU computation to overcome some of abovementioned limitations. We will also present the application of our DIH-PTV for measurements in the following sample cases: (i) flows in bio-filmed microchannel with 50-60 μm vector spacing within sampling volumes of 1 mm (streamwise) x 1 mm (wall-normal) x 1 mm (spanwise); (ii) turbulent flows over smooth and rough surfaces (1.1 mm vector spacing within 15 mm x 50 mm x 15 mm); (iii) 3D distribution and kinematics of inertial particles in turbulent air duct flow.
Formulation, stability and application of a semi-coupled 3-D four-field algorithm
Kunz, R.F.; Siebert, B.W.; Cope, W.K.; Foster, N.F.; Antal, S.P.; Ettorre, S.M.
1996-06-01
A new 3-D four-field algorithm has been developed to predict general two-phase flows. Ensemble averaged transport equations of mass, momentum, energy and turbulence transport are solved for each field (continuous liquid, continuous vapor, disperse liquid, disperse vapor). This four-field structure allows for analysis of adiabatic and boiling systems which contain flow regimes from bubbly through annular. Interfacial mass, momentum, turbulence and heat transfer models provide coupling between phases. A new semi-coupled implicit method is utilized to solve the set of 25 equations which arise in the formulation. In this paper, three important component numerical strategies employed in the method are summarized. These include: (1) incorporation of interfacial momentum force terms in the control volume face flux reconstruction, (2) phase coupling at the linear solver level, and in the pressure-velocity coupling itself and (3) a multi-step Jacobi block correction scheme for efficient solution of the pressure-Poisson equation. The necessity/effectiveness of these strategies is demonstrated in applications to realistic engineering flows. Though some heated flow test cases are considered, the particular numerics discussed here are germane to adiabatic flows with and without mass transfer.
Eulerian and Lagrangian methods for vortex tracking in 2D and 3D flows
NASA Astrophysics Data System (ADS)
Huang, Yangzi; Green, Melissa
2014-11-01
Coherent structures are a key component of unsteady flows in shear layers. Improvement of experimental techniques has led to larger amounts of data and requires of automated procedures for vortex tracking. Many vortex criteria are Eulerian, and identify the structures by an instantaneous local swirling motion in the field, which are indicated by closed or spiral streamlines or pathlines in a reference frame. Alternatively, a Lagrangian Coherent Structures (LCS) analysis is a Lagrangian method based on the quantities calculated along fluid particle trajectories. In the current work, vortex detection is demonstrated on data from the simulation of two cases: a 2D flow with a flat plate undergoing a 45 ° pitch-up maneuver and a 3D wall-bounded turbulence channel flow. Vortices are visualized and tracked by their centers and boundaries using Γ1, the Q criterion, and LCS saddle points. In the cases of 2D flow, saddle points trace showed a rapid acceleration of the structure which indicates the shedding from the plate. For channel flow, saddle points trace shows that average structure convection speed exhibits a similar trend as a function of wall-normal distance as the mean velocity profile, and leads to statistical quantities of vortex dynamics. Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.
NASA Astrophysics Data System (ADS)
Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan
2016-04-01
Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.
Reacting Multi-Species Gas Capability for USM3D Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Schuster, David M.
2012-01-01
The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.
Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1997-01-01
This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
Invariant superoscillatory electromagnetic fields in 3D-space
NASA Astrophysics Data System (ADS)
Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.
2017-01-01
We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.
Event-Based 3D Motion Flow Estimation Using 4D Spatio Temporal Subspaces Properties.
Ieng, Sio-Hoi; Carneiro, João; Benosman, Ryad B
2016-01-01
State of the art scene flow estimation techniques are based on projections of the 3D motion on image using luminance-sampled at the frame rate of the cameras-as the principal source of information. We introduce in this paper a pure time based approach to estimate the flow from 3D point clouds primarily output by neuromorphic event-based stereo camera rigs, or by any existing 3D depth sensor even if it does not provide nor use luminance. This method formulates the scene flow problem by applying a local piecewise regularization of the scene flow. The formulation provides a unifying framework to estimate scene flow from synchronous and asynchronous 3D point clouds. It relies on the properties of 4D space time using a decomposition into its subspaces. This method naturally exploits the properties of the neuromorphic asynchronous event based vision sensors that allows continuous time 3D point clouds reconstruction. The approach can also handle the motion of deformable object. Experiments using different 3D sensors are presented.
Event-Based 3D Motion Flow Estimation Using 4D Spatio Temporal Subspaces Properties
Ieng, Sio-Hoi; Carneiro, João; Benosman, Ryad B.
2017-01-01
State of the art scene flow estimation techniques are based on projections of the 3D motion on image using luminance—sampled at the frame rate of the cameras—as the principal source of information. We introduce in this paper a pure time based approach to estimate the flow from 3D point clouds primarily output by neuromorphic event-based stereo camera rigs, or by any existing 3D depth sensor even if it does not provide nor use luminance. This method formulates the scene flow problem by applying a local piecewise regularization of the scene flow. The formulation provides a unifying framework to estimate scene flow from synchronous and asynchronous 3D point clouds. It relies on the properties of 4D space time using a decomposition into its subspaces. This method naturally exploits the properties of the neuromorphic asynchronous event based vision sensors that allows continuous time 3D point clouds reconstruction. The approach can also handle the motion of deformable object. Experiments using different 3D sensors are presented. PMID:28220057
Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization
NASA Astrophysics Data System (ADS)
Zhu, Fang; Jin, Donghai; Gui, Xingmin
2012-02-01
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.
Measuring heterogenous stress fields in a 3D colloidal glass
NASA Astrophysics Data System (ADS)
Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai
Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.
Neoclassical Tearing Mode Locking Avoidance by 3D Fields and Recovery of High Confinement
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Budny, B.; Brennan, D.; Ferraro, N.; Grierson, B.; Jardin, S.; Logan, N.; Nazikian, R.; Tobias, B.; Wang, Z.; Strait, E.; de Grassie, J.; La Haye, R.; Paz-Soldan, C.; Taylor, Z.; Shiraki, D.; Hanson, J.; Holcomb, C.; Liu, Y.
2016-10-01
A slowly rotating n=1 helical magnetic field has been applied for Neoclassical Tearing Mode (NTM) locking avoidance in the DIII-D tokamak. This 3D field applied through feedback recovered a high performance configuration by rebuilding a H-mode edge and high ion temperature internal transport barrier in the plasma core, although, at present, the βn was reduced by 30%. The m/n=2/1 component of 3D field served to avoid NTM locking, while the m/n=1 and the m/n=(4-5)/1 components recover core confinement and H-mode edge. Preliminary analysis shows a quasi-steady helical plasma flow was built up around the core, mostly parallel to the equilibrium magnetic field. The optimization of m-components with n=1 is a promising approach for integrating optimizations of MHD stability from core to edge. Supported in part by the US DOE under DE-AC02-09CH11466, DE-FG02-99ER54531, DE-SC0003913 and DE-FC02-04ER54698.
3D fingerprint imaging system based on full-field fringe projection profilometry
NASA Astrophysics Data System (ADS)
Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili
2014-01-01
As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
Inverse Cascades Sustained by the Transfer Rate of Angular Momentum in a 3D Turbulent Flow
NASA Astrophysics Data System (ADS)
López-Caballero, Miguel; Burguete, Javier
2013-03-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
Model studies of blood flow in basilar artery with 3D laser Doppler anemometer
NASA Astrophysics Data System (ADS)
Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.
2015-03-01
It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.
Adaptive 3D single-block grids for the computation of viscous flows around wings
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
Increasing the depth of field in Multiview 3D images
NASA Astrophysics Data System (ADS)
Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon
2016-06-01
A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.
Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study
NASA Astrophysics Data System (ADS)
Raine-Fenning, N. J.; Ramnarine, K. V.; Nordin, N. M.; Campbell, B. K.
2004-01-01
Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler vascularity indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating vascularity indices with flow.
Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner
NASA Astrophysics Data System (ADS)
Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki
The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.
HPIV based volumetric 3D flow description in the roughness sublayer of a turbulent channel flow
NASA Astrophysics Data System (ADS)
Talapatra, Siddharth; Katz, Joseph
2011-11-01
Microscopic HPIV is utilized to resolve the 3D flow in the roughness sublayer of a boundary layer over a rough wall at Reτ=3400, consisting of pyramidal elements with height of k=0.45mm and 3.3mm wavelength. Typically, ~7000 particles are tracked in a 3.2 ×2.1 ×1.8mm3 volume, whose wall-normal extent is -0.2 < y / k < 4.67, y=0 being the roughness peak. These measurements are facilitated by matching the refractive index of the fluid with that of the acrylic rough wall. Results show that the sublayer is flooded by complex coherent structures scaled between 1-2 k. They are mostly aligned with roughness grooves, but some wrap around the pyramids, and stretch to a streamwise orientation by a relatively fast channeling flow that develops between the pyramid ridgelines. Occasionally, structures eject away from the roughness sublayer at a steep angle to the mean flow. Using the 300 realizations processed so far, the spatial variations in mean velocity and Reynolds stresses are compared to 2D PIV results, and trends generally (but not always) agree. In particular, there is a rapid increase in all Reynolds stress components close y=0. Conditional sampling is used to extract statistically significant structures. Sponsored by ONR (grant No. 000140-91-10-0-7).
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Yoon, H.; Martinez, M. J.
2015-12-01
Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
3-D explosions: a meditation on rotation (and magnetic fields)
NASA Astrophysics Data System (ADS)
Wheeler, J. C.
This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!
Time-lapse 3D VSP monitoring of a carbon dioxide injection project at Delhi Field, Louisiana
NASA Astrophysics Data System (ADS)
Lubis, Muhammad Husni Mubarak
Delhi Field is a producing oil field located in northeastern Louisiana. The estimated original oil in place (OOIP) is 357 mmbo and approximately 54% of OOIP has been produced through the primary production and water-flooding. A CO2-EOR program has been implemented since November 2009 to recover an additional 17% of OOIP. Reservoir surveillance using time-lapse 3D seismic data has been conducted to monitor the CO2 sweep efficiency. The goal of this study is to monitor the CO2 flow-path in the area around the injector using time-lapse 3D VSP data. For this purpose, two 3D VSPs acquired in June 2010 and again in August 2011 were processed together. Fluid substitution and VSP modeling were performed to understand the influence of pore-fluid saturation change on VSP records. A cross-equalization was performed to improve the similarity of the datasets. This step is important to reduce the ambiguity in time-lapse observation. The splice of a 3D VSP image into the surface seismic data becomes the key point in determining the reflector of the reservoir. By integrating the observation from the modeling and the splice of 3D VSP image to surface seismic, the CO2 flow-path from injector 164-3 can be identified from 3D time-lapse VSP data. The CO2 was not radially distributed around the injector, but moved toward southwest direction. This finding is also consistent with the flow-path interpreted from surface seismic. This consistency implies that time-lapse 3D VSP surveys at Delhi Field confirm and augment the time-lapse interpretation from surface seismic data.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.
Haessler, Ulrike; Teo, Jeremy C M; Foretay, Didier; Renaud, Philippe; Swartz, Melody A
2012-04-01
The migration of cells such as leukocytes, tumor cells, and fibroblasts through 3D matrices is critical for regulating homeostasis and immunity and for driving pathogenesis. Interstitial flow through the extracellular matrix, which can substantially increase during inflammation and in the tumor microenvironment, can influence cell migration in multiple ways. Leukocytes and tumor cells are heterogeneous in their migration responses to flow, yet most 3D migration studies use endpoint measurements representing average characteristics. Here we present a robust new microfluidic device for 3D culture with live imaging under well-controlled flow conditions, along with a comparison of analytical methods for describing the migration behavior of heterogeneous cell populations. We then use the model to provide new insight on how interstitial flow affects MDA-MB-231 breast cancer cell invasion, phenomena that are not seen from averaged or endpoint measurements. Specifically, we find that interstitial flow increases the percentage of cells that become migratory, and increases migrational speed in about 20% of the cells. It also increases the migrational persistence of a subpopulation (5-10% of cells) in the positive or negative flow direction. Cells that migrated upstream moved faster but with less directedness, whereas cells that migrated in the direction of flow moved at slower speeds but with higher directedness. These findings demonstrate how fluid flow in the tumor microenvironment can enhance tumor cell invasion by directing a subpopulation of tumor cells in the flow direction; i.e., towards the draining lymphatic vessels, a major route of metastasis.
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable
Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows
NASA Technical Reports Server (NTRS)
Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.
1999-01-01
A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
Using flow information to support 3D vessel reconstruction from rotational angiography
Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.
2008-07-15
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute
Using flow information to support 3D vessel reconstruction from rotational angiography.
Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C; Hawkes, David J
2008-07-01
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute
Motion field and optical flow: Qualitative properties
NASA Astrophysics Data System (ADS)
Verri, Alessandro; Poggio, Tomaso
1986-12-01
The optical flow, a 2-D field that can be associated with the variation of the image brightness pattern, and the 2-D motion field, the projection on the image plane of the 3-D velocity field of a moving scene, are in general different, unless very special conditions are satisfied. The optical flow, therefore, is ill suited for computing structure from motion, and for reconstructing the 3-D velocity field, problems that require an accurate estimate of the 2-D motion field. A different use of the optical flow is suggested. Stable field and the 3-D structure of the scene, and they can usually be obtained from the optical flow. The smoothed optical flow and 2-D motion field, interpreted as vector fields tangent to flows of planar dynamical systems, may have the same qualitative properties from the point of view of the theory of structural stability of dynamical systems.
3-D model of a radial flow sub-watt methanol fuel processor
Holladay, J. D.; Wang, Y.
2015-10-01
A 3-D model is presented for a novel sub-watt packed bed reactor. The reactor uses an annular inlet flow combined with a radial flow packed bed reactor. The baseline reactor is compared to a reactor with multiple outlets and a reactor with 3 internal fins. Increasing the outlets from 1 to 4 did improve the flow distribution, but did not increase the performance in the simulation. However, inserting fins allowed a decrease in temperature with same inlet flow of approximately 35K. Or the inlet flow rate could be increased by a factor of 2.8x while maintaining >99% conversion.
Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.
Lade, Robert K; Hippchen, Erik J; Macosko, Christopher W; Francis, Lorraine F
2017-03-28
Microchannels have applications in microfluidic devices, patterns for micromolding, and even flexible electronic devices. Three-dimensional (3D) printing presents a promising alternative manufacturing route for these microchannels due to the technology's relative speed and the design freedom it affords its users. However, the roughness of 3D printed surfaces can significantly influence flow dynamics inside of a microchannel. In this work, open microchannels are fabricated using four different 3D printing techniques: fused deposition modeling (FDM), stereolithography (SLA), selective laser sintering, and multi jet modeling. Microchannels printed with each technology are evaluated with respect to their surface roughness, morphology, and how conducive they are to spontaneous capillary filling. Based on this initial assessment, microchannels printed with FDM and SLA are chosen as models to study spontaneous, capillary-driven flow dynamics in 3D printed microchannels. Flow dynamics are investigated over short (∼10(-3) s), intermediate (∼1 s), and long (∼10(2) s) time scales. Surface roughness causes a start-stop motion down the channel due to contact line pinning, while the cross-sectional shape imparted onto the channels during the printing process is shown to reduce the expected filling velocity. A significant delay in the onset of Lucas-Washburn dynamics (a long-time equilibrium state where meniscus position advances proportionally to the square root of time) is also observed. Flow dynamics are assessed as a function of printing technology, print orientation, channel dimensions, and liquid properties. This study provides the first in-depth investigation of the effect of 3D printing on microchannel flow dynamics as well as a set of rules on how to account for these effects in practice. The extension of these effects to closed microchannels and microchannels fabricated with other 3D printing technologies is also discussed.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
3D Mesh Segmentation Based on Markov Random Fields and Graph Cuts
NASA Astrophysics Data System (ADS)
Shi, Zhenfeng; Le, Dan; Yu, Liyang; Niu, Xiamu
3D Mesh segmentation has become an important research field in computer graphics during the past few decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. However, only a few algorithms based on Markov Random Field (MRF) has been presented for 3D object segmentation. In this letter, we present a definition of mesh segmentation according to the labeling problem. Inspired by the capability of MRF combining the geometric information and the topology information of a 3D mesh, we propose a novel 3D mesh segmentation model based on MRF and Graph Cuts. Experimental results show that our MRF-based schema achieves an effective segmentation.
Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment.
Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto
2013-07-26
We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this "ghost particle velocimetry" technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.
A digital holography set-up for 3D vortex flow dynamics
NASA Astrophysics Data System (ADS)
Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme
2016-06-01
In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
A cross-platform solution for light field based 3D telemedicine.
Wang, Gengkun; Xiang, Wei; Pickering, Mark
2016-03-01
Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience.
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
Flow effects of blood constitutive equations in 3D models of vascular anomalies
NASA Astrophysics Data System (ADS)
Neofytou, Panagiotis; Tsangaris, Sokrates
2006-06-01
The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-06
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.
FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves
Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng
2016-01-01
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. PMID:27657066
FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.
Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng
2016-09-19
In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.
Thermal analysis modeling and simulation of spent nuclear fuel canister using CFDS-FLOW3D
Lee, S.Y.
1995-04-01
The computational fluid dynamics (CFD) code CFDS-FLOW3D (version 3.3) has been utilized to model a three-dimensional thermal analysis of the spent nuclear fuel dry storage mockup test. The Experimental Thermal-Fluids (ETF) group obtained experimental data to benchmark computer codes for verifying the dry storage of aluminum-clad spent nu clear fuel. This report provides CFDS-FLOW3D detailed predictions and benchmark, against the test data. Close comparison of the computational results with the experimental data provide verification that the code can be used to predict reasonably accurate convective flow and thermal behavior of a typical foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design tested, while stored in a dry storage facility.
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
SALE-3D: a simplified ALE computer program for calculating three-dimensional fluid flow
Amsden, A.A.; Ruppel, H.M.
1981-11-01
This report presents a simplified numerical fluid-dynamics computing technique for calculating time-dependent flows in three dimensions. An implicit treatment of the pressure equation permits calculation of flows far subsonic without stringent constraints on the time step. In addition, the grid vertices may be moved with the fluid in Lagrangian fashion or held fixed in an Eulerian manner, or moved in some prescribed manner to give a continuous rezoning capability. This report describes the combination of Implicit Continuous-fluid Eulerian (ICE) and Arbitrary Lagrangian-Eulerian (ALE) to form the ICEd-ALE technique in the framework of the Simplified-ALE (SALE-3D) computer program, for which a general flow diagram and complete FORTRAN listing are included. Sample problems show how to modify the code for a variety of applications. SALE-3D is patterned as closely as possible on the previously reported two-dimensional SALE program.
NASA Astrophysics Data System (ADS)
Gubchenko, V. M.
2015-12-01
The formation of magnetic structures in moving hot solar coronal plasma and hot collisionless laser-produced plasma, as determined by nonlinear criteria for weak and strong magnetization on the basis of the friction parameter Γ B and Alfven number M A, is considered within the Vlasov and Maxwell equations in the second part of the work. The flow velocities are lower then the thermal electron velocity. The energy and pulse anisotropy parameters of a flow, which determine its electromagnetic properties in the Cherenkov resonance line, are calculated by shape of particle distribution function (PDF). The ratio of these parameters is the Q-factor G V ; it characterizes the electromagnetic properties of a plasma flow and is expressed via the ratio of diamagnetic and resistive current densities or via the ratio of irregular and diamagnetic plasma scales. A particle flow is similar to a conductive medium at G V ≪ 1 and a diamagnetic medium at G V ≫ 1. The following cases are considered. (1) A plasma flow is specified by an isotropic PDF and interacts with distributed magnetization. Expressions for anisotropy parameters are derived, 3D field structures in the tail wake are found, and a possibility of topological reconstruction into a compact state under variation in the parameter G V is shown. (2) A plasma flow is specified by an isotropic PDF; a steady-state diamagnetic current layer, characterized by an anisotropic PDF, is immersed inside it. The system is in the diamagnetic state G ≫ 1. The generalized anisotropy parameter is calculated and a possibility of the excitation of three types of diamagnetic structures with low resistive currents is shown. (3) The nonlinear dynamics of anisotropic quasi-current-free plasma ( G =-1), in which the diamagnetic and resistive current densities locally compensate each other in the phase space of particle velocities, is studied. This dynamics is implemented in the long wavelength limit in plasma with an anisotropic PDF.
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar
2013-08-01
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications.
NASA Astrophysics Data System (ADS)
Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri
2013-04-01
PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
Phatak, Charudatta; Knoop, Ludvig de; Houdellier, Florent; Gatel, Christophe; Hytch, Martin J.; Masseboeuf, Aurelien
2016-03-10
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Furthermore the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
Phatak, Charudatta; Knoop, Ludvig de; Houdellier, Florent; ...
2016-03-10
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Furthermore the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.
NASA Technical Reports Server (NTRS)
Fleming, J. L.; Simpson, R. L.
1997-01-01
Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.
Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.
1996-01-01
This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.
How 3D seismic-CAEX combination affected development of N. Frisco City field in Alabama
Stephenson, M.; Cox, J.; Jones-Fuentes, P. )
1992-10-26
This paper reports that by applying the latest in 3D seismic and computer aided exploration and production (CAEX) technology, small and mid-size independents are changing the methods by which fields are discovered and profitably developed. The combination of 3D and CAEX has, in many cases, altered oilfield economics. Nuevo Energy Co.'s North Frisco City development---located in the updip Jurassic Haynesville trend of Southwest Alabama---offers a case in point. The 3D technology employed at North Frisco City produced and accurate, detailed picture of the subsurface. Ultimately it more than doubled the drilling success rate over that of a nearby, closely related field in which 3D was not used.
A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.
2005-01-01
A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC
NASA Astrophysics Data System (ADS)
Velas, K. M.; Milroy, R. D.
2012-10-01
A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.
An Experimental Study of Mixing Dynamics in 3D Granular Flows
NASA Astrophysics Data System (ADS)
Zaman, Zafir
Compared with the mixing of fluids, the mixing and segregation of granular materials remains one of the big questions of science. Unlike fluids, granular materials segregate based on differences in particle properties, such as density and size. For 2D granular flows, a dynamical systems framework has been effective in describing regions of mixing and segregation. However, computational and theoretical results are just starting to form a framework for 3D granular flows, such as the bi-axial spherical tumbler (BST) flow. This thesis builds on this emerging framework through a series of experimental studies with theoretical and model support with the goal of better understanding 3D mixing. The first study tests the commonly used assumption in continuum models of granular flow that single axis tumbler flow is two dimensional. Utilizing both surface and destructive subsurface imaging, this study shows that weak 3D deviations occur in the form of an axial drift within single axis tumbler flow of varying material spanwise depth. Afterward, this thesis focuses on the development of a custom-built X-ray imaging system to non-destructively visualize the tumbler subsurface. The second study revisits the axial drift and demonstrates that wall roughness impacts the curvature and overall displacement of particle trajectories throughout the tumbler domain using subsurface particle trajectories provided by the X-ray imaging system. Finally, mixing in the fully 3D BST flow is studied. In particular, 3D persistent mixing barriers that are predicted by the dynamical systems framework are shown to exist. Some barriers are remarkably persistent for as much as 500 protocol iterations despite the presence of collisional diffusion. The structures arise from two competing effects, the cutting and shuffling action of the protocol and the stretching from the flowing layer. The tumbling protocol controls the mixing behavior as well as the types of non-mixing barriers observed. Supplementary
NASA Astrophysics Data System (ADS)
Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga
2017-03-01
Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.
Switchable 3D optofluidic Y-branch waveguides tuned by Dean flows
Li, L.; Zhu, X.Q.; Liang, L.; Zuo, Y. F.; Xu, Y. S.; Yang, Y.; Yuan, Y. J.; Huang, Q. Q.
2016-01-01
Optical branch waveguides are one of the most important optical elements and have been widely exploited for optical communication systems. However, prevailing devices are typically solid and have limit in tunability. Liquid optical devices have attracted more interest for the advantage of tunability of liquid media, but their signals suffer serious leakage if the refractive index (RI) of liquid is smaller than that of solid channels. This paper demonstrates the tunable three-dimensional (3D) optofluidic Y-branch waveguides in plannar microchannels by simply introducing Dean flow. This device can reconfigure 3D Y-branch profiles and separate the intensity of light as tunable ratio from 0 to 1 by adjusting the flow rates with low loss. Different from the prevailing 2D liquid counterparts, the 3D configuration offer much more freedom in the selection of liquid media as liquid’s RI can be totally independent to the solid channel structure. The transmission loss through the device is estimated to 0.97 db when the splitting angle is 10°, which shows the light is confined better in the 3D liquid structures than traditional 2D liquid counterparts. The Y-branch waveguides show potential in applications of integrated optofluidic devices. PMID:27910958
Switchable 3D optofluidic Y-branch waveguides tuned by Dean flows
NASA Astrophysics Data System (ADS)
Li, L.; Zhu, X. Q.; Liang, L.; Zuo, Y. F.; Xu, Y. S.; Yang, Y.; Yuan, Y. J.; Huang, Q. Q.
2016-12-01
Optical branch waveguides are one of the most important optical elements and have been widely exploited for optical communication systems. However, prevailing devices are typically solid and have limit in tunability. Liquid optical devices have attracted more interest for the advantage of tunability of liquid media, but their signals suffer serious leakage if the refractive index (RI) of liquid is smaller than that of solid channels. This paper demonstrates the tunable three-dimensional (3D) optofluidic Y-branch waveguides in plannar microchannels by simply introducing Dean flow. This device can reconfigure 3D Y-branch profiles and separate the intensity of light as tunable ratio from 0 to 1 by adjusting the flow rates with low loss. Different from the prevailing 2D liquid counterparts, the 3D configuration offer much more freedom in the selection of liquid media as liquid’s RI can be totally independent to the solid channel structure. The transmission loss through the device is estimated to 0.97 db when the splitting angle is 10°, which shows the light is confined better in the 3D liquid structures than traditional 2D liquid counterparts. The Y-branch waveguides show potential in applications of integrated optofluidic devices.
Understanding thermal Marangoni flow in water sessile evaporating drops via 3D-PTV
NASA Astrophysics Data System (ADS)
Rossi, Massimiliano; Marin, Alvaro; Kaehler, Christian J.
2016-11-01
Understanding the flow inside sessile evaporating drops is of great interest both from a fundamental and technological point of view. Despite strong research efforts in the recent years, a complete picture on the phenomena involved in this process and a way to control them is still far to be reached. This is due to a lack of reliable experimental data on the internal flow but more dramatically on the interfacial flow. A relevant open debate concerns the role played by the Marangoni flow induced by thermal gradients. We recently show how 3D particle tracking techniques are suitable to measure the internal flow of drops and to derive quantities such as surface shear and surface tension differences. Such experiments also indicated an increase of the thermal Marangoni flow as the droplet becomes thinner, in disagreement with current theoretical models and simulations. A possible reason for that could be a discrepancy of the imposed boundary conditions in the simulations and the experimental ones. This work follows up these observations with fully 3D time-resolved measurements of the flow inside drops evaporating on a quartz substrate, which temperature is controlled using a feedback temperature control and a microscope incubator system. Supported by DFG, Grant No. KA 1808/22.
Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.
2013-12-01
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater
3D-xy critical properties of YBa2Cu4O8 and magnetic-field-induced 3D to 1D crossover
NASA Astrophysics Data System (ADS)
Weyeneth, S.; Schneider, T.; Bukowski, Z.; Karpinski, J.; Keller, H.
2008-08-01
We present reversible magnetization data of a YBa2Cu4O8 single crystal and analyze the evidence for 3D-xy critical behavior and a magnetic-field-induced 3D to 1D crossover. Remarkable consistency with these phenomena is observed in agreement with a magnetic-field-induced finite size effect, whereupon the correlation length transverse to the applied magnetic field cannot grow beyond the limiting magnetic length scale LH = (Φ0/(aH))1/2. By applying the appropriate scaling form we obtain the zero-field critical temperature, the 3D to 1D crossover, the vortex melting line and the universal ratios of the related scaling variables. Accordingly there is no continuous phase transition in the (H,T) plane along the Hc2 lines as predicted by the mean-field treatment.
On the magnetotransport of 3D systems in quantizing magnetic field
NASA Astrophysics Data System (ADS)
Cheremisin, M. V.
2014-12-01
The resistivity components of 3D electron gas placed in quantizing magnetic field are calculated taking into account the correction caused by combined action of the Peltier and Seebeck thermoelectric effects. The longitudinal, transverse and the Hall magnetoresistivities exhibit familiar 1/B-period oscillations being universal functions of magnetic field and temperature.
Simulation of a 3D unsteady flow in an axial turbine stage
NASA Astrophysics Data System (ADS)
Straka, Petr
2012-04-01
The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.
NASA Astrophysics Data System (ADS)
Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin
2016-11-01
The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.
Numerical investigations on cavitation intensity for 3D homogeneous unsteady viscous flows
NASA Astrophysics Data System (ADS)
Leclercq, C.; Archer, A.; Fortes-Patella, R.
2016-11-01
The cavitation erosion remains an industrial issue. In this paper, we deal with the cavitation intensity which can be described as the aggressiveness - or erosive capacity - of a cavitating flow. The estimation of this intensity is a challenging problem both in terms of modelling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a model was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. An intensity model based on pressure and void fraction derivatives was developped and applied to a NACA 65012 hydrofoil tested at LMH-EPFL (École Polytechnique Fédérale de Lausanne) [1]. 2D and 3D unsteady cavitating simulations were performed using a homogeneous model with void fraction transport equation included in Code_Saturne with cavitating module [2]. The article presents a description of the numerical code and the physical approach considered. Comparisons between 2D and 3D simulations, as well as between numerical and experimental results obtained by pitting tests, are analyzed in the paper.
Nonhydrostatic granular flow over 3-D terrain: New Boussinesq-type gravity waves?
NASA Astrophysics Data System (ADS)
Castro-Orgaz, Oscar; Hutter, Kolumban; Giraldez, Juan V.; Hager, Willi H.
2015-01-01
granular mass flow is a basic step in the prediction and control of natural or man-made disasters related to avalanches on the Earth. Savage and Hutter (1989) pioneered the mathematical modeling of these geophysical flows introducing Saint-Venant-type mass and momentum depth-averaged hydrostatic equations using the continuum mechanics approach. However, Denlinger and Iverson (2004) found that vertical accelerations in granular mass flows are of the same order as the gravity acceleration, requiring the consideration of nonhydrostatic modeling of granular mass flows. Although free surface water flow simulations based on nonhydrostatic depth-averaged models are commonly used since the works of Boussinesq (1872, 1877), they have not yet been applied to the modeling of debris flow. Can granular mass flow be described by Boussinesq-type gravity waves? This is a fundamental question to which an answer is required, given the potential to expand the successful Boussinesq-type water theory to granular flow over 3-D terrain. This issue is explored in this work by generalizing the basic Boussinesq-type theory used in civil and coastal engineering for more than a century to an arbitrary granular mass flow using the continuum mechanics approach. Using simple test cases, it is demonstrated that the above question can be answered in the affirmative way, thereby opening a new framework for the physical and mathematical modeling of granular mass flow in geophysics, whereby the effect of vertical motion is mathematically included without the need of ad hoc assumptions.
Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian
2016-01-01
Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632
Fluid Flow Processes Study: from a 3D seismic data set in the Pointer Ridge offshore SW Taiwan
NASA Astrophysics Data System (ADS)
Han, Wei-Chung; Liu, Char-Shine; Chen, Liwen; Chi, Wu-Cheng; Lin, Che-Chuan
2016-04-01
This study analyzes a 3D seismic cube in the Pointer Ridge for understanding the fluid flow processes in subsurface. Pointer Ridge is a ridge situated on the passive China continental margin and is suggested as a potential prospect for future gas hydrate development. High methane flux rate, active gas venting and seismic chimneys have been observed in this area, which are direct evidences for active ongoing fluid migration processes. To find the possible fluid conduits and to understand how the fluids have migrated along those conduits, we firstly identify the structural and sedimentary features from this 3D seismic cube in our study area. Secondly, seismic attribute analyses are carried out for detecting fluid conduits and evaluating the contribution of recognized faults/fractures for fluid flow, respectively. Finally, we propose conceptual models to illustrate how fluids have migrated along those conduits to the seafloor and how those conduits have developed. The results show: 1) a major NE-SW striking normal fault (PR Fault) separates a depositional field on the hanging wall and a erosional field on the footwall; 2) the PR Fault zone itself and the chimneys in its footwall act as main conduits for focused fluid flow migrating to the seafloor; 3) the development of the chimneys in the Pointer Ridge area are highly controlled by the erosion and deposition processes. Since the ongoing fluid flow processes will increase the seafloor instabilities and the Pointer Ridge is a gas hydrate leaking site, our results could provide useful information for further risk evaluation.
Analysis of periodic 3D viscous flows using a quadratic discrete Galerkin boundary element method
NASA Astrophysics Data System (ADS)
Chan, Chiu Y.; Beris, Antony N.; Advani, Suresh G.
1994-05-01
A discrete Galerkin boundary element technique with a quadratic approximation of the variables was developed to simulate the three-dimensional (3D) viscous flow established in periodic assemblages of particles in suspensions and within a periodic porous medium. The Batchelor's unit-cell approach is used. The Galerkin formulation effectively handles the discontinuity in the traction arising in flow boundaries with edges or corners, such as the unit cell in this case. For an ellipsoidal dilute suspension over the range of aspect ratio studied (1 to 54), the numerical solutions of the rotational velocity of the particles and the viscosity correction were found to agree with the analytic values within 0.2% and 2% respectively, even with coarse meshes. In a suspension of cylindrical particles the calculated period of rotation agreed with the experimental data. However, Burgers' predictions for the correction to the suspension viscosity were found to be 30% too low and therefore the concept of the equivalent ellipsoidal ratio is judged to be inadequate. For pressure-driven flow through a fixed bed of fibers, the prediction on the permeability was shown to deviate by as much as 10% from the value calculated based on approximate permeability additivity rules using the corresponding values for planar flow past a periodic array of parallel cylinders. These applications show the versatility of the technique for studying viscous flows in complicated 3D geometries.
Numerical and experimental study of gas flows in 2D and 3D microchannels
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Chihyung; Alexeenko, Alina; Sullivan, John
2008-02-01
In the experiments conducted at Purdue, the air flow in rectangular cross-section microchannels was investigated using pressure sensitive paint. The high resolution pressure measurements were obtained for inlet-to-outlet pressure ratios from 1.76 to 20 with the outlet Knudsen numbers in the range from 0.003 to 0.4 based on the hydraulic diameter of 151.7 µm and the length-to-height ratio of about 50. In the slip flow regime, the air flow was simulated by the 2D and 3D Navier-Stokes equations with no-slip and slip boundary conditions. For various pressure ratios, the entrance flow development, compressibility and rarefaction effects were observed in both experiments and numerical simulations. It was found that the accurate modeling of gas flows in finite-length channels requires the inlet and outlet reservoirs to be included in computations. Effects of entrance geometry on the friction factor were studied for 3D cases. In both experiments and numerical modeling, significant pressure drop was found starting at the inlet chamber. The numerical modeling also predicted an apparent temperature drop at the channel exit.
A modular segmented-flow platform for 3D cell cultivation.
Lemke, Karen; Förster, Tobias; Römer, Robert; Quade, Mandy; Wiedemeier, Stefan; Grodrian, Andreas; Gastrock, Gunter
2015-07-10
In vitro 3D cell cultivation is promised to equate tissue in vivo more realistically than 2D cell cultivation corresponding to cell-cell and cell-matrix interactions. Therefore, a scalable 3D cultivation platform was developed. This platform, called pipe-based bioreactors (pbb), is based on the segmented-flow technology: aqueous droplets are embedded in a water-immiscible carrier fluid. The droplet volumes range from 60 nL to 20 μL and are used as bioreactors lined up in a tubing like pearls on a string. The modular automated platform basically consists of several modules like a fluid management for a high throughput droplet generation for self-assembly or scaffold-based 3D cell cultivation, a storage module for incubation and storage, and an analysis module for monitoring cell aggregation and proliferation basing on microscopy or photometry. In this report, the self-assembly of murine embryonic stem cells (mESCs) to uniformly sized embryoid bodies (EBs), the cell proliferation, the cell viability as well as the influence on the cell differentiation to cardiomyocytes are described. The integration of a dosage module for medium exchange or agent addition will enable pbb as long-term 3D cell cultivation system for studying stem cell differentiation, e.g. cardiac myogenesis or for diagnostic and therapeutic testing in personalized medicine.
Realistic 3D coherent transfer function inverse filtering of complex fields
Cotte, Yann; Toy, Fatih M.; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-01-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation. PMID:21833359
Realistic 3D coherent transfer function inverse filtering of complex fields.
Cotte, Yann; Toy, Fatih M; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-08-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.
Zapiór, Maciej; Martinez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.
Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations
NASA Astrophysics Data System (ADS)
Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
Evidence of Toroidally Localized Turbulence with Applied 3D Fields in the DIII-D Tokamak.
Wilcox, R S; Shafer, M W; Ferraro, N M; McKee, G R; Zeng, L; Rhodes, T L; Canik, J M; Paz-Soldan, C; Nazikian, R; Unterberg, E A
2016-09-23
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.; Canik, J. M.; Paz-Soldan, C.; Nazikian, R.; Unterberg, E. A.
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.
3D image-based characterization and flow modeling of quartz-filled microfractures
NASA Astrophysics Data System (ADS)
Prodanovic, M.; Eichhubl, P.; Bryant, S. L.; Davis, J. S.; Wanat, E. C.
2011-12-01
Accurate representation of geometry has first order influence on multiphase fluid flow in porous media on all relevant scales. 3D X-Ray computed microtomography (XCMT) has proved crucial in providing geometry information of many porous and fractured media of interest. Here we characterize 3D XCMT images of natural, quartz-filled fractures in tight gas sandstone from Piceance Basin, Colorado, and then build a representative flow model. While many rough-walled fractures have been analyzed/modeled using XCMT, this is to our knowledge the first 3D characterization and flow modeling of quartz-filled fractures. Natural quartz-filled fractures in samples analyzed are found to be very constricted, with many crystals bridging across the fracture but keeping large portions open to flow. In addition, this causes extreme local aperture variation. The affiliated pore space can be divided into fracture pores connected via very tight channels: a characterization typical for sandstones rather than microfractures, but with aspect ratios much higher than those found in sandstones. Single phase flow simulation in these network shows that the absolute permeability is about 100 times larger than in a conventional sandstone. We further simulate two phase fluid displacement directly in the pore space (using level-set based progressive quasi-static algorithm): both drainage and imbibition are characterized by discrete jumps in capillary-pressure vs. saturation relationships, as well as large residual saturations. Future work will include connecting the fracture network that represents both inter-granular and intra-granular porosity in the neighboring matrix.
Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.
3D-PTV measurement of the phototactic movement of algae in shear flow
NASA Astrophysics Data System (ADS)
Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami
2012-11-01
Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.
NASA Astrophysics Data System (ADS)
Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.
2014-01-01
A new approach was proposed for simulation of unsteady cavitating flow in the flow passage of a hydraulic power plant. 1D hydro-acoustics equations are solved in the penstock domain. 3D equations of turbulent flow of isothermal compressible liquid-vapor mixture are solved in the turbine domain. Cavitation is described by a transfer equation for liquid phase with a source term which is responsible for evaporation and condensation. The developed method was applied for simulation of pulsations in pressure, discharge, and total energy propagating along the flow conduit of the hydraulic power plant. Simulation results are in qualitative and quantitative agreement with experiment. The influence of key physical and numerical parameters like discharge, cavitation number, penstock length, time step, and vapor density on simulation results was studied.
Slip flow through a converging microchannel: experiments and 3D simulations
NASA Astrophysics Data System (ADS)
Varade, Vijay; Agrawal, Amit; Pradeep, A. M.
2015-02-01
An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image
NASA Technical Reports Server (NTRS)
Wang, Cuilan; Newman, Timothy; Gallagher, Dennis
2006-01-01
A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.
Single-layer microfluidic device to realize hydrodynamic 3D flow focusing.
Eluru, Gangadhar; Julius, Lourdes Albina Nirupa; Gorthi, Sai Siva
2016-10-18
The recent rapid growth of microfluidic applications has witnessed the emergence of several particle flow focusing techniques for analysis and/or further processing. The majority of flow focusing techniques employ an external sheath fluid to achieve sample flow focusing independent of the flow rate, in contrast to sheath-free techniques. However, the introduction of a sheath fluid to surround the sample fluid has complicated the device design and fabrication, generally involving multi-layer fabrication and bonding of multiple polydimethylsiloxane (PDMS) layers. Several promising efforts have been made to reduce the complexity of fabrication. However, most of these methods involved the use of inertial/Dean effects, which in turn demanded the use of higher sample flow rates. In this paper, we report a method of flow focusing that uses a sheath fluid to enclose the sample in a single layer of PDMS, and that possesses applicability for a wide range of sample flow rates. This method of flow focusing uses abrupt channel depth variation and a shift of one of the sample-sheath junctions (termed as 'junction-shift') against the direction of the sample flow. This configuration serves to manipulate the sample fluid with respect to the sheath fluid and achieve the desired flow focusing. This design facilitates the attainment of 3D flow focusing in two sequential steps (depth-wise and then along the lateral direction) and in distinct regions, hence enabling the regions to be used in imaging and non-imaging flow cytometric applications, respectively. Simulations were performed to characterize and determine the optimum set of design parameters. Experimental demonstrations of this technique were carried out by focusing fluorescein dye and blood cells in flow.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.
Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J
2012-05-01
Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.
Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Villone, Barbara
2014-09-01
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
Squire's transformation and 3D Optimal Perturbations in Bounded Parallel Shear Flows
NASA Astrophysics Data System (ADS)
Chomaz, Jean-Marc; Soundar Jerome, J. John
2011-11-01
The aim of this short communication is to present the implication of Squire's transformation on the optimal transient growth of arbitrary 3D disturbances in parallel shear flow bounded in the cross-stream direction. To our best knowledge this simple property has never been discussed before. In particular it allows to express the long-time optimal growth for perturbations of arbitrary wavenumbers as the product of the gains from the 2D optimal at a lower Reynolds number itself due to the Orr-mechanism by a term that may be identified as due to the lift-up mechanism. This property predict scalings for the 3D optimal perturbation well verified by direct computation. It may be extended to take into account buoyancy effect.
NASA Astrophysics Data System (ADS)
Hochstetler, D. L.; Barrash, W.; Kitanidis, P. K.
2014-12-01
Characterizing subsurface hydraulic properties is essential for predicting flow and transport, and thus, for making informed decisions, such as selection and execution of a groundwater remediation strategy; however, obtaining accurate estimates at the necessary resolution with quantified uncertainty is an ongoing challenge. For over a decade, the development of hydraulic tomography (HT) - i.e., conducting a series of discrete interval hydraulic tests, observing distributed pressure signals, and analyzing the data through inversion of all tests together - has shown promise as a subsurface imaging method. Numerical and laboratory 3-D HT studies have enhanced and validated such methodologies, but there have been far fewer 3-D field characterization studies. We use 3-D transient hydraulic tomography (3-D THT) to characterize a highly heterogeneous unconfined alluvial aquifer at an active industrial site near Assemini, Italy. With 26 pumping tests conducted from 13 isolated vertical locations, and pressure responses measured at 63 spatial locations through five clusters of continuous multichannel tubing, we recorded over 800 drawdown curves during the field testing. Selected measurements from each curve were inverted in order to obtain an estimate of the distributed hydraulic conductivity field K(x) as well as uniform ("effective") values of specific storage Ss and specific yield Sy. The estimated K values varied across seven orders of magnitude, suggesting that this is one of the most heterogeneous sites at which HT has ever been conducted. Furthermore, these results are validated using drawdown observations from seven independent tests with pumping performed at multiple locations other than the main pumping well. The validation results are encouraging, especially given the uncertain nature of the problem. Overall, this research demonstrates the ability of 3-D THT to provide high-resolution of structure and local K at a non-research site at the scale of a contaminant
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-09-09
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
1997-06-01
DTI has advanced autostereoscopic and field sequential color (FSC) illumination technologies for flat panel displays. Using a patented backlight...technology, DTI has developed prototype 3D flat panel color display that provides stereoscopic viewing without the need for special glasses or other... autostereoscopic viewing. Discussions of system architecture, critical component specifications and resultant display characteristics are provided. Also
3-D field computation: The near-triumph of commerical codes
Turner, L.R.
1995-07-01
In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings
NASA Astrophysics Data System (ADS)
Fütterer, G.
2016-11-01
Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.
Investigation of the 3-D actinic flux field in mountainous terrain
Wagner, J.E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G.P.; Kift, R.; Kreuter, A.; Rieder, H.E.; Simic, S.; Webb, A.; Weihs, P.
2011-01-01
During three field campaigns spectral actinic flux was measured from 290–500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account. PMID:26412915
3D nozzle flow simulations including state-to-state kinetics calculation
NASA Astrophysics Data System (ADS)
Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.
2014-12-01
In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, Ali
2016-12-01
Two dimensional axisymmetric and three-dimensional VOF simulations of gas/liquid transient flow were performed using a multiphase flow algorithm based on the finite-volume method. The results for motion of a multiple bubbles of a heterogeneous sizes aligned horizontally and perpendicular to a hot surface incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment have been presented for the first time. No bubbles broke in any of the cases observed. The results also show that collision and agglomeration of bubbles of unequal sizes diameter are different from those of similar size diameters presented from earlier research work of Alhendal et al. Acta Astronaut. 117, 484-496 (2015). Different flow patterns such as thermocapillary bubble migration, collision, and stream function were observed and presented for the 2-D and 3-D models.
Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil
NASA Astrophysics Data System (ADS)
Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.
2015-01-01
At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.
Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
2005-01-01
For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-11-23
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.
A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing
Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou
2016-01-01
Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051
3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.
2009-11-01
A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.
NASA Astrophysics Data System (ADS)
Moortgat, J.; Firoozabadi, A.
2013-12-01
Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.
3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV
NASA Astrophysics Data System (ADS)
Ragni, D.; van Oudheusden, B. W.; Scarano, F.
2012-02-01
The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data.
Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.
Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike
2016-01-01
Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.
Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme
NASA Astrophysics Data System (ADS)
Jin-Lian, Ren; Tao, Jiang
2016-02-01
In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
Feasibility of using PRESAGE® for relative 3D dosimetry of small proton fields
Zhao, Li; Newton, Joseph; Oldham, Mark; Das, Indra J; Cheng, Chee-Wai; Adamovics, John
2013-01-01
Small field dosimetry is challenging due to the finite size of the conventional detectors that underestimate the dose distribution. With the fast development of the dynamic proton beam delivery system, it is essential to find a dosimeter which can be used for 3D dosimetry of small proton fields. We investigated the feasibility of using a proton formula PRESAGE® for 3D dosimetry of small fields in a uniform scanning proton beam delivery system with dose layer stacking technology. The relationship between optical density and the absorbed dose was found to be linear through small volume cuvette studies for both photon and proton irradiation. Two circular fields and three patient-specific fields were used for proton treatment planning calculation and beam delivery. The measured results were compared with the calculated results in the form of lateral dose profiles, depth dose, isodose plots and gamma index analysis. For the circular field study, lateral dose profile comparison showed that the relative PRESAGE® profile falls within ± 5% from the calculated profile for most of the spatial range. For unmodulated depth dose comparison, the agreement between the measured and calculated results was within 3% in the beam entrance region before the Bragg peak. However, at the Bragg peak, there was about 20% underestimation of the absorbed dose from PRESAGE®. For patient-specific field 3D dosimetry, most of the data points within the target volume passed gamma analysis for 3% relative dose difference and 3 mm distance to agreement criteria. Our results suggest that this proton formula PRESAGE® dosimeter has the potential for 3D dosimetry of small fields in proton therapy, but further investigation is needed to improve the dose under-response of the PRESAGE® in the Bragg peak region. PMID:23103526
Decay of the 3D viscous liquid-gas two-phase flow model with damping
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-08-01
We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.
Computing 3-D steady supersonic flow via a new Lagrangian approach
NASA Technical Reports Server (NTRS)
Loh, C. Y.; Liou, M.-S.
1993-01-01
The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.
Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations
Kuo, I W; Bastea, S; Fried, L E
2010-03-10
We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.
Segmentation of bone structures in 3D CT images based on continuous max-flow optimization
NASA Astrophysics Data System (ADS)
Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.
2015-03-01
In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.
Flow integration transform: detecting shapes in matrix-array 3D ultrasound data
NASA Astrophysics Data System (ADS)
Stetten, George D.; Caines, Michael; von Ramm, Olaf T.
1995-03-01
Matrix-array ultrasound produces real-time 3D images of the heart, by employing a square array of transducers to steer the ultrasound beam in three dimensions electronically with no moving parts. Other 3D modalities such as MR, MUGA, and CT require the use of gated studies, which combine many cardiac cycles to produce a single average cycle. Three- dimensional ultrasound eliminates this restriction, in theory permitting the continuous measurement of cardiac ventricular volume, which we call the volumetricardiogram. Towards implementing the volumetricardiogram, we have developed the flow integration transform (FIT), which operates on a 2D slice within the volumetric ultrasound data. The 3D ultrasound machine's scan converter produces a set of such slices in real time, at any desired location and orientation, to which the FIT may then be applied. Although lacking rotational or scale invariance, the FIT is designed to operate in dedicated hardware where an entire transform could be completed within a few microseconds with present integrated circuit technology. This speed would permit the application of a large battery of test shapes, or the evolution of the test shape to converge on that of the actual target.
Wave optics theory and 3-D deconvolution for the light field microscope.
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-10-21
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
NASA Astrophysics Data System (ADS)
Sheng, J.; Meng, H.
This research explores a novel technique, using Genetic Algorithm Particle Pairing (GAPP) to extract three-dimensional (3D) velocity fields of complex flows. It is motivated by Holographic Particle Image Velocimetry (HPIV), in which intrinsic speckle noise hinders the achievement of high particle density required for conventional correlation methods in extracting 3D velocity fields, especially in regions with large velocity gradients. The GA particle pairing method maps particles recorded at the first exposure to those at the second exposure in a 3D space, providing one velocity vector for each particle pair instead of seeking statistical averaging. Hence, particle pairing can work with sparse seeding and complex 3D velocity fields. When dealing with a large number of particles from two instants, however, the accuracy of pairing results and processing speed become major concerns. Using GA's capability to search a large solution space parallelly, our algorithm can efficiently find the best mapping scenarios among a large number of possible particle pairing schemes. During GA iterations, different pairing schemes or solutions are evaluated based on fluid dynamics. Two types of evaluation functions are proposed, tested, and embedded into the GA procedures. Hence, our Genetic Algorithm Particle Pairing (GAPP) technique is characterized by robustness in velocity calculation, high spatial resolution, good parallelism in handling large data sets, and high processing speed on parallel architectures. It has been successfully tested on a simple HPIV measurement of a real trapped vortex flow as well as a series of numerical experiments. In this paper, we introduce the principle of GAPP, analyze its performance under different parameters, and evaluate its processing speed on different computer architectures.
Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine
NASA Astrophysics Data System (ADS)
Kang, S.; Sotiropoulos, F.
2011-12-01
A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.
Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.
Mock, Raymond Cecil
2007-06-01
The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.
Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation
Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.
1995-08-01
One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.
Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega
2015-01-01
This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189
Analysis of 3d Magnetotelluric Measurements Over the Coso Geothermal Field
NASA Astrophysics Data System (ADS)
Newman, G. A.; Gasperikova, E.; Hoversten, M.
2007-12-01
We have carried out an investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field. Motivation for this study is that electrical resistivity/conductivity mapping can contribute to better understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. Initial analysis of the Coso MT data was carried out using 2D MT imaging technology to construct a starting 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model was then refined through a 3D inversion process. The 3D resisitivity model clearly showed the controlling geological structures influencing well production at Coso and shows correlations with mapped surface features such as faults and regional geoelectric strike. We have also correlated the model with an acoustic and shear velocity model of the field to show that the near-vertical high conductivity (low resistivity) structure on the eastern flank of the producing field is also a zone of increase acoustic velocity and increased Vp/Vs ratio.
Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.
Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio
2016-02-29
Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.
Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.
Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L
2015-05-21
We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation
Simulation of 3-D viscous flow within a multi-stage turbine
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Barnett, Mark
1989-01-01
This work outlines a procedure for simulating the flow field within multistage turbomachinery which includes the effects of unsteadiness, compressibility, and viscosity. The associated modeling equations are the average passage equation system which governs the time-averaged flow field within a typical passage of a blade row embedded within a multistage configuration. The results from a simulation of a low aspect ratio stage and a one-half turbine will be presented and compared with experimental measurements. It will be shown that the secondary flow field generated by the rotor causes the aerodynamic performance of the downstream vane to be significantly different from that of an isolated blade row.
A 3D radiative transfer framework . VII. Arbitrary velocity fields in the Eulerian frame
NASA Astrophysics Data System (ADS)
Seelmann, A. M.; Hauschildt, P. H.; Baron, E.
2010-11-01
Aims: A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well-tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible. Methods: In the Eulerian formulation of the problem, the photon is seen by the atom at a Doppler-shifted wavelength depending on its propagation direction, which leads to a Doppler-shifted absorption and emission. This leads to a different source function and a different Λ^* operator in the radiative transfer equations compared to the static case. Results: The results of the Eulerian 3D spherical calculations are compared to our well-tested 1D Lagrangian spherical calculations, the agreement is, up to vmax = 1 × 103 km s-1 very good. Test calculation in other geometries are also shown.
Extension of a three-dimensional viscous wing flow analysis user's manual: VISTA 3-D code
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about three-dimensional (swept and tapered) supercritical wings. A computational procedure for calculating such flow field was developed. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving three-dimensional viscous flow problems. In order to demonstrate the viability of this method, two- and three-dimensional problems are computed. These include the flow over a two-dimensional NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, three-dimensional flow on a flat plate. Although actual three-dimensional flows over wings were not obtained, the ground work was laid for considering such flows. In this report a description of the computer code is given.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
MRI-based aortic blood flow model in 3D ballistocardiography.
Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F
2015-01-01
Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections.
Respiratory motion correction in 3-D PET data with advanced optical flow algorithms.
Dawood, Mohammad; Buther, Florian; Jiang, Xiaoyi; Schafers, Klaus P
2008-08-01
The problem of motion is well known in positron emission tomography (PET) studies. The PET images are formed over an elongated period of time. As the patients cannot hold breath during the PET acquisition, spatial blurring and motion artifacts are the natural result. These may lead to wrong quantification of the radioactive uptake. We present a solution to this problem by respiratory-gating the PET data and correcting the PET images for motion with optical flow algorithms. The algorithm is based on the combined local and global optical flow algorithm with modifications to allow for discontinuity preservation across organ boundaries and for application to 3-D volume sets. The superiority of the algorithm over previous work is demonstrated on software phantom and real patient data.
Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns
NASA Astrophysics Data System (ADS)
von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet
2010-09-01
A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.
Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent
2015-01-01
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams.
Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.
von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet
2010-01-01
A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.
Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
NASA Astrophysics Data System (ADS)
Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis
2015-08-01
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.
3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries
NASA Astrophysics Data System (ADS)
Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman
2015-10-01
Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not
PSE-3D Instability Analysis and Application to Flow Over an Elliptic Cone
2015-04-01
important to understand transition in this flow regime since the process can be slower than in incompressible flow and is critical to prediction of...solver by Gosse et al. [2010]. The stability analysis results reveal that the leading unstable modes peak on the mushroom -like structure formed near the...behavior of a laminar flow field upon the introduction of small- amplitude perturbations, in order to improve the understanding of the processes
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
Technology Transfer Automated Retrieval System (TEKTRAN)
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Zeinali, Soheila; Çetin, Barbaros; Oliaei, Samad Nadimi Bavil; Karpat, Yiğit
2015-07-01
Microfluidics is the combination of micro/nano fabrication techniques with fluid flow at microscale to pursue powerful techniques in controlling and manipulating chemical and biological processes. Sorting and separation of bio-particles are highly considered in diagnostics and biological analyses. Dielectrophoresis (DEP) has offered unique advantages for microfluidic devices. In DEP devices, asymmetric pair of planar electrodes could be employed to generate non-uniform electric fields. In DEP applications, facing 3D sidewall electrodes is considered to be one of the key solutions to increase device throughput due to the generated homogeneous electric fields along the height of microchannels. Despite the advantages, fabrication of 3D vertical electrodes requires a considerable challenge. In this study, two alternative fabrication techniques have been proposed for the fabrication of a microfluidic device with 3D sidewall electrodes. In the first method, both the mold and the electrodes are fabricated using high precision machining. In the second method, the mold with tilted sidewalls is fabricated using high precision machining and the electrodes are deposited on the sidewall using sputtering together with a shadow mask fabricated by electric discharge machining. Both fabrication processes are assessed as highly repeatable and robust. Moreover, the two methods are found to be complementary with respect to the channel height. Only the manipulation of particles with negative-DEP is demonstrated in the experiments, and the throughput values up to 105 particles / min is reached in a continuous flow. The experimental results are compared with the simulation results and the limitations on the fabrication techniques are also discussed.
Anderson, Jeff R; Klucznik, Richard; Diaz, Orlando; Zhang, Y Jonathan; Britz, Gavin W; Grossman, Robert G; Karmonik, Christof
2015-01-01
Phase contrast MRI (pcMRI) was used to measure flow before and after placement of a flow diverter (n = 3). Decreases from 18% to 31% in flow velocity were seen in the inflow jet of the aneurysms. Flow patterns were also compared. It was observed that the gross aneurysmal flow patterns were maintained after flow diverter placement despite decreased fluid velocities. All measurements were carried out in 3D printed aneurysm replicas.
The impact of 3D fields on tearing mode stability of H-modes
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Gerhardt, S.; La Haye, R. J.; Liu, Y. Q.; Reimerdes, H.; Sabbagh, S.; Chu, M. S.; Osborne, T. H.; Park, J.-K.; Pinsker, R. I.; Strait, E. J.; Yu, J. H.; DIII-D, the; NSTX Teams
2011-07-01
New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest β on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high βN where ideal MHD responses amplify the fields (where βN is the plasma β divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing βN limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to β and the current profile. Typical field thresholds to induce modes in torque-free βN ~ 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal βN limit. The strong interaction with the tearing mode βN limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline βN value of 1.8, and a linear
Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study
Gerassimenko, M.
2000-03-01
We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.
Total-Field Technique for 3-D Modeling of Short Period Teleseismic Waves
NASA Astrophysics Data System (ADS)
Monteiller, V.; Beller, S.; Operto, S.; Nissen-Meyer, T.; Tago Pacheco, J.; Virieux, J.
2014-12-01
The massive development of dense seismic arrays and the rapid increase in computing capacity allow today to consider application of full waveform inversion of teleseismic data for high-resolution lithospheric imaging. We present an hybrid numerical method that allows for the modellingof short period teleseismic waves in 3D lithospheric target with both the discontinuous Galerkin finite elements method and finite difference method, opening the possibility to perform waveform inversion of seismograms recorded by dense regional broadband arrays. However, despite the supercomputer ability, the forward-problem remains expensive at global scale for teleseismic configuration especially when 3D numerical methods are considered. In order to perform the forward problem in a reasonable amount of time, we reduce the computational domain in which full waveform modelling is performed. We define a 3D regional domain located below the seismological network that is embedded in a homogeneous background or axisymmetric model, in which the seismic wavefield can be computed efficiently. The background wavefield is used to compute the full wavefield in the 3D regional domain using the so-called total-field/scattered-field technique. This method relies on the decomposition of the wavefield into a background and a scattered wavefields. The computational domain is subdivided into three sub-domains: an outer domain formed by the perfectly-matched absorbing layers, an intermediate domain in which only the outgoing wavefield scattered by the lithospheric heterogeneities is computed, and the inner domain formed by the lithospheric target in which the full wavefield is computed. In this study, we shall present simulations in realistic lithospheric target when the axisymetric background wavefield is computed with the AxiSEM softwave and the 3D simulation in lithospheric target model is performed with the discontinuous Galerkin or finite difference method.
Hybrid wide-field and scanning microscopy for high-speed 3D imaging.
Duan, Yubo; Chen, Nanguang
2015-11-15
Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.
3-D Modeling of Magnetic Fields for the Lithium Tokamak eXperiment
NASA Astrophysics Data System (ADS)
Logan, N.; Berzak, L.; Kaita, R.; Majeski, R.; Menard, J.; Zakharov, L.
2010-11-01
The Lithium Tokamak eXperiment (LTX) is designed to investigate low-recycling operating regimes by surrounding 85% of the last closed flux surface with liquid lithium evaporated onto a copper and stainless steel shell conformal to the plasma. Fields generated by currents in this conducting shell have significant effects on magnetic configurations. To understand these effects, the commercially available code Aether [http://www.fieldp.com] is used to simulate time varying magnetic fields in a 3-D model of LTX. The model is built using LTX CAD files and divided into a regular mesh for computing the evolution of coupled electromagnetic vector quantities through time and space. Applicable boundary conditions and symmetries are analyzed. Comparisons with measured data, results from a 2-D code, and results from a 3-D code designed specifically for LTX demonstrate the possible benefits and limitations of using this commercial code.
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
NASA Astrophysics Data System (ADS)
Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari
2016-06-01
Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.
Patterning process exploration of metal 1 layer in 7nm node with 3D patterning flow simulations
NASA Astrophysics Data System (ADS)
Gao, Weimin; Ciofi, Ivan; Saad, Yves; Matagne, Philippe; Bachmann, Michael; Oulmane, Mohamed; Gillijns, Werner; Lucas, Kevin; Demmerle, Wolfgang; Schmoeller, Thomas
2015-03-01
In 7mn node (N7), the logic design requires the critical poly pitch (CPP) of 42-45nm and metal 1 (M1) pitch of 28- 32nm. Such high pattern density pushes the 193 immersion lithography solution toward its limit and also brings extremely complex patterning scenarios. The N7 M1 layer may require a self-aligned quadruple patterning (SAQP) with triple litho-etch (LE3) block process. Therefore, the whole patterning process flow requires multiple exposure+etch+deposition processes and each step introduces a particular impact on the pattern profiles and the topography. In this study, we have successfully integrated a simulation tool that enables emulation of the whole patterning flow with realistic process-dependent 3D profile and topology. We use this tool to study the patterning process variations of N7 M1 layer including the overlay control, the critical dimension uniformity (CDU) budget and the lithographic process window (PW). The resulting 3D pattern structure can be used to optimize the process flow, verify design rules, extract parasitics, and most importantly, simulate the electric field and identify hot spots for dielectric reliability. As an example application, we will report extractions of maximum electric field at M1 tipto- tip which is one of the most critical patterning locations and we will demonstrate the potential of this approach for investigating the impact of process variations on dielectric reliability. We will also present simulations of an alternative M1 patterning flow, with a single exposure block using extreme ultraviolet lithography (EUVL) and analyze its advantages compared to the LE3 block approach.
The mantle wedge's transient 3-D flow regime and thermal structure
NASA Astrophysics Data System (ADS)
Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.
2016-01-01
Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.
Full-field strain measurements on turbomachinery components using 3D SLDV technology
NASA Astrophysics Data System (ADS)
Maguire, Martyn; Sever, Ibrahim
2016-06-01
This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
Micro flow cytometer with self-aligned 3D hydrodynamic focusing.
Testa, Genni; Persichetti, Gianluca; Bernini, Romeo
2015-01-01
A micro flow cytometer with a single step 3D hydrodynamic flow focusing has been developed. The proposed design is capable to create a single-file particle stream that is self-aligned with an integrated optical fiber-based detection system, regardless of the flow rate ratio between the focusing and core liquids. The design approach provides the ability to adjust the stream size while keeping the position of the focused stream centered with respect to the focusing channel. The device has been fabricated by direct micro milling of PMMA sheets. Experimental validation of the hydrodynamic sheath focusing effect has been presented and sample stream with tuneable size from about 18 to 50 μm was measured. Flow cytometry measurements have been performed by using 10-23 μm fluorescent particles. From the analysis of the signals collected at each transit event we can confirm that the device was capable to align and measure microparticles with a good coefficient of variance.
A 3D velocimetry study of the flow through prosthetic heart valves
NASA Astrophysics Data System (ADS)
Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.
2006-11-01
Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.
Micro flow cytometer with self-aligned 3D hydrodynamic focusing
Testa, Genni; Persichetti, Gianluca; Bernini, Romeo
2014-01-01
A micro flow cytometer with a single step 3D hydrodynamic flow focusing has been developed. The proposed design is capable to create a single-file particle stream that is self-aligned with an integrated optical fiber-based detection system, regardless of the flow rate ratio between the focusing and core liquids. The design approach provides the ability to adjust the stream size while keeping the position of the focused stream centered with respect to the focusing channel. The device has been fabricated by direct micro milling of PMMA sheets. Experimental validation of the hydrodynamic sheath focusing effect has been presented and sample stream with tuneable size from about 18 to 50 μm was measured. Flow cytometry measurements have been performed by using 10-23 μm fluorescent particles. From the analysis of the signals collected at each transit event we can confirm that the device was capable to align and measure microparticles with a good coefficient of variance. PMID:25657874
NASA Astrophysics Data System (ADS)
Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard
2015-11-01
We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-12-15
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm
Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal; Brammer, Gabriel B.; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V.; Förster Schreiber, Natascha; Kriek, Mariska; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; and others
2014-10-01
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
Spacetime Stereo and 3D Flow via Binocular Spatiotemporal Orientation Analysis.
Sizintsev, Mikhail; Wildes, Richard P
2014-11-01
This paper presents a novel approach to recovering estimates of 3D structure and motion of a dynamic scene from a sequence of binocular stereo images. The approach is based on matching spatiotemporal orientation distributions between left and right temporal image streams, which encapsulates both local spatial and temporal structure for disparity estimation. By capturing spatial and temporal structure in this unified fashion, both sources of information combine to yield disparity estimates that are naturally temporal coherent, while helping to resolve matches that might be ambiguous when either source is considered alone. Further, by allowing subsets of the orientation measurements to support different disparity estimates, an approach to recovering multilayer disparity from spacetime stereo is realized. Similarly, the matched distributions allow for direct recovery of dense, robust estimates of 3D scene flow. The approach has been implemented with real-time performance on commodity GPUs using OpenCL. Empirical evaluation shows that the proposed approach yields qualitatively and quantitatively superior estimates in comparison to various alternative approaches, including the ability to provide accurate multilayer estimates in the presence of (semi)transparent and specular surfaces.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Potential for 3-D hyporheic exchange flow along a succession of pool-riffle sequences
NASA Astrophysics Data System (ADS)
Käser, Daniel; Binley, Andrew; Krause, Stefan; Heathwaite, Louise
2010-05-01
Pool-riffle sequences are key geomorphological features that can influence the ecology of streams by inducing a flow exchange between surface water and groundwater - a process called hyporheic exchange flow (HEF). The objective of this research was to test the suitability of a simple 3-D groundwater model for characterizing HEF induced by pool-riffle sequences that had been the focus of experimental study. Three reaches of 20 m were modelled separately. While the bed topography was surveyed and represented at a high resolution, the permeability distribution referred to a simple conceptual model consisting of two superposed layers. One hypothesis was that, despite its simplicity, the calibrated model would produce an acceptable fit between observed and simulated heads because its permeability structure resembled the natural system. The potential complexity of hyporheic flow patterns is well-known, yet this study highlights the usefulness of a simple conceptual model coupled to mechanistic flow equations for describing HEF in 3-D. The error structure of the calibrated model provides insight into various site-specific features. The root mean square error between computed and observed hydraulic heads (relative to the head drop over the structure) is comparable to other studies with more elaborate permeability structures. After calibration, a sensitivity analysis was conducted in order to determine the influence of permeability contrast between the layers, depth of the permeability interface, and basal flux on three HEF characteristics: residence time, lateral and vertical extent, and total flux. Results indicate that permeability characteristics can affect HEF in different ways. For example, the vertical extent is deepest in homogeneous conditions, whereas the lateral extent is not significantly affected by permeability contrast, or by the depth of the interface between the two layers. Thus bank piezometers may be insufficient to calibrate groundwater models of HEF
Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin
2012-01-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561
Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin
2011-09-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Using 3D CFD to reconcile different views of confluence flow structure
NASA Astrophysics Data System (ADS)
Lane, S. N.
2001-05-01
River channel confluences have seen considerable attention in recent years. The aim of this presentation is to demonstrate how CFD has been used to evaluate and expand some of the results that have emerged from field and laboratory studies. Central to this research has been the use of three-dimensional numerical modelling techniques that are able to represent key hydrodynamic processes in confluences (e.g. water surface super-elevation, topographic forcing of flow, shear-driven turbulence), and to provide predictions of important explanatory variables (e.g. dynamic pressure). The research design is based upon using numerical simulation to explore interactions between amongst governing variables (e.g. tributary momentum ratio, degree of asymmetry, junction angle, tributary bed discordance). On the basis of more than 50 simulations of 'laboratory-style' confluences and a smaller number of field cases, this paper identifies the key controls upon confluence flow structures, and the potential influence of these structures upon geomorphological processes within the confluence. This demonstrates: (i) how divergence of opinion over confluence flow processes has resulted from different methods of instrument rotation in the field; (ii) the importance of both streamline curvature and flow separation as controls upon flow structure development; and (iii) the periodic nature of the flow structures that are seen in confluence environments, and which may be misunderstood when a series of time-averaged measurements are made in the field.
Ouldarbi, L; Pérret, G; Lemaitre, P; Porcheron, E; Coëtmellec, S; Gréhan, G; Lebrun, D; Brunel, M
2015-09-01
We present a system to characterize a triphasic flow in a 3D volume (air bubbles and solid irregular particles in water) using only one CCD sensor. A cylindrical interferometric out-of-focus imaging setup is used to determine simultaneously the 3D position and the size of bubbles and irregular sand particles in a flow. The 3D position of the particles is deduced from the ellipticity of their out-of-focus image. The size of bubbles is deduced from analysis of interference fringes. The characteristics of irregular sand particles are obtained from analysis of their speckle-like pattern. Experiments are confirmed by simulations.
Anisotropic heat transport in integrable and chaotic 3-D magnetic fields
Del-Castillo-Negrete, Diego B; Blazevski, D.; Chacon, Luis
2012-01-01
A study of anisotropic heat transport in 3-D chaotic magnetic fields is presented. The approach is based on the recently proposed Lagrangian-Green s function (LG) method in Ref. [1] that allows an efficient and accurate integration of the parallel transport equation applicable to general magnetic fields with local or non-local parallel flux closures. We focus on reversed shear magnetic field configurations known to exhibit separatrix reconnection and shearless transport barriers. The role of reconnection and magnetic field line chaos on temperature transport is studied. Numerical results are presented on the anomalous relaxation of radial temperature gradients in the presence of shearless Cantori partial barri- ers. Also, numerical evidence of non-local effective radial temperature transport in chaotic fields is presented. Going beyond purely parallel transport, the LG method is generalized to include finite perpendicular diffusivity, and the problem of temperature flattening inside a magnetic island is studied.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river. Copyright 2011 by the American Geophysical Union.
3D structure and conductive thermal field of the Upper Rhine Graben
NASA Astrophysics Data System (ADS)
Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias
2016-04-01
The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D
Exact spectra of strong coulomb correlations of 3-D 2-e harmonic dots in magnetic field
NASA Astrophysics Data System (ADS)
Aggarwal, Priyanka; Sharma, Shivalika; Kaur, Harsimran; Singh, Sunny; Hazra, Ram Kuntal
2017-01-01
Applications of 3-D 2-e systems have proliferated very fast due to technological advancements in wide range of phenomena from atomic landscape to mesoscopic scale. The unusual properties of atomic/mesoscopic systems are the results of interplaying charge interactions among different bound states. The non-trivial e-e correlations in electrically and/or magnetically confined systems improvise wealth of intriguing challenges at fundamental level due to lack of exact solution of Schrödinger equations. For the first time, a novel methodology of exactly finite summed coulomb correlations invented by us is so handy that even usual programmable calculator can be used to examine the electronic structures of 3-D 2-e harmonic dots in perpendicular magnetic field (symmetric gauge). Statistics of electronic levels, heat capacity measurements and magnetization (T∼1 K) are also investigated in brief to probe the degree of disorderedness.
3D position estimation using a single coil and two magnetic field sensors.
Tadayon, P; Staude, G; Felderhoff, T
2015-01-01
This paper presents an algorithm which enables the estimation of relative 3D position of a sensor module with two magnetic sensors with respect to a magnetic field source using a single transmitting coil. Starting with the description of the ambiguity problem caused by using a single coil, a system concept comprising two sensors having a fixed spatial relation to each other is introduced which enables the unique determination of the sensors' position in 3D space. For this purpose, an iterative two-step algorithm is presented: In a first step, the data of one sensor is used to limit the number of possible position solutions. In a second step, the spatial relation between the sensors is used to determine the correct sensor position.
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
DNS of Sheared Particulate Flows with a 3D Explicit Finite-Difference Scheme
NASA Astrophysics Data System (ADS)
Perrin, Andrew; Hu, Howard
2007-11-01
A 3D explicit finite-difference code for direct simulation of the motion of solid particulates in fluids has been developed, and a periodic boundary condition implemented to study the effective viscosity of suspensions in shear. The code enforces the no-slip condition on the surface of spherical particles in a uniform Cartesian grid with a special particle boundary condition based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle's local coordinates, which is then matched to the finite difference update in the bulk fluid on a ``cage'' of grid points near the particle surface. (The boundary condition is related to the PHYSALIS method (2003), but modified for explicit schemes and with an iterative process removed.) Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate particle Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. For the sheared suspension, the effects of fluid and solid inertia and solid volume fraction on effective viscosity at moderate particle Reynolds numbers and concentrated suspensions will be discussed.
A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture
Sailon, Alexander M.; Allori, Alexander C.; Davidson, Edward H.; Reformat, Derek D.; Allen, Robert J.; Warren, Stephen M.
2009-01-01
Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67% ± 5.0%, while in the core it was 0.3% ± 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% ± 8.3% and core density of 76% ± 3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems. PMID:20037739
NASA Astrophysics Data System (ADS)
Darvini, G.; Salandin, P.
2009-12-01
To analyze the impact of the hydraulic conductivity K spatial variability in a real field case (as an example to delimitate a well catchment), numerical simulations can be reasonably developed in a two-dimensional vertical average context. Nevertheless the plume evolution is a consequence of a more complex three-dimensional heterogeneous structure whose vertical variability dominates the dispersion phenomena at local scale. In larger domains, the effect of the vertical heterogeneity combines itself with that one due to the horizontal variability of K, and only when the plume has travelled a large number of (horizontal) integral scales, its evolution can be analyzed in a regional context, under the hypothesis that the transmissivity spatial distribution prevails. Until this limit is reached, the vertical and horizontal variability of K are combined to give a fully 3-D dispersion process. In all these situations, to successfully accomplish the 3-D heterogeneous structure of the aquifer in 2-D simulations, more than the planimetric depth-averaged variability of K must be accounted for. To define the uncertainty related to the use of different planimetric schematizations of the real hydraulic conductivity spatial distribution, we present here the results of some numerical experiments that compare the 3-D plume evolution with 2-D simulations developed by tacking into account different hydraulic conductivity distribution schematization, by considering a hierarchical architecture of media also. This description of a sedimentary formation combined with the finite size of the plume requires theoretical and numerical tools able to take into account the flow field inhomogeneity and the ergodicity lack that characterize the transport phenomena. Following this way it will be possible to quantify / reduce the uncertainty related to a 2-D schematization in a large number of real cases where the domain spans between the local and the regional scale and whose dimension may lead to
Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
2009-01-01
Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.
Effects of 3D Toroidally Asymmetric Magnetic Field on Tokamak Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Lao, L. L.
2005-10-01
The effects of 3D error magnetic field on magnetic surfaces are investigated using the DIII-D internal coils (I-Coils). Slowly rotating n=1 traveling waves at 5 Hz and various amplitudes were applied to systematically perturb the edge surfaces by programming the I-Coil currents. The vertical separatrix location difference between EFIT magnetic reconstructions that assumes toroidal symmetry and Thomson scattering Te measurements responds in phase to the applied perturbed field. The oscillation amplitudes increase with the strength of the applied field but are much smaller than those expected from the applied field alone. The results indicate that plasma response is important. Various plasma response models based on results from the MHD codes MARS and GATO are being developed and compared to the experimental observations. To more accurately evaluate the effects of magnetic measurement errors, a new form of the magnetic uncertainty matrix is also being implemented into EFIT. Details will be presented.
The distribution of 3D superconductivity near the second critical field
NASA Astrophysics Data System (ADS)
Kachmar, Ayman; Nasrallah, Marwa
2016-09-01
We study the minimizers of the Ginzburg-Landau energy functional with a uniform magnetic field in a three dimensional bounded domain. The functional depends on two positive parameters, the Ginzburg-Landau parameter and the intensity of the applied magnetic field, and acts on complex-valued functions and vector fields. We establish a formula for the distribution of the L 2-norm of the minimizing complex-valued function (order parameter). The formula is valid in the regime where the Ginzburg-Landau parameter is large and the applied magnetic field is close to and strictly below the second critical field—the threshold value corresponding to the transition from the superconducting to the normal phase in the bulk of the sample. Earlier results are valid in 2D domains and for the L 4-norm in 3D domains.
[A 3D FEM model for calculation of electromagnetic fields in transmagnetic stimulation].
Seilwinder, J; Kammer, T; Andrä, W; Bellemann, M E
2002-01-01
We developed a realistic finite elements method (FEM) model of the brain for the calculation of electromagnetic fields in transcranial magnetic stimulation (TMS). A focal butterfly stimulation coil was X-rayed, parameterized, and modeled. The magnetic field components of the TMS coil were calculated and compared for validation to pointwise measurements of the magnetic fields with a Hall sensor. We found a mean deviation of 7.4% at an axial distance of 20 mm to the coil. A 3D brain model with the biological tissues of white and gray matter, bone, and cerebrospinal fluid was developed. At a current sweep of 1000 A in 120 microseconds, the maximum induced current density in gray matter was 177 mA/m2 and the strongest electric field gradient covered an area of 40 mm x 53 mm.
Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo
2016-07-01
In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis
2016-11-01
A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates
3D Markov Process for Traffic Flow Prediction in Real-Time
Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi
2016-01-01
Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025
A 3D moving mesh Finite Element Method for two-phase flows
NASA Astrophysics Data System (ADS)
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
USM3D Simulations of Saturn V Plume Induced Flow Separation
NASA Technical Reports Server (NTRS)
Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.
2011-01-01
The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
AdS/CFT for 3D higher-spin gravity coupled to matter fields
NASA Astrophysics Data System (ADS)
Fujisawa, Ippei; Nakagawa, Kenta; Nakayama, Ryuichi
2014-03-01
New holographic prescription for the model of 3d higher-spin gravity coupled to real matter fields Bμν and C, which was introduced in Fujisawa and Nakayama (2014 Class. Quantum Grav. 31 015003), is formulated. By using a local symmetry, two of the components of Bμν are eliminated, and gauge-fixing conditions are imposed such that the non-vanishing component, Bϕρ, satisfies a covariantly-constancy condition in the background of Chern-Simons gauge fields Aμ, \\bar{A}_{\\mu }. In this model, solutions to the classical equations of motion for Aμ and \\bar{A}_{\\mu } are non-flat due to the interactions with matter fields. The solutions for the gauge fields can, however, be split into two parts, flat gauge fields A_{\\mu }, \\bar{A}_{\\mu }, and those terms that depend on the matter fields. The equations for the matter fields then coincide with covariantly-constancy equations in the flat backgrounds A_{\\mu } and \\bar{A}_{\\mu }, which are exactly the same as those in linearized 3d Vasiliev gravity. The two- and three-point correlation functions of the single-trace operators and the higher-spin currents in the boundary CFT are computed by using an on-shell action tr (Bϕρ C). This term does not depend on coordinates due to the matter equations of motion, and it is not necessary to take the near-boundary limit ρ → ∞. Analysis is presented for SL(3,R) × SL(3,R) as well as HS[\\frac{1}{2}] \\times HS[\\frac{1}{2}] higher-spin gravity. In the latter model, scalar operators with scaling dimensions Δ+ = 3/2 and Δ- = 1/2 appear in a single quantization.
Simulation of bacteria transport processes in a river with Flow3D
NASA Astrophysics Data System (ADS)
Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter
2014-05-01
Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.
3D Design, Contruction, and Field Analysis of CIS Main Dipole Magnets
NASA Astrophysics Data System (ADS)
Berg, G. P. A.; Fox, W.; Friesel, D. L.; Rinckel, T.
1997-05-01
The lattice for CIS ( Cooler Injection Synchroton ) requires four laminated 90^circ main dipole magnets with bending radius ρ = 1.273 m, EFL = 2 m, and an edge angle of 12^circ. Optimum Cooler injection and injection in the planned 15 GeV LISS ring requires operation up to about 1.75 T. Initial operation of 1 Hz, with later upgrade to 5 Hz is planned. We will present 2D and 3D field calculations used to optimize the shape of laminations and endpacks of the magnet. Endpacks are designed to determine edge angle and to compensate hexapole components, in particular above 1.4 T where saturation becomes significant. The large dipole curvature required a new type of dipole construction. Each magnet consists of wedge shaped blocks fabricated from stamped lamination of cold rolled low carbon iron. B-stage (dry) epopy was used for bonding and insulation. The end blocks are machined to include the calculated 3D shape of the endpacks. All four magnets were mapped in the field range from 0.3 T - 1.8 T. Comparison of calculations and data in terms of B(I) curves, EFL, edge angle, and hexapole component as function of field excitation will be presented. The constructed magnets are well within expected specifications.
3D geometry of the strain-field at transform plate boundaries: Implications for seismic rupture
Bodin, P.; Bilham, R. |
1994-11-01
We examine the amplitude and distribution of slip on vertical frictionless faults in the zone of concentrated shear strain that is characteristic of transform plate boundaries. We study both a 2D and a 3D approximation to this strain field. Mean displacements on ruptures within the zone of concentrated shear strain are proportional to the shear strain at failure when they are short, and are limited by plate displacements since the last major earthquake when they are long. The transition between these two behaviors occurs when the length of the dislocation approaches twice the thickness of the seismogenic crust, approximately the breadth of the zone of concentrated shear strain observed geodetically at transform plate boundaries. This result explains the observed non-linear scaling relation between seismic moment and rupture length. A geometrical consequence of the 3D model, in which the strain-field tapers downward, is that moderate earthquakes with rupture lengths similar to the thickness of the crust tend to slip more at depth than near the surface. Seismic moments estimated from surface slip in moderate earthquakes (M less than or equal to 7) will thus be underestimated. Shallow creep, if its along-strike dimension is extensive, can reduce a surface slip deficit that would otherwise develop on faults on which M less than 7 events are typical. In the absence of surface creep or other forms of off-fault deformation great earthquakes may be necessary features of transform boundaries with downward-tapering strain-fields.
Automated Atom-By-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data.
Dagan, Michal; Gault, Baptiste; Smith, George D W; Bagot, Paul A J; Moody, Michael P
2017-03-20
An automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen's surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM's potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of "out of sequence" events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.
Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid
NASA Astrophysics Data System (ADS)
Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.
2017-02-01
This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.
Locating earthquakes in west Texas oil fields using 3-D anisotropic velocity models
Hua, Fa; Doser, D.; Baker, M. . Dept. of Geological Sciences)
1993-02-01
Earthquakes within the War-Wink gas field, Ward County, Texas, that have been located with a 1-D velocity model occur near the edges and top of a naturally occurring overpressured zone. Because the War-Wink field is a structurally controlled anticline with significant velocity anisotropy associated with the overpressured zone and finely layered evaporites, the authors have attempted to re-locate earthquakes using a 3-D anisotropic velocity model. Preliminary results with this model give the unsatisfactory result that many earthquakes previously located at the top of the overpressured zone (3-3.5 km) moved into the evaporites (1-1.5 km) above the field. They believe that this result could be caused by: (1) aliasing the velocity model; or (2) problems in determining the correct location minima when several minima exist. They are currently attempting to determine which of these causes is more likely for the unsatisfactory result observed.
Noise analysis for near field 3-D FM-CW radar imaging systems
Sheen, David M.
2015-06-19
Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.
Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings
NASA Astrophysics Data System (ADS)
Rosen, Aaron M.
Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.
Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Cooper, C. M.; Lenardic, A.
2010-12-01
Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2016-11-01
A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.
Mao, Xiaole; Lin, Sz-Chin Steven; Dong, Cheng; Huang, Tony Jun
2009-06-07
In this work, we demonstrate an on-chip microfluidic flow cytometry system based on a three-dimensional (3D) hydrodynamic focusing technique, microfluidic drifting. By inducing Dean flow in a curved microfluidic channel, microfluidic drifting can be used to hydrodynamically focus cells or particles in the vertical direction and enables the 3D hydrodynamic focusing in a single-layer planar microfluidic device. Through theoretical calculation, numerical simulation, and experimental characterization, we found that the microfluidic drifting technique can be effectively applied to three-dimensionally focus microparticles with density and size equivalent to those of human CD4+ T lymphocytes. In addition, we developed a flow cytometry platform by integrating the 3D focusing device with a laser-induced fluorescence (LIF) detection system. The system was shown to provide effective high-throughput flow cytometry measurements at a rate of greater than 1700 cells s(-1).
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Tomsik, Thomas M.
1990-01-01
As part of the National Aero-Space Plane (NASP) project, the multi-dimensional effects of gravitational force, initial tank pressure, initial ullage temperature, and heat transfer rate on the 2-D temperature profiles were studied. FLOW-3D, a commercial finite difference fluid flow model, was used for the evaluation. These effects were examined on the basis of previous liquid hydrogen experimental data with gaseous hydrogen pressurant. FLOW-3D results were compared against an existing 1-D model. In addition, the effects of mesh size and convergence criteria on the analytical results were investigated. Suggestions for future modifications and uses of FLOW-3D for modeling of a NASP tank are also presented.
Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Li, Yuanyang; Herman, Cila
2013-07-01
The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are
Investigation on 3D t wake flow structures of swimming bionic fish
NASA Astrophysics Data System (ADS)
Shen, G.-X.; Tan, G.-K.; Lai, G.-J.
2012-10-01
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.
Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.
Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner
2016-12-15
In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.
Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology
NASA Astrophysics Data System (ADS)
Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.
2016-10-01
The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.
Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions
Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner
2016-01-01
In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Xing, Hui; Selzer, Michael; Nestler, Britta; Glicksman, Martin E.
2017-01-01
The mechanisms by which crystalline imperfections initiate breakdown of a planar front during directional solidification remain a topic of longstanding interest. Previous experimental findings show that the solid-liquid interface adjacent to a grain boundary provides a potential site where morphological instabilities initiate. However, interpretation of experimental data is difficult for complex 3-D diffusion fields that develop around grain multi-junctions and boundary ridges. We apply a phase-field approach to investigate factors that induce interfacial instabilities during directional solidification of a binary polycrystalline alloy. Using 2-D simulations, we establish the influence of solid-liquid interfacial energies on the spatial localization of initial interfacial perturbations. Based on parametric studies, we predict that grain misorientation and supersaturation in the melt provide major crystal growth factors determining solute segregation responsible for surface rippling. Subsequent breakdown of boundary ridges into periodic rows of hills, as simulated in 3-D, conform well with experiments. Finally, the significance of crystal misorientation relationships is elucidated in inducing spatial alignment of surface ripples.
Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?
Martin, James E.; Solis, Kyle Jameson
2015-08-01
Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.
3D and 4D GPR for Stratigraphic and Hydrologic Characterization of Field Sites
NASA Astrophysics Data System (ADS)
Grasmueck, M.; Viggiano, D. A.
2008-05-01
In a time of almost unlimited mobility, information, and connectivity it is surprising how our knowledge of natural systems becomes fragmented as soon as we enter the ground. Excavation, drilling, and 2D geophysics are unable to capture the spatio-temporal variability inside soil and rock volumes at the 1-10m scale. The problem is the lack of efficient and high-resolution imaging for the near surface domain. We have developed a high- resolution 3D Ground Penetrating Radar (GPR) system suitable for data acquisition at field sites. To achieve sharp and repeatable subsurface imaging we have integrated GPR with a rotary laser/IR strobe system. With 40 xyz coordinate updates per second, continuously moving GPR antennae can be tracked centimeter precise. A real-time LED guidance system shows the GPR antenna operator how to follow pre-computed survey tracks. Without having to stake out hundreds of survey tracks anymore one person now can scan an area of up to 600m2 per hour with a dual GPR antenna at 1m/s with 0.1m line spacing. The coordinate and GPR data are fused in real-time providing a first look of the subsurface in horizontal map view for quality control and in-field site assessment during data acquisition. The precision of the laser positioning system enables centimeter accurate repeat surveys to image and quantify water content changes in the vadose zone. To verify quantitative results of such 4D GPR we performed a controlled pond infiltration injecting 3200L of water from a 4x4m temporary pond with a thin soil layer and 5m of unsaturated porous limestone below. A total of sixteen repeated 3D GPR surveys were acquired just before the infiltration and in the following 2 weeks. All data were recorded with 250MHz antennae on a 5x10cm grid covering an area of 18x20m. Data processing included 3D migration and extraction of time shifts between pairs of time- lapse 3D GPR surveys. From the time shifts water content changes were computed using the Topp equation. The
Mechanisms of clay smear formation in 3D - a field study
NASA Astrophysics Data System (ADS)
Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven
2016-04-01
Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears
NASA Astrophysics Data System (ADS)
Perrin, A.; Hu, H.
2006-11-01
We have extended previous work on an 2D explicit finite-difference code for direct simulation of the motion of solid particles in a fluid to 3D. It is challenging to enforce the no-slip condition on the surface of spherical particles in a uniform Cartesian grid. We have implemented a treatment of the boundary condition similar to that in the PHYSALIS method of Takagi et. al. (2003), which is based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The original PHYSALIS method was developed for implicit flow solvers, and required an iterative process to match the Stokes flow solutions with the numerical solution. However, it was easily adapted to work with the present explicit scheme, and found to be more efficient since no iterative process is required in the matching. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle’s local coordinates, which is then matched to the numerically computed external flow on a ``cage'' of grid points near the particle surface. Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. Several examples are presented, including flow over a stationary sphere in a square tube, sedimentation of a particle, and dropping, kissing, and tumbling of two particles. This research is supported by a GAANN fellowship from the U.S. Dept. of Education.
3D-NTT: a versatile integral field spectro-imager for the NTT
NASA Astrophysics Data System (ADS)
Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.
2008-07-01
The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT
3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming
Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.
1997-01-01
This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.
Study of the internal magnetic field of Mercury through 3D hybrid simulations
NASA Astrophysics Data System (ADS)
Leclercq, Ludivine; Marcel Chanteur, Gerard; Modolo, Ronan; Leblanc, Francois; Schmidt, Carl; Langlais, Benoît; Thebault, Erwan
2016-10-01
In 1974, Mariner 10 discovered the intrinsic magnetic field of Mercury which interacts with the solar wind, leading to the formation of a magnetosphere. In spite of the recent MESSENGER observations, this magnetosphere remains quite unknown, especially in the Southern hemisphere. In order to improve our understanding of the Hermean magnetosphere, and to prepare the Bepi-Colombo mission (ESA/JAXA), we simulated the magnetized environment of Mercury using the model named LatHyS (LATMOS Hybrid Simulation). LatHyS is a 3D parallel multi-species hybrid code which has been applied to Mars, Titan and Ganymede, which has recently be improved by the implementation of a multi-grid method allowing to refine the spatial resolution near the planetary object (40 km in the case of Mercury). In order to investigate the Hermean environment, several hybrid simulations have been performed considering different internal field models, and results are compared with MESSENGER observations.
NASA Astrophysics Data System (ADS)
Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.
2014-09-01
Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.
Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, A.; Al-mazidi, M.
2015-12-01
The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.
NASA Astrophysics Data System (ADS)
Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.
2016-01-01
We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.
Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B
2016-06-27
We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated.
Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field
NASA Astrophysics Data System (ADS)
Carvalho, Mariana Fernandes de
Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.
Calculation of the virtual current in an electromagnetic flow meter with one bubble using 3D model.
Zhang, Xiao-Zhang; Li, Yantao
2004-04-01
Based on the theory of electromagnetic induction flow measurement, the Laplace equation in a complicated three-dimensional (3D) domain is solved by an alternating method. Virtual current potentials are obtained for an electromagnetic flow meter with one spherical bubble inside. The solutions are used to investigate the effects of bubble size and bubble position on the virtual current. Comparisons are done among the cases of 2D and 3D models, and of point electrode and large electrode. The results show that the 2D model overestimates the effect, while large electrodes are least sensitive to the bubble. This paper offers fundamentals for the study of the behavior of an electromagnetic flow meter in multiphase flow. For application, the results provide a possible way to estimate errors of the flow meter caused by multiphase flow.
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
NASA Astrophysics Data System (ADS)
Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail
2011-04-01
Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.
Engineering a 3D microfluidic culture platform for tumor-treating field application
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.
2016-01-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466
Engineering a 3D microfluidic culture platform for tumor-treating field application
NASA Astrophysics Data System (ADS)
Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.
2016-05-01
The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
NASA Astrophysics Data System (ADS)
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
AC electric field induced dipole-based on-chip 3D cell rotation.
Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui
2014-08-07
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
Fine resolution 3D temperature fields off Kerguelen from instrumented penguins
NASA Astrophysics Data System (ADS)
Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André
2004-12-01
The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen
NASA Astrophysics Data System (ADS)
Kim, Jin-Tae; Liberzon, Alex; Chamorro, Leonardo P.
2015-11-01
The distinctive differences between two jet flows that share the same hydraulic diameter dh = 0.01 m and Re ~ 6000, but different (nozzle) shape are explored via 3D Particle Tracking Velocimetry using OpenPTV (http://www.openptv.net). The two jets are formed from circular and semicircular pipes and released in a quiescent water tank of 40 dh height, 40 dh wide, and 200 dh long. The recirculating system is seeded with 100 μm particles, where flow measurements are performed in the intermediate flow field (14.5 < x /dh <18.5) at 550Hz for a total of ~ 30,000 frames. Analysis is focused on the spatial distribution of the local flow acceleration and curvature of the Lagrangian trajectories. The velocity and acceleration of particles are estimated by low-pass filtering their position with a moving cubic spline fitting, while the curvature is obtained from the Frenet-Serret equations. Probability density functions (p.d.f.) of these quantities are obtained at various sub-volumes containing a given streamwise velocity range, and compared between the two cases to evaluate the memory effects in the intermediate flow field.
Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Crua, Cyril; Heikal, Morgan R.
2014-12-01
Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the
Xu, Jiajie; Kvasnička, Pavel; Idso, Matthew; Jordan, Roger W; Gong, Heng; Homola, Jiří; Yu, Qiuming
2011-10-10
The local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure. This phenomenon was determined to be related to the Fabry-Pérot interference effect and the interaction of localized surface plasmons (LSPs). The enhancement factors (EFs) of SERS obtained from the 3D-FDTD simulations were compared to those calculated from the SERS experiments conducted on the Q3D plasmonic nanostructures fabricated on silicon and ITO coated glass substrates with different depths. The same trend was obtained from both methods. The capabilities of tuning not only the intensity but also the location of the maximum local electric fields by varying the depth, dielectric medium, and substrate make Q3D plasmonic nanostructures well suited for highly sensitive and reproducible SERS detection and analysis.
Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech
2016-09-05
We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.
Zouhar, Alexander; Baloch, Sajjad; Tsin, Yanghai; Fang, Tong; Fuchs, Siegfried
2010-01-01
We address the problem of 3-D Mesh segmentation for categories of objects with known part structure. Part labels are derived from a semantic interpretation of non-overlapping subsurfaces. Our approach models the label distribution using a Conditional Random Field (CRF) that imposes constraints on the relative spatial arrangement of neighboring labels, thereby ensuring semantic consistency. To this end, each label variable is associated with a rich shape descriptor that is intrinsic to the surface. Randomized decision trees and cross validation are employed for learning the model, which is eventually applied using graph cuts. The method is flexible enough for segmenting even geometrically less structured regions and is robust to local and global shape variations.
Brain tumor segmentation in 3D MRIs using an improved Markov random field model
NASA Astrophysics Data System (ADS)
Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza
2011-10-01
Markov Random Field (MRF) models have been recently suggested for MRI brain segmentation by a large number of researchers. By employing Markovianity, which represents the local property, MRF models are able to solve a global optimization problem locally. But they still have a heavy computation burden, especially when they use stochastic relaxation schemes such as Simulated Annealing (SA). In this paper, a new 3D-MRF model is put forward to raise the speed of the convergence. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, Genetic Algorithm (GA) has a good capability of global researching but it is weak in hill climbing. Our proposed algorithm combines SA and an improved GA (IGA) to optimize the solution which speeds up the computation time. What is more, this proposed algorithm outperforms the traditional 2D-MRF in quality of the solution.
NASA Astrophysics Data System (ADS)
Munbodh, R.; Moseley, D. J.
2014-03-01
We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.
Investigation of foam flow in a 3D printed porous medium in the presence of oil.
Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima
2017-03-15
Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process.
A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics
NASA Astrophysics Data System (ADS)
Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.
2015-12-01
A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low
NASA Astrophysics Data System (ADS)
Samrock, F.; Kuvshinov, A.; Bakker, J.; Jackson, A.; Fisseha, S.
2015-09-01
The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
3-D seismic data for field development: Landslide field case study
Raeuchle, S.K.; Carr, T.R.; Tucker, R.D. )
1990-05-01
The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottom hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.
3D Gravity Field Modelling of the Lithosphere along the Dead Sea Transform (DESERT 2002)
NASA Astrophysics Data System (ADS)
Götze, H.-J.; Ebbing, J.; Schmidt, S.; Rykakov, M.; Hassouneh, M.; Hrahsha, M.; El-Kelani, R.; Desert Group
2003-04-01
From March to May 2002 a gravity field campaign has to be conducted in the area of Dead Sea Rift/Dead Sea Transform with regard to the isostatic state, the crustal density structure of the transform and the lithospheric rigidity in the Central Arava Valley (Jordan). Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), takes part in the interdisciplinary and international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local scale in the Arava valley and at regional scale along the DESERT seismic line. Station spacing in the area of the Arava valley was 100 - 300 m and in the nearest neighbourhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic studies, and geological mapping which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing density domains. In particular the "dip-curvature" reveal a clear course
Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform
NASA Astrophysics Data System (ADS)
Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.
2002-12-01
The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing
3D Mixing Inside a Neutrally Buoyant Drop Driven by Electrohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Xu, Xiumei; Homsy, G. M.
2007-11-01
For a neutrally buoyant drop subjected to a uniform electric field, the internal flow is the well-known Taylor circulation. In Phys. Fluids 19 013102 (2007), we theoretically studied three dimensional mixing by periodically switching a uniform electric field through an angle α. Periodically switching the field is equivalent to periodically changing the symmetry axis of the Taylor circulation. For α=0.5 π, there is no chaotic mixing because the common heteroclinic trajectories form the separatrix of the flow. For other switching angles, chaotic advection is generated due to perturbations of the heteroclinic trajectory. Experimental investigations of mixing were carried out using a nearly isopycnic silicone oil/castor oil system. For α=0.5 π, our experiments show the existence of symmetry planes. In addition, two blobs of particles are observed to maintain almost invariant shapes for very long time, indicating the absence of chaotic mixing, as predicted by the theory. For other switching angles, experiments show the penetration of symmetry planes by tracer particles. However it is difficult to draw definitive conclusions regarding chaotic mixing because of charge relaxation, long initial transients and drop translation effects.
ERIC Educational Resources Information Center
Caldwell, Karin D.
1988-01-01
Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)
Analysis of the 3D magnetic field and its errors for undulators with iron poles
Ingold, G.; Bahrdt, J.; Gaupp, A.
1995-12-31
The attainable field strength and field quality, such as the optical phase error, the electron beam displacement within the undulator and higher order multipoles of the magnetic field, are discussed. These issues are critical to the design and construction of short period undulators for use in short wavelength FEL or for operation in third generation light sources. We discuss two approaches: (i) For superferric undulators the construction of a full length device would rely on the optimum sorting of precision machined undulator segments. Magnetic data on segments with 20 periods (period length 8.80mm) will be presented. (ii) For hybrid undulators the sorting has to be done on individual poles and magnets. For this approach typical error sources such as machining tolerances, magnetization errors of the permanent magnet material and assembly errors are modeled in 3D and compared to induced errors on an existing hybrid undulator segment. In case of undulators having a full length of hundred periods at least five times as many individual parts have to be characterized. This should be done automatically where both the mechanical and magnetic data before and after the assembly of the magnetic structure are recorded in one step. A CNC programmable measuring device suitable for this task will shortly be presented.
NASA Astrophysics Data System (ADS)
Moreno, P. A.; Bombardelli, F. A.
2012-12-01
-dimensional (HR3D) velocity field can be used as a representation of near bed open-channel flows. Both approaches are used to simulate saltating sediment particles using a 3D Lagrangian particle tracking model. This tracking model is composed by generalized sub-models for particle collision with the bed, bed-roughness representation, and particle free-flight between wall collisions. We analyze the hydrodynamic forces (drag, virtual mass, lift, Basset, Magnus and buoyancy) involved in particle saltation. For validation purposes, we compare our simulation results with experimental data from Niño and García (1998) and Lee and Hsu (1994). Finally we use the logarithmic velocity profile to analyze the importance of particle-particle collision using a sub-model based on the conservation of linear and angular momentum during collision. We analyze simulation results with different particle sizes within the sand range, different flow intensities, and different particle concentrations, in terms of particle diffusion and changes in velocity, rotation and trajectory during collision. To identify the importance of particle-particle collisions, simulations with and without collision among particles were carried out.
A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin
NASA Astrophysics Data System (ADS)
Ziegler, Moritz O.; Heidbach, Oliver; Reinecker, John; Przybycin, Anna M.; Scheck-Wenderoth, Magdalena
2016-09-01
The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing SHmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model
NASA Astrophysics Data System (ADS)
Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin
2016-08-01
This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.
Turbulence Statistics Over 3D Roughness in a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Hong, Jiarong; Katz, Joseph; Schultz, Michael
2009-11-01
This study focuses on the near-wall flow field within a turbulent channel flow over a rough surface. Performing experiments in a facility containing a fluid with the same refractive index as the acrylic rough plate facilitates PIV measurements very near the wall. Presently, the flow in the vicinity of uniformly distributed 0.45mm high pyramids at Reτ=3400-5418 is resolved at a vector spacing of 63um, ˜9 wall units. Data in a streamwise-wall-normal plane shows that below one roughness height, there is an upsurge of , and there are substantial spatial variations in , and
A natural flow wing design employing 3-D nonlinear analysis applied at supersonic speeds
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S.; Wood, Richard M.; Brown, S. Melissa
1989-01-01
A wing-design study has been conducted on a 65-deg-swept leading-edge delta wing in which a near-conical geometry was employed to take advantage of the naturally occurring conical flow which arises over such a wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study. In preliminary design, wing planform, design conditions, and near-conical concept were derived and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and the near-conical delta wing. Modifications due to airfoil thickness, leading-edge radius, and camber were then applied to the baseline near-conical wing. The final design employed a Euler solver to analyze the best wing configurations found in the initial design, and to extend this study to develop a more refined wing. Benefits due to each modification are discussed, and a final natural flow wing geometry is chosen and its aerodynamic characteristics are compared with the baseline wings.
Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.
2016-10-01
A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Haas, J. E.; Katsanis, T.
1984-01-01
A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.
1994-09-01
This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.
Quasi 3D modelling of water flow in the sandy soil
NASA Astrophysics Data System (ADS)
Rezaei, Meisam; Seuntjens, Piet; Joris, Ingeborg; Boënne, Wesley; De Pue, Jan; Cornelis, Wim
2016-04-01
Monitoring and modeling tools may improve irrigation strategies in precision agriculture. Spatial interpolation is required for analyzing the effects of soil hydraulic parameters, soil layer thickness and groundwater level on irrigation management using hydrological models at field scale. We used non-invasive soil sensor, a crop growth (LINGRA-N) and a soil hydrological model (Hydrus-1D) to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. In the first step, the sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models at one soil column. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. In the second step, to predict Ks over the whole field, the spatial distributions of Ks and its relationship between co-located soil ECa measured by a DUALEM-21S sensor were investigated. Measured groundwater levels and soil layer thickness were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m in aim of digital elevation maps. In the third step, a quasi 3D modelling approach was conducted using interpolated data as input hydraulic parameter, geometric information and boundary conditions in the integrated model. In addition, three different irrigation scenarios namely current, no irrigation and optimized irrigations were carried out to find out the most efficient irrigation regime. In this approach, detailed field scale maps of soil water stress, water storage and crop yield were produced at each specific time interval to evaluate the best and most efficient distribution of water using standard gun sprinkler irrigation. The results show that the effect of the position of the groundwater level was dominant in soil-water content prediction and associated water stress. A time-dependent sensitivity analysis of the hydraulic
Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept
NASA Astrophysics Data System (ADS)
Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles
2016-09-01
3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.
Design and testing of indigenous cost effective three dimensional radiation field analyser (3D RFA).
Ganesh, K M; Pichandi, A; Nehru, R M; Ravikumar, M
2014-06-01
The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 x 750 x 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20 and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epo and X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.
2016-03-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
NASA Astrophysics Data System (ADS)
Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.
2015-11-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
NASA Astrophysics Data System (ADS)
Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.
Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier
2016-01-07
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was
NASA Astrophysics Data System (ADS)
Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier
2016-01-01
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
HEMP 3D -- a finite difference program for calculating elastic-plastic flow
Wilkins, M.L.
1993-05-26
The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time. Presented here is an update of the 1975 report on the HEMP 3D numerical technique. The present report includes the sliding surface routines programmed by Robert Gulliford.
A Full Field, 3-D Velocimeter for NASA's Microgravity Science Program
NASA Technical Reports Server (NTRS)
Meyer, Maryjo B.; Bethea, Mark D.
1992-01-01
One of NASA's new Advanced Technology Development projects is stereo imaging velocimetry. Using multiple CCD cameras, the velocimeter will digitize and store images of microscopic seed particles suspended in flowing transparent fluid systems. The data will be processed to obtain full-field, three-dimensional, quantitative velocity data. With successful evolution of the technology, the velocimeter will become part of NASA's flight hardware arsenal, available to both established experiments and new proposals.
NASA Astrophysics Data System (ADS)
Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker
2016-04-01
High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer
Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.
1981-06-30
The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Cohen, R. H.; Ferguson, J. R.; Johnston, B. M.; Sharp, C. B.; Willmann, P. A.
1981-06-01
The single particle orbit code, TIBRO, was modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications.
Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo
2012-08-27
We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.
2009-11-01
Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.
3D phase-field modelling of dislocation loop sink strengths
NASA Astrophysics Data System (ADS)
Thuinet, L.; Rouchette, H.; Legris, A.
2017-01-01
This work presents a 3D phase-field model to correctly evaluate dislocation loop sink strength. This method is applied to a wide range of microstructures (dislocation loops of various types with isotropic or anisotropic elasticity, like in Zr, cohabitation of different types of loop in the same calculation domain), which allows to exhibit several original results. Among them, in the case of isotropic elasticity, our model shows that the sink strength of vacancy loops is higher than that of interstitial ones for low loop radii. In the case of Zr, the effect on sink biases of the shape anisotropy of self-interstitial atoms, already exhibited in the case of straight dislocations, is enhanced for loops and stabilizes basal vacancy and prism-plane interstitial ones. Moreover, isotropic elastic interactions promote the coexistence of parallel vacancy and interstitial loops. This result is still valid in the case of prism-plane loops in Zr, which could provide explanations to several experimental facts.
New non-Doppler remote sensing technique for 3D wind field mapping
NASA Astrophysics Data System (ADS)
Belen'kii, Mikhail S.; Gimmestad, Gary G.; Gurvich, Alexander V.
1994-06-01
A new approach to the statistical analysis of fluctuating, photon-limited signals that permits us to accumulate and process the lidar returns without averaging of the reflected energy fluctuations is developed. This approach requires recording the photocounts for each pulse in a series of pulses and then determining photocount statistics. Based on the semiclassical theory of photodetection and Mandel's formula, a relationship has been obtained between the time-space cross correlation function and the cross spectrum of the lidar returns and corresponding photocount statistics. It is shown that the relative uncertainties of measuring the cross correlation or the cross spectrum of the lidar returns is determined by the general number of photocounts, but not by their mean value. A fast-scanning lidar system, which is based on a new photocounting analysis approach, is described for 3D wind field mapping in the atmosphere at altitudes up to 5 km. A program for the experimental verification of the new approach is presented.
Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs
NASA Astrophysics Data System (ADS)
Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.
2007-11-01
Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.
NASA Astrophysics Data System (ADS)
Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.
2001-09-01
Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Vatsa, V. N.
1983-01-01
The prediction of the complete flow field in a turbine passage is an extremely difficult task due to the complex three dimensional pattern which contains separation and attachment lines, a saddle point and horseshoe vortex. Whereas, in principle such a problem can be solved using full Navier-Stokes equations, in reality methods based on a Navier-Stokes solution procedure encounter difficulty in accurately predicting surface quantities (e.g., heat transfer) due to grid limitations imposed by the speed and size of the existing computers. On the other hand the overall problem is strongly three dimensional and too complex to be analyzed by the current design methods based on inviscid and/or viscous strip theories. Thus there is a strong need for enhancing the current prediction techniques through inclusion of 3-D viscous effects. A potentially simple and cost effective way to achieve this is to use a prediction method based on three dimensional boundary layer (3-DBL) theory. The major objective of this program is to assess the applicability of such a 3-DBL approach for the prediction of heat loads, boundary layer growth, pressure losses and streamline skewing in critical areas of a turbine passage. A brief discussion of the physical problem addressed here along with the overall approach is presented.
NASA Astrophysics Data System (ADS)
Foucaut, Jean-Marc; Coudert, Sebastien; Stanislas, Michel; Delville, Joel
2011-04-01
The turbulence structure near a wall is a very active subject of research and a key to the understanding and modeling of this flow. Many researchers have worked on this subject since the fifties Hama et al. (J Appl Phys 28:388-394, 1957). One way to study this organization consists of computing the spatial two-point correlations. Stanislas et al. (C R Acad Sci Paris 327(2b):55-61, 1999) and Kahler (Exp Fluids 36:114-130, 2004) showed that double spatial correlations can be computed from stereoscopic particle image velocimetry (SPIV) fields and can lead to a better understanding of the turbulent flow organization. The limitation is that the correlation is only computed in the PIV plane. The idea of the present paper is to propose a new method based on a specific stereoscopic PIV experiment that allows the computation of the full 3D spatial correlation tensor. The results obtained are validated by comparison with 2D computation from SPIV. They are in very good agreement with the results of Ganapthisubramani et al. (J Fluid Mech 524:57-80, 2005a).
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber
NASA Astrophysics Data System (ADS)
Yuen, A.; Bombardelli, F. A.
2014-12-01
Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on
SHANK DESIGNS AND SOIL SURFACE TREATMENTS ON 1,3-D EMISSIONS IN A NURSERY FIELD TRIAL
Technology Transfer Automated Retrieval System (TEKTRAN)
In California, tree and grapevine field nurseries must meet the CDFA requirements for nematode-free planting stock. Telone II (1,3-D) is the only methyl bromide alternative accepted by CDFA’s Nursery Stock Nematode Certification program, but its use is subject to environmental regulations. A field t...
3D hybrid simulations of the plasma penetration across a magnetic field
NASA Astrophysics Data System (ADS)
Omelchenko, Yuri
2016-10-01
The expansion of hot dense plasmas across ambient magnetic fields in physical systems with spatial scales comparable to the ion gyro and inertial lengths is of great interest to space physics and fusion. This work presents results from recent three-dimensional hybrid simulations (kinetic ions, fluid electrons) of experiments at the LAPD and Nevada Terawatt Facility where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of the carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation the plasma contains protons and carbon ions produced during the ablation of a polyethylene target. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow while the carbon ion component forms a supporting magnetic structure. The role of ion kinetic and Hall effects in creating an electric field responsible for plasma transport is discussed and results are compared to experimental data. The hybrid simulations are performed with a massively parallel hybrid code, HYPERS that advances fields and particles asynchronously on time scales determined by local physical and geometric properties. Supported by US DOE Award DE-SC0012345.
LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.
2013-12-01
Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.
Numerical calculations of flow fields
NASA Technical Reports Server (NTRS)
Anderson, D.; Vogel, J. M.
1973-01-01
Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.
Guildenbecher, Daniel Robert
2013-12-01
Digital in-line holography is an optical technique which can be applied to measure the size, three-dimensional position, and three-component velocity of disperse particle fields. This work summarizes recent developments at Sandia National Laboratories focused on improvement in measurement accuracy, experimental validation, and applications to multiphase flows. New routines are presented which reduce the uncertainty in measured position along the optical axis to a fraction of the particle diameter. Furthermore, application to liquid atomization highlights the ability to measure complex, three-dimensional structures. Finally, investigation of particles traveling at near sonic conditions prove accuracy despite significant experimental noise due to shock-waves.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
NASA Astrophysics Data System (ADS)
Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos
2012-08-01
Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the
NASA Astrophysics Data System (ADS)
Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng
2017-03-01
In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.
Quasi 3D modeling of water flow in vadose zone and groundwater
Technology Transfer Automated Retrieval System (TEKTRAN)
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...
Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system
Crosetto, Dario B.
1998-10-30
The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelf FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.
Vescovi, D.; Berzi, D.; Richard, P.
2014-05-15
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
NASA Astrophysics Data System (ADS)
Starodubtsev, Y. V.; Gogolev, I. G.; Solodov, V. G.
2005-06-01
The paper describes 3D numerical Reynolds Averaged Navier-Stokes (RANS) model and approximate sector approach for viscous turbulent flow through flow path of one stage axial supercharge gas turbine of marine diesel engine. Computational data are tested by comparison with experimental data. The back step flow path opening and tip clearance jet are taken into account. This approach could be applied for variety of turbine theory and design tasks: for offer optimal design in order to minimize kinetic energy stage losses; for solution of partial supply problem; for analysis of flow pattern in near extraction stages; for estimation of rotational frequency variable forces on blades; for sector vane adjustment (with thin leading edges mainly), for direct flow modeling in the turbine etc. The development of this work could be seen in the direction of unsteady stage model application.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
NASA Astrophysics Data System (ADS)
Entcheva, Emilia
1998-11-01
The goal of this research is to investigate the interactions between the cardiac tissue structure and applied electric fields in producing complex polarization patterns. It is hypothesized that the response of the heart in the conditions of strong electric shocks, as those applied in defibrillation, is dominated by mechanisms involving the cardiac muscle structure perceived as a continuum. Analysis is carried out in three-dimensional models of the heart with detailed fiber architecture. Shock-induced transmembrane potentials are calculated using the bidomain model in its finite element implementation. The major new findings of this study can be summarized as follows: (1) The mechanisms of polarization due to cardiac fiber curvature and fiber rotation are elucidated in three-dimensional ellipsoidal hearts of variable geometry; (2) Results are presented showing that the axis of stimulation and the polarization axis on a whole heart level might differ significantly due to geometric and anisotropic factors; (3) Virtual electrode patterns are demonstrated numerically inside the ventricular wall in internal defibrillation conditions. The role of the tissue-bath interface in shaping the shock-induced polarization is revealed; (4) The generation of 3D phase singularity scrolls by shock-induced intramural virtual electrode patterns is proposed as evidence for a possible new mechanism for the failure to defibrillate. The results of this study emphasize the role of unequal anisotropy in the intra- and extracellular domains, as well as the salient fiber architecture characteristics, such as curvature and transmural rotation, in polarizing the myocardium. Experimental support of the above findings was actively sought and found in recent optical mapping studies using voltage-sensitive dyes. If validated in vivo, these findings would significantly enrich the prevailing concepts about the mechanisms of stimulation and defibrillation of the heart.
Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID
Parr, Andreas; Miesen, Robert; Vossiek, Martin
2016-01-01
In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976
NASA Astrophysics Data System (ADS)
Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente
2014-05-01
On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.
NASA Astrophysics Data System (ADS)
Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing
2016-10-01
This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.
Li, Yuanyang; Herman, Cila
2013-01-01
The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are
NASA Astrophysics Data System (ADS)
Sanjuan, A. S.; Reyes, M. A. H.; Minzoni, A. A.; Geffroy, E.
2017-01-01
This work focuses on a three-dimensional analysis of the deformation of a drop — immersed in a Newtonian fluid— generated by a 2D elongational flow with vorticity. The study of steady-state deformations of the cross-section of the drop shows a prevalent non-circular shape. The axisymmetric idealization of the ellipsoid is not observed nor the linear dependency between capillary number and deformation of the drop, as Taylor and Cox theory predicted. Our numerical results are consistent with experiments and other numerical simulations. However, in the latter cases, measurements of the cross section of the drop are few while a limited class of flows is applied. In this work, deformations induced by general two-dimensional flows upon the 3D drop shape are presented with special emphasis about the length scale along the third axis —perpendicular to the plane of the applied flow field.
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
The Flow Field Inside Ventricle Assist Device
NASA Astrophysics Data System (ADS)
Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit
2000-11-01
The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.
Axisymmetric Granular Collapse: A Transient 3D Flow Test of Viscoplasticity
NASA Astrophysics Data System (ADS)
Lacaze, Laurent; Kerswell, Rich R.
2009-03-01
A viscoplastic continuum theory has recently been proposed to model dense, cohesionless granular flows [P. Jop , Nature (London)NATUAS0028-0836 441, 727 (2006)10.1038/nature04801]. We confront this theory for the first time with a transient, three-dimensional flow situation—the simple collapse of a cylinder of granular matter onto a horizontal plane—by extracting stress and strain rate tensors directly from soft particle simulations. These simulations faithfully reproduce the different flow regimes and capture the observed scaling laws for the final deposit. Remarkably, the theoretical hypothesis that there is a simple stress-strain rate tensorial relationship does seem to hold across the whole flow even close to the rough boundary provided the flow is dense enough. These encouraging results suggest viscoplastic theory is more generally applicable to transient, multidirectional, dense flows and open the way for quantitative predictions in real applications.
Axisymmetric Granular Collapse: a Transient 3D flow Test of Viscoplasticity
NASA Astrophysics Data System (ADS)
Kerswell, Rich; Lacaze, Laurent
2008-11-01
The collapse of a stationary cylinder of granular material onto a horizontal plan is a deceptively simple experiment rich in flow behaviour. Using 3-dimensional soft particle simulations, we reproduce the observed scaling laws for the maximum final runout and height of the deposit as a function of the initial aspect ratio. The flow simulations of this unsteady, largely axisymmetric flow are then used to confront a recently-introduced visco-plastic continuum theory (Jop, Forterre & Pouliquen, Nature, 441,727,2006) which has seen some success modelling steady, unidirectional flows.
Warped AdS3 , dS3 , and flows from N =(0 ,2 ) SCFTs
NASA Astrophysics Data System (ADS)
O'Colgáin, Eoin
2015-05-01
We present the general form of all timelike supersymmetric solutions to three-dimensional U (1 )3 gauged supergravity, a known consistent truncation of string theory. We uncover a rich vacuum structure, including an infinite class of new timelike-warped AdS3 (Gödel) and timelike-warped dS3 critical points. We outline the construction of supersymmetric flows, driven by irrelevant scalar operators in the SCFT, which interpolate between critical points. For flows from AdS3 to Gödel, the natural candidate for the central charge decreases along the flow. Flows to timelike-warped dS3 exhibit topology change.
Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.
2015-01-01
In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and fun