Science.gov

Sample records for 3-d fracture network

  1. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wall was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.

  2. Analysis of fracture networks in a reservoir dolomite by 3D micro-imaging

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Hoyer, Stefan; Exner, Ulrike; Reuschlé, Thierry

    2013-04-01

    Narrow fractures in reservoir rocks can be of great importance when determining the hydrocarbon potential of such a reservoir. Such fractures can contribute significantly to - or even be dominant for - the porosity and permeability characteristics of such rocks. Investigating these narrow fractures is therefore important, but not always trivial. Standard laboratory measurements on sample plugs from a reservoir are not always suitable for fractured rocks. Thin section analysis can provide very important information, but mostly only in 2D. Also other sources of information have major drawbacks, such as FMI (Formation Micro-Imager) during coring (insufficient resolution) and hand specimen analysis (no internal information). 3D imaging of reservoir rock samples is a good alternative and extension to the methods mentioned above. The 3D information is in our case obtained by X-ray Micro-Computed Tomography (µCT) imaging. Our used samples are 2 and 3 cm diameter plugs of a narrowly fractured (apertures generally <200 µm) reservoir dolomite (Hauptdolomit formation) from below the Vienna Basin, Austria. µCT has the large advantage of being non-destructive to the samples, and with the chosen sample sizes and settings, the sample rocks and fractures can be imaged with sufficient quality at sufficient resolution. After imaging, the fracture networks need to be extracted (segmented) from the background. Unfortunately, available segmentation approaches in the literature do not provide satisfactory results on such narrow fractures. We therefore developed the multiscale Hessian fracture filter, with which we are able to extract the fracture networks from the datasets in a better way. The largest advantages of this technique are that it is inherently 3D, runs on desktop computers with limited resources, and is implemented in public domain software (ImageJ / FIJI). The results from the multiscale Hessian fracture filtering approach serve as input for porosity determination. Also

  3. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m. In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.

  4. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  5. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these

  6. Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations

    NASA Astrophysics Data System (ADS)

    Normani, S. D.

    2015-12-01

    Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.

  7. Development of hydraulic fracture network propagation model in shale gas reservoirs: 2D, single-phase and 3D, multi-phase model development, parametric studies, and verification

    NASA Astrophysics Data System (ADS)

    Ahn, Chong Hyun

    The most effective method for stimulating shale gas reservoirs is a massive hydraulic fracture treatment. Recent analysis using microseismic technology have shown that complex fracture networks are commonly created in the field as a result of the stimulation of shale wells. The interaction between pre-existing natural fractures and the propagating hydraulic fracture is a critical factor affecting the created complex fracture network; however, many existing numerical models simulate only planar hydraulic fractures without considering the pre-existing fractures in the formation. The shale formations already contain a large number of natural fractures, so an accurate fracture propagation model needs to be developed to optimize the fracturing process. In this research, we first characterized the mechanics of hydraulic fracturing and fluid flow in the shale gas reservoir. Then, a 2D, single-phase numerical model and a 3D, 2-phase coupled model were developed, which integrate dynamic fracture propagation, interactions between hydraulic fractures and pre-existing natural fractures, fracture fluid leakoff, and fluid flow in a petroleum reservoir. By using the developed model, we conducted parametric studies to quantify the effects of treatment rate, treatment size, fracture fluid viscosity, differential horizontal stress, natural fracture spacing, fracture toughness, matrix permeability, and proppant size on the geometry of the hydraulic fracture network. The findings elucidate important trends in hydraulic fracturing of shale reservoirs that are useful in improving the design of treatments for specific reservoir settings.

  8. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    -deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.

  9. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  10. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  11. Reaction induced fractures in 3D

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders

    2014-05-01

    The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.

  12. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  13. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  14. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was

  15. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  16. 3-D Mixed Mode Delamination Fracture Criteria - An Experimentalist's Perspective

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2006-01-01

    Many delamination failure criteria based on fracture toughness have been suggested over the past few decades, but most only covered the region containing mode I and mode II components of loading because that is where toughness data existed. With new analysis tools, more 3D analyses are being conducted that capture a mode III component of loading. This has increased the need for a fracture criterion that incorporates mode III loading. The introduction of a pure mode III fracture toughness test has also produced data on which to base a full 3D fracture criterion. In this paper, a new framework for visualizing 3D fracture criteria is introduced. The common 2D power law fracture criterion was evaluated to produce unexpected predictions with the introduction of mode III and did not perform well in the critical high mode I region. Another 2D criterion that has been shown to model a wide range of materials well was used as the basis for a new 3D criterion. The new criterion is based on assumptions that the relationship between mode I and mode III toughness is similar to the relation between mode I and mode II and that a linear interpolation can be used between mode II and mode III. Until mixed-mode data exists with a mode III component of loading, 3D fracture criteria cannot be properly evaluated, but these assumptions seem reasonable.

  17. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  18. 3-D Experimental Fracture Analysis at High Temperature

    SciTech Connect

    John H. Jackson; Albert S. Kobayashi

    2001-09-14

    T*e, which is an elastic-plastic fracture parameter based on incremental theory of plasticity, was determined numerically and experimentally. The T*e integral of a tunneling crack in 2024-T3 aluminum, three point bend specimen was obtained through a hybrid analysis of moire interferometry and 3-D elastic-plastic finite element analysis. The results were verified by the good agreement between the experimentally and numerically determined T*e on the specimen surface.

  19. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  20. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  1. Visualizing 3D fracture morphology in granular media

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2015-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  2. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2017-03-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  3. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  4. Synthetic benchmark for modeling flow in 3D fractured media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Pichot, Géraldine; Poirriez, Baptiste; Erhel, Jocelyne

    2013-01-01

    Intensity and localization of flows in fractured media have promoted the development of a large range of different modeling approaches including Discrete Fracture Networks, pipe networks and equivalent continuous media. While benchmarked usually within site studies, we propose an alternative numerical benchmark based on highly-resolved Discrete Fracture Networks (DFNs) and on a stochastic approach. Test cases are built on fractures of different lengths, orientations, aspect ratios and hydraulic apertures, issuing the broad ranges of topological structures and hydraulic properties classically observed. We present 18 DFN cases, with 10 random simulations by case. These 180 DFN structures are provided and fully documented. They display a representative variety of the configurations that challenge the numerical methods at the different stages of discretization, mesh generation and system solving. Using a previously assessed mixed hybrid finite element method (Erhel et al., 2009a), we systematically provide reference flow and head solutions. Because CPU and memory requirements stem mainly from system solving, we study direct and iterative sparse linear solvers. We show that the most cpu-time efficient method is a direct multifrontal method for small systems, while conjugate gradient preconditioned by algebraic multrigrid is more relevant at larger sizes. Available results can be used further as references for building up alternative numerical and physical models in both directions of improving accuracy and efficiency.

  5. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  6. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  7. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  8. Heterogeneous force network in 3D cellularized collagen networks.

    PubMed

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-10-25

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml(-1) are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  9. Heterogeneous force network in 3D cellularized collagen networks

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-12-01

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  10. Filament-length-controlled elasticity in 3D fiber networks.

    PubMed

    Broedersz, C P; Sheinman, M; Mackintosh, F C

    2012-02-17

    We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing linear response regime in the limit of flexible or long filaments.

  11. Value of 3-D CT in classifying acetabular fractures during orthopedic residency training.

    PubMed

    Garrett, Jeffrey; Halvorson, Jason; Carroll, Eben; Webb, Lawrence X

    2012-05-01

    The complex anatomy of the pelvis and acetabulum have historically made classification and interpretation of acetabular fractures difficult for orthopedic trainees. The addition of 3-dimensional (3-D) computed tomography (CT) scan has gained popularity in preoperative planning, identification, and education of acetabular fractures given their complexity. Therefore, the authors examined the value of 3-D CT compared with conventional radiography in classifying acetabular fractures at different levels of orthopedic training. Their hypothesis was that 3-D CT would improve correct identification of acetabular fractures compared with conventional radiography.The classic Letournel fracture pattern classification system was presented in quiz format to 57 orthopedic residents and 20 fellowship-trained orthopedic traumatologists. A case consisted of (1) plain radiographs and 2-dimensional axial CT scans or (2) 3-D CT scans. All levels of training showed significant improvement in classifying acetabular fractures with 3-D vs 2-D CT, with the greatest benefit from 3-D CT found in junior residents (postgraduate years 1-3).Three-dimensional CT scans can be an effective educational tool for understanding the complex spatial anatomy of the pelvis, learning acetabular fracture patterns, and correctly applying a widely accepted fracture classification system.

  12. Determining the 3-D fracture structure in the Geysers geothermal reservoir

    SciTech Connect

    Sammis, Charles G.; Linji An; Iraj Ershaghi

    1992-01-01

    The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of

  13. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  14. Multi-Scale Fracture Mechanics of 3-D Reinforced Composites

    DTIC Science & Technology

    2010-02-26

    technique and cohesive formulation for crack extension. A representative volume element (RVE) approach employed for homogenized stiffness and stress...the mesh-independent crack propagation technique and cohesive formulation for crack extension. A representative volume element (RVE) approach employed...technology for application and development of progressive fracture modeling, SCSAM is a technique for modeling complex multiple site initiation and

  15. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    visualization in OPNET . . . . . . . . . . . . 13 6. Sample NetViz visualization . . . . . . . . . . . . . . . . . . . 15 7. Realistic 3D terrains...scenario in OPNET . . . 19 10. OPNET 3DNV only displays connectivity . . . . . . . . . . . . 29 11. The digitally connected battlefield...confirmation tool 12 OPNET Optimized Network Evaluation Tool . . . . . . . . . . . . 13 NetViz Network Visualization

  16. Construction of programmable interconnected 3D microfluidic networks

    NASA Astrophysics Data System (ADS)

    Hunziker, Patrick R.; Wolf, Marc P.; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B.

    2015-02-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries.

  17. 3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Kubo, Taiki; Liu, Chunxue; Masoud, Alaa; Amano, Kenji; Kurihara, Arata; Matsuoka, Toshiyuki; Lanyon, Bill

    2015-10-01

    This study integrates 3D models of rock fractures from different sources and hydraulic properties aimed at identifying relationships between fractures and permeability. The Tono area in central Japan, chiefly overlain by Cretaceous granite, was examined because of the availability of a unique dataset from deep borehole data at 26 sites. A geostatistical method (GEOFRAC) that can incorporate orientations of sampled data was applied to 50,900 borehole fractures for spatial modeling of fractures over a 12 km by 8 km area, to a depth of 1.5 km. GEOFRAC produced a plausible 3D fracture model, in that the orientations of simulated fractures correspond to those of the sample data and the continuous fractures appeared near a known fault. Small-scale fracture distributions with dominant orientations were also characterized around the two shafts using fracture data from the shaft walls. By integrating the 3D model of hydraulic conductivity using sequential Gaussian simulation with the GEOFRAC fractures from the borehole data, the fracture sizes and directions that strongly affect permeable features were identified. Four fracture-related elements: lineaments from a shaded 10-m DEM, GEOFRAC fractures using the borehole and shaft data, and microcracks from SEM images, were used for correlating fracture attributes at different scales. The consistency of the semivariogram models of distribution densities was identified. Using an experimental relationship between hydraulic conductivity and fracture length, the fractures that typically affect the hydraulic properties at the drift scale were surmised to be in the range 100-200 m. These results are useful for a comprehensive understanding of rock fracture systems and their hydraulic characteristics at multiple scales in a target area.

  18. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  19. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of

  20. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    DOE PAGES

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorptionmore » capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less

  1. Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite

    SciTech Connect

    Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; Fiedler, B.; Smazna, D.; Adelung, R.; Schulte, K.

    2015-11-04

    Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energy absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in KIC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.

  2. Reconstructing the 3D fracture distribution model from core (10 cm) to outcrop (10 m) and lineament (10 km) scales

    NASA Astrophysics Data System (ADS)

    Darcel, C.; Davy, P.; Bour, O.; de Dreuzy, J.

    2006-12-01

    Considering the role of fractures in hydraulic flow, the knowledge of the 3D spatial distribution of fractures is a basic concern for any hydrogeology-related study (potential leakages in waste repository, aquifer management, ?). Unfortunately geophysical imagery is quite blind with regard to fractures, and only the largest ones are generally detected, if they are. Actually most of the information has to be derived from statistical models whose parameters are defined from a few sparse sampling areas, such as wells, outcrops, or lineament maps. How these observations obtained at different scales can be linked to each other is a critical point, which directly addresses the issue of fracture scaling. In this study, we use one of the most important datasets that have ever been collected for characterizing fracture networks. It was collected by the Swedish company SKB for their research program on deep repository for radioactive waste, and consists of large-scale lineament maps covering about 100 km2, several outcrops of several hundreds of m2 mapped with a fracture trace length resolution down to 0.50 m, and a series of 1000m-deep cored boreholes where both fracture orientations and fracture intensities were carefully recorded. Boreholes are an essential complement to surface outcrops as they allow the sampling of horizontal fracture planes that, generally, are severely undersampled in subhorizontal outcrops. Outcrops, on the other hand, provide information on fracture sizes which is not possible to address from core information alone. However linking outcrops and boreholes is not straightforward: the sampling scale is obviously different and some scaling rules have to be applied to relate both fracture distributions; outcrops are 2D planes while boreholes are mostly 1D records; outcrops can be affected by superficial fracturing processes that are not representative of the fracturing at depth. We present here the stereology methods for calculating the 3D distribution

  3. 3D Network Analysis for Indoor Space Applications

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Dimopoulou, E.

    2016-10-01

    Indoor space differs from outdoor environments, since it is characterized by a higher level of structural complexity, geometry, as well as topological relations. Indoor space can be considered as the most important component in a building's conceptual modelling, on which applications such as indoor navigation, routing or analysis are performed. Therefore, the conceptual meaning of sub spaces or the activities taking place in physical building boundaries (e.g. walls), require the comprehension of the building's indoor hierarchical structure. The scope of this paper is to perform 3D network analysis in a building's interior and is structured as follows: In Section 1 the definition of indoor space is provided and indoor navigation requirements are analysed. Section 2 describes the processes of indoor space modeling, as well as routing applications. In Section 3, a case study is examined involving a 3D building model generated in CityEngine (exterior shell) and ArcScene (interior parts), in which the use of commercially available software tools (ArcGIS, ESRI), in terms of indoor routing and 3D network analysis, are explored. The fundamentals of performing 3D analysis with the ArcGIS Network Analyst extension were tested. Finally a geoprocessing model was presented, which was specifically designed to be used to interactively find the best route in ArcScene. The paper ends with discussion and concluding remarks on Section 4.

  4. Constructing 3D microtubule networks using holographic optical trapping

    PubMed Central

    Bergman, J.; Osunbayo, O.; Vershinin, M.

    2015-01-01

    Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices. PMID:26657337

  5. Computer assisted 3D pre-operative planning tool for femur fracture orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-02-01

    Femur shaft fractures are caused by high impact injuries and can affect gait functionality if not treated correctly. Until recently, the pre-operative planning for femur fractures has relied on two-dimensional (2D) radiographs, light boxes, tracing paper, and transparent bone templates. The recent availability of digital radiographic equipment has to some extent improved the workflow for preoperative planning. Nevertheless, imaging is still in 2D X-rays and planning/simulation tools to support fragment manipulation and implant selection are still not available. Direct three-dimensional (3D) imaging modalities such as Computed Tomography (CT) are also still restricted to a minority of complex orthopedic procedures. This paper proposes a software tool which allows orthopedic surgeons to visualize, diagnose, plan and simulate femur shaft fracture reduction procedures in 3D. The tool utilizes frontal and lateral 2D radiographs to model the fracture surface, separate a generic bone into the two fractured fragments, identify the pose of each fragment, and automatically customize the shape of the bone. The use of 3D imaging allows full spatial inspection of the fracture providing different views through the manipulation of the interactively reconstructed 3D model, and ultimately better pre-operative planning.

  6. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  7. Constraints on 3D fault and fracture distribution in layered volcanic- volcaniclastic sequences from terrestrial LIDAR datasets: Faroe Islands

    NASA Astrophysics Data System (ADS)

    Raithatha, Bansri; McCaffrey, Kenneth; Walker, Richard; Brown, Richard; Pickering, Giles

    2013-04-01

    Hydrocarbon reservoirs commonly contain an array of fine-scale structures that control fluid flow in the subsurface, such as polyphase fracture networks and small-scale fault zones. These structures are unresolvable using seismic imaging and therefore outcrop-based studies have been used as analogues to characterize fault and fracture networks and assess their impact on fluid flow in the subsurface. To maximize recovery and enhance production, it is essential to understand the geometry, physical properties, and distribution of these structures in 3D. Here we present field data and terrestrial LIDAR-derived 3D, photo-realistic virtual outcrops of fault zones at a range of displacement scales (0.001- 4.5 m) within a volcaniclastic sand- and basaltic lava unit sequence in the Faroe Islands. Detailed field observations were used to constrain the virtual outcrop dataset, and a workflow has been developed to build a discrete fracture network (DFN) models in GOCAD® from these datasets. Model construction involves three main stages: (1) Georeferencing and processing of LIDAR datasets; (2) Structural interpretation to discriminate between faults, fractures, veins, and joint planes using CAD software and RiSCAN Pro; and (3) Building a 3D DFN in GOCAD®. To test the validity of this workflow, we focus here on a 4.5 m displacement strike-slip fault zone that displays a complex polymodal fracture network in the inter-layered basalt-volcaniclastic sequence, which is well-constrained by field study. The DFN models support our initial field-based hypothesis that fault zone geometry varies with increasing displacement through volcaniclastic units. Fracture concentration appears to be greatest in the upper lava unit, decreases into the volcaniclastic sediments, and decreases further into the lower lava unit. This distribution of fractures appears to be related to the width of the fault zone and the amount of fault damage on the outcrop. For instance, the fault zone is thicker in

  8. Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Exner, Ulrike; Rath, Alexander

    2013-08-01

    Narrow fractures—or more generally narrow planar features—can be difficult to extract from 3D image datasets, and available methods are often unsuitable or inapplicable. A proper extraction is however in many cases required for visualisation or future processing steps. We use the example of 3D X-ray micro-Computed Tomography (µCT) data of narrow fractures through core samples from a dolomitic hydrocarbon reservoir (Hauptdolomit below the Vienna Basin, Austria). The extraction and eventual binary segmentation of the fractures in these datasets is required for porosity determination and permeability modelling. In this paper, we present the multiscale Hessian fracture filtering technique for extracting narrow fractures from a 3D image dataset. The second-order information in the Hessian matrix is used to distinguish planar features from the dataset. Different results are obtained for different scales of analysis in the calculation of the Hessian matrix. By combining these various scales of analysis, the final output is multiscale; i.e. narrow fractures of different apertures are detected. The presented technique is implemented and made available as macro code for the multiplatform public domain image processing software ImageJ. Serial processing of blocks of data ensures that full 3D processing of relatively large datasets (example dataset: 1670×1670×1546 voxels) is possible on a desktop computer. Here, several hours of processing time are required, but interaction is only required in the beginning. Various post-processing steps (calibration, connectivity filtering, and binarisation) can be applied, depending on the goals of research. The multiscale Hessian fracture filtering technique provides very good results for extracting the narrow fractures in our example dataset, despite several drawbacks inherent to the use of the Hessian matrix. Although we apply the technique on a specific example, the general implementation makes the filter suitable for different

  9. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  10. Intra-operative 3D imaging system for robot-assisted fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-01-01

    Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).

  11. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  12. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    NASA Astrophysics Data System (ADS)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  13. Determination of the material fracture toughness by numerical analysis of 3D elastoplastic dynamic deformation

    NASA Astrophysics Data System (ADS)

    Bogdanov, V. R.; Sulim, G. T.

    2016-03-01

    We develop a technique for calculating the plastic strain and fracture toughness fields of a material by solving dynamical 3D problems of determining the stress-strain state in the elastoplastic statement with possible unloading of the material taken into account. The numerical solution was obtained by a finite difference scheme applied to the three-point shock bending tests of parallelepiped-shaped bars made of different materials with plane crack-notches in the middle. The fracture toughness coefficient was determined for reactor steel. The numerically calculated stress tensor components, mean stresses, the Odquist parameter characterizing the accumulated plastic strain, and the fracture toughness are illustrated by graphs.

  14. Fabrication of a customized bone scaffold using a homemade medical 3D printer for comminuted fractures

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Shin, Han-Back; Kim, Moo-Sub; Choe, Bo-Young; Kim, Sunmi; Suh, Tae Suk; Lee, Keum Sil; Xing, Lei

    2016-09-01

    The purpose of this study was to show a 3D printed reconstruction model of a bone destroyed by a comminuted fracture. After a thoracic limb of a cow with a comminuted fracture was scanned by using computed tomography, a scaffold was designed by using a 3D modeling tool for its reconstruction and fabricated by using a homemade medical 3D printer. The homemade medical 3D printer was designed for medical use. In order to reconstruct the geometry of the destroyed bone, we use the geometry of a similar section (reference geometry) of normal bone in the 3D modeling process. The missing part between the destroyed ridge and the reference geometry was filled with an effective space by using a manual interpolation. Inexpensive materials and free software were used to construct the medical 3D printer system. The fabrication of the scaffold progressed according to the design of reconstructed bone by using this medical 3D printer. The material of the scaffold was biodegradable material, and could be transplanted into the human body. The fabricated scaffold was correctly inserted into the fractured bone in place of the destroyed portion, with good agreement. According to physical stress test results, the performance of printing resolution was 0.1 mm. The average geometrical error of the scaffold was below 0.3 mm. The reconstructed bone by using the fabricated scaffold was able to support the weight of the human body. No process used to obtain the result was complex or required many resources. The methods and results in this study show several possible clinical applications in fields such as orthopedics or oncology without a need to purchase high-price instruments for 3D printing.

  15. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  16. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates.

    PubMed

    Shuang, Feng; Hu, Wei; Shao, Yinchu; Li, Hao; Zou, Hongxing

    2016-01-01

    The aim of the study was to evaluate the efficacy custom 3D-printed osteosynthesis plates in the treatment of intercondylar humeral fractures.Thirteen patients with distal intercondylar humeral fractures were randomized to undergo surgery using either conventional plates (n = 7) or 3D-printed plates (n = 6) at our institution from March to October 2014. Both groups were compared in terms of operative time and elbow function at 6 month follow-up.All patients were followed-up for a mean of 10.6 months (range: 6-13 months). The 3D-printing group had a significantly shorter mean operative time (70.6 ± 12.1 min) than the conventional plates group (92.3 ± 17.4 min). At the last follow-up period, there was no significant difference between groups in the rate of patients with good or excellent elbow function, although the 3D-printing group saw a slightly higher rate of good or excellent evaluations (83.1%) compared to the conventional group (71.4%).Custom 3D printed osteosynthesis plates are safe and effective for the treatment of intercondylar humeral fractures and significantly reduce operative time.

  17. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates

    PubMed Central

    Shuang, Feng; Hu, Wei; Shao, Yinchu; Li, Hao; Zou, Hongxing

    2016-01-01

    Abstract The aim of the study was to evaluate the efficacy custom 3D-printed osteosynthesis plates in the treatment of intercondylar humeral fractures. Thirteen patients with distal intercondylar humeral fractures were randomized to undergo surgery using either conventional plates (n = 7) or 3D-printed plates (n = 6) at our institution from March to October 2014. Both groups were compared in terms of operative time and elbow function at 6 month follow-up. All patients were followed-up for a mean of 10.6 months (range: 6–13 months). The 3D-printing group had a significantly shorter mean operative time (70.6 ± 12.1 min) than the conventional plates group (92.3 ± 17.4 min). At the last follow-up period, there was no significant difference between groups in the rate of patients with good or excellent elbow function, although the 3D-printing group saw a slightly higher rate of good or excellent evaluations (83.1%) compared to the conventional group (71.4%). Custom 3D printed osteosynthesis plates are safe and effective for the treatment of intercondylar humeral fractures and significantly reduce operative time. PMID:26817880

  18. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece)

    NASA Astrophysics Data System (ADS)

    Grandjean, G.; Gourry, J. C.

    1996-11-01

    Ground Penetrating Radar (GPR) has been successfully applied to detect and map fractures in marble quarries. The aim was to distinguish quickly intact marketable marble areas from fractured ones in order to improve quarry management. The GPR profiling method was chosen because it is non destructive and quickly provides a detailed image of the subsurface. It was performed in domains corresponding to future working areas in real quarry-exploitation conditions. Field surveying and data processing were adapted to the local characteristics of the fractures: E-W orientation, sub-vertical dip, and karst features. After the GPR profiles had been processed, using methods adapted from seismics (amplitude compensation, filtering and Fourier migration), the interpreted fractures from a 12 × 24 × 15 m zone were incorporated into a 3D model. Due to the low electrical conductivity of the marble, GPR provides penetration depths of about 8 and 15 m, and resolutions of about 1 and 5 cm for frequencies of 900 and 300 MHz respectively. The detection power thus seems to be sufficient to recommend use of this method. As requested by the quarriers, the 3D representation can be used directly by themselves to locate high- or low-quality marble areas. Comparison between the observed surface fractures and the fractures detected using GPR showed reasonable correlation.

  19. A Preprocessor for Modeling Nonpoint Sources in Fractured Media using MODFLOW and MT3D

    NASA Astrophysics Data System (ADS)

    Mun, Y.; Uchrin, C. G.

    2002-05-01

    There are a multitude of fractures in the geological structure of fractured media which act as conduits for subsurface fluid flow. The hydraulic properties of this flow are very heterogeneous even within a single unit and this heterogeneity is very localized. As a result, modeling flow in fractured media is difficult due to this heterogeneity. There are two major approaches to simulate the flow and transport of fluid flow in fractured media: the discrete fracture approach and the continuum approach. Precise characteristics such as geometry are required to use the discrete fracture approach. It, however, is difficult to determine the fluid flow through the fractures because of inaccessibility. In the continuum approach, although head distributions can match to well data, chemical concentration distributions are hard to match well sample concentration observations, because some aquifers are dominated by advective transport and others are likely to serve as reservoirs for immobile solutes. The MODFLOW preprocessor described in this paper has been developed and applied to the Cranberry Lake system in Northwestern New Jersey. Cranberry Lake has exhibited eutrophic characteristics for some time by nonpoint sources including surface water runoff, leaching from local septic systems and direct deposition. It has been estimated that 70% of the nutrient loading to the lake flows through fractured media from septic systems. The preprocessor presented in this paper utilizes percolation theory, which is concerned with the existence of ­ropen paths­_. The percolation threshold of a body-centered cubic lattice (3D), a square lattice (2D) and several other percolation numbers are applied to make the model system represent the fractured media. The distribution of hydraulic head within groundwater is simulated by MODFLOW and the advection-dispersion equation of nitrate transport is solved by MT3D. This study also simulates boron transport as an indicator.

  20. Microwave 3D concept for beam forming networks

    NASA Astrophysics Data System (ADS)

    Vendier, O.; Drevon, C.; Monfraix, P.

    2002-12-01

    The development of active antennas for space applications has reinforced the need for RF BFNs - Beam Forming Networks. A BFN connects m RF inputs to m RF Outputs to form N independent and simultaneous beams. The resulting matrix has m x n internal connections. Typically, this number runs into the hundreds, which make it impossible to be implemented with a classical concept. Even the technology based on multilayer printed circuit boards is limited in : frequency mainly due to the mechanical accuracy on materials and processes, integration because all the components could be bonded only on the surface of the boards. The new concept presented in this paper is compatible with BFN in the Ka band and upper frequencies. This "vertical" BFN is using the RF 3D technology; in that way the capacity of interconnection is drastically improved because all the routing moved to the surface of the module with all the components encapsulated inside the module. Main of the fundamental technology points are addressed : availability for molding very large modules up to 110 x 110 mm with the capability to keep all the advantages of the 3D technology, a 3D CPW (CoPlanar Waveguide) intercon- nection on a low dielectric constant resin, micro-connectors implemented with surface mount technology and working up to 30 GHz. A test vehicle including all those points is also presented with the first results on the reliability tests mainly based on thermal cycles in the range -55/+125°C.

  1. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  2. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  3. Fracture Resistance of Non-Metallic Molar Crowns Manufactured with CEREC 3D

    NASA Astrophysics Data System (ADS)

    Madani, Dalia A.

    Objectives. To compare fracture strength and fatigue resistance of ceramic (ProCAD, Ivoclar-Vivadent) (C) and resin composite (Paradigm MZ100, 3M/ ESPE) (R) crowns made with CEREC-3D. Methods. A prepared ivorine molar tooth was duplicated to produce 40 identical prepared specimens made of epoxy resin (Viade). Twenty (C) crowns and 20 (R) were cemented to their dies using resin cement. Ten of each group were subjected to compressive loading to fracture. The remaining 10 of each group were subjected to mechanical cyclic loading for 500,000 cycles. The survivors were subjected to compressive loading to fracture. Results. No significant difference in mean fracture load was found between the two materials. However, only 30% of the (C) crowns vs. 100% of the (R) crowns survived the cyclic loading test. Conclusions. (R) crowns demonstrated higher fatigue Resistance than (C) crowns in-vitro and might better resist cracking in-vivo.

  4. 3D geometry and hydrodynamic modifications in fractured and porous rock samples through chemical alterations.

    NASA Astrophysics Data System (ADS)

    Noiriel, C. N.

    2011-12-01

    Fractured and porous rocks are the principal path for water flow and potential contamination. Modification of fracture topology and transmissivity by reactive fluids is an important and complex geological process. In carbonate rocks, fractures and porous media properties may change quickly and strongly due to natural processes (e.g. karstification, salt intrusion) or anthropogenic practice (e.g. CO2 geological sequestration). Recent application of X-ray micro-tomography to the Earth Sciences, which allows the visualization of 3D objects with a micrometre resolution, has considerably increased experimental capability by giving access to a 4D spatio-temporal vision (3D geometry + time) of the physical-chemical processes within the rocks. New information is now accessible, which provides a better understanding of the processes and allows the numerical models to be better constrained. I will present the application of X-ray micro-tomography to study changes of petrophysical properties (e.g. porosity, permeability, mineral surface area, etc.) of fractured and porous rocks in response to fluid-rock interactions (dissolution and precipitation). Experimental results will be discussed in regard to numerical modelling of flow and transport. Keywords: X-ray micro-tomography, fracture, porous media, dissolution, precipitation, carbon dioxide sequestration, limestone, reactive surface, geochemical modelling,

  5. A Spatial Clustering Approach for Stochastic Fracture Network Modelling

    NASA Astrophysics Data System (ADS)

    Seifollahi, S.; Dowd, P. A.; Xu, C.; Fadakar, A. Y.

    2014-07-01

    Fracture network modelling plays an important role in many application areas in which the behaviour of a rock mass is of interest. These areas include mining, civil, petroleum, water and environmental engineering and geothermal systems modelling. The aim is to model the fractured rock to assess fluid flow or the stability of rock blocks. One important step in fracture network modelling is to estimate the number of fractures and the properties of individual fractures such as their size and orientation. Due to the lack of data and the complexity of the problem, there are significant uncertainties associated with fracture network modelling in practice. Our primary interest is the modelling of fracture networks in geothermal systems and, in this paper, we propose a general stochastic approach to fracture network modelling for this application. We focus on using the seismic point cloud detected during the fracture stimulation of a hot dry rock reservoir to create an enhanced geothermal system; these seismic points are the conditioning data in the modelling process. The seismic points can be used to estimate the geographical extent of the reservoir, the amount of fracturing and the detailed geometries of fractures within the reservoir. The objective is to determine a fracture model from the conditioning data by minimizing the sum of the distances of the points from the fitted fracture model. Fractures are represented as line segments connecting two points in two-dimensional applications or as ellipses in three-dimensional (3D) cases. The novelty of our model is twofold: (1) it comprises a comprehensive fracture modification scheme based on simulated annealing and (2) it introduces new spatial approaches, a goodness-of-fit measure for the fitted fracture model, a measure for fracture similarity and a clustering technique for proposing a locally optimal solution for fracture parameters. We use a simulated dataset to demonstrate the application of the proposed approach

  6. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  7. 3D visualization of gene clusters and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Leishi; Sheng, Weiguo; Liu, Xiaohui

    2005-03-01

    In this paper, we try to provide a global view of DNA microarray gene expression data analysis and modeling process by combining novel and effective visualization techniques with data mining algorithms. An integrated framework has been proposed to model and visualize short, high-dimensional gene expression data. The framework reduces the dimensionality of variables before applying appropriate temporal modeling method. Prototype has been built using Java3D to visualize the framework. The prototype takes gene expression data as input, clusters the genes, displays the clustering results using a novel graph layout algorithm, models individual gene clusters using Dynamic Bayesian Network and then visualizes the modeling results using simple but effective visualization techniques.

  8. Laboratory Visualization of Hydraulic Fracture Propagation and Interaction with a Network of Preexisting Fractures

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Borglin, S. E.

    2015-12-01

    We present optical visualization experiments of hydraulic fracture propagation within transparent rock-analogue samples containing a network of preexisting fractures. Natural fractures and heterogeneities in rock have a great impact on hydraulic fracture propagation and resulting improvements in reservoir permeability. In recent years, many sophisticated numerical simulations on hydraulic fracturing have been conducted. Laboratory experiments on hydraulic fracturing are often performed with acoustic emission (Micro Earthquake) monitoring, which allows detection and location of fracturing and fracture propagation. However, the detected fractures are not necessarily hydraulically produced fractures which provide permeable pathways connected to the injection (and production) well. The primary objectives of our visualization experiments are (1) to obtain quantitative visual information of hydraulic fracture propagation affected by pre-existing fractures and (2) to distinguish fractures activated by the perturbed stress field away from the injected fluid and hydraulically produced fractures. The obtained data are also used to develop and validate a new numerical modeling technique (TOUGH-RBSN [Rigid-Body-Spring-Network] model) for hydraulic fracturing simulations, which is presented in a companion paper. The experiments are conducted using transparent soda-lime glass cubes (10 cm × 10 cm × 10 cm) containing either (1) 3D laser-engraved artificial fractures and fracture networks or (2) a random network of fractures produced by rapid thermal quenching. The strength (and also the permeability for the latter) of the fractures can be altered to examine their impact on hydraulic fracturing. The cubes are subjected to true-triaxial stress within a polyaxial loading frame, and hydraulic fractures are produced by injecting fluids with a range of viscosity into an analogue borehole drilled in the sample. The visual images of developing fractures are obtained both through a port

  9. Fracture mechanics of propagating 3-D fatigue cracks with parametric dislocations

    NASA Astrophysics Data System (ADS)

    Takahashi, Akiyuki; Ghoniem, Nasr M.

    2013-07-01

    Propagation of 3-D fatigue cracks is analyzed using a discrete dislocation representation of the crack opening displacement. Three dimensional cracks are represented with Volterra dislocation loops in equilibrium with the applied external load. The stress intensity factor (SIF) is calculated using the Peach-Koehler (PK) force acting on the crack tip dislocation loop. Loading mode decomposition of the SIF is achieved by selection of Burgers vector components to correspond to each fracture mode in the PK force calculations. The interaction between 3-D cracks and free surfaces is taken into account through application of the superposition principle. A boundary integral solution of an elasticity problem in a finite domain is superposed onto the elastic field solution of the discrete dislocation method in an infinite medium. The numerical accuracy of the SIF is ascertained by comparison with known analytical solution of a 3-D crack problem in pure mode I, and for mixed-mode loading. Finally, fatigue crack growth simulations are performed with the Paris law, showing that 3-D cracks do not propagate in a self-similar shape, but they re-configure as a result of their interaction with external boundaries. A specific numerical example of fatigue crack growth is presented to demonstrate the utility of the developed method for studies of 3-D crack growth during fatigue.

  10. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  11. Photographing Internal Fractures of the Archaeological Statues with 3D Visualization of Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.; Kadioglu, Y. K.

    2009-04-01

    PHOTOGRAPHING INTERNAL FRACTURES OF THE ARCHAEOLOGICAL STATUES WITH 3D VISUALIZATION OF GROUND PENETRATING RADAR DATA Selma KADIOGLU1 and Yusuf K. KADIOGLU2 1Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr 2Ankara University, Faculty of Engineering, Department of Geological Engineering, 06100 Tandogan/ANKARA-TURKEY kadi@eng.ankara.edu.tr The aim of the study is to illustrate a new approach to image the discontinuities in the archaeological statues before restoration studies using ground penetrating radar (GPR) method. The method was successfully applied to detect and map the fractures and cavities of the two monument groups and lion statues in Mustafa Kemal ATATURK's tumb (ANITKABIR) in Ankara-Turkey. The tumb, which has been started to build in 1944 and completed in 1953, represents Turkish people and Ataturk, who is founder of the Republic of Turkey. Therefore this monument is very important for Turkish people. The monument groups and lion statues have been built from travertine rocks. These travertine have vesicular textures with the percent of 12. They have been mainly composed of calcite, aragonite with rare amount of plant relict and clay minerals. The concentrations of Fe, Mg, Cl and Mn may lead to verify their colours changing from white through pale green to beige. The atmospheric contamination of Ankara has been caused to cover some parts of the surface of these travertine with a thin film of Pb as blackish in colour. The micro fractures have been observed specially at the rim of the vesicular of the rocks by the polarizing microscope. Parallel two dimensional (2D) GPR profile data with 10cm profile space were acquired by RAMAC CU II system with 1600 MHz shielded antenna on the monument groups (three women, three men and 24 lion statues) and then a three dimensional (3D) data volume were built using parallel 2D GPR data. Air-filled fractures and cavities in the

  12. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  13. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication

    PubMed Central

    Yang, Long; Shang, Xian-Wen; Fan, Jian-Nan; He, Zhi-Xu; Wang, Jian-Ji; Liu, Miao; Zhuang, Yong

    2016-01-01

    To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A) and the no-3D printing assisted-design group (Group B). In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P < 0.05). Patient satisfaction using the 3D-printed prototype and the communication score were 9.3 ± 0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication. PMID:27446944

  14. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication.

    PubMed

    Yang, Long; Shang, Xian-Wen; Fan, Jian-Nan; He, Zhi-Xu; Wang, Jian-Ji; Liu, Miao; Zhuang, Yong; Ye, Chuan

    2016-01-01

    To evaluate the effect of 3D printing in treating trimalleolar fractures and its roles in physician-patient communication, thirty patients with trimalleolar fractures were randomly divided into the 3D printing assisted-design operation group (Group A) and the no-3D printing assisted-design group (Group B). In Group A, 3D printing was used by the surgeons to produce a prototype of the actual fracture to guide the surgical treatment. All patients underwent open reduction and internal fixation. A questionnaire was designed for doctors and patients to verify the verisimilitude and effectiveness of the 3D-printed prototype. Meanwhile, the operation time and the intraoperative blood loss were compared between the two groups. The fracture prototypes were accurately printed, and the average overall score of the verisimilitude and effectiveness of the 3D-printed prototypes was relatively high. Both the operation time and the intraoperative blood loss in Group A were less than those in Group B (P < 0.05). Patient satisfaction using the 3D-printed prototype and the communication score were 9.3 ± 0.6 points. A 3D-printed prototype can faithfully reflect the anatomy of the fracture site; it can effectively help the doctors plan the operation and represent an effective tool for physician-patient communication.

  15. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

  16. A methodology for pseudo-genetic stochastic modeling of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Henrion, Vincent; Caumon, Guillaume; Renard, Philippe; Sausse, Judith

    2013-07-01

    Stochastic simulation of fracture systems is an interesting approach to build a set of dense and complex networks. However, discrete fracture models made of planar fractures generally fail to reproduce the complexity of natural networks, both in terms of geometry and connectivity. In this study a pseudo-genetic method is developed to generate stochastic fracture models that are consistent with patterns observed on outcrops and fracture growth principles. The main idea is to simulate evolving fracture networks through geometric proxies by iteratively growing 3D fractures. The algorithm defines heuristic rules in order to mimic the mechanics of fracture initiation, propagation, interaction and termination. The growth process enhances the production of linking structure and impacts the connectivity of fracture networks. A sensitivity study is performed on synthetic examples. The method produces unbiased fracture dip and strike statistics and qualitatively reproduces the fracture density map. The fracture length distribution law is underestimated because of the early stop in fracture growth after intersection.

  17. Skill Assessment in the Interpretation of 3D Fracture Patterns from Radiographs

    PubMed Central

    Rojas-Murillo, Salvador; Hanley, Jessica M; Kreiter, Clarence D; Karam, Matthew D; Anderson, Donald D

    2016-01-01

    Abstract Background Interpreting two-dimensional radiographs to ascertain the three-dimensional (3D) position and orientation of fracture planes and bone fragments is an important component of orthopedic diagnosis and clinical management. This skill, however, has not been thoroughly explored and measured. Our primary research question is to determine if 3D radiographic image interpretation can be reliably assessed, and whether this assessment varies by level of training. A test designed to measure this skill among orthopedic surgeons would provide a quantitative benchmark for skill assessment and training research. Methods Two tests consisting of a series of online exercises were developed to measure this skill. Each exercise displayed a pair of musculoskeletal radiographs. Participants selected one of three CT slices of the same or similar fracture patterns that best matched the radiographs. In experiment 1, 10 orthopedic residents and staff responded to nine questions. In experiment 2, 52 residents from both orthopedics and radiology responded to 12 questions. Results Experiment 1 yielded a Cronbach alpha of 0.47. Performance correlated with experience; r(8) = 0.87, p<0.01, suggesting that the test could be both valid and reliable with a slight increase in test length. In experiment 2, after removing three non-discriminating items, the Cronbach coefficient alpha was 0.28 and performance correlated with experience; r(50) = 0.25, p<0.10. Conclusions Although evidence for reliability and validity was more compelling with the first experiment, the analyses suggest motivation and test duration are important determinants of test efficacy. The interpretation of radiographs to discern 3D information is a promising and a relatively unexplored area for surgical skill education and assessment. The online test was useful and reliable. Further test development is likely to increase test effectiveness. Clinical Relevance Accurately interpreting radiographic images is an

  18. Measuring Fracture Properties of Meteorites: 3D Scans and Disruption Experiments.

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Morris, Melissa A.; Garvie, Laurence

    2014-11-01

    The Arizona State University (ASU) Center for Meteorite Studies (CMS) houses over 30,000 specimens that represent almost every known meteorite type. A number of these are available for fragmentation experiments in small samples, but in most cases non-destructive experiments are desired in order to determine the fundamental mechanical properties of meteorites, and by extension, the Near-Earth Asteroids (NEAs) and other planetary bodies they derive from. We present results from an ongoing suite of measurements and experiments, featuring automated 3D topographic scans of a comprehensive suite of meteorites in the CMS collection, basic mechanical studies, and culminating in catastrophic fragmentation of four representative meteorites: Tamdakht (H5), Allende (CV3), Northwest Africa 869 (L3-6) and Chelyabinsk (LL5). Results will include high-resolution 3D color-shape models of meteorites, including specimens such as the 349g oriented and fusion crusted Martian (shergottite) Tissint, and the delicately fusion crusted and oriented 131g Whetstone Mountains (H5) ordinary chondrite. The 3D color-shape models will allow us to obtain basic physical properties (such as volume to derive density) and to derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of the material, to macroscopic optical properties, and to rubble friction and cohesion. Freshly fractured surfaces of fragments that will result from catastrophic hypervelocity impact experiments will be subsequently scanned and analyzed in order to determine whether fractal dimension is preserved or if it changes with surface maturation.

  19. Fractal and geostatistical methods for modeling of a fracture network

    SciTech Connect

    Chiles, J.P.

    1988-08-01

    The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20-20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.

  20. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  1. Direct Fabrication of 3D Metallic Networks and Their Performance.

    PubMed

    Ron, Racheli; Gachet, David; Rechav, Katya; Salomon, Adi

    2017-02-01

    Fabrication of macroscopic nanoporous metallic networks is challenging, because it demands fine structures at the nanoscale over a large-scale. A technique to form pure scalable networks is introduced. The networked-metals ("Netals") exhibit a strong interaction with light and indicate a large fraction of hot-electrons generation. These hot-electrons are available to derive photocatalytic processes.

  2. Extracting Hidden Hierarchies in 3D Distribution Networks

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    2015-03-01

    Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks - the topology and edge weights - determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical `tiling' in the case of a two dimensional network to an effective tiling of an abstract surface in space that the network may be thought to sit in. Generically these abstract surfaces are richer than the plane and upon sequential removal of the weakest links by edge weight, neighboring tiles merge and a tree characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. This new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs, the root networks of clonal colonies like quaking aspen, or the force networks in jammed granular matter.

  3. Extracting Hidden Hierarchies in 3D Distribution Networks

    NASA Astrophysics Data System (ADS)

    Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni

    2016-07-01

    Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical "tiling" in the case of a two-dimensional network to an effective tiling of an abstract surface in 3-space that the network may be thought to sit in. Generically, these abstract surfaces are richer than the flat plane because there are now two families of fundamental units that may aggregate upon cutting weakest links—the plaquettes of the tiling and the longer "topological" cycles associated with the abstract surface itself. Upon sequential removal of the weakest links, as determined by a physically relevant edge weight, such as flow volume or capacity, neighboring plaquettes merge and a new tree graph characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. The new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs or the force networks in jammed granular matter.

  4. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    system throughput, packet loss, and network congestion as a function of time. This not only gives a better understanding of the network, but it also...only runs on Microsoft Windows, which precludes portability to UNIX-based systems such as Linux or Apple OSX. 3ds Max allows for very extensive scene...simulation. It is often desirable to display this data visually, in order to capitalize on the unique capabilities of the human visual system which

  5. Fractal modeling of natural fracture networks

    SciTech Connect

    Ferer, M.; Dean, B.; Mick, C.

    1995-06-01

    West Virginia University will implement procedures for a fractal analysis of fractures in reservoirs. This procedure will be applied to fracture networks in outcrops and to fractures intersecting horizontal boreholes. The parameters resulting from this analysis will be used to generate synthetic fracture networks with the same fractal characteristics as the real networks. Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little a priori information. In the sections following, the authors will (1) present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using the fractal analysis over a stochastic analysis; and (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  6. Stress evolution during 3D single-layer visco-elastic buckle folding: Implications for the initiation of fractures

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Eckert, Andreas; Connolly, Peter

    2016-06-01

    Buckle folds of sedimentary strata commonly feature a variety of different fracture sets. Some fracture sets including outer arc tensile fractures and inner arc shear fractures at the fold hinge zones are well understood by the extensional and compressional strain/stress pattern. However, other commonly observed fracture sets, including tensile fractures parallel to the fold axis, tensile fractures cutting through the limb, extensional faults at the fold hinge, and other shear fractures of various orientations in the fold limb, fail to be intuitively explained by the strain/stress regimes during the buckling process. To obtain a better understanding of the conditions for the initiation of the various fractures sets associated with single-layer cylindrical buckle folds, a 3D finite element modeling approach using a Maxwell visco-elastic rheology is utilized. The influences of three model parameters with significant influence on fracture initiation are considered: burial depth, viscosity, and permeability. It is concluded that these parameters are critical for the initiation of major fracture sets at the hinge zone with varying degrees. The numerical simulation results further show that the buckling process fails to explain most of the fracture sets occurring in the limb unless the process of erosional unloading as a post-fold phenomenon is considered. For fracture sets that only develop under unrealistic boundary conditions, the results demonstrate that their development is realistic for a perclinal fold geometry. In summary, a more thorough understanding of fractures sets associated with buckle folds is obtained based on the simulation of in-situ stress conditions during the structural development of buckle folds.

  7. 3D microtumors in vitro supported by perfused vascular networks

    PubMed Central

    Sobrino, Agua; Phan, Duc T. T.; Datta, Rupsa; Wang, Xiaolin; Hachey, Stephanie J.; Romero-López, Mónica; Gratton, Enrico; Lee, Abraham P.; George, Steven C.; Hughes, Christopher C. W.

    2016-01-01

    There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This “organs-on-chips” approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This “tumor-on-a-chip” platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro. PMID:27549930

  8. 3D microtumors in vitro supported by perfused vascular networks.

    PubMed

    Sobrino, Agua; Phan, Duc T T; Datta, Rupsa; Wang, Xiaolin; Hachey, Stephanie J; Romero-López, Mónica; Gratton, Enrico; Lee, Abraham P; George, Steven C; Hughes, Christopher C W

    2016-08-23

    There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This "organs-on-chips" approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This "tumor-on-a-chip" platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro.

  9. Efficacy of 3-D-imaging in minimally-invasive screw fixation of proximal phalanx fractures: A cadaveric study.

    PubMed

    Oldewurtel, Andreas; Kendoff, D; O'Loughlin, P F; Wolfhard, U; Olivier, L C

    2010-01-01

    The current study evaluated whether 3-D fluoroscopic imaging is capable of adequate visualisation, reduction and effective guidance of implant placement during a minimally-invasive screw-fixation (MISF) procedure in the treatment of proximal phalanx fractures. A comparison with conventional intraoperative 2-D imaging was performed in a cadaveric model. Conventional 2-D and 3-D imaging series were performed following the creation of proximal phalanx fractures, reduction and fixation, pre- and post-operatively. For both imaging modalities, attention was paid to A) correct reduction, B) screw-placement and, if present, C) intra-articular offset of fracture edges.The results revealed no related overall advantage of the 3-D imaging system over normal 2-D fluoroscopy at the proximal phalanx region. The authors conclude that, given the cost of 3-D imaging technology, as well as the increased time required for image acquisition, its routine use in the treatment of phalanx fracture cases is not justifiable at present.

  10. New neural-networks-based 3D object recognition system

    NASA Astrophysics Data System (ADS)

    Abolmaesumi, Purang; Jahed, M.

    1997-09-01

    Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.

  11. Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks

    NASA Astrophysics Data System (ADS)

    da Câmara Santa Clara Gomes, Tristan; De La Torre Medina, Joaquín; Lemaitre, Matthieu; Piraux, Luc

    2016-10-01

    Track-etched polymer membranes with crossed nanochannels have been revealed to be most suitable as templates to produce large surface area and mechanically stable 3D interconnected nanowire (NW) networks by electrodeposition. Geometrically controlled NW superstructures made of NiCo ferromagnetic alloys exhibit appealing magnetoresistive properties. The combination of exact alloy compositions with the spatial arrangement of NWs in the 3D network is decisive to obtain specific magnetic and magneto-transport behavior. A proposed simple model based on topological aspects of the 3D NW networks is used to accurately determine the anisotropic magnetoresistance ratios. Despite of their complex topology, the microstructure of Co-rich NiCo NW networks display mixed fcc-hcp phases with the c-axis of the hcp phase oriented perpendicular to their axis. These interconnected NW networks have high potential as reliable and stable magnetic field sensors.

  12. Rapid casting of patterned vascular networks for perfusable engineered 3D tissues

    PubMed Central

    Miller, Jordan S.; Stevens, Kelly R.; Yang, Michael T.; Baker, Brendon M.; Nguyen, Duc-Huy T.; Cohen, Daniel M.; Toro, Esteban; Chen, Alice A.; Galie, Peter A.; Yu, Xiang; Chaturvedi, Ritika; Bhatia, Sangeeta N.; Chen, Christopher S.

    2012-01-01

    In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core [1]. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture [2–4]. Here, we 3D printed rigid filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization, and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices (ECMs), and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core. PMID:22751181

  13. Three-phase flow simulations in discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Niessner, J.; Matthai, S. K.; Helmig, R.

    2006-12-01

    Fractures are often the key conduits for fluid flow in otherwise low permeability rocks. Their presence in hydrocarbon reservoirs leads to complex production histories, unpredictable coupling of wells, rapidly changing flow rates, possibly early water breakthrough, and low final recovery. Recently, it has been demonstrated that a combination of finite volume and finite element discretization is well suited to model incompressible, immiscible two-phase flow in 3D discrete fracture networks (DFN) representing complexly fractured rocks. Such an approach has been commercialized in Golder Associates' FracMan Reservoir Edition software. For realistic reservoir simulations, however, it would be desirable if a third compressible gas phase can be included which is often present at reservoir conditions. Here we present the extension of an existing node-centred finite volume - finite element (FEFV) discretization for the efficient and accurate simulations of three-component - three-phase flow in geologically realistic representations of fractured porous media. Two possible types of fracture networks can be used: In 2D, they are detailed geometrical representations of fractured rock masses mapped in field studies. In 3D, they are geologically constrained, stochastically generated discrete fracture networks. Flow and transport can be simulated for fractures only or for fractures and matrix combined. The governing equations are solved decoupled using an implicit-pressure, explicit-saturation (IMPES) approach. Flux and concentration terms can be treated with higher-order accuracy in the finite volume scheme to preserve shock fronts. The method is locally mass conservative and works on unstructured, spatially refined grids. Flash calculations are carried out by a new description of the Black-Oil model. Capillary and gravity effects are included in this formulation. The robustness and accuracy of this formulation is shown in several applications. First, grid convergence is

  14. Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses

    NASA Astrophysics Data System (ADS)

    Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.

    2016-04-01

    Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ < 1 and α/κ > 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on

  15. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  16. Network-based visualization of 3D landscapes and city models.

    PubMed

    Royan, Jérôme; Gioia, Patrick; Cavagna, Romain; Bouville, Christian

    2007-01-01

    To improve the visualization of large 3D landscapes and city models in a network environment, the authors use two different types of hierarchical level-of-detail models for terrain and groups of buildings. They also leverage the models to implement progressive streaming in both client-server and peer-to-peer network architectures.

  17. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  18. Novel, fast and efficient image-based 3D modeling method and its application in fracture risk evaluation.

    PubMed

    Li, Dan; Xiao, Zhitao; Wang, Gang; Zhao, Guoqing

    2014-06-01

    Constructing models based on computed tomography images for finite element analysis (FEA) is challenging under pathological conditions. In the present study, an innovative method was introduced that uses Siemens syngo(®) 3D software for processing models and Mimics software for further modeling. Compared with the slice-by-slice traditional manual margin discrimination, the new 3D modeling method utilizes automatic tissue margin determination and 3D cutting using syngo software. The modeling morphologies of the two methods were similar; however, the 3D modeling method was 8-10 times faster than the traditional method, particularly in cases with osteoporosis and osteophytes. A comparative FEA study of the lumbar spines of young and elderly patients, on the basis of the models constructed by the 3D modeling method, showed peak stress elevation in the vertebrae of elderly patients. Stress distribution was homogeneous in the entire vertebrae of young individuals. By contrast, stress redistribution in the vertebrae of the elderly was concentrated in the anterior cortex of the vertebrae, which explains the high fracture risk mechanism in elderly individuals. In summary, the new 3D modeling method is highly efficient, accurate and faster than traditional methods. The method also allows reliable FEA in pathological cases with osteoporosis and osteophytes.

  19. Novel, fast and efficient image-based 3D modeling method and its application in fracture risk evaluation

    PubMed Central

    LI, DAN; XIAO, ZHITAO; WANG, GANG; ZHAO, GUOQING

    2014-01-01

    Constructing models based on computed tomography images for finite element analysis (FEA) is challenging under pathological conditions. In the present study, an innovative method was introduced that uses Siemens syngo® 3D software for processing models and Mimics software for further modeling. Compared with the slice-by-slice traditional manual margin discrimination, the new 3D modeling method utilizes automatic tissue margin determination and 3D cutting using syngo software. The modeling morphologies of the two methods were similar; however, the 3D modeling method was 8–10 times faster than the traditional method, particularly in cases with osteoporosis and osteophytes. A comparative FEA study of the lumbar spines of young and elderly patients, on the basis of the models constructed by the 3D modeling method, showed peak stress elevation in the vertebrae of elderly patients. Stress distribution was homogeneous in the entire vertebrae of young individuals. By contrast, stress redistribution in the vertebrae of the elderly was concentrated in the anterior cortex of the vertebrae, which explains the high fracture risk mechanism in elderly individuals. In summary, the new 3D modeling method is highly efficient, accurate and faster than traditional methods. The method also allows reliable FEA in pathological cases with osteoporosis and osteophytes. PMID:24926348

  20. The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D

    SciTech Connect

    Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.

    2011-01-01

    Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.

  1. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  2. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  3. Highly Resolved Long-term 3D Hydrological Simulation of a Forested Catchment with Litter Layer and Fractured Bedrock

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Bogena, H. R.; Kollet, S. J.; Vereecken, H.

    2014-12-01

    Soil water content plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. However, such a model scheme should also recognize the epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory, the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modeling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations using the integrated parallel simulation platform ParFlow-CLM. The simulated soil water content, as well as evapotranspiration and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. With variable model setup scenarios in boundary conditions and anisotropy of hydraulic conductivity, we investigated how lateral flow processes above the underlying fractured bedrock affects the simulation results. Furthermore, we explored the importance of the litter layer and the heterogeneity of the forest soil in the simulation of flow processes and model performance. For the analysis of spatial patterns of simulated and observed soil water content we applied the method of empirical orthogonal function (EOF). The results suggest that strong anisotropy in the hydraulic conductivity may be the reason for the fast lateral flow observed in Wüstebach. Introduction of heterogeneity in the hydraulic properties in the

  4. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  5. The early mouse 3D osteocyte network in the presence and absence of mechanical loading.

    PubMed

    Sugawara, Yasuyo; Kamioka, Hiroshi; Ishihara, Yoshihito; Fujisawa, Naoko; Kawanabe, Noriaki; Yamashiro, Takashi

    2013-01-01

    Osteocytes are considered to act as mechanosensory cells in bone. They form a functional synctia in which their processes become interconnected to constitute a three-dimensional (3D) network. Previous studies reported that in mice, the two-dimensional osteocyte network becomes progressively more regular as they grow, although the key factors governing the arrangement of the osteocyte network during bone growth remain unknown. In this study, we characterized the 3D formation of the osteocyte network during bone growth. Morphological skeletal changes have been reported to occur in response to mechanical loading and unloading. In order to evaluate the effect of mechanical unloading on osteocyte network formation, we subjected newborn mice to sciatic neurectomy in order to immobilize their left hind limb as an unloading model. The osteocyte network was visualized by staining osteocyte cell bodies and processes with fluorescently labeled phalloidin. First, we compared the osteocyte network in the femora of embryonic and 6-week-old mice in order to understand the morphological changes that occur with normal growth and mechanical loading. In embryonic mice, the osteocyte network in the femur cortical bone displayed a random cell body distribution, non-directional orientation of cell processes, and irregularly shaped cells. In 6-week-old mice, the 3D network contained spindle-shaped osteocytes, which were arranged parallel to the longitudinal axis of the femur. In addition, more and longer cell processes radiated from each osteocyte. Second, we compared the cortical osteocyte networks of 6-week-old mice that had or had not undergone sciatic neurectomy in order to evaluate the effect of unloading on osteocyte network formation. The osteocyte network formation in both cortical bone and cancellous bone was affected by mechanical loading. However, there were differences in the extent of network formation between cortical bone and cancellous bone in response to mechanical

  6. Computer-assisted 3D planned corrective osteotomies in eight malunited radius fractures.

    PubMed

    Walenkamp, M M J; de Muinck Keizer, R J O; Dobbe, J G G; Streekstra, G J; Goslings, J C; Kloen, P; Strackee, S D; Schep, N W L

    2015-08-01

    In corrective osteotomy of the radius, detailed preoperative planning is essential to optimising functional outcome. However, complex malunions are not completely addressed with conventional preoperative planning. Computer-assisted preoperative planning may optimise the results of corrective osteotomy of the radius. We analysed the pre- and postoperative radiological result of computer-assisted 3D planned corrective osteotomy in a series of patients with a malunited radius and assessed postoperative function. We included eight patients aged 13-64 who underwent a computer-assisted 3D planned corrective osteotomy of the radius for the treatment of a symptomatic radius malunion. We evaluated pre- and postoperative residual malpositioning on 3D reconstructions as expressed in six positioning parameters (three displacements along and three rotations about the axes of a 3D anatomical coordinate system) and assessed postoperative wrist range of motion. In this small case series, dorsopalmar tilt was significantly improved (p = 0.05). Ulnoradial shift, however, increased by the correction osteotomy (6 of 8 cases, 75 %). Postoperative 3D evaluation revealed improved positioning parameters for patients in axial rotational alignment (62.5 %), radial inclination (75 %), proximodistal shift (83 %) and volodorsal shift (88 %), although the cohort was not large enough to confirm this by statistical significance. All but one patient experienced improved range of motion (88 %). Computer-assisted 3D planning ameliorates alignment of radial malunions and improves functional results in patients with a symptomatic malunion of the radius. Further development is required to improve transfer of the planned position to the intra-operative bone. Level of evidence IV.

  7. [Biomechanics of AF new 3-d pedical screw system and treatment of 31 patients with unstable thoracolumbar fracture].

    PubMed

    Zou, D; Hai, Y; Ma, H

    1995-04-01

    For anatomic reduction of the spinal frectures, the 3 dimensional multiple correction forces were needed. Several pedical screw systems were designed for reducion and fixation of the spinal fractures as the AO universal joint system and the RF angle screw system. Because of the contradiction of the universal joint and the fixed angle, a new generation of RF was designed and named AF (atlas fixator) system. This is a new concept of 3-D reduction, without complex structure as universal joint, but has truly 3-D adjustment that allowed to reduce the intra-canal compromise. It also provided rigid fixation to maintain the reduction. Comparison with CD, AO, Steffee, and RF, the AF was truly 3-D reduction in XTZ axis. It provided strong symmetric transmitter orthotic force to correct the deformity. 31 patients with unstable thoracolumbar fractures were treated with the new AF system. 17 had partial (15) or complete (2) neurologic deficits. The AF system provided accurate angle to restore the normal thoracic-lumbar lordosis and to maintain it. All patients had a anatomic reduction by AF system. The spinal canal area increased over 33% by CT scan (P < 0.01). All cases were followed up over 8 months. No one deteriorated neurologically after AF fixation.

  8. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  9. Protein-protein interaction networks studies and importance of 3D structure knowledge.

    PubMed

    Lu, Hui-Chun; Fornili, Arianna; Fraternali, Franca

    2013-12-01

    Protein-protein interaction networks (PPINs) are a powerful tool to study biological processes in living cells. In this review, we present the progress of PPIN studies from abstract to more detailed representations. We will focus on 3D interactome networks, which offer detailed information at the atomic level. This information can be exploited in understanding not only the underlying cellular mechanisms, but also how human variants and disease-causing mutations affect protein functions and complexes' stability. Recent studies have used structural information on PPINs to also understand the molecular mechanisms of binding partner selection. We will address the challenges in generating 3D PPINs due to the restricted number of solved protein structures. Finally, some of the current use of 3D PPINs will be discussed, highlighting their contribution to the studies in genotype-phenotype relationships and in the optimization of targeted studies to design novel chemical compounds for medical treatments.

  10. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  11. Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Mu, Jian; Machlus, Kellie R.; Wolberg, Alisa S.; Rosen, Elliot D.; Xu, Zhiliang; Alber, Mark S.; Chen, Danny Z.

    2012-02-01

    Fibrin networks are a major component of blood clots that provides structural support to the formation of growing clots. Abnormal fibrin networks that are too rigid or too unstable can promote cardiovascular problems and/or bleeding. However, current biological studies of fibrin networks rarely perform quantitative analysis of their structural properties (e.g., the density of branch points) due to the massive branching structures of the networks. In this paper, we present a new approach for segmenting and analyzing fibrin networks in 3D confocal microscopy images. We first identify the target fibrin network by applying the 3D region growing method with global thresholding. We then produce a one-voxel wide centerline for each fiber segment along which the branch points and other structural information of the network can be obtained. Branch points are identified by a novel approach based on the outer medial axis. Cells within the fibrin network are segmented by a new algorithm that combines cluster detection and surface reconstruction based on the α-shape approach. Our algorithm has been evaluated on computer phantom images of fibrin networks for identifying branch points. Experiments on z-stack images of different types of fibrin networks yielded results that are consistent with biological observations.

  12. Quantitative 3D investigation of Neuronal network in mouse spinal cord model.

    PubMed

    Bukreeva, I; Campi, G; Fratini, M; Spanò, R; Bucci, D; Battaglia, G; Giove, F; Bravin, A; Uccelli, A; Venturi, C; Mastrogiacomo, M; Cedola, A

    2017-01-23

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  13. Proof-of-Concept: Assembling Carbon Nanocrystals for Ordered 3D Network

    DTIC Science & Technology

    2011-12-13

    for 3D ordering carbon nanotube networks. In this project, a ultra-thin poly( methyl methacrylate ) (PMMA) was coated to ~50nm graphene film. At the...mechanical performance. Subsequently, the filtered graphene film was immersed into acetone to etch the filter membrane, and the resultant freestanding

  14. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    PubMed Central

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies. PMID:28112212

  15. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    NASA Astrophysics Data System (ADS)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  16. Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures.

    PubMed

    Morrison, Clinton S; Taylor, Helena O; Sullivan, Stephen R

    2013-05-01

    Reconstructive goals for orbitozygomaticomaxillary complex fractures include restoration of orbital volume, facial projection, and facial width. Delayed reconstruction is made more difficult by malunion, nonunion, bony absorption, loss of the soft tissue envelope, and scar. Three-dimensional intraoperative navigation, widely used in neurosurgery and sinus surgery, can improve the accuracy with which bony reduction is performed. This is particularly useful in the setting of bony absorption and comminution. We report a case of delayed reconstruction of an orbitozygomaticomaxillary complex fracture using intraoperative navigation and review this technology's utility in this setting.

  17. Quantum key distribution for security guarantees over QoS-driven 3D satellite networks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Xi; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2014-06-01

    In recent years, quantum-based communication is emerging as a new technique for ensuring secured communications because it can guarantee absolute security between two different remote entities. Quantum communication performs the transmission and exchange of quantum information among distant nodes within a network. Quantum key distribution (QKD) is a methodology for generating and distributing random encryption keys using the principles of quantum physics. In this paper, we investigate the techniques on how to efficiently use QKD in 3D satellite networks and propose an effective method to overcome its communications-distance limitations. In order to implement secured and reliable communications over wireless satellite links, we develop a free-space quantum channel model in satellite communication networks. To enlarge the communications distances over 3D satellite networks, we propose to employ the intermediate nodes to relay the unconditional keys and guarantee the Quantum Bit Error Rate (QBER) for security requirement over 3D satellite networks. We also propose the communication model for QKD security-Quality of Service (QoS) guarantee and an adaptive cooperative routing selection scheme to optimize the throughput performance of QKD-based satellite communications networks. The obtained simulation results verify our proposed schemes.

  18. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data

    NASA Astrophysics Data System (ADS)

    Anirudh, Rushil; Thiagarajan, Jayaraman J.; Bremer, Timo; Kim, Hyojin

    2016-03-01

    Early detection of lung nodules is currently the one of the most effective ways to predict and treat lung cancer. As a result, the past decade has seen a lot of focus on computer aided diagnosis (CAD) of lung nodules, whose goal is to efficiently detect, segment lung nodules and classify them as being benign or malignant. Effective detection of such nodules remains a challenge due to their arbitrariness in shape, size and texture. In this paper, we propose to employ 3D convolutional neural networks (CNN) to learn highly discriminative features for nodule detection in lieu of hand-engineered ones such as geometric shape or texture. While 3D CNNs are promising tools to model the spatio-temporal statistics of data, they are limited by their need for detailed 3D labels, which can be prohibitively expensive when compared obtaining 2D labels. Existing CAD methods rely on obtaining detailed labels for lung nodules, to train models, which is also unrealistic and time consuming. To alleviate this challenge, we propose a solution wherein the expert needs to provide only a point label, i.e., the central pixel of of the nodule, and its largest expected size. We use unsupervised segmentation to grow out a 3D region, which is used to train the CNN. Using experiments on the SPIE-LUNGx dataset, we show that the network trained using these weak labels can produce reasonably low false positive rates with a high sensitivity, even in the absence of accurate 3D labels.

  19. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung.

  20. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  1. 3D Smart Monitoring Network Establishment for Rainfall-triggered Shallow Landslide

    NASA Astrophysics Data System (ADS)

    Liu, C.; Li, W.; Scaioni, M.; Wu, H.; Lu, P.; Li, R.

    2012-12-01

    The most important objective of the monitoring is the discovery of the omen of the landslide. Actually, an efficient monitoring solution is important to collect information as much as possible, either in term of multiple processes observation. It leads to setup 3D smart sensor networks, intended as the whole set of different measurement systems aiming at gathering data on the whole body of landslide site. Actually, sensor networks can be used for both analysis and early-warning. However, some existing sensors network observation method is only paid emphasis on the capture of multiple sources of data. Different with them, this task consider not only on the interpretation of monitoring measurements, but also on the relationships between the observation and the environmental conditions (rainfall). Actually, as the reference of the 3D smart sensors network establishment in this task, the rainfall-triggered landslides is emphasized to use some physically based models that reveal the dynamic changes in positive and negative (suction) pressure heads in the soil during the infiltration process in a regional scale. Nowadays, many physically based slope-stability models have been developed suitable for individual sites of different dimensions (Sidle and Hirotaka, 2006). The representative models are SHALSTAB (Dietrich et al, 1994) and TRIGRS (Baum et al, 2002). Based on the data captured from the 3D smart sensors network, the task will take the model of SHALSTAB and TRIGRS as examples, and analyzed their advantages and disadvantages. It revealed that there are some questions in the exiting shallow rainfall-landslide models: ignoring initial precipitation, rainfall-runoff, saturated-unsaturated infiltration processes. At the same time, we can also optimized the model and the 3D monitoring network, and made it more universality. Couple with the task, an established simulation 3D smart sensors network at Tongji University, Shanhgai, China is introduced in order to explain idea

  2. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  3. 3D Mapping of calcite and a demonstration of its relevance to permeability evolution in reactive fractures

    NASA Astrophysics Data System (ADS)

    Ellis, Brian R.; Peters, Catherine A.

    2016-09-01

    There is a need to better understand reaction-induced changes in fluid transport in fractured shales, caprocks and reservoirs, especially in the context of emerging energy technologies, including geologic carbon sequestration, unconventional natural gas, and enhanced geothermal systems. We developed a method for 3D calcite mapping in rock specimens. Such information is critical in reactive transport modeling, which relies on information about the locations and accessible surface area of reactive minerals. We focused on calcite because it is a mineral whose dissolution could lead to substantial pathway alteration because of its high solubility, fast reactivity, and abundance in sedimentary rocks. Our approach combines X-ray computed tomography (XCT) and scanning electron microscopy. The method was developed and demonstrated for a fractured limestone core containing about 50% calcite, which was 2.5 cm in diameter and 3.5 cm in length and had been scanned using XCT. The core was subsequently sectioned and energy dispersive X-ray spectroscopy was used to determine elemental signatures for mineral identification and mapping. Back-scattered electron microscopy was used to identify features for co-location. Finally, image analysis resulted in characteristic grayscale intensities of X-ray attenuation that identify calcite. This attenuation mapping ultimately produced a binary segmented 3D image of the spatial distribution of calcite in the entire core. To demonstrate the value of this information, permeability changes were investigated for hypothetical fractures created by eroding calcite from 2D rock surfaces. Fluid flow was simulated using a 2D steady state model. The resulting increases in permeability were profoundly influenced by the degree to which calcite is contiguous along the flow path. If there are bands of less reactive minerals perpendicular to the direction of flow, fracture permeability may be an order of magnitude smaller than when calcite is contiguous

  4. 3D evaluation of the lingual fracture line after a bilateral sagittal split osteotomy of the mandible.

    PubMed

    Plooij, J M; Naphausen, M T P; Maal, T J J; Xi, T; Rangel, F A; Swennnen, G; de Koning, M; Borstlap, W A; Bergé, S J

    2009-12-01

    The purpose of this prospective observational study was to evaluate whether cone beam CT (CBCT) is a useful tool for analyzing the fracture line in a bilateral sagittal split osteotomy (BSSO). The patient group consisted of 40 consecutive patients (9 males and 31 females) with a mandibular hypoplasia who underwent a BSSO advancement (Hunsuck modification; n=80 splits) between September 2006 and July 2008. The mean age at the time of surgery was 34 years (range 17-61 years). A newly developed lingual split scale was used to categorize the path of the fracture line on the lingual side of the ramus based on one-day postoperative data sets reconstructed from CBCT data. Although all splits (n=80) were performed according to the standardized protocol, only 51% of the fracture lines run according to the Hunsuck's description, whereas 33% ran through the mandibular canal and 16% split otherwise. The split pattern was influenced by the length of the medial osteotomy (p=0.01). In conclusion, 3D imaging is a useful tool for analyzing the surgical outcome of a BSSO and has the potential to provide substantial data on the position of the proximal segments as a result of the lingual fracture line.

  5. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE PAGES

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...

    2016-09-18

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  6. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  7. Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Gil, Joon-Min

    2015-03-01

    The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.

  8. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-11-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  9. Use of an Integrated Discrete Fracture Network Code for Stochastic Stability Analyses of Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Merrien-Soukatchoff, V.; Korini, T.; Thoraval, A.

    2012-03-01

    The paper presents the Discrete Fracture Network code RESOBLOK, which couples geometrical block system construction and a quick iterative stability analysis in the same package. The deterministic or stochastic geometry of a fractured rock mass can be represented and interactively displayed in 3D using two different fracture generators: one mainly used for hydraulic purposes and another designed to allow block stability evaluation. RESOBLOK has downstream modules that can quickly compute stability (based on limit equilibrium or energy-based analysis), display geometric information and create links to other discrete software. The advantage of the code is that it couples stochastic geometrical representation and a quick iterative stability analysis to allow risk-analysis with or without reinforcement and, for the worst cases, more accurate analysis using stress-strain analysis computer codes. These different aspects are detailed for embankment and underground works.

  10. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks

    PubMed Central

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-01-01

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735

  11. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    PubMed

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  12. Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance

    DTIC Science & Technology

    2011-01-01

    puter modeling has predicted that such a 3D pillared VACNT graphene structure can be used for efficient hydrogen storage after being doped with...Pillared Carbon Nanotube Graphene Networks for High-Performance Capacitance Feng Du,†,§ Dingshan Yu,†,§ Liming Dai,†,* S. Ganguli,‡ V. Varshney,‡ and A...nanotubes (CNTs) and two-dimensional (2D) single-atomic layer graphene , have been demonstrated to show superior thermal, electrical, and mechanical

  13. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  14. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  15. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  16. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  17. Glossary of fault and other fracture networks

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2016-11-01

    Increased interest in the two- and three-dimensional geometries and development of faults and other types of fractures in rock has led to an increasingly bewildering terminology. Here we give definitions for the geometric, topological, kinematic and mechanical relationships between geological faults and other types of fractures, focussing on how they relate to form networks.

  18. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  19. Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Bonneau, François; Caumon, Guillaume; Renard, Philippe

    2016-08-01

    Stochastic discrete fracture networks (DFNs) are classically simulated using stochastic point processes which neglect mechanical interactions between fractures and yield a low spatial correlation in a network. We propose a sequential parent-daughter Poisson point process that organizes fracture objects according to mechanical interactions while honoring statistical characterization data. The hierarchical organization of the resulting DFNs has been investigated in 3-D by computing their correlation dimension. Sensitivity analysis on the input simulation parameters shows that various degrees of spatial correlation emerge from this process. A large number of realizations have been performed in order to statistically validate the method. The connectivity of these correlated fracture networks has been investigated at several scales and compared to those described in the literature. Our study quantitatively confirms that spatial correlations can affect the percolation threshold and the connectivity at a particular scale.

  20. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  1. Morphogenesis of 3D vascular networks is regulated by tensile forces

    PubMed Central

    Rosenfeld, Dekel; Landau, Shira; Shandalov, Yulia; Raindel, Noa; Freiman, Alina; Shor, Erez; Blinder, Yaron; Vandenburgh, Herman H.; Mooney, David J.; Levenberg, Shulamit

    2016-01-01

    Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair. PMID:26951667

  2. Artificial neural networks and model-based recognition of 3-D objects from 2-D images

    NASA Astrophysics Data System (ADS)

    Chao, Chih-Ho; Dhawan, Atam P.

    1992-09-01

    A computer vision system is developed for 3-D object recognition using artificial neural networks and a knowledge-based top-down feedback analysis system. This computer vision system can adequately analyze an incomplete edge map provided by a low-level processor for 3-D representation and recognition using key features. The key features are selected using a priority assignment and then used in an artificial neural network for matching with model key features. The result of such matching is utilized in generating the model-driven top-down feedback analysis. From the incomplete edge map we try to pick a candidate pattern utilizing the key feature priority assignment. The highest priority is given for the most connected node and associated features. The features are space invariant structures and sets of orientation for edge primitives. These features are now mapped into real numbers. A Hopfield network is then applied with two levels of matching to reduce the search time. The first match is to choose the class of possible model, the second match is then to find the model closest to the data patterns. This model is then rotated in 3-D to find the best match with the incomplete edge patterns and to provide the additional features in 3-D. In the case of multiple objects, a dynamically interconnected search strategy is designed to recognize objects using one pattern at a time. This strategy is also useful in recognizing occluded objects. The experimental results presented show the capability and effectiveness of this system.

  3. Engineering of functional, perfusable 3D microvascular networks on a chip.

    PubMed

    Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li

    2013-04-21

    Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

  4. Statistical and neural network classifiers in model-based 3-D object recognition

    NASA Astrophysics Data System (ADS)

    Newton, Scott C.; Nutter, Brian S.; Mitra, Sunanda

    1991-02-01

    For autonomous machines equipped with vision capabilities and in a controlled environment 3-D model-based object identification methodologies will in general solve rigid body recognition problems. In an uncontrolled environment however several factors pose difficulties for correct identification. We have addressed the problem of 3-D object recognition using a number of methods including neural network classifiers and a Bayesian-like classifier for matching image data with model projection-derived data [1 21. Neural network classifiers used began operation as simple feature vector classifiers. However unmodelled signal behavior was learned with additional samples yielding great improvement in classification rates. The model analysis drastically shortened training time of both classification systems. In an environment where signal behavior is not accurately modelled two separate forms of learning give the systems the ability to update estimates of this behavior. Required of course are sufficient samples to learn this new information. Given sufficient information and a well-controlled environment identification of 3-D objects from a limited number of classes is indeed possible. 1.

  5. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  6. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-04-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  7. XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations

    NASA Astrophysics Data System (ADS)

    Haddad, Mahdi; Sepehrnoori, Kamy

    2016-12-01

    The cohesive zone model (CZM) honors the softening effects and plastic zone at the fracture tip in a quasi-brittle rock, e.g., shale, which results in a more precise fracture geometry and pumping pressure compared to those from linear elastic fracture mechanics. Nevertheless, this model, namely the planar CZM, assumes a predefined surface on which the fractures propagate and therefore restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired by integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement model based on extended finite element method (XFEM). This integrated model, called XFEM-based CZM, simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled a single stage of 3D hydraulic fracturing initiating from three perforation clusters in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poroelasticity for fracture and matrix spaces, respectively, in Abaqus. We restricted the XFEM enrichment zones to the stimulation regions as enriching the whole domain leads to extremely high computational expenses and unrealistic fracture growths around sharp edges. Moreover, we validated our numerical technique by comparing the solution for a single fracture with KGD solution and demonstrated several precautionary measures in using XFEM in Abaqus for faster solution convergence, for instance the initial fracture length and mesh refinement. We demonstrated the significance of the injection rate and stress contrast in fracture aperture, injection pressure, and the propagation direction. Moreover, we showed the effect of the stress distribution on fracture propagation direction comparing the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM. We found that the stress shadowing effect of

  8. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  9. Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells

    PubMed Central

    Liang, Jun; Susan Sun, Xiuzhi; Yang, Zhilong; Cao, Shuai

    2017-01-01

    Development of a biomimetic 3D culture system for drug screening is necessary to fully understand the in vivo environment. Previously, a self-assembling peptide hydrogel has been reported; the hydrogel exhibited physiological properties superior to a 3D cell culture matrix. In this work, further research using H9e hydrogel with HeLa cells was carried out considering H9e hydrogel’s interaction with camptothecin, a hydrophobic drug. According to AFM images, a PGworks solution triggered H9e hydrogel fiber aggregation and forms a 3D matrix suitable for cell culture. Dynamic rheological studies showed that camptothecin was encapsulated within the hydrogel network concurrently with peptide self-assembly without permanently destroying the hydrogel’s architecture and remodeling ability. Fluorescence measurement indicated negligible interaction between the fluorophore part of camptothecin and the hydrogel, especially at concentration 0.25 and 0.5 wt%. Using a dialysis method, we found that H9e hydrogel could not significantly inhibit the diffusion of camptothecin encapsulated inside the hydrogel matrix. In the cell culture experiment, HeLa cells were simultaneously embedded in the H9e hydrogel with the initialization of hydrogelation. Most importantly, cell viability data after camptothecin treatment showed responses that were drug-dose dependent but unaffected by the H9e hydrogel concentration, indicating that the hydrogel did not inhibit the drug. PMID:28145436

  10. Random fracture networks: percolation, geometry and flow

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  11. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  12. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    PubMed

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  13. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  14. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  15. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-07-29

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).

  16. Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud

    PubMed Central

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  17. Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application.

    PubMed

    Khamlich, S; Khamliche, T; Dhlamini, M S; Khenfouch, M; Mothudi, B M; Maaza, M

    2017-05-01

    Silver nanoparticles (AgNPs) grown on a three dimensional (3d) graphene networks (GNs) has been successfully prepared by an efficient and rapid microwave-assisted growth process to form GNs/AgNPs nanocomposite electrode materials for supercapacitor application. The 3d nature of the used GNs offers a unique architecture, which creates an efficient conduction networks and maximum utilization of space and interface, and acts as a conductive layer for the deposited AgNPs. The electrochemical performances of the fabricated electrode were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) tests. Specifically, the optimal GNs/AgNPs nanocomposite exhibits remarkable performances with a high specific capacitance of 528Fg(-1) at a current density of 1Ag(-1) and excellent capacitance retention of ∼93% after 3000cycles. Moreover, this microwave-assisted growth strategy of AgNPs is simple and effective, which could be extended to the construction of other three dimensional graphene based metallic composites for energy storage and conversion applications.

  18. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images

    NASA Astrophysics Data System (ADS)

    Xu, Zhihua; Wu, Lixin; Gerke, Markus; Wang, Ran; Yang, Huachao

    2016-11-01

    Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-view images. However, due to the large computational costs of SfM methods there is a major challenge in processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from a large set of UAV images. First, the flight control data are used within a weighted graph to construct a topologically connected camera network (TCN) to determine the spatial connections between UAV images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM method, which allows performing tie-point matching only for the actually connected image pairs. The proposed method was applied in three experiments with images from two fixed-wing UAVs and an octocopter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for image connectivity determination. The comparison shows a significant reduction in the number of matched images if our method is used, which leads to less computational costs. At the same time the achieved scene completeness and geometric accuracy are comparable.

  19. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  20. Interim results from a neural network 3-D automatic target recognition program

    NASA Astrophysics Data System (ADS)

    Thoet, William; Rainey, Timothy G.; Slutz, Lee A.; Weingard, Fred

    1992-09-01

    Recent results from the Artificial Neural VIsion Learning (ANVIL) program are presented. The focus of the ANVIL program is to apply neural network technologies to the air-to-surface 3D automatic target recognition (ATR) problem. The 3D Multiple Object Detection and Location System (MODALS) neural network was developed under the ANVIL program to simultaneously detect, locate, segment, and identify multiple targets. The performance results show a very high identification accuracy, a high detection rate, and low false alarm rate, even for areas with high clutter and shadowing. The results are shown as detection/false alarm curves and identification/false alarm curves. In addition, positional detection accuracy is shown for various scale sizes. To provide data for the program, visible terrain board imagery was collected under a variety of background and lighting conditions. Tests were made on over 500 targets of five types and two classes. These targets varied in scale by up to -25%, varied in azimuth by up to 120 degrees, and varied in elevation by up to 10 degrees. The performance results are shown for targets with resolution ranging from 9 to 700 pixels on target. This work is being performed under contract to Wright Laboratory AAAT-1.

  1. COMBINING A NEW 3-D SEISMIC S-WAVE PROPAGATION ANALYSIS FOR REMOTE FRACTURE DETECTION WITH A ROBUST SUBSURFACE MICROFRACTURE-BASED VERIFICATION TECHNIQUE

    SciTech Connect

    Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray

    2004-02-01

    Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.

  2. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  3. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  4. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    PubMed

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity.

  5. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  6. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks.

    PubMed

    Rowe, Laura; Almasri, Mahmoud; Lee, Kil; Fogleman, Nick; Brewer, Gregory J; Nam, Yoonkey; Wheeler, Bruce C; Vukasinovic, Jelena; Glezer, Ari; Frazier, A Bruno

    2007-04-01

    This work demonstrated the design, fabrication, packaging, and characterization of an active microscaffold system with fluid perfusion/nutrient delivery functionalities for culturing in vitro neuronal networks from dissociated hippocampal rat pup neurons. The active microscaffold consisted of an 8 x 8 array of hollow, microfabricated, SU-8 towers (1.0 mm or 1.5 mm in height), with integrated, horizontal, SU-8 cross-members that connect adjacent towers, thus forming a 3-D grid that is conducive to branching, growth, and increased network formation of dissociated hippocampal neurons. Each microtower in the microscaffold system contained a hollow channel and multiple fluid ports for media delivery and perfusion of nutrients to the in vitro neuronal network growing within the microscaffold system. Additionally, there were two exposed Au electrodes on the outer wall of each microtower at varying heights (with insulated leads running within the microtower walls), which will later allow for integration of electrical stimulation/recording functionalities into the active microscaffold system. However, characterization of the stimulation/recording electrodes was not included in the scope of this paper. Design, fabrication, fluid packaging, and characterization of the active microscaffold system were performed. Furthermore, use of the active microscaffold system was demonstrated by culturing primary hippocampal embryonic rat pup neurons, and characterizing cell viability within the microscaffold system.

  7. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  8. Structural and property studies on metal-organic compounds with 3-D supramolecular network

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian

    2014-07-01

    Two carboxylato-bridged allomeric compounds, {[Cu2(dbsa)2(hmt) (H2O)4]1/2·2H2O}n (1), {[Ni(dbsa)(H2O)2]1/2[Ni(dbsa)(hmt)(H2O)2]1/2·2H2O}n (2) (H2dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J1=-3.5 cm-1, J2=-2.8 cm-1 for 1, and g=2.1, J=-3.5 cm-1 for 2.

  9. XFEM-Based CZM for the Simulation of 3D Multiple-Stage Hydraulic Fracturing in Quasi-brittle Shale Formations

    NASA Astrophysics Data System (ADS)

    Haddad, M.; Sepehrnoori, K.

    2015-12-01

    The Cohesive Zone Model (CZM) engages the plastic zone and softening effects at the fracture tip in a quasi-brittle rock, e.g. shale, which concludes a more precise fracture geometry and pumping pressure compared to those from Linear Elastic Fracture Mechanics. Nevertheless, this model, namely planar CZM, assumes a predefined surface on which the fractures propagate and therefore, restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement, extended finite element model (XFEM). This later model simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled double- and triple-cluster 3D hydraulic fracturing in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poro-elasticity for fracture and matrix spaces, respectively, in Abaqus. Our fully-coupled pore pressure-stress Geomechanics model includes leak-off as a continuum-based fluid flow component coupled with the other unknowns in the problem. Having compared the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM, we found that the stress shadowing effect of multiple hydraulic fractures on each other can cause these fractures to rationally propagate out of plane; this also demonstrates the advantages of the second method compared to the first one. We investigated the effect of this arbitrary propagation direction on not only the fractures' length, aperture, and the required injection pressure, but also fractures' connection to the wellbore. Depending on the spacing and the number of clusters per stage, this connection can be gradually disrupted with time due to the near-wellbore fracture closure which may embed proppant particles on the fracture wall, or screen out the

  10. Methods to improve the resolution of prestack migrated images, with application to a 3D dataset from a fractured reservoir

    NASA Astrophysics Data System (ADS)

    Perez, Gabriel

    I present three different methods to achieve increased definition in images from conventional seismic data, as illustrated with 3D data from the Fort Worth Basin's Barnett Shale fractured reservoir play, currently one of the hottest exploration and production trends in continental U.S. First, I present a method to correct for wavelet stretch in common-angle prestack migrated data. Wavelet stretch adversely influences contributions to the image from large angle or long offset data. Increasing the fidelity of large angles improves the vertical and lateral resolution in images from seismic data and from derived attributes, and positively impact AVA/AVO analysis. Achieving the greatest potential of this technique demands that I address the increased sensitivity to velocity errors and anisotropy. The other two methods presented here benefit from the balance in spectral content of the imaged data across angles and the increased resolution that are achieved from correcting for wavelet stretch. Then I introduce a new way to define azimuth binning in Kirchhoff prestack migration. This approach avoids mixing the typically weaker side-scattered energy with the stronger reflections from the sagittal plane. With the modified binning, signal and noise events are preferentially imaged in azimuth orientations normal to their apparent strike orientation, in surface- or map-views. This modified azimuthal binning also results in improved detection of out-of-the-plane steeply dipping reflectors, fractures and faults and their orientation, especially when combined with attributes such as curvature and coherence. Finally, I present an approach to measure lateral misalignment in prestack migrated seismic images and then correct for it by applying a warping procedure to these images. Though velocity errors are the most likely source for misalignment between images, it can also result from other imperfections in the imaging procedure. Lateral misalignment is most easily recognized and

  11. Three-dimensional (3-D) model utilization for fracture reconstruction in oral and maxillofacial surgery: A case report

    NASA Astrophysics Data System (ADS)

    Damayanti, Ista; Lilies, Latief, Benny S.

    2017-02-01

    Three-dimensional (3-D) printing has been identified as an innovative manufacturing technology of functional parts. The 3-D model was produced based on CT-Scan using Osyrix software, where automatic segmentation was performed and convert into STL format. This STL format was then ready to be produced physically, layer-by-layer to create 3-D model.

  12. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  13. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  14. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  15. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties.

    PubMed

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-29

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  16. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  17. Sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios

    NASA Astrophysics Data System (ADS)

    Başağaoğlu, Hakan; Succi, Sauro; Manepally, Chandrika; Fedors, Randall; Wyrick, Danielle Y.

    2009-09-01

    Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture-matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11-0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.

  18. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  19. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    SciTech Connect

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  20. SIZE SCALING RELATIONSHIPS IN FRACTURE NETWORKS

    SciTech Connect

    Thomas H. Wilson

    2000-01-01

    The research conducted under DOE grant DE-FG26-98FT40385 provides a detailed assessment of size scaling issues in natural fracture and active fault networks that extend over scales from several tens of kilometers to less than a tenth of a meter. This study incorporates analysis of data obtained from several sources, including: natural fracture patterns photographed in the Appalachian field area, natural fracture patterns presented by other workers in the published literature, patterns of active faulting in Japan mapping at a scale of 1:100,000, and lineament patterns interpreted from satellite-based radar imagery obtained over the Appalachian field area. The complexity of these patterns is always found to vary with scale. In general,but not always, patterns become less complex with scale. This tendency may reverse as can be inferred from the complexity of high-resolution radar images (8 meter pixel size) which are characterized by patterns that are less complex than those observed over smaller areas on the ground surface. Model studies reveal that changes in the complexity of a fracture pattern can be associated with dominant spacings between the fractures comprising the pattern or roughly to the rock areas bounded by fractures of a certain scale. While the results do not offer a magic number (the fractal dimension) to characterize fracture networks at all scales, the modeling and analysis provide results that can be interpreted directly in terms of the physical properties of the natural fracture or active fault complex. These breaks roughly define the size of fracture bounded regions at different scales. The larger more extensive sets of fractures will intersect and enclose regions of a certain size, whereas smaller less extensive sets will do the same--i.e. subdivide the rock into even smaller regions. The interpretation varies depending on the number of sets that are present, but the scale breaks in the logN/logr plots serve as a guide to interpreting the

  1. Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part

  2. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  3. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-12-31

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  4. Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2016-06-01

    In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.

  5. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2012-12-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R&D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  6. Performance of a neural-network-based 3-D object recognition system

    NASA Astrophysics Data System (ADS)

    Rak, Steven J.; Kolodzy, Paul J.

    1991-08-01

    Object recognition in laser radar sensor imagery is a challenging application of neural networks. The task involves recognition of objects at a variety of distances and aspects with significant levels of sensor noise. These variables are related to sensor parameters such as sensor signal strength and angular resolution, as well as object range and viewing aspect. The effect of these parameters on a fixed recognition system based on log-polar mapped features and an unsupervised neural network classifier are investigated. This work is an attempt to quantify the design parameters of a laser radar measurement system with respect to classifying and/or identifying objects by the shape of their silhouettes. Experiments with vehicle silhouettes rotated through 90 deg-of-view angle from broadside to head-on ('out-of-plane' rotation) have been used to quantify the performance of a log-polar map/neural-network based 3-D object recognition system. These experiments investigated several key issues such as category stability, category memory compression, image fidelity, and viewing aspect. Initial results indicate a compression from 720 possible categories (8 vehicles X 90 out-of-plane rotations) to a classifier memory with approximately 30 stable recognition categories. These results parallel the human experience of studying an object from several viewing angles yet recognizing it through a wide range of viewing angles. Results are presented illustrating category formation for an eight vehicle dataset as a function of several sensor parameters. These include: (1) sensor noise, as a function of carrier-to-noise ratio; (2) pixels on the vehicle, related to angular resolution and target range; and (3) viewing aspect, as related to sensor-to-platform depression angle. This work contributes to the formation of a three- dimensional object recognition system.

  7. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology

    PubMed Central

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-01-01

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386

  8. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology.

    PubMed

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-06-30

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.

  9. Extraction and visualization of a fracture network using Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Rath, A.; Voorn, M.; Exner, U.

    2012-04-01

    Micro-Computed Tomography (µCT) measurements were conducted on 3 cm dolomite drill core plugs to gain knowledge about the distribution and orientation of a fracture network inside such plugs. µCT produces a 3D-image stack of 2D-images and these are used to reconstruct a 3D-Model of the fracture network representing the main pore space. The measurements are performed on a Rayscan 250 E at the University of Applied Sciences of Upper Austria (Fachhochschule Oberösterreich, FHÖO) using optimal recording parameters, to ensure the best spatial resolution and image quality. The resolution of the performed scans is around 20 µm. Each scan is acquired five times and then averaged to increase contrast and decrease noise artifacts. Due to the fact that the fracture apertures can be far below 20 µm, noise can be a main drawback to be able to segment the fractures. To decrease a further impact of noise we filter the images after image acquisition, by means of image histogram equalization and edge enhanced diffusion. Segmenting the fractures and the fracture network is not trivial. Many different segmentation routines the one option giving by far the best results was the Frangi Filter 2D. This filter was written in the medical research field to trace blood vessels. From a data perspective blood vessels are rather similar structures to fractures. However, the results are intensity images so that we still have to use a global threshold. This step is done by the automatic Otsu threshold, which is not biased by any human input. From a segmented image it is possible to quantify the apertures, orientation and distribution of the fractures. Using this technique can provide deep insight into the deformation history and a geometrical dataset to calculate permeability of a fracture network, which is additionally calibrated with conventional thin section analysis.

  10. 3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search

    PubMed Central

    Wang, Zhao; Jenkins, Michael W.; Linderman, George C.; Bezerra, Hiram G.; Fujino, Yusuke; Costa, Marco A.; Wilson, David L.

    2015-01-01

    Worldwide, many hundreds of thousands of stents are implanted each year to revascularize occlusions in coronary arteries. Intravascular optical coherence tomography (OCT) is an important emerging imaging technique, which has the resolution and contrast necessary to quantitatively analyze stent deployment and tissue coverage following stent implantation. Automation is needed, as current, it takes up to 16 hours to manually analyze hundreds of images and thousands of stent struts from a single pullback. For automated strut detection, we used image formation physics and machine learning via a Bayesian network, and 3-D knowledge of stent structure via graph search. Graph search was done on en face projections using minimum spanning tree algorithms. Depths of all struts in a pullback were simultaneously determined using graph cut. To assess the method, we employed the largest validation data set used so far, involving more than 8,000 clinical images from 103 pullbacks from 72 patients. Automated strut detection achieved a 0.91±0.04 recall, and 0.84±0.08 precision. Performance was robust in images of varying quality. This method can improve the workflow for analysis of stent clinical trial data, and can potentially be used in the clinic to facilitate real-time stent analysis and visualization, aiding stent implantation. PMID:25751863

  11. Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN).

    PubMed

    Chou, Nigel; Wu, Jiarong; Bai Bingren, Jordan; Qiu, Anqi; Chuang, Kai-Hsiang

    2011-09-01

    Brain extraction is an important preprocessing step for further processing (e.g., registration and morphometric analysis) of brain MRI data. Due to the operator-dependent and time-consuming nature of manual extraction, automated or semi-automated methods are essential for large-scale studies. Automatic methods are widely available for human brain imaging, but they are not optimized for rodent brains and hence may not perform well. To date, little work has been done on rodent brain extraction. We present an extended pulse-coupled neural network algorithm that operates in 3-D on the entire image volume. We evaluated its performance under varying SNR and resolution and tested this method against the brain-surface extractor (BSE) and a level-set algorithm proposed for mouse brain. The results show that this method outperforms existing methods and is robust under low SNR and with partial volume effects at lower resolutions. Together with the advantage of minimal user intervention, this method will facilitate automatic processing of large-scale rodent brain studies.

  12. Analysis of Fracturing Network Evolution Behaviors in Random Naturally Fractured Rock Blocks

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, X.; Zhang, B.

    2016-11-01

    Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in the shale plays, core observations indicate abundant random non-tectonic micro-fractures in the producing shales. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. In a series of scaled true triaxial laboratory experiments, we investigate the interaction of propagating fracturing network with natural fractures. The influence of dominating factors was studied and analyzed, with an emphasis on non-tectonic fracture density, injection rate, and stress ratio. A new index of P-SRV is proposed to evaluate the fracturing effectiveness. From the test results, three types of fracturing network geometry of radial random net-fractures, partly vertical fracture with random branches, and vertical main fracture with multiple branches were observed. It is suggested from qualitative and quantitative analysis that great micro-fracture density and injection rate tend to maximum the fracturing network; however, it tends to decrease the fracturing network with the increase in horizontal stress ratio. The function fitting results further proved that the injection rate has the most obvious influence on fracturing effectiveness.

  13. Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Maillot, J.; Davy, P.; Le Goc, R.; Darcel, C.; de Dreuzy, J. R.

    2016-11-01

    A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest. This so-called "kinematic fracture model" is characterized by a large proportion of T intersections, and a smaller number of intersections per fracture. Several kinematic models were tested and compared with Poisson DFN models with the same density, length, and orientation distributions. Connectivity, permeability, and flow distribution were calculated for 3-D networks with a self-similar power law fracture length distribution. For the same statistical properties in orientation and density, the permeability is systematically and significantly smaller by a factor of 1.5-10 for kinematic than for Poisson models. In both cases, the permeability is well described by a linear relationship with the areal density p32, but the threshold of kinematic models is 50% larger than of Poisson models. Flow channeling is also enhanced in kinematic DFN models. This analysis demonstrates the importance of choosing an appropriate DFN organization for predicting flow properties from fracture network parameters.

  14. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  15. Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Shicheng, Zhang; Tong, Zhou; Han, Li

    2016-09-01

    Shale formations are often characterized by low matrix permeability and contain numerous bedding planes (BPs) and natural fractures (NFs). Massive hydraulic fracturing is an important technology for the economic development of shale formations in which a large-scale hydraulic fracture network (HFN) is generated for hydrocarbon flow. In this study, HFN propagation is numerically investigated in a horizontally layered and naturally fractured shale formation by using a newly developed complex fracturing model based on the 3D discrete element method. In this model, a succession of continuous horizontal BP interfaces and vertical NFs is explicitly represented and a shale matrix block is considered impermeable, transversely isotropic, and linearly elastic. A series of simulations is performed to illustrate the influence of anisotropy, associated with the presence of BPs, on the HFN propagation geometry in shale formations. Modeling results reveal that the presence of BP interfaces increases the injection pressure during fracturing. HF deflection into a BP interface tends to occur under high strength and elastic anisotropy as well as in low vertical stress anisotropy conditions, which generate a T-shaped or horizontal fracture. Opened BP interfaces may limit the growth of the fracture upward and downward, resulting in a very low stimulated thickness. However, the opened BP interfaces favor fracture complexity because of the improved connection between HFs and NFs horizontally under moderate vertical stress anisotropy. This study may help predict the HF growth geometry and optimize the fracturing treatment designs in shale formations with complex depositional heterogeneity.

  16. Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing.

    PubMed

    Giannetti, Silvio; Bizzotto, Nicola; Stancati, Andrea; Santucci, Attilio

    2017-03-01

    The purpose of our study was to compare the outcome after minimally invasive reconstruction and internal fixation with and without the use of pre- and intra-operative real size 3D printing for patients with displaced tibial plateau fractures (TPFs). We prospectively followed up 40 consecutive adult patients with closed TPF who underwent surgical treatment of reconstruction of the tibial plateau with the use of minimally invasive fixation. Sixteen patients (group 1) were operated using a pre-operative and intra-operative real size 3D-model, while 24 patients (group 2) were operated without 3D-model printing, but using only pre-operative and intra-operative 3D Tc-scan images. The mean operating time was 148.2±15.9min for group 1 and 174.5±22.2min for group 2 (p=0.041). In addition, the mean intraoperative blood loss was less in group 1 (520mL) than in group 2 (546mL) (p=0.534). After discharge, all patients were followed up at 6 weeks, 12 weeks, 6 months, 1year and then every year post surgically and radiographic evaluation was carried out each time using clinical and radiological Rasmussen's score, with no significant differences between the two groups. Two patients (group 2) developed infection which resolved within 3 weeks after usage of antibiotics. Neither superficial nor deep infections were present in group 1. In all patients, no non-union occurred. No intraoperative, perioperative, or postoperative complications, such as loss of valgus correction, bone fractures, or metallic plate failures were detected at follow-up. In patients operated with the use of 3D-model printing, we found a significant reduction in surgical time. Moreover, the technique without a 3D-model increased the patient's and the surgeon's exposure to radiation.

  17. Application of artificial neural network in 3D imaging with lanthanum bromide calorimeter

    NASA Astrophysics Data System (ADS)

    Gostojic, A.; Tatischeff, V.; Kiener, J.; Hamadache, C.; Karkour, N.; Linget, D.; Grave, X.; Gibelin, L.; Travers, B.; Blin, S.; Barrillon, P.

    2015-07-01

    Gamma-ray astronomy in the energy range from 0.1 up to 100 MeV holds many understudied questions connected with e.g. stellar nucleosynthesis, the active Sun, neutron stars and black holes. To access the physics behind, a significant improvement in detection sensitivity is needed compared to previous missions, e.g. CGRO and INTEGRAL. One of the promising concepts for a future gamma-ray mission is an Advanced Compton Telescope. Under the project of creating a prototype of such instrument, we study the perspectives of using a novel inorganic scintillator as a calorimeter part. Modern inorganic crystal or ceramics scintillators are constantly improving on qualities such as energy resolution and radiation hardness, and this makes them a smart choice for a new space-borne telescope. At CSNSM Orsay, we have assembled a detection module from a 5 × 5cm2 area and 1 cm thick, cerium-doped lanthanum (III) bromide (LaBr3:Ce) inorganic scintillator coupled to a 64 channel multi-anode photomultiplier. The readout of the PMT signals is carried out with the ASIC MAROC, used previously for the luminometer of the ATLAS detector (CERN). Characterization, thorough measurements with various radioactive sources, as well as, single photoelectron detection have been done. Furthermore, we made a comparison of measurements with a detailed GEANT4-based simulation which includes tracking of the optical photons. Finally, we have studied the 3D reconstruction of the first interaction point of incident gamma rays, utilizing a neural network algorithm. This spatial position resolution plays a crucial part in the future implementations and, together with the other measured properties, it makes our detector module very interesting for the next generation of space telescopes operating in the MeV range.

  18. FRACGEN™ Stochastically Generates Fracture Networks Consistent with Data

    SciTech Connect

    Smith, D.H.; McKoy, M.L.; Boyle, E.J.

    2006-10-01

    FRACGEN(tm) generates fracture networks for highly fractured reservoirs (< 60,000 fractures) consistent with field data (e.g., outcrop data, fmi and other logs) and a geologist’s intuition. It uses four Boolean models of increasing complexity through a Monte Carlo process that samples statistical distributions for various network attributes of each fracture set as found from the data. Three models account for hierarchical relations among fracture sets, and two generate fracture swarming. Termination/intersection frequencies may be controlled implicitly or explicitly. The code also is being upgraded to allow specification of fractal properties for the fracture network. FRACGEN provides an output file that specifies length, orientation, and effective aperture for each fracture. This output file can be used by a unique reservoir engineering code, NFFLOW, to perform reservoir engineering studies for geologic sequestration of carbon dioxide. This presentation describes use of FRACGEN to describe a reservoir in the Oriskany Sandstone in West Virginia.

  19. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  20. Effects of fracture reactivation and diagenesis on fracture network evolution: Cambrian Eriboll Formation, NW Scotland

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Eichhubl, P.; Xu, G.; Ahn, H.; Fall, A.; Hargrove, P.; Laubach, S.; Ukar, E.

    2011-12-01

    The Cambrian Eriboll Formation quartzarenites contain abundant fractures with varying degrees of quartz cement infill. Fractures exist that are entirely sealed; are locally sealed by bridging cements but preserve pore space among bridges; are mostly open but lined with veneers of cement; or are devoid of cement. Fracture propagation in the Eriboll Formation is highly sensitive to the presence of pre-existing fractures. Fracture reactivation occurs in opening mode as individual fractures repeatedly open and are filled or bridged by syn-kinematic cements. As well, reactivation occurs in shear as opening of one fracture orientation coincides with shear displacement along pre-existing fractures of different orientations. The tendency for pre-existing fractures to slip varies in part by the extent of cement infill, yet we observe shear and opening-mode reactivation even among sealed fractures. Paleotemperature analysis of fluid inclusions within fracture cements suggests some fractures now in outcrop formed deep in the subsurface. Fractures within the Eriboll Formation may therefore affect later fracture propagation throughout geologic time. With progressive strain, fault zones develop within fracture networks by a sequence of opening-mode fracture formation, fracture reactivation and linkage, fragmentation, cataclasis, and the formation of slip surfaces. Cataclasite within fault zones is commonly more thoroughly cemented than fractures in the damage zone or outside the fault zone. This variance of cement abundance is likely the result of (1) continued exposure of freshly broken quartz surfaces within cataclasite, promoting quartz precipitation, and (2) possibly more interconnected pathways for mass transfer within the fault zone. Enhanced cementation of cataclasite results in strengthening or diagenetic strain hardening of the evolving fault zone. Further slip is accommodated by shear localization along discrete slip surfaces. With further linkage of fault segments

  1. Segmentation of Textures Defined on Flat vs. Layered Surfaces using Neural Networks: Comparison of 2D vs. 3D Representations.

    PubMed

    Oh, Sejong; Choe, Yoonsuck

    2007-08-01

    Texture boundary detection (or segmentation) is an important capability in human vision. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct (i.e., occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments with artificial neural networks to investigate the relative difficulty of learning to segment textures defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by occluding surfaces and their change over time due to the observer's motion. It turns out that learning is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results showed that the neural network's learned ability to segment texture in 3D transfers well into 2D texture segmentation, bolstering our initial hypothesis, and providing insights on the possible developmental origin of 2D texture segmentation function in human vision.

  2. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks

    PubMed Central

    Simão, Daniel; Terrasso, Ana P.; Teixeira, Ana P.; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M.

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-13C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  3. Reduction of multi-fragment fractures of the distal radius using atlas-based 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Stewart, James; Abolmaesumi, Purang

    2009-02-01

    We describe a method to guide the surgical fixation of distal radius fractures. The method registers the fracture fragments to a volumetric intensity-based statistical anatomical atlas of distal radius, reconstructed from human cadavers and patient data, using a few intra-operative X-ray fluoroscopy images of the fracture. No pre-operative Computed Tomography (CT) images are required, hence radiation exposure to patients is substantially reduced. Intra-operatively, each bone fragment is roughly segmented from the X-ray images by a surgeon, and a corresponding segmentation volume is created from the back-projections of the 2D segmentations. An optimization procedure positions each segmentation volume at the appropriate pose on the atlas, while simultaneously deforming the atlas such that the overlap of the 2D projection of the atlas with individual fragments in the segmented regions is maximized. Our simulation results shows that this method can accurately identify the pose of large fragments using only two X-ray views, but for small fragments, more than two X-rays may be needed. The method does not assume any prior knowledge about the shape of the bone and the number of fragments, thus it is also potentially suitable for the fixation of other types of multi-fragment fractures.

  4. Characterizing the dynamic behavior of hydraulically-induced fracture networks associated with hydraulic fracture stimulations (Invited)

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2013-12-01

    Seismic Moment Tensor Inversion (SMTI) analysis of microseismicity recorded with multi-well multi-array configurations allows for the potential determination of fracture growth, both spatially and temporally away from a treatment well, as well as the identification of fracture interactions within the reservoir. Based on these analyses, it may be possible to identify the role of pre-existing fracture networks in fracture development as well as, for example, failure type, fracture connectivity, and fracture intensity. Here, we present our observations based on evaluating event sequences associated with multiple injection programs in shale plays throughout North America. In our analysis we identify that, generally, local hydraulically induced variations in the stress-strain field during stimulation result in mixed-mode shear/tensile failures along predominantly pre-existing fractures/joints emplaced during current- and paleo-stress regimes rather than in the creation of new fractures. Away from treatment intervals, failures tend to be dominated by shear and are heavily influenced by the regional stress conditions. Utilizing Hudson plots (k-T), it appears that the fracture process can be further broken down into four types of activity relative to the treatment well and the start of the injection, namely initiation/reactivation of fractures (k ~ 0, double couple dominated), breakout into formation (explosive isotropic), progression of fracture from the treatment well (mostly explosive isotropic), and fracture infill behind the fracture front (decreasing k with treatment time, i.e., explosive to implosive). Breakout events comprised of crack-opening type failures followed by closure events close to the treatment well could be considered to be a canonical fracture, and that the observed behavior can be thought of as the superposition of many of these canonical fractures. Based on our observations, we suggest that by mapping these mechanisms, we can begin to delineate the

  5. Webs on the Web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education

    NASA Astrophysics Data System (ADS)

    Yoon, Ilmi; Williams, Rich; Levine, Eli; Yoon, Sanghyuk; Dunne, Jennifer; Martinez, Neo

    2004-06-01

    This paper describes information technology being developed to improve the quality, sophistication, accessibility, and pedagogical simplicity of ecological network data, analysis, and visualization. We present designs for a WWW demonstration/prototype web site that provides database, analysis, and visualization tools for research and education related to food web research. Our early experience with a prototype 3D ecological network visualization guides our design of a more flexible architecture design. 3D visualization algorithms include variable node and link sizes, placements according to node connectivity and tropic levels, and visualization of other node and link properties in food web data. The flexible architecture includes an XML application design, FoodWebML, and pipelining of computational components. Based on users" choices of data and visualization options, the WWW prototype site will connect to an XML database (Xindice) and return the visualization in VRML format for browsing and further interactions.

  6. Molecular tectonics: pyridyl containing thiacalix[4]arene based tectons for the generation of 2- and 3-D silver coordination networks.

    PubMed

    Ovsyannikov, A; Lang, M N; Ferlay, S; Solovieva, S E; Antipin, I S; Konovalov, A I; Kyritsakas, N; Hosseini, M W

    2013-01-07

    Three new organic tectons (2–4) based on the p-tert-butylthiacalix[4]arene backbone, blocked in the 1,3-alternate conformation, bearing four pyridyl coordinating moieties, have been synthesised and characterised in the solid state. The ligands are positional isomers and differ by the position of the N atom on the pyridyl unit (ortho for 2, meta for 3 and para for 4). Their combination with the Ag+ cation leads, reproducibly, to the formation of 2- and 3-D infinite silver coordination networks. Independent of the nature of the anion, the combination of 2 offering four (N,S) type chelates with the Ag+ cation affords an unprecedented diamond type 3D network. Both 3 and 4, behaving as tetrakis monodentate ligands, lead to the formation of 2-D architectures.

  7. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    PubMed

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  8. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.

    PubMed

    Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata

    2007-12-01

    Hip fractures due to sideways falls are a worldwide health problem, especially among the elderly population. The objective of this study was to simulate a real life sideways fall leading to hip fracture. To achieve this a computed tomography (CT) scan based three-dimensional (3D) finite element (FE) model of the pelvis-femur complex was developed using a wide range of mechanical properties in the bone of the complex. For impact absorption through large deformation, surrounding soft tissue was also included in the FE model from CT scan data. To incorporate the inertia effect, the whole body was represented by a spring-mass-dashpot system. For trochanteric soft tissue thickness of 14 mm, body weight of 77.47 kg and average hip impact velocity of 3.17 m/s, this detailed FE model could approximately simulate a sideways fall configuration and examine femoral fracture situation. At the contact surface, the peak impact load was 8331 N. In spite of the presence of 14 mm thick trochanteric soft tissue, within the trochanteric zone the most compressive peak principal strain was 3.5% which exceeds ultimate compressive strain. The modeled trochanteric fracture was consistent with clinical findings and with the findings of previous studies. Further, this detailed FE model may be used to find the effect of trochanteric soft tissue thickness variations on peak impact force, peak strain in sideways fall, and to simulate automobile side impact and backward fall situations.

  9. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  10. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  11. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  12. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this

  13. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  14. Transport efficiency and dynamics of hydraulic fracture networks

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  15. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.

    PubMed

    Jeong, Gi Seok; Kwon, Gu Han; Kang, Ah Ran; Jung, Bo Young; Park, Yongdoo; Chung, Seok; Lee, Sang-Hoon

    2011-08-01

    Cell migration through the extracellular matrix (ECM) is one of the key features for physiological and pathological processes such as angiogenesis, cancer metastasis, and wound healing. In particular, the quantitative assay of endothelial cell migration under the well-defined three dimensional (3D) microenvironment is important to analyze the angiogenesis mechanism. In this study, we report a microfluidic assay of endothelial cell sprouting and migration into an interpenetrating polymer semi-network HA-Collagen (SIPNs CH) hydrogel as ECM providing an enhanced in vivo mimicking 3D microenvironment to cells. The microfluidic chip could provide a well-controlled gradient of growth factor to cells, whereas the hydrogel could mimic a well-defined 3D microenvironment in vivo. (In addition/Furthermore, the microfluidic chip gives a well-controlled gradient of growth factor to cells) For this reason, three types of hydrogel, composed of semi-interpenetrating networks of collagen and hyaluronic acid were prepared, and firstly we proved the role of the hydrogel in endothelial cell migration. The diffusion property and swelling ratio of the hydrogel were characterized. It modulated the migration of endothelial cells in quantified manner, also being influenced by additional synthesis of Matrix metalloproteinase(MMP)-sensitive remodeling peptides and Arginine-glycine-lycinee (RGD) cell adhesion peptides. We successfully established a novel cell migration platform by changing major determinants such as ECM material under biochemical synthesis and under growth factor gradients in a microfluidic manner.

  16. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  17. Preliminary Measurement of Communication Rates on the Cray T3D Interprocessor Network

    NASA Technical Reports Server (NTRS)

    Springer, Paul; Peterson, John; Numrich, Robert

    1993-01-01

    None given.(from task description): Objectives: test the communication network, determine how communication rates scale with message size, test the effect of contention, show the effect of contention.

  18. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  19. Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.

    2014-12-01

    An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec

  20. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  1. 3D face recognition system using cylindrical hidden-layer neural network: spatial domain and its eigenspace domain

    NASA Astrophysics Data System (ADS)

    Kusumoputro, Benyamin; Pangabean, Martha Y.; Rachman, Leila F.

    2001-09-01

    In this paper, a 3-D face recognition system is developed using a modified neural network. This modified neural network is constructed by substituting each of neuron in its hidden layer of conventional multilayer perceptron with a circular-structure of neurons. This neural system is then called as cylindrical-structure of hidden layer neural network (CHL-NN). The neural system is then applied on a real 3-D face image database that consists of 5 Indonesian persons. The images are taken under four different expressions such as neutral, smile, laugh and free expression. The 2-D images is taken from the human face images by gradually changing visual points, which is done by successively varies the camera position from - 90 to +90 with an interval of 15 degree. The experimental result has shown that the average recognition rate of 60% could be achieved when we used the image in its spatial domain. Improvement of the system is then developed, by transforming the image in its spatial domain into its eigenspace domain. Karhunen Loeve transformation technique is used, and each image in the spatial domain is represented as a point in the eigenspace domain. Fisherface method is then utilized as a feature extraction on the eigenspace domain, and using the same database and experimental procedure, the recognition rate of the system could be increased into 84% in average.

  2. Related pituitary cell lineages develop into interdigitated 3D cell networks.

    PubMed

    Budry, Lionel; Lafont, Chrystel; El Yandouzi, Taoufik; Chauvet, Norbert; Conéjero, Geneviève; Drouin, Jacques; Mollard, Patrice

    2011-07-26

    The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.

  3. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility

    PubMed Central

    Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios

    2016-01-01

    Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. PMID:27007373

  4. AxeCorp's "Team Challenge": Teaching Teamwork via 3D Social Networking Platforms

    ERIC Educational Resources Information Center

    Carmichael, Kendra

    2011-01-01

    To prepare business communication undergraduates for a changing work world and to engage today's tech-savvy students, many instructors have embraced social media by incorporating its use in the classroom. This article describes AxeCorp, a fictional company headquartered on the immersive social networking platform, Second Life, and one particular…

  5. Characterization of EGS Fracture Network Lifecycles

    SciTech Connect

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field

  6. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst.

  7. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution

    SciTech Connect

    Parra, J.O.; Hackett, C.L.; Brown, R.L.; Collier, H.A.; Datta-Gupta, A.

    1998-10-01

    To characterize the Buena Vista Hills field, the authors have implemented methods of modeling, processing and interpretation. The modeling methods are based on deterministic and stochastic solutions. Deterministic solutions were developed in Phase 1 and applied in Phase 2 to simulate acoustic responses of laminated reservoirs. Specifically, the simulations were aimed at implementing processing techniques to correct P-wave and S-wave velocity logs for scattering effects caused by thin layering. The authors are also including a summary of the theory and the processing steps of this new method for predicting intrinsic dispersion and attenuation in Section 2. Since the objective for correcting velocity scattering effects is to predict intrinsic dispersion from velocity data, they are presenting an application to illustrate how to relate permeability anisotropy with intrinsic dispersion. Also, the theoretical solution for calculating full waveform dipole sonic that was developed in Phase 1 was applied to simulate dipole responses at different azimuthal source orientations. The results will be used to interpret the effects of anisotropy associated with the presence of vertical fractures at Buena Vista Hills. The results of the integration of core, well logs, and geology of Buena Vista Hills is also given in Section 2. The results of this integration will be considered as the input model for the inversion technique for processing production data. Section 3 summarizes accomplishments. In Section 4 the authors present a summary of the technology transfer and promotion efforts associated with this project. In the last section, they address the work to be done in the next six months and future work by applying the processing, modeling and inversion techniques developed in Phases 1 and 2 of this project.

  8. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    PubMed Central

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-01-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices. PMID:28287138

  9. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-03-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices.

  10. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    NASA Astrophysics Data System (ADS)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  11. Drainage fracture networks in elastic solids with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Galland, Olivier; Renard, François; Meakin, Paul; Jamtveit, Bjørn; Dysthe, Dag K.

    2013-06-01

    Experiments in which CO2 gas was generated by the yeast fermentation of sugar in an elastic layer of gelatine gel confined between two glass plates are described and analyzed theoretically. The CO2 gas pressure causes the gel layer to fracture. The gas produced is drained on short length scales by diffusion and on long length scales by flow in a fracture network, which has topological properties that are intermediate between river networks and hierarchical-fracture networks. A simple model for the experimental system with two parameters that characterize the disorder and the intermediate (river-fracture) topology of the network was developed and the results of the model were compared with the experimental results.

  12. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node

    PubMed Central

    Kelch, Inken D.; Bogle, Gib; Sands, Gregory B.; Phillips, Anthony R. J.; LeGrice, Ian J.; Rod Dunbar, P.

    2015-01-01

    Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs. PMID:26567707

  13. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  14. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord.

    PubMed

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-02-17

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.

  15. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    PubMed Central

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-01-01

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system. PMID:25686728

  16. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.

    PubMed

    Wang, Xue-Ying; Jin, Zi-He; Gan, Bo-Wen; Lv, Song-Wei; Xie, Min; Huang, Wei-Hua

    2014-08-07

    Engineering 3D perfusable vascular networks in vitro and reproducing the physiological environment of blood vessels is very challenging for tissue engineering and investigation of blood vessel function. Here, we engineer interconnected 3D microfluidic vascular networks in hydrogels using molded sodium alginate lattice as sacrificial templates. The sacrificial templates are rapidly replicated in polydimethylsiloxane (PDMS) microfluidic chips via Ca⁺²-crosslinking and then fully encapsulated in hydrogels. Interconnected channels with well controlled size and morphology are obtained by dissolving the monolayer or multilayer templates with EDTA solution. The human umbilical vein endothelial cells (HUVECs) are cultured on the channel linings and proliferated to form vascular lumens. The strong cell adhesion capability and adaptive response to shear stress demonstrate the excellent cytocompatibility of both the template and template-sacrificing process. Furthermore, the barrier function of the endothelial layer is characterized and the results show that a confluent endothelial monolayer is fully developed. Taken together, we develop a facile and rapid approach to engineer a vascular model that could be potentially used in physiological studies of vascular functions and vascular tissue engineering.

  17. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  18. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-02-01

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.

  19. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  20. DNAPL Dissolution in Bedrock Fractures And Fracture Networks

    DTIC Science & Technology

    2011-06-01

    capillary pressure, wettability , interfacial tension and relative permeability (63). The advancing DNAPL front and intersecting fractures will be only be...UCRL-JC-149856- ABS . ER-1554 Final Report 130 (12) Rubin, H., K. Rathfelder, K., Abriola, L.M., Spiller, M., Köngeter, J. Using continuum... wettability and saturation on liquid-liquid interfacial area in porous media. Environ. Sci. Technol. 2002, 37, 584-591. (94) Morley, M.C., Yamamoto, H

  1. 3D functional and perfusable microvascular networks for organotypic microfluidic models.

    PubMed

    Bersini, Simone; Moretti, Matteo

    2015-05-01

    The metastatic dissemination of cancer cells from primary tumors to secondary loci is a complex and multistep process including local invasion, intravasation, survival in the blood stream and extravasation towards the metastatic site. It is well known cancer metastases follow organ-specific pathways with selected primary tumors mainly metastasizing towards a specific panel of secondary organs (Steven Paget's theory 1889). However, circulatory patterns and microarchitecture of capillary networks play a key role in the metastatic spread as well (James Ewing's theory 1929). Taking into account both these factors would be critical to develop more complex and physiologically relevant in vitro cancer models. This review presents recent advances in the generation of microvascularized systems through microfluidic approaches and discusses promising results achieved by organ-on-a-chip platforms mimicking the pathophysiology of the functional units of specific organs. The combination of physiologically-like microvascular networks and organotypic microenvironments would foster a new generation of in vitro cancer models to more effectively screen new therapeutics, design personalized medicine treatments and investigate molecular pathways involved in cancer metastases.

  2. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  3. The 3D-based scaling index algorithm to optimize structure analysis of trabecular bone in postmenopausal women with and without osteoporotic spine fractures

    NASA Astrophysics Data System (ADS)

    Muller, Dirk; Monetti, Roberto A.; Bohm, Holger F.; Bauer, Jan; Rummeny, Ernst J.; Link, Thomas M.; Rath, Christoph W.

    2004-05-01

    The scaling index method (SIM) is a recently proposed non-linear technique to extract texture measures for the quantitative characterisation of the trabecular bone structure in high resolution magnetic resonance imaging (HR-MRI). The three-dimensional tomographic images are interpreted as a point distribution in a state space where each point (voxel) is defined by its x, y, z coordinates and the grey value. The SIM estimates local scaling properties to describe the nonlinear morphological features in this four-dimensional point distribution. Thus, it can be used for differentiating between cluster-, rod-, sheet-like and unstructured (background) image components, which makes it suitable for quantifying the microstructure of human cancellous bone. The SIM was applied to high resolution magnetic resonance images of the distal radius in patients with and without osteoporotic spine fractures in order to quantify the deterioration of bone structure. Using the receiver operator characteristic (ROC) analysis the diagnostic performance of this texture measure in differentiating patients with and without fractures was compared with bone mineral density (BMD). The SIM demonstrated the best area under the curve (AUC) value for discriminating the two groups. The reliability of our new texture measure and the validity of our results were assessed by applying bootstrapping resampling methods. The results of this study show that trabecular structure measures derived from HR-MRI of the radius in a clinical setting using a recently proposed algorithm based on a local 3D scaling index method can significantly improve the diagnostic performance in differentiating postmenopausal women with and without osteoporotic spine fractures.

  4. Layout search of a gene regulatory network for 3-D visualization.

    PubMed

    Hosoyama, Naoki; Nasimul, Noman; Iba, Hitoshi

    2003-01-01

    In recent years, base sequences have been increasingly unscrambled through attempts represented by the human genome project. Accordingly, the estimation of the genetic network has been accelerated. However, no definitive method has become available for drawing a large effective graph. This paper proposes a method which allows for coping with an increase in the number of nodes by laying out genes on planes of several layers and then overlapping these planes. This layout involves an optimization problem which requires maximizing the fitness function. To demonstrate the effectiveness of our approach, we show some graphs using actual data on 82 genes and 552 genes. We also describe how to lay out nodes by means of stochastic searches, e.g., stochastic hill-climbing and incremental methods. The experimental results show the superiority and usefulness of two search methods in comparison with the simple random search.

  5. 3-D multilateration for measurement of earth crustal deformation and network densification

    NASA Technical Reports Server (NTRS)

    Ong, K. M.

    1973-01-01

    Discussion of how range and range-difference data types can make possible precise three-dimensional measurement of ground station positions and the position of an artificial signal source, without explicit dependence upon the signal source trajectory. An effective strategy for such measurement is to combine the multilateration approach with a VLBI system using natural radio sources. The VLBI methods would provide a coarse grid of three-dimensional benchmark locations on a regional and global scale. Multilateration stations would then occupy these coarse grid locations and provide a means for highly portable, relatively low-cost units to then densify networks on a regional and local scale. Because a multilateration approach can make use of strong artificial radio sources, it makes possible the use of relatively low-cost, highly mobile stations. Such mobile stations are virtually essential for three dimensional surveying in heavily urbanized areas or in rugged terrain.

  6. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  7. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-02

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.

  8. Some Characteristics of Regular Fracture-lineament Global Network

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Longinos, Biju

    2013-04-01

    Existence of regular fracture-lineament global network global network (FLGN) (or regmatic network), was known for lands of the Earth in many regions. Authors made more than 20 000 measurements of lineaments and faults azimuths of the lineaments and fractures on geographic, geologic and tectonic maps for number of regions and for all Earth. Later all data files have subjected by the factor analysis. We detect existence FLGN in the Ocean bottom. Statistic relation between fractures and lineaments directions was established. Control of large-scale lineaments by fractures within the competence of the FLGN was based. Predominating strike directions of line elements of FLGN are: 0 - 10˚, 80 - 90˚, 30 - 60˚, 120 - 150˚. FLGN have attribute of fractality. One-direction lines elements of the FLGN alternate with constant step within the competence of defined scale. FLGN was formed under a continuous stress, which exist at least throughout the entire earthcrust thickness and during the time of at least the entire Phanerozoe. This stress was generated by a complex of forces: rotational, pulsating and, possibly, some others in the earthcrust. All of these forces are symmetric to the Earth rotation axis and some of them also to the equator. Rotation and pulsating processes of the Earth are the main factors of these forces and, hence, formation of the fracture- lineament network. FLGN determines the most favorable place for fracturing, formation of fracture-controlled landforms, volcanic and seismic processes (geohazards), fluid flow and ore-formation (minerals).

  9. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  10. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  11. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  12. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  13. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  14. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  15. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  16. Experimental Study of Heat Transport in Fractured Network

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  17. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  18. Templated assembly of BiFeO₃ nanocrystals into 3D mesoporous networks for catalytic applications.

    PubMed

    Papadas, I T; Subrahmanyam, K S; Kanatzidis, M G; Armatas, G S

    2015-03-19

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO₃ material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO₃) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO₃ nanoparticles (∼6-7 nm in diameter) and has a moderately high surface area (62 m(2) g(-1)) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO₃ nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.

  19. Metastatic liver tumour segmentation with a neural network-guided 3D deformable model.

    PubMed

    Vorontsov, Eugene; Tang, An; Roy, David; Pal, Christopher J; Kadoury, Samuel

    2017-01-01

    The segmentation of liver tumours in CT images is useful for the diagnosis and treatment of liver cancer. Furthermore, an accurate assessment of tumour volume aids in the diagnosis and evaluation of treatment response. Currently, segmentation is performed manually by an expert, and because of the time required, a rough estimate of tumour volume is often done instead. We propose a semi-automatic segmentation method that makes use of machine learning within a deformable surface model. Specifically, we propose a deformable model that uses a voxel classifier based on a multilayer perceptron (MLP) to interpret the CT image. The new deformable model considers vertex displacement towards apparent tumour boundaries and regularization that promotes surface smoothness. During operation, a user identifies the target tumour and the mesh then automatically delineates the tumour from the MLP processed image. The method was tested on a dataset of 40 abdominal CT scans with a total of 95 colorectal metastases collected from a variety of scanners with variable spatial resolution. The segmentation results are encouraging with a Dice similarity metric of [Formula: see text] and demonstrates that the proposed method can deal with highly variable data. This work motivates further research into tumour segmentation using machine learning with more data and deeper neural networks.

  20. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network.

    PubMed

    Kim, Jaerim; Chung, Minhwan; Kim, Sudong; Jo, Dong Hyun; Kim, Jeong Hun; Jeon, Noo Li

    2015-01-01

    Pericytes enveloping the endothelium play an important role in the physiology and pathology of microvessels, especially in vessel maturation and stabilization. However, our understanding of fundamental pericyte biology is limited by the lack of a robust in vitro model system that allows researchers to evaluate the interactions among multiple cell types in perfusable blood vessels. The present work describes a microfluidic platform that can be used to investigate interactions between pericytes and endothelial cells (ECs) during the sprouting, growth, and maturation steps of neovessel formation. A mixture of ECs and pericytes was attached to the side of a pre-patterned three dimensional fibrin matrix and allowed to sprout across the matrix. The effects of intact coverage and EC maturation by the pericytes on the perfused EC network were confirmed using a confocal microscope. Compared with EC monoculture conditions, EC-pericyte co-cultured vessels showed a significant reduction in diameter, increased numbers of junctions and branches and decreased permeability. In response to biochemical factors, ECs and pericytes in the platform showed the similar features with previous reports from in vivo experiments, thus reflect various pathophysiological conditions of in vivo microvessels. Taken together, these results support the physiological relevancy of our three-dimensional microfluidic culture system but also that the system can be used to screen drug effect on EC-pericyte biology.

  1. Applications of neural networks to landmark detection in 3-D surface data

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.

    1992-09-01

    The problem of identifying key landmarks in 3-dimensional surface data is of considerable interest in solving a number of difficult real-world tasks, including object recognition and image processing. The specific problem that we address in this research is to identify the specific landmarks (anatomical) in human surface data. This is a complex task, currently performed visually by an expert human operator. In order to replace these human operators and increase reliability of the data acquisition, we need to develop a computer algorithm which will utilize the interrelations between the 3-dimensional data to identify the landmarks of interest. The current presentation describes a method for designing, implementing, training, and testing a custom architecture neural network which will perform the landmark identification task. We discuss the performance of the net in relationship to human performance on the same task and how this net has been integrated with other AI and traditional programming methods to produce a powerful analysis tool for computer anthropometry.

  2. Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network

    NASA Astrophysics Data System (ADS)

    Ammendola A, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2014-06-01

    APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.

  3. Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks

    NASA Astrophysics Data System (ADS)

    Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad

    2001-04-01

    The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.

  4. 3D geological modelling of a complex buried-valley network delineated from borehole and AEM data

    NASA Astrophysics Data System (ADS)

    Høyer, A.-S.; Jørgensen, F.; Sandersen, P. B. E.; Viezzoli, A.; Møller, I.

    2015-11-01

    Buried tunnel valleys are common features in formerly glaciated areas, and where present, they are very important for the groundwater recharge and flow. Delineation of the structures and modelling of the infill is therefore very important in relation to groundwater mapping. Typically, borehole information is too sparse to enable a detailed delineation of the structures, whereas densely covering airborne electromagnetic data have proven to be very useful for this. In the last decades, the mapping approach has been studied carefully, but the 3D modelling of the valley structures has not been described to the same degree yet. In this study, we create a 3D geological model of an area that is characterised by a complex network of buried valleys mapped with a spatially dense airborne electromagnetic survey. Due to the comprehensive dataset, the modelling requires formulation of an advanced strategy. This contains a number of steps, where the AEM-derived resistivity data are initially interpreted based on the geological background knowledge to identify the buried valleys and build a conceptual geological model. Secondly, the age relationships between the valleys are established from the valley orientations and their internal cross-cut relationships. Thirdly, the deep erosional surfaces are modelled. Subsequently, the interpreted age relationships are utilised to trim the valley floor surfaces, such that younger valleys cut older. Finally, a voxel model is built and populated with lithofacies and stratigraphical units. The model is constructed as a combined layer-based and voxel model in order to map both the overall structures as well as the lithological variations within the 3D model domain. The final model contains 20 buried valleys that show a complex cross-cut setting that indicate the presence of at least eight valley generations. Most of the valley infills show lithological variations, and the final voxel model thus contains 42 different geological units.

  5. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C.

    1996-12-31

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  6. Fractal scaling and fluid flow in fracture networks in rock

    SciTech Connect

    Barton, C.C. )

    1996-01-01

    Recovery of oil and gas resources and injection of toxic waste materials requires quantitative models to describe and predict the movement of fluids in rock. Existing models based on pore-space flow are inappropriate for study of the more rapid process of fluid flow through fracture networks. This type of flow is not a simple function of the fracture characteristics at any particular scale, but rather the integration of fracture contributions at all scales. The mathematical constructs of fractal geometry are well suited to quantify and model relationships within complex systems that are statistically self-similar over a wide range of scales. Analyses show that fracture traces mapped on two-dimensional slices through three-dimensional nature fracture networks in rock follow a fractal scaling law over six orders of magnitude. Detailed measurements of 17 two-dimensional samples of fracture networks (at diverse scales in rocks of dissimilar age, lithology, and tectonic setting) show similar fractal dimensions in the range 1.3-1.7. The range in fractal dimension implies that a single physical process of rock fracturing operates over a wide range of scales, from microscopic cracks to large, regional fault systems. The knowledge that rock-fracture networks are fractal allows the use of data from a one-dimensional drill-hole sample to predict the two- and three-dimensional scaling of the fracture system. The spacing of fractures in drill holes is a fractal Cantor distribution, and the range of fractal dimension is 0.4-0.6, which is an integer dimension less than that of fracture-trace patterns exposed on two-dimensional, planar sections. A reconstruction of the fracture history at the point of initial connectivity across the network (percolation) has a fractal dimension of 1.35 as compared to a dimension of 1.9 for the percolation cluster in a two-dimensional model. Paleo flow was mapped based on the deposition of aqueous minerals on the fracture surface.

  7. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time.

  8. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application.

    PubMed

    Peng, Qingyu; Wei, Hongqiu; Qin, Yuyang; Lin, Zaishan; Zhao, Xu; Xu, Fan; Leng, Jinsong; He, Xiaodong; Cao, Anyuan; Li, Yibin

    2016-10-27

    Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.6 MPa) during shape recovery. We further studied the construction of a double-layer composite structure for bidirectional actuation, in which the shape change is dominated by the temperature-dependent exerting force from the top and bottom layer, alternately. An inchworm-type robot is demonstrated whose locomotion is realized by such bidirectional shape memory. Our large stroke shape-memory nanocomposites have promising applications in many areas including artificial muscles and bionic robots.

  9. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  10. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  11. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M João; Silva, Teresa M; Montemor, M Fátima

    2015-08-07

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  12. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization

    PubMed Central

    Liu, Yong; Ma, Jiaqi; Lu, Ting; Pan, Likun

    2016-01-01

    Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g−1 at 1.2 V in 500 mg l−1 NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications. PMID:27608826

  13. Pose-invariant face-head identification using a bank of neural networks and the 3D neck reference point

    NASA Astrophysics Data System (ADS)

    Hild, Michael; Yoshida, Kazunobu; Hashimoto, Motonobu

    2003-03-01

    A method for recognizing faces in relativley unconstrained environments, such as offices, is described. It can recognize faces occurring over an extended range of orientations and distances relative to the camera. As the pattern recognition mechanism, a bank of small neural networks of the multilayer perceptron type is used, where each perceptron has the task of recognizing only a single person's face. The perceptrons are trained with a set of nine face images representing the nine main facial orientations of the person to be identified, and a set face images from various other persons. The center of the neck is determined as the reference point for face position unification. Geometric normalization and reference point determination utilizes 3-D data point measurements obtained with a stereo camera. The system achieves a recognition rate of about 95%.

  14. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

    NASA Astrophysics Data System (ADS)

    Lee, Yunjeong; Lim, Yeongjin; Shin, Heungjoo

    2016-06-01

    Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ~90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection.Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic

  15. Fractal modeling of natural fracture networks. Final report, June 1994--June 1995

    SciTech Connect

    Ferer, M.V.; Dean, B.H.; Mick, C.

    1996-04-01

    Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network. Reliable characterization of the actual fracture network in the reservoir is severely limited. The location and orientation of fractures intersecting the borehole can be determined, but the length of these fractures cannot be unambiguously determined. Fracture networks can be determined for outcrops, but there is little reason to believe that the network in the reservoir should be identical because of the differences in stresses and history. Because of the lack of detailed information about the actual fracture network, modeling methods must represent the porosity and permeability associated with the fracture network, as accurately as possible with very little apriori information. Three rather different types of approaches have been used: (1) dual porosity simulations; (2) `stochastic` modeling of fracture networks, and (3) fractal modeling of fracture networks. Stochastic models which assume a variety of probability distributions of fracture characteristics have been used with some success in modeling fracture networks. The advantage of these stochastic models over the dual porosity simulations is that real fracture heterogeneities are included in the modeling process. In the sections provided in this paper the authors will present fractal analysis of the MWX site, using the box-counting procedure; (2) review evidence testing the fractal nature of fracture distributions and discuss the advantages of using their fractal analysis over a stochastic analysis; (3) present an efficient algorithm for producing a self-similar fracture networks which mimic the real MWX outcrop fracture network.

  16. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  17. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  18. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  19. Towards effective flow simulations in realistic discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano

    2016-04-01

    We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.

  20. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  1. Determination of 3D surface displacement rates in the Upper Rhine Graben based on GURN (GNSS Upper Rhine Graben Network)

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Knöpfler, A.; Masson, F.; Ulrich, P.; Heck, B.

    2012-04-01

    regional network GURN actually consists of approx. 80 permanently operating GNSS sites of different data providers in Germany, France and Switzerland. The first work steps in the context of GURN were dominated by a detailed analysis of the GNSS data base (e.g., instrumental change artefacts). This analysis included a comparison of the working group related results (EOST, GIK), where different software packages and data handling strategies were used to derive 3D coordinate time series as basis for the determination of a 3D surface displacement field. Due to very small expected velocities in the URG region, the recent GURN focus is on the reliable derivation of site velocities, therefore effects of datum realisation have to be handled with care. The presentation gives an insight into the joint venture GURN focussing on recent results (e.g., 3D surface velocity field).

  2. Signature of seismic wave attenuation during fracture network formation

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Zhubayev, Alimzhan; Houben, Maartje; Hardebol, Nico; Smeulders, David

    2015-04-01

    Seismic waves are significantly affected by the presence of fractures and faults. Fractures alter the arrival time of a seismic wave and the amplitude of the seismic wave. Attenuation of a seismic wave is the reduction of wave amplitude due to the presence of e.g. fractures. Attenuation of acoustic compressional P- and shear S-waves have been measured in laboratory studies on different rock types. These studies generally show a decrease in attenuation with an increase in stress. This decrease in attenuation is attributed to progressive crack closure of pre-existing cracks. The stress-dependent decrease in attenuation reported in these studies all occur within the elastic deformation field, i.e. below yield stress levels and thus no additional cracks/micro-fractures have yet been formed. At stress levels just above the yield strength the first fractures start to form. With increasing stress, fractures nucleate, grow and coalesce until a connected network of fractures has developed at which failure of the rock sample occurs. The change in attenuation during the fracturing process however has seldom been investigated. In analogy to fracture closure, where attenuation generally decreases, fracture formation should cause again an increase in attenuation. Here we report an experimental study on shales from Whitby (UK), where s-wave attenuation was measured in the laboratory during an increase in stress towards fracture formation until complete failure of the shale samples. Before yield stress conditions, as expected an increase in stress caused a gradual decrease in attenuation. At the transition from elastic to inelastic deformation behaviour, the first microfractures start to form and attenuation starts to increase again. This reversal in attenuation behaviour could potentially be used as an indicator that failure of a rock mass under stress is imminent (imminence of seismicity). The measured seismic velocities do not depict the transition from elastic to inelastic

  3. A semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks

    NASA Astrophysics Data System (ADS)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui

    2016-06-01

    This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With

  4. iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations.

    PubMed

    Liang, Siqi; Tippens, Nathaniel D; Zhou, Yaoda; Mort, Matthew; Stenson, Peter D; Cooper, David N; Yu, Haiyuan

    2017-01-18

    The mechanistic details of most disease-causing mutations remain poorly explored within the context of regulatory networks. We present a high-resolution three-dimensional integrated regulatory network (iRegNet3D) in the form of a web tool, where we resolve the interfaces of all known transcription factor (TF)-TF, TF-DNA and chromatin-chromatin interactions for the analysis of both coding and non-coding disease-associated mutations to obtain mechanistic insights into their functional impact. Using iRegNet3D, we find that disease-associated mutations may perturb the regulatory network through diverse mechanisms including chromatin looping. iRegNet3D promises to be an indispensable tool in large-scale sequencing and disease association studies.

  5. Multi-scale approach to invasion percolation of rock fracture networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Wittel, Falk K.; Araújo, Nuno A. M.; Herrmann, Hans J.

    2014-11-01

    A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

  6. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  7. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  8. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  9. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  10. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  11. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  12. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  13. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  14. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  15. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  16. A series of rare earth complexes with novel non-interpenetrating 3D networks: synthesis, structures, magnetic and optical properties.

    PubMed

    Wei, Xiao-Hua; Yang, Lin-Yan; Liao, Sheng-Yun; Zhang, Ming; Tian, Jin-Lei; Du, Pei-Yao; Gu, Wen; Liu, Xin

    2014-04-21

    A series of metal-organic framework {Ln(BCPBA)(H2O)}n {Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5)}; {[Ln(BCPBA)(H2O)](H2O)}n {Ln = Pr (6), Gd (7)} have been synthesized through the hydrothermal synthesis method. These compounds possess non-interpenetrating 3D networks with 10.1438 Å× 17.9149 Å rhombic channels along the [001] direction. The results of temperature-dependent magnetic susceptibility measurements indicate that compounds 4 and 7 exhibit Ln(III)Ln(III) antiferromagnetic interactions, while compound 5 exhibits Ln(III)Ln(III) ferromagnetic interactions. Frequency dependent out-of-phase signals were observed in alternating current (ac) magnetic susceptibility measurements which indicate that they have slow magnetic relaxation characteristics. The luminescent properties of 1, 2, 3, 4, and 5 are also discussed. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, compound 4 has longer fluorescence lifetime (τ1 = 400.0000 ms, τ2 = 1143.469 ms) and higher quantum yield (Φ = 42%) compared with other compounds.

  17. Cataloguing Seismic Waveform Properties Recorded With a 3D Network in a Gold Mine in South Africa

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nyblade, A. A.; Gok, R.; Walter, W. R.; Linzer, L.; Durrheim, R. J.; Dirks, P.

    2007-12-01

    The SAVUKA gold mine is located in the northwestern edge of the Witwatersrand basin, a Late Archean (3.07- 2.71~Ga) intracratonic basin in South Africa that hosts the largest known gold-uranium-pyrite ore deposits in the world. Seismic events related to the mine activity span several orders of magnitude through a variety of sources that include mine blasts, pillar collapses, and faulting events. These events are systematically recorded and catalogued through an in-mine, 3D seismic network consisting of 20, three-component, short-period stations with natural frequencies ranging between 4.5 and 28.0~Hz and deployed as deep as ~3.5 km. After 5 months of seismic monitoring of the mine, we have been able to assemble a database of over 6000 events spanning magnitudes in the -2.5 < ML < 4.4 range. The potential of this unique data set for characterizing the detailed seismic properties of the basin and studying source properties of non-double couple events is explored through simple, first-pass analysis on the recorded waveforms. Moreover, the in-mine network is complemented by a small array of 4 broadband stations interspaced ~10~km apart on the surface of the mine, and by a number of AfricaArray stations in South Africa and neighboring countries located at regional distances (50- 1000~km) from the mine. The largest mine-induced events are clearly recorded at distances as far away from the mine as 450~km and provide a unique opportunity for studying the regional propagation of seismic phases as well as the structure of the cratonic crust underlying the basin.

  18. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  19. Evaluation and localization of an artificial drainage network by 3D time-lapse electrical resistivity tomography.

    PubMed

    Jouen, T; Clément, R; Henine, H; Chaumont, C; Vincent, B; Tournebize, J

    2016-08-26

    In France, 10 % of total arable land is equipped with subsurface drainage systems, to control winter and spring waterlogging due to a temporary perched water table. Most of these systems were installed in the1980s and have aged since then and may now need maintenance. Sometimes, the location of the systems is known, but the standard situation in France is that the original as-built master sketches are no longer available. Performance assessment of drainage systems and curative actions are complicated since drain location is unknown. In this article, the authors test the application of a non-destructive drain detection method which consists in water injection at the outfall of the drainage network combined with time-lapse electrical resistivity tomography (ERT) monitoring. To assess the performance of this methodology, which consists in measuring electrical resistivity from electrodes placed at the nodes of a 1.2-m regular mesh, the authors interpreted the signal using a two-step approach. The first step is based on 3D ERT numerical modelling during a scenario of surface infiltration processes (forward modelling followed by geophysical inversion); this step optimizes the ERT method for locating the infiltration at depths below 1 m. The second step is the validation of the results obtained by numerical modelling with an experimental data set, using water injection into the drainage network combined with time-lapse ERT monitoring on an experimental field site. The results showed the relevance of time-lapse ERT monitoring on a small agricultural plot for locating the drainage network. The numerical results also showed several limitations of the combined methodology: (i) it is necessary to use an electrode spacing unit less than 1.20 m, which does not facilitate investigation on large agriculture plots, (ii) measurements must be taken when resistivity contrast is the strongest between the infiltration area and the soil and (iii) the volume of water needed for

  20. Fractal characterization of subsurface fracture network for geothermal energy extraction system

    SciTech Connect

    Watanabe; Takahashi, H.

    1993-01-28

    As a new modeling procedure of geothermal energy extraction systems, the authors present two dimensional and three dimensional modeling techniques of subsurface fracture network, based on fractal geometry. Fluid flow in fractured rock occurs primarily through a connected network of discrete fractures. The fracture network approach, therefore, seeks to model fluid flow and heat transfer through such rocks directly. Recent geophysical investigations have revealed that subsurface fracture networks can be described by "fractal geometry". In this paper, a modeling procedure of subsurface fracture network is proposed based on fractal geometry. Models of fracture networks are generated by distributing fractures randomly, following the fractal relation between fracture length r and the number of fractures N expressed with fractal dimension D as N =C·r-D, where C is a constant to signify the fracture density of the rock mass. This procedure makes it possible to characterize geothermal reservoirs by the parameters measured from field data, such as core sampling. In this characterization, the fractal dimension D and the fracture density parameter C of a geothermal reservoir are used as parameters to model the subsurface fracture network. Using this model, the transmissivities between boreholes are also obtained as a function of the fracture density parameter C, and a parameter study of system performances, such as heat extraction, is performed. The results show the dependence of thermal recovery of geothermal reservoir on fracture density parameter C.

  1. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    SciTech Connect

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  2. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  3. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  4. Neural network system for 3-D object recognition and pose estimation from a single arbitrary 2-D view

    NASA Astrophysics Data System (ADS)

    Khotanzad, Alireza R.; Liou, James H.

    1992-09-01

    In this paper, a robust, and fast system for recognition as well as pose estimation of a 3-D object from a single 2-D perspective of it taken from an arbitrary viewpoint is developed. The approach is invariant to location, orientation, and scale of the object in the perspective. The silhouette of the object in the 2-D perspective is first normalized with respect to location and scale. A set of rotation invariant features derived from complex and orthogonal pseudo- Zernike moments of the image are then extracted. The next stage includes a bank of multilayer feed-forward neural networks (NN) each of which classifies the extracted features. The training set for these nets consists of perspective views of each object taken from several different viewing angles. The NNs in the bank differ in the size of their hidden layer nodes as well as their initial conditions but receive the same input. The classification decisions of all the nets are combined through a majority voting scheme. It is shown that this collective decision making yields better results compared to a single NN operating alone. After the object is classified, two of its pose parameters, namely elevation and aspect angles, are estimated by another module of NNs in a two-stage process. The first stage identifies the likely region of the space that the object is being viewed from. In the second stage, an NN estimator for the identified region is used to compute the pose angles. Extensive experimental studies involving clean and noisy images of seven military ground vehicles are carried out. The performance is compared to two other traditional methods, namely a nearest neighbor rule and a binary decision tree classifier and it is shown that our approach has major advantages over them.

  5. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    SciTech Connect

    Frary, R.; Louie, J.; Pullammanappallil, S.; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  6. Analysis of the Complex Fracture Flow in Multiple Fractured Horizontal Wells with the Fractal Tree-Like Network Models

    NASA Astrophysics Data System (ADS)

    Wang, Wendong; Su, Yuliang; Zhang, Xiao; Sheng, Guanglong; Ren, Long

    2015-03-01

    This paper formulates a fractal-tree network model to address the challenging problem of characterizing the hydraulic fracture network in unconventional reservoirs. It has been proved that the seepage flow in tight/shale oil reservoirs is much more complicated to the conventional formation. To further understand the flow mechanisms in such a complex system, a semi-analytical model considering "branch network fractures" was established stage by stage using point source method and superposition principle. Fractal method was employed to generate and represent induced fracture network around bi-wing fractures. In addition, based on the new established model and solution, deterministic fractal-tree-like fracture network patterns and heterogeneity were carefully investigated and compared with the simulation model. Results show that the fractal dimension for the fracture network has significant effect on the connectivity of the stimulated reservoir. The proposed fractal model may capture the characteristics of the heterogeneous complex fracture network and help in understanding the flow and transport mechanisms of multiple fractured horizontal wells.

  7. Reservoir Characterization and Flow Simulation for CO 2-EOR in the Tensleep Formation Using Discrete Fracture Networks, Teapot Dome, Wyoming

    NASA Astrophysics Data System (ADS)

    Kavousi Ghahfarokhi, Payam

    The Tensleep oil reservoir at Teapot Dome, Wyoming, USA, is a naturally fractured tight sandstone reservoir that has been considered for carbon-dioxide enhanced oil recovery (CO2-EOR) and sequestration. CO2-EOR analysis requires a thorough understanding of the Tensleep fracture network. Wireline image logs from the field suggest that the reservoir fracture network is dominated by early formed structural hinge oblique fractures with interconnectivity enhanced by hinge parallel and hinge perpendicular fracture sets. Available post stack 3D seismic data are used to generate a seismic fracture intensity attribute for the reservoir fracture network. The resulting seismic fracture intensity is qualitatively correlated to the field production history. Wells located on hinge-oblique discontinuities are more productive than other wells in the field. We use Oda's method to upscale the fracture permeabilities in the discrete fracture network for use in a dual porosity fluid flow simulator. We analytically show that Oda's method is sensitive to the grid orientation relative to fracture set strike. Results show that the calculated permeability tensors have maximum geometric mean for the non-zero permeability components (kxx,kyy,kzz,kxy) when the dominant fracture set cuts diagonally through the grid cell at 45° relative to the grid cell principal directions (i,j). The geometric mean of the permeability tensor components falls to a minimum when the dominant fracture set is parallel to either grid wall (i or j principal directions). The latter case has off-diagonal permeability terms close to zero. We oriented the Tensleep reservoir grid to N72°W to minimize the off-diagonal permeability terms. The seismic fracture intensity attribute is then used to generate a realization of the reservoir fracture network. Subsequently, fracture properties are upscaled to the reservoir grid scale for a fully compositional flow simulation. We implemented a PVT analysis using CO2 swelling test

  8. Macro-permeability distribution and anisotropy in a 3D fissured and fractured clay rock: ‘Excavation Damaged Zone’ around a cylindrical drift in Callovo-Oxfordian Argilite (Bure)

    NASA Astrophysics Data System (ADS)

    Ababou, Rachid; Cañamón Valera, Israel; Poutrel, Adrien

    The Underground Research Laboratory at Bure (CMHM), operated by ANDRA, the French National Radioactive Waste Management Agency, was developed for studying the disposal of radioactive waste in a deep clayey geologic repository. It comprises a network of underground galleries in a 130 m thick layer of Callovo-Oxfordian clay rock (depths 400-600 m). This work focuses on hydraulic homogenization (permeability upscaling) of the Excavation Damaged Zone (EDZ) around a cylindrical drift, taking into account: (1) the permeability of the intact porous rock matrix; (2) the geometric structure of micro-fissures and small fractures synthesized as a statistical set of planar discs; (3) the curved shapes of large ‘chevron’ fractures induced by excavation (periodically distributed). The method used for hydraulic homogenization (upscaling) of the 3D porous and fractured rock is based on a ‘frozen gradient’ superposition of individual fluxes pertaining to each fracture/matrix block, or ‘unit block’. Each unit block comprises a prismatic block of permeable matrix (intact rock) obeying Darcy’s law, crossed by a single piece of planar fracture obeying either Darcy or Poiseuille law. Polygonal as well as disc shaped fractures are accommodated. The result of upscaling is a tensorial Darcy law, with macro-permeability K ij( x) distributed over a grid of upscaling sub-domains, or ‘voxels’. Alternatively, K ij( x) can be calculated point-wise using a moving window, e.g., for obtaining permeability profiles along ‘numerical’ boreholes. Because the permeable matrix is taken into account, the upscaling procedure can be implemented sequentially, as we do here: first, we embed the statistical fissures in the matrix, and secondly, we embed the large curved chevron fractures. The results of hydraulic upscaling are expressed first in terms of ‘equivalent’ macro-permeability tensors, K ij( x, y, z) distributed around the drift. The statistically isotropic fissures are

  9. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  10. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  11. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.

    PubMed

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design.

  12. Importance of Stratabound Fracture Networks for Seismic Hazard Assessment of Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Davidsen, J.; Pedersen, P. K.; Boroumand, N.

    2013-12-01

    Hydraulic fracturing, a powerful completion technique used to enhance oil or gas production from impermeable strata, may trigger unintended earthquake activity. The primary basis for assessment of triggered and natural seismic hazard is the classic Gutenberg-Richter (G-R) relation, which expresses scale-independent behavior of earthquake magnitudes. Using a stochastic approach to simulate microseismicity from three monitoring programs in North America, we show that magnitude-distance trends for microearthquakes induced by hydraulic fracturing may deviate significantly from the G-R relation. This apparent breakdown in the power-law scaling paradigm, coupled with unusually high values for the b-parameter (slope) of the G-R relation, can be explained by a new model based on activation of stratabound fracture networks in which fracture height growth is limited by mechanical bed thickness. For the three areas considered, mechanical bed thickness is well represented by a lognormal distribution, which leads asymptotically to a Gaussian decay for induced magnitudes that fits the observations remarkably well. This new relationship has profound implications for understanding the scaling behavior of induced microearthquakes, as well as for forecasting the probability of larger earthquakes triggered by hydraulic fracturing in oil and gas development.

  13. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection

  14. Clean Synthesis of an Economical 3D Nanochain Network of PdCu Alloy with Enhanced Electrocatalytic Performance towards Ethanol Oxidation.

    PubMed

    Liu, Jiawei; Huang, Zhao; Cai, Kai; Zhang, Huan; Lu, Zhicheng; Li, Tingting; Zuo, Yunpeng; Han, Heyou

    2015-12-01

    A one-pot method for the fast synthesis of a 3D nanochain network (NNC) of PdCu alloy without any surfactants is described. The composition of the as-prepared PdCu alloy catalysts can be precisely controlled by changing the precursor ratio of Pd to Cu. First, the Cu content changes the electronic structure of Pd in the 3D NNC of PdCu alloy. Second, the 3D network structure offers large open pores, high surface areas, and self-supported properties. Third, the surfactant-free strategy results in a relatively clean surface. These factors all contribute to better electrocatalytic activity and durability towards ethanol oxidation. Moreover, the use of copper in the alloy lowers the price of the catalyst by replacing the noble metal palladium with non-noble metal copper. The composition-optimized Pd80 Cu20 alloy in the 3D NNC catalyst shows an increased electrochemically active surface area (80.95 m(2)  g(-1) ) and a 3.62-fold enhancement of mass activity (6.16 A mg(-1) ) over a commercial Pd/C catalyst.

  15. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    SciTech Connect

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  16. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    PubMed

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network.

  17. Preparation of 3D network Na2Ti2O4(OH)2 nanotube film and study on formation mechanism of nanotubes and light absorption properties.

    PubMed

    Miao, Hui; Hu, Xiaoyun; Shang, Yibo; Zhang, Dekai; Ji, Ruonan; Liu, Enzhou; Zhang, Qian; Wang, Yue; Fan, Jun

    2012-10-01

    The 3D network Na2Ti2O4(OH)2 nanotube film was prepared by combining interface chemical reaction with hydrothermal reaction. It can be readily indexed based on an orthorhombic system Na2Ti2O4(OH)2 (JCPDS, 47-0124), corresponding with (200), (110), (600), and (020). The nanotubes are commonly multiwalled with a diameter about 40 nm, and a length more than 2000 nm. The interlamellar space of the nanotubes is about 0.9 nm, and these nanotubes loaded with silver exhibit a strong UV-Vis-NIR absorption from 200 nm to 1000 nm, with a resonance-absorption peak at 490 nm. In addition, the formation mechanism of 3D network Na2Ti2O4(OH)2 nanotube film was investigated, the formation mechanism can be expressed as follows: Ti --> TiCl3 --> TiO2(anatase) --> Na2Ti2O4(OH)2(nanotube).

  18. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  19. Molecular tectonics: control of pore size and polarity in 3-D hexagonal coordination networks based on porphyrins and a zinc cation.

    PubMed

    Kühn, Elisabeth; Bulach, Véronique; Hosseini, Mir Wais

    2008-11-07

    In the crystalline phase, porphyrin derivatives based on two 4-pyridyl units at the 5 and 15 meso positions and two 4-aryl moieties bearing various groups (CN, OMe, OH and CF(3)) at the 10 and 20 meso positions lead, in the presence of a zinc dication, to the formation of robust 3-D networks presenting hexagonal channels: both the size and the polarity of the pores were tuned by the nature of the substituents attached to the two aryl groups.

  20. Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2

    DTIC Science & Technology

    2013-05-23

    Y. Titania Aerogels as a Superior Mesoporous Structure for Photoanodes of Dye-Sensitized Solar Cells . Int. J. Electrochem. Sci. 2012, 7, 6910−6919...methanol photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au– TiO2 reveals that incorporated Au nanoparticles strongly sensitize...the oxide nanoarchitecture to visible light. Methanol dissociatively adsorbs at the surfaces of TiO2 and Au– TiO2 aerogels under dark, high-vacuum

  1. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  2. Creating permeable fracture networks for EGS: Engineered systems versus nature

    SciTech Connect

    Stephen L Karner

    2005-10-01

    The United States Department of Energy has set long-term national goals for the development of geothermal energy that are significantly accelerated compared to historical development of the resource. To achieve these goals, it is crucial to evaluate the performance of previous and existing efforts to create enhanced geothermal systems (EGS). Two recently developed EGS sites are evaluated from the standpoint of geomechanics. These sites have been established in significantly different tectonic regimes: 1. compressional Cooper Basin (Australia), and 2. extensional Soultz-sous-Fôrets (France). Mohr-Coulomb analyses of the stimulation procedures employed at these sites, coupled with borehole observations, indicate that pre-existing fractures play a significant role in the generation of permeability networks. While pre-existing fabric can be exploited to produce successful results for geothermal energy development, such fracture networks may not be omnipresent. For mostly undeformed reservoirs, it may be necessary to create new fractures using processes that merge existing technologies or use concepts borrowed from natural hydrofracture examples (e.g. dyke swarms).

  3. Effect of Internal Aperture Variability on Tracer Transport in Large Discrete Fracture Networks (DFN)

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Hyman, J.; Karra, S.; Gable, C. W.; Viswanathan, H. S.

    2015-12-01

    Aperture variability within individual fractures is usually neglected in modeling flow and transport through fractured media. Typically, individual fractures are assumed to be homogeneous. However, in reality, individual fractures are heterogeneous, which may affect flow and transport in fractured media. The relative importance of including in-fracture variability in flow and transport modeling has been under debate for a long time. Previous studies have shown flow channeling on an individual fracture with internal variability, where the fracture is considered isolated from the rest of the fracture network. Although these studies yield some clear insights into the process, the boundary conditions are impractical for field-scale networks, where the realistic boundary conditions are determined by fracture connections in the network. Therefore, flow in a single fracture is controlled not only by in-fracture variability but also by boundary conditions. In order to address the question of the importance of in-fracture variability, the internal heterogeneity of every individual fracture is incorporated into a three-dimensional fracture network, represented by a composition of intersecting fractures. The new DFN simulation capability, dfnWorks, is used to generate a kilometer scale DFNs similar to the Forsmark, Sweden site. In our DFN model, the in-fracture aperture variability is scattered over each cell of the computational mesh along the fracture, representing by a stationary Gaussian random field with various correlation lengths. The Lagrangian particle tracking is conducted in multiple DFN realizations and the flow-dependent Lagrangian parameters, non-reacting travel time, τ, and cumulative reactivity parameter, β, are obtained along particles streamlines. It is shown that early particle travel times are more sensitive to in-fracture aperture variability than tails of travel time distributions, where no significant effect of the aperture variations and spatial

  4. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  5. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    SciTech Connect

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.

  6. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling withinmore » large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.« less

  7. Analysis of microseismicity using fuzzy logic and fractals for fracture network characterization

    NASA Astrophysics Data System (ADS)

    Aminzadeh, F.; Ayatollahy Tafti, T.; Maity, D.; Boyle, K.; Sahimi, M.; Sammis, C. G.

    2010-12-01

    The area where microseismic events occur may be correlated with the fracture network at a geothermal field. For an Enhanced Geothermal System (EGS) reservoir, an extensive fracture network with a large aerial distribution is required. Pore-pressure increase, temperature changes, volume change due to fluid withdrawal/injection and chemical alteration of fracture surfaces are all mechanisms that may explain microseismic events at a geothermal field. If these mechanisms are operative, any fuzzy cluster of the microseismic events should represent a connected fracture network. Drilling new EGS wells (both injection and production wells) in these locations may facilitate the creation of an EGS reservoir. In this article we use the fuzzy clustering technique to find the location and characteristics of fracture networks in the Geysers geothermal field. We also show that the centers of these fuzzy clusters move in time, which may represent fracture propagation or fluid movement within the fracture network. Furthermore, analyzing the distribution of fuzzy hypocenters and quantifying their fractal structure helps us to develop an accurate fracture map for the reservoir. Combining the fuzzy clustering results with the fractal analysis allows us to better understand the mechanisms for fracture stimulation and better characterize the evolution of the fracture network. We also show how micro-earthquake date collected in different time periods can be correlated with drastic changes in the distribution of active fractures resulting from injection, production or other transient events.

  8. Fracture network evaluation program (FraNEP): A software for analyzing 2D fracture trace-line maps

    NASA Astrophysics Data System (ADS)

    Zeeb, Conny; Gomez-Rivas, Enrique; Bons, Paul D.; Virgo, Simon; Blum, Philipp

    2013-10-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Techniques used for the automatic detection of lineaments from satellite images and aerial photographs, LIDAR technologies and borehole televiewers significantly enhanced data acquisition. The analysis of such data is often performed manually or with different analysis software. Here we present a novel program for the analysis of 2D fracture networks called FraNEP (Fracture Network Evaluation Program). The program was developed using Visual Basic for Applications in Microsoft Excel™ and combines features from different existing software and characterization techniques. The main novelty of FraNEP is the possibility to analyse trace-line maps of fracture networks applying the (1) scanline sampling, (2) window sampling or (3) circular scanline and window method, without the need of switching programs. Additionally, binning problems are avoided by using cumulative distributions, rather than probability density functions. FraNEP is a time-efficient tool for the characterisation of fracture network parameters, such as density, intensity and mean length. Furthermore, fracture strikes can be visualized using rose diagrams and a fitting routine evaluates the distribution of fracture lengths. As an example of its application, we use FraNEP to analyse a case study of lineament data from a satellite image of the Oman Mountains.

  9. The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network

    NASA Astrophysics Data System (ADS)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-04-01

    3-D photo-reconstruction (PR) techniques have been successfully used to produce high resolution elevation models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present in challenging scenarios. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-meters-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17% required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two light-weight automatic cameras (1 s time-lapse mode) and a 6 m-long pole is an efficient method for 3-D monitoring of gullies, at a low cost (about EUR 1000 budget for the field equipment) and time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  10. Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence

    NASA Astrophysics Data System (ADS)

    Wang, Lichun; Bayani Cardenas, M.

    2017-03-01

    Understanding transport in rough fractures from non-Fickian to Fickian regimes and the prediction of non-Fickian transport is critical for the development of new transport theories and many practical applications. Through computational experiments that fall within the macrodispersion regime, we first simulated and analyzed solute transport through synthetic rough fractures with stationary geometrical properties (i.e., fracture roughness σb/ and correlation length λ, where b refers to aperture with its standard deviation σb and arithmetic mean ) across increasing fracture longitudinal transport domain length L, with L/λ ranging from 2.5 to 50. The results were used to determine how solute transport behavior evolves with increasing scale in the longitudinal direction. Moreover, a set of correlated fractures with aperture fields following normal and log-normal distributions was created to further identify and quantify the dependence of non-Fickian transport on roughness. We found that although persistent intermittent velocity structures were present, the breakthrough curves (BTCs) and residence time distributions showed diminishing early arrival and tailing, features of non-Fickian transport, with increasing longitudinal L/λ, ultimately converging to a Fickian transport regime given σb/ remained constant. Inverse analysis of the experimental BTCs with the advection-dispersion equation (ADE) model showed that the dispersion coefficient (D) was non-trivially scale-dependent. Simulation results for rough fractures with varying σb/ and L/λ indicated that the ratio of fluid velocity to transport velocity fitted to the ADE model depends on σb/ and L/λ. The continuous time random walk (CTRW) performed much better across all transport scales, and resulted in scale-independent fitted parameters, i.e., β in the memory function. The fitted β is proportional to σb/but is insensitive to L/λ. Therefore, bulk longitudinal solute transport across the pre-asymptotic and

  11. 3D coordination networks based on supramolecular chains as building units: synthesis and crystal structures of two silver(I) pyridyldiethynides.

    PubMed

    Zhang, Tianle; Kong, Jianxi; Hu, Yuejie; Meng, Xianggao; Yin, Hongbing; Hu, Dongshuang; Ji, Changpeng

    2008-04-21

    Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.

  12. 3D structure of macropore networks within natural and de-embarked estuary saltmarsh sediments: towards an improved understanding of network structural control over hydrologic function

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Spencer, Kate; James, Tempest; Lucy, Diggens

    2015-04-01

    Saltmarshes are globally important environments which, though occupying < 4% of the Earth's surface, provide a range of ecosystem services. Yet, they are threatened by sea level rise, human population growth, urbanization and pollution resulting in degradation. To compensate for this habitat loss many coastal restoration projects have been implemented over the last few decades, largely driven by legislative requirements for improved biodiversity e.g. the EU Habitats Directive and Birds Directive. However, there is growing evidence that restored saltmarshes, recreated through the return to tidal inundation of previously drained and defended low-lying coastal land, do not have the same species composition even after 100 years and while environmental enhancement has been achieved, there may be consequences for ecosystem functioning This study presents the findings of a comparative analysis of detailed sediment structure and hydrological functioning of equivalent natural and de-embanked saltmarsh sediments at Orplands Farm, Essex, UK. 3D x-ray CT scanning of triplicate undisturbed sediment cores recovered in 2013 have been used to derive detailed volumetric reconstructions of macropore structure and networks, and to infer differences in bulk microporosity between natural and de-embanked saltmarshes. These volumes have been further visualised for qualitative analysis of the main sediment components, and extraction of key macropore space parameters for quantified analysis including total porosity and connectivity, as well as structure, organisation and efficiency (tortuosity) of macropore networks. Although total porosity was significantly greater within the de-embanked saltmarsh sediments, pore networks in these samples were less organised and more tortuous, and were also inferred to have significantly lower micro-porosity than those of the natural saltmarsh. These datasets are applied to explain significant differences in the hydraulic behaviour and functioning

  13. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  14. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    PubMed Central

    Osman, Onur; Ucan, Osman N.

    2008-01-01

    Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. Results The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Conclusion Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. PMID:18253070

  15. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Zhang, Chengyuan; Liu, Quansheng; Birkholzer, Jens

    2009-05-01

    In many underground nuclear waste repository systems, such as Yucca Mountain project, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of Multi-point Statistical method is to record multiple-point statistics concerning the connectivity patterns of fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at Yucca Mountain waste repository system. First, MPS method is used to create fracture network with original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in surrounding rock of waste emplacement drifts. Our study shows that connectivity or pattern of fracture network can be grasped and reconstructed by Multi-Point-Statistical method. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify uncertainty of models even in complicated coupled THM simulation. It indicates that Multi-Point Statistics is a potential method to characterize and reconstruct natural fracture network in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  16. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  17. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Shicheng, Zhang; Tong, Zhou; Xiang, Zhou; Tiankui, Guo

    2016-01-01

    Multistage fracturing of the horizontal well is recognized as the main stimulation technology for shale gas development. The hydraulic fracture geometry and stimulated reservoir volume (SRV) is interpreted by using the microseismic mapping technology. In this paper, we used a computerized tomography (CT) scanning technique to reveal the fracture geometry created in natural bedding-developed shale (cubic block of 30 cm × 30 cm × 30 cm) by laboratory fracturing. Experimental results show that partially opened bedding planes are helpful in increasing fracture complexity in shale. However, they tend to dominate fracture patterns for vertical stress difference Δ σ v ≤ 6 MPa, which decreases the vertical fracture number, resulting in the minimum SRV. A uniformly distributed complex fracture network requires the induced hydraulic fractures that can connect the pre-existing fractures as well as pulverize the continuum rock mass. In typical shale with a narrow (<0.05 mm) and closed natural fracture system, it is likely to create complex fracture for horizontal stress difference Δ σ h ≤ 6 MPa and simple transverse fracture for Δ σ h ≥ 9 MPa. However, high naturally fractured shale with a wide open natural fracture system (>0.1 mm) does not agree with the rule that low Δ σ h is favorable for uniformly creating a complex fracture network in zone. In such case, a moderate Δ σ h from 3 to 6 MPa is favorable for both the growth of new hydraulic fractures and the activation of a natural fracture system. Shale bedding, natural fracture, and geostress are objective formation conditions that we cannot change; we can only maximize the fracture complexity by controlling the engineering design for fluid viscosity, flow rate, and well completion type. Variable flow rate fracturing with low-viscosity slickwater fluid of 2.5 mPa s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with pre-existing fractures. Moreover, the

  18. 3D electric resistivity tomography (ERT) methodologies applied on selected heavily urbanized areas of the basin of Mexico to detect buried fractures and subsidence problems

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Cifuentes-Nava, G.; Tejero, A.; Hernandez, E.

    2012-12-01

    Urban development in modern cities require of a more integral knowledge of the subsurface, mainly on those areas, where human concentrations increase. Mexico City is one of such an example, where it constitutes one of the largest concentrations of human activities in the world. Most of the urban area is underlain by lacustrine sediments of the former lakes, and confined by important volcanic ranges. Such sediments offer poor foundation conditions for constructive purposes. Therefore, high risk areas have to be identified to prevent accidents and disastrous events. Geophysical techniques can be employed to understand the physical characteristics of the subsurface. Two examples are presented in this investigation. A residential complex named La Concordia is located towards the central portion of the basin that consists of six four storey buildings in an area of 33x80 m2. Finally, a block of small houses (50x50 m2) is found to the southern limit of the basin; close to the Chichinautzin range within the town of Tecomitl. Both zones suffer of strong damage in their structures due to fractures and subsidence within the subsoil. Therefore, Electric Resistivity Tomography (ERT) was carried out to characterize the subsoil beneath these urban complexes. A special array ('horse-shoe' geometry) 'L' employing Wenner-Schlumberger techniques, in addition to equatorial-dipole and minimum-coupling arrays were carried out to fully 'illuminate' beneath the constructions. Computed resistivity models for both examples depicted the buried fracture pattern affecting the urban complexes. Such patterns seem to extend beyond the limits of the surveyed areas, and are probably part of a more complex fracture system. It is very likely that fractures have been produced due to the poorly consolidated clays that cover most of the central part of the Valley of Mexico; the intense water extraction, that form 'voids' in the subsoil causing subsidence effects and finally the existence of regional

  19. Properties of a pair of fracture networks produced by triaxial deformation experiments: insights on fluid flow using discrete fracture network models

    NASA Astrophysics Data System (ADS)

    Ghislain, Trullenque; Rishi, Parashar; Clément, Delcourt; Lucille, Collet; Pauline, Villard; Sébastien, Potel

    2016-09-01

    Results of a series of deformation experiments conducted on gabbro samples and numerical models for computation of flow are presented. Rocks were subjected to triaxial tests (σ1 > σ2 = σ3) under σ3 = 150 MPa confining pressure at room temperature, to generate fracture network patterns. These patterns were either produced by keeping a constant confining pressure and loading the sample up to failure (conventional test: CT), or by building up a high differential stress and suddenly releasing the confining pressure (confining pressure release test: CPR). The networks are similar in overall density but differ primarily in the orientation of smaller fractures. In the case of CT tests, a conjugate fracture set is observed with one dominant fracture zone running at about 20° from σ1. CPR tests do not show such a conjugate pattern and the mean fracture orientation is at around 35° from σ1. Discrete fracture network (DFN) methodology was used to determine the distribution of flow and hydraulic head for both fracture sets under simple boundary conditions and uniform transmissivity values. The fracture network generated by CT and CPR tests exhibit different patterns of flow field and hydraulic head configurations, but convey approximately the same amount of flow at all scales for which DFN models were simulated. The numerical modelling results help to develop understanding of qualitative differences in flow distribution that may arise in rocks of the same mineralogical composition and mechanical properties, but under the influence of different stress conditions, albeit at similar overall stress magnitude.

  20. A heterogeneous sensor network simulation system with integrated terrain data for real-time target detection in 3D space

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Tanner, Steve; Rushing, John; Graves, Sara; Criswell, Evans

    2008-03-01

    Large scale sensor networks composed of many low-cost small sensors networked together with a small number of high fidelity position sensors can provide a robust, fast and accurate air defense and warning system. The team has been developing simulations of such large networks, and is now adding terrain data in an effort to provide more realistic analysis of the approach. This work, a heterogeneous sensor network simulation system with integrated terrain data for real-time target detection in a three-dimensional environment is presented. The sensor network can be composed of large numbers of low fidelity binary and bearing-only sensors, and small numbers of high fidelity position sensors, such as radars. The binary and bearing-only sensors are randomly distributed over a large geographic region; while the position sensors are distributed evenly. The elevations of the sensors are determined through the use of DTED Level 0 dataset. The targets are located through fusing measurement information from all types of sensors modeled by the simulation. The network simulation utilizes the same search-based optimization algorithm as in our previous two-dimensional sensor network simulation with some significant modifications. The fusion algorithm is parallelized using spatial decomposition approach: the entire surveillance area is divided into small regions and each region is assigned to one compute node. Each node processes sensor measurements and terrain data only for the assigned sub region. A master process combines the information from all the compute nodes to get the overall network state. The simulation results have indicated that the distributed fusion algorithm is efficient enough so that an optimal solution can be reached before the arrival of the next sensor data with a reasonable time interval, and real-time target detection can be achieved. The simulation was performed on a Linux cluster with communication between nodes facilitated by the Message Passing Interface

  1. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  2. From Stochastic toward Deterministic Characterization of Discrete Fracture Network via Thermal Tracer Tests

    NASA Astrophysics Data System (ADS)

    Somogyvari, M.; Jalali, M.; Bayer, P.; Jiménez Parras, S.

    2015-12-01

    The presence of fractures play an essential role in different disciplines, including hydrogeology, geothermal and hydrocarbon industries, as fractures introduce new pathways for flow and transport in the host rocks. Understanding the physical properties of these planar features would reduce the uncertainty of the numerical models and enhance the reliability of their results. Among the fracture properties, orientation and spacing are relatively easily estimated via borehole logs, core images, and outcrops, whereas the fracture geometry (i.e. length, width, and height) is more difficult to investigate. As the fracture geometry controls the hydraulic and thermal behavior of the fracture network through the strong dependency of the fracture conductivity with fracture aperture, it is possible to estimate these geometrical properties indirectly through hydraulic and thermal tomography investigations. To reach this goal, an innovative approach is introduced for discrete fracture network (DFN) characterization of heterogeneous fractured media via active thermal tracer testing. A synthetic DFN model is constructed based on the geological properties of an arbitrary fracture medium such as fracture orientation, length, spacing and persistency. Different realization are then constructed by considering all the above mentioned fracture properties except the length of fracture segments. Pressure and temperature fields are estimated inside the fracture network by means of an implicit upwind finite difference method, which is used to compute heat tracer travel times between injection and observation points and record the full temperature breakthrough curves at the monitoring points. A trans-dimensional inversion is then adopted to update the lengths fracture segment (add or remove) of the DFN model by comparison between proposed and observed travel times (Figure 1). The resulting assemble of the models can be used as an input geometry for deterministic simulations of fracture

  3. Results from a discrete fracture network model of a Hot Dry Rock system

    SciTech Connect

    Lanyon, G.W.; Batchelor, A.S.; Ledingham, P.

    1993-01-28

    The work described represents a move towards better representations of the natural fracture system. The discrete fracture network model used during the study was the NAPSAC code (Grindrod et al, 1992). The goals of the work were to investigate the application of discrete fracture network models to Hot Dry Rock systems, increase the understanding of the basic thermal extraction process and more specifically the understanding of the Rosemanowes Phase 2B system. The aim in applying the work to the Rosemanowes site was to use the discrete fracture network approach to integrate a diverse set of field measurements into as simple a model as possible.

  4. A new device for characterizing fracture networks and measuring groundwater and contaminant fluxes in fractured rock aquifers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; Newman, Mark A.; Cho, Jaehyun; Annable, Michael D.; Parker, Beth L.; Cherry, John A.; Perminova, Irina

    2016-07-01

    This paper presents the fundamental theory and laboratory test results on a new device that is deployed in boreholes in fractured rock aquifers to characterize vertical distributions of water and contaminant fluxes, aquifer hydraulic properties, and fracture network properties (e.g., active fracture density and orientation). The device, a fractured rock passive flux meter (FRPFM), consists of an inflatable core assembled with upper and lower packers that isolate the zone of interest from vertical gradients within the borehole. The outer layer of the core consists of an elastic fabric mesh equilibrated with a visible dye which is used to provide visual indications of active fractures and measures of fracture location, orientation, groundwater flux, and the direction of that flux. Beneath the outer layer is a permeable sorbent that is preloaded with known amounts of water soluble tracers which are eluted at rates proportional to groundwater flow. This sorbent also captures target contaminants present in intercepted groundwater. The mass of contaminant sorbed is used to quantify cumulative contaminant flux; whereas, the mass fractions of resident tracers lost are used to provide measures of water flux. In this paper, the FRPFM is bench tested over a range of fracture velocities (2-20 m/day) using a single fracture flow apparatus (fracture aperture = 0.5 mm). Test results show a discoloration in visible dye corresponding to the location of the active fracture. The geometry of the discoloration can be used to discern fracture orientation as well as direction and magnitude of flow in the fracture. Average contaminant fluxes were measured within 16% and water fluxes within 25% of known imposed fluxes.

  5. 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing.

    PubMed

    Liu, Yuan-An; Chung, Yuan-Chiang; Pan, Shien-Tung; Hou, Yung-Chi; Peng, Shih-Jung; Pasricha, Pankaj J; Tang, Shiue-Cheng

    2012-05-15

    Morphological changes of interstitial cells of Cajal (ICC) have been proposed to characterize motility disorders. However, a global view of the network orientations of ICC subgroups has not been established to illustrate their three-dimensional (3-D) architectures in the human colon. In this research, we integrate c-kit immunostaining, 3-D microscopy with optical clearing, and image rendering to present the location-dependent network orientations with high definition. Full-depth colonic tissues were obtained from colectomies performed for nonobstructing carcinoma. Specimens of colon wall were prepared away from the tumor site. C-kit and nuclear fluorescent staining were used to identify the ICC processes and cell body. Optical clearing was used to generate transparent colon specimens, which led to panoramic visualization of the fluorescence-labeled ICC networks at the myenteric plexus (ICC-MY), longitudinal (ICC-LM) and circular (ICC-CM) muscles, and submucosal boundary (ICC-SM) up to 300 μm in depth via confocal microscopy with subcellular level resolution. We observed four distinct network patterns: 1) periganglionic ICC-MY that connect with ICC-LM and ICC-CM, 2) plexuses of ICC-LM within the longitudinal muscle and extending toward the serosa, 3) repetitive and organized ICC-CM layers running parallel to the circular muscle axis and extending toward the submucosa, and 4) a condensed ICC-SM layer lining the submucosal border. Among the four patterns, the orderly aligned ICC-CM layers provide an appropriate target for quantitation. Our results demonstrate the location-dependent network orientations of ICC subgroups and suggest a practical approach for in-depth imaging and quantitative analysis of ICC in the human colon specimen.

  6. 3-D ADI-FDTD modeling of GPR backscatter from complex targets for the training of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Sassen, D. S.; Everett, M. E.

    2007-12-01

    Artificial neural networks can provide approximate solutions to ground-penetrating radar (GPR) problems in cases where real time performance is needed. Examples include discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. The training of neural networks to work within even a limited range of targets and electromagnetic properties requires a large set of successive examples generated from numerical methods such as finite difference time domain (FDTD). The traditional FDTD technique suffers from numerical dispersion unless time steps are kept below the Courant stability limit. The accurate modeling of electromagnetic scattering by complex targets require a refined grid, subgrids, or conformal grids that can significantly increase computation time, making neural network training inefficient. A relatively recent FDTD technique, ADI-FDTD, uses implicit equations that help to cancel numerical dispersion and allow for unconditionally stable modeling of EM propagation and therefore is not bound by the Courant stability limit. The technique is especially efficient for the accurate modeling of complex targets. Our ADI-FDTD code includes the ability to refine the model grid and to implement a conformal gridding to improve model accuracy without effecting the overall computation time. We will explore the tradeoff in computation time and accuracy in modeling the GPR backscatter of various targets using both the ADI-FDTD technique and the traditional FDTD technique for the purpose of neural network training.

  7. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    NASA Astrophysics Data System (ADS)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  8. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  9. A neural network-based 2D/3D image registration quality evaluator for pediatric patient setup in external beam radiotherapy.

    PubMed

    Wu, Jian; Su, Zhong; Li, Zuofeng

    2016-01-01

    Our purpose was to develop a neural network-based registration quality evaluator (RQE) that can improve the 2D/3D image registration robustness for pediatric patient setup in external beam radiotherapy. Orthogonal daily setup X-ray images of six pediatric patients with brain tumors receiving proton therapy treatments were retrospectively registered with their treatment planning computed tomography (CT) images. A neural network-based pattern classifier was used to determine whether a registration solution was successful based on geometric features of the similarity measure values near the point-of-solution. Supervised training and test datasets were generated by rigidly registering a pair of orthogonal daily setup X-ray images to the treatment planning CT. The best solution for each registration task was selected from 50 optimizing attempts that differed only by the randomly generated initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error tolerance to determine whether that solution was acceptable. A supervised training was then used to train the RQE. Performance of the RQE was evaluated using test dataset consisting of registration results that were not used in training. The RQE was integrated with our in-house 2D/3D registration system and its performance was evaluated using the same patient dataset. With an optimized sampling step size (i.e., 5 mm) in the feature space, the RQE has the sensitivity and the specificity in the ranges of 0.865-0.964 and 0.797-0.990, respectively, when used to detect registration error with mean voxel displacement (MVD) greater than 1 mm. The trial-to-acceptance ratio of the integrated 2D/3D registration system, for all patients, is equal to 1.48. The final acceptance ratio is 92.4%. The proposed RQE can potentially be used in a 2D/3D rigid image registration system to improve the overall robustness by rejecting

  10. The Benefits of Maximum Likelihood Estimators in Predicting Bulk Permeability and Upscaling Fracture Networks

    NASA Astrophysics Data System (ADS)

    Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca

    2016-04-01

    The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed

  11. Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation

    SciTech Connect

    Shouchun Deng; Robert Podgorney; Hai Huang

    2011-02-01

    Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be

  12. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    SciTech Connect

    Barton, C.C.; Larsen, E.

    1985-12-31

    Fracture traces exposed on three 214- to 260-m{sup 2} pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs.

  13. Factors Controlling DNAPL Migration in a Fracture Network: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ji, S.; Yeo, I.; Lee, K.

    2002-12-01

    Groundwater contamination by dense nonaqueous phase liquids (DNAPLs) has received considerable attention in recent years, and the attention on characterizing and quantifying the migration of DNAPL in geological formations has been given to the migration of DNAPL in porous media, not much in fractured rock. The spilled DNAPL that is heavier than water migrates downward to fractured bedrocks under the influence of gravity and is a long-term contaminant source. Although the progress has been accomplished on the development of algorithms for the numerical solution of the macroscopic models of contaminant transport in rock fractures, a lack of fundamental understanding exists concerning the interactive effects of the structural characteristics of fractures and fluid rheology on the patterns of DNAPL migration in a fracture network. In particular, little experimental work has been done on DNAPL migration in a fracture network. The two-dimensional fracture network was built up. Water was applied to both sides of a fracture network to have intended hydraulic head, and TCE was injected into one of vertical fractures. TCE migration process was recorded with digital camcorder. The dynamic macro-modified invasion percolation (DMMIP) model is suggested by integrating groundwater flow factor with MMIP that reflects the capillary effect, gravity-destabilization condition and viscous force of DNAPL. The information gained from experiments was analyzed and used for testing the DMMIP model to characterize the DNAPL migration pathway in a fracture network. DMMIP simulations and laboratory experiments show a good agreement. The results of DMMIP simulations and laboratory experiments show that in addition to gravity force, water viscous force considerably affects migration of DNAPL in rock fractures. This study will provide a step-stone for further developing reliable numerical simulators of the DNAPL migration in a fracture network that are required for the implementation of rational

  14. Identifying High-Traffic Patterns in the Workplace with Radio Tomographic Imaging in 3D Wireless Sensor Networks

    DTIC Science & Technology

    2014-03-27

    monitored. The sensor network used in this research employs a token ring protocol, where each receiver reports respective RSS values to a base station...USAF AFIT-ENG-14-M-24 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION...Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment

  15. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform

    PubMed Central

    Wevers, Nienke R.; van Vught, Remko; Wilschut, Karlijn J.; Nicolas, Arnaud; Chiang, Chiwan; Lanz, Henriette L.; Trietsch, Sebastiaan J.; Joore, Jos; Vulto, Paul

    2016-01-01

    With great advances in the field of in vitro brain modelling, the challenge is now to implement these technologies for development and evaluation of new drug candidates. Here we demonstrate a method for culturing three-dimensional networks of spontaneously active neurons and supporting glial cells in a microfluidic platform. The high-throughput nature of the platform in combination with its compatibility with all standard laboratory equipment allows for parallel evaluation of compound effects. PMID:27934939

  16. Self-organizing task modules and explicit coordinate systems in a neural network model for 3-D saccades.

    PubMed

    Smith, M A; Crawford, J D

    2001-01-01

    The goal of this study was to train an artificial neural network to generate accurate saccades in Listing's plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional eye orientation and to generate the correct head-centric motor error vector within Listing's plane. Analysis of the hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a dominant "vector-propagation" class (approximately 50% of units) with similar visual and motor tuning but negligible position sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly, the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system aligned with Listing's plane. Selective "lesions" confirmed that the vector-propagation module provided the main drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was sufficient to produce a "neural" algorithm with discrete functional modules and explicit coordinate systems, much like those observed in the real saccade generator.

  17. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  18. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis

    PubMed Central

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon

    2016-01-01

    Summary Background/Objectives: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Material and Methods: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200g nickel–titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. Results: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. Limitation: animal study Conclusions/Implications: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs. PMID:25908868

  19. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  20. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lo Cicero, Francesca; Stanislao Paolucci, Pier; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2014-06-01

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  1. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  2. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. N-Body Classical Systems and Neural Networks on a 3d SIMD Massive Parallel Processor:. APE100/QUADRICS

    NASA Astrophysics Data System (ADS)

    Paolucci, P. S.

    A number of physical systems (e.g., N body Newtonian, Coulombian or Lennard-Jones systems) can be described by N2 interaction terms. Completely connected neural networks are characterised by the same kind of connections: Each neuron sends signals to all the other neurons via synapses. The APE100/Quadricsmassive parallel architecture, with processing power in excess of 100 Gigaflops and a central memory of 8 Gigabytes seems to have processing power and memory adequate to simulate systems formed by more than 1 billion synapses or interaction terms. On the other hand the processing nodes of APE100/Quadrics are organised in a tridimensional cubic lattice; each processing node has a direct communication path only toward the first neighboring nodes. Here we describe a convenient way to map systems with global connectivity onto the first-neighbors connectivity of the APE100/Quadrics architecture. Some numeric criteria, which are useful for matching SIMD tridimensional architectures with globally connected simulations, are introduced.

  4. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  5. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI

  6. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.

    PubMed

    Gholipour, A; Arjmand, N

    2016-09-06

    Spinal posture is a crucial input in biomechanical models and an essential factor in ergonomics investigations to evaluate risk of low back injury. In vivo measurement of spinal posture through the common motion capture techniques is limited to equipped laboratories and thus impractical for workplace applications. Posture prediction models are therefore considered indispensable tools. This study aims to investigate the capability of artificial neural networks (ANNs) in predicting the three-dimensional posture of the spine (S1, T12 and T1 orientations) in various activities. Two ANNs were trained and tested using measurements from spinal postures of 40 male subjects by an inertial tracking device in various static reaching and lifting (of 5kg) activities. Inputs of each ANN were position of the hand load and body height, while outputs were rotations of the three foregoing segments relative to their initial orientation in the neutral upright posture. Effect of posture prediction errors on the estimated spinal loads in symmetric reaching activities was also investigated using a biomechanical model. Results indicated that both trained ANNs could generate outputs (three-dimensional orientations of the segments) from novel sets of inputs that were not included in the training processes (root-mean-squared-error (RMSE)<11° and coefficient-of-determination (R(2))>0.95). A graphic user interface was designed and made available to facilitate use of the ANNs. The difference between the mean of each measured angle in a reaching task and the corresponding angle in a lifting task remained smaller than 8°. Spinal loads estimated by the biomechanical model based on the predicted postures were on average different by < 12% from those estimated based on the exact measured postures (RMSE=173 and 35N for the L5-S1 compression and shear loads, respectively).

  7. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  8. Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Li, Dagang

    2017-03-01

    As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.

  9. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na3 V2 (PO4 )3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na3 V2 (PO4 )3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na3 V2 (PO4 )3 -carbon paper (Na3 V2 (PO4 )3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na3 V2 (PO4 )3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm(-2) . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage.

  10. On the integration of protein-protein interaction networks with gene expression and 3D structural data: What can be gained?

    NASA Astrophysics Data System (ADS)

    Bertolazzi, Paola; Bock, Mary Ellen; Guerra, Concettina; Paci, Paola; Santoni, Daniele

    2014-06-01

    The biological role of proteins has been analyzed from different perspectives, initially by considering proteins as isolated biological entities, then as cooperating entities that perform their function by interacting with other molecules. There are other dimensions that are important for the complete understanding of the biological processes: time and location. However a protein is rarely annotated with temporal and spatial information. Experimental Protein-Proteins Interaction (PPI) data are static; furthermore they generally do not include transient interactions which are a considerable fraction of the interactome of many organisms. One way to incorporate temporal and condition information is to use other sources of information, such as gene expression data and 3D structural data. Here we review work done to understand the insight that can be gained by enriching PPI data with gene expression and 3D structural data. In particular, we address the following questions: Can the dynamics of a single protein or of an interaction be accurately derived from these data? Can the assembly-disassembly of protein complexes be traced over time? What type of topological changes occur in a PPI network architecture over time?

  11. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    NASA Astrophysics Data System (ADS)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  12. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. Tight gas reservoir simulation: Modeling discrete irregular strata-bound fracture network flow, including dynamic recharge from the matrix

    SciTech Connect

    McKoy, M.L., Sams, W.N.

    1997-10-01

    The US Department of Energy, Federal Energy Technology Center, has sponsored a project to simulate the behavior of tight, fractured, strata-bound gas reservoirs that arise from irregular discontinuous, or clustered networks of fractures. New FORTRAN codes have been developed to generate fracture networks, or simulate reservoir drainage/recharge, and to plot the fracture networks and reservoirs pressures. Ancillary codes assist with raw data analysis.

  14. Measurement of the "safe zone" and the "dangerous zone" for the screw placement on the quadrilateral surface in the treatment of pelvic and acetabular fractures with Stoppa approach by computational 3D technology.

    PubMed

    Zhang, Sheng; Su, Wanhan; Luo, Qiang; Leung, Frankie; Chen, Bin

    2014-01-01

    This study is aimed at definition of the safe and dangerous zone for screw placement with Stoppa approach for rapid identification during operation and a new way for the studies on the "safe zone." Pelvic CT data of 84 human subjects were recruited to reconstruct the three-dimensional (3D) models. The distances between the edges of the "safe zone," "dangerous zone," and specific anatomic landmarks such as the obturator canal and the pelvic brim were precisely measured, respectively. The results show that the absolute "dangerous zone" was from the pelvic brim to 3.07 cm below it and within 2.86 cm of the obturator canal, while the region 3.56 cm below the pelvic brim or 3.85 cm away from the obturator canal was the absolute "safe zone" for screw placement. The region between the absolute "safe zone" and the absolute "dangerous zone" was the relatively "dangerous zone." As a conclusion, application of computer-assisted 3D modeling techniques aids in the precise measurement of "safe zone" and "dangerous zone" in combination with Stoppa incision. It was not recommended to place screws on the absolute dangerous zone, while, for the relatively "dangerous zone," it depends on the individual variations in bony anatomy and the fracture type.

  15. SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network

    NASA Astrophysics Data System (ADS)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-08-01

    Three-dimensional photo-reconstruction (PR) techniques have been successfully used to produce high-resolution surface models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present for field image acquisition in challenging scene geometries. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-metres-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17 % required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two lightweight automatic cameras (1 s time-lapse mode) and a 6 m long pole is an efficient method for 3-D monitoring of gullies, at a low cost (~ EUR 1000 budget for the field equipment) and the time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  16. Temporal and spatial characteristics of drainage fracture networks in elastic media with internal fluid generation

    NASA Astrophysics Data System (ADS)

    Dysthe, Dag Kristian; Kobchenko, Maya; Hafver, Andreas; Panahi, Hamed; Jamtveit, Bjørn; Renard, Francois

    2014-05-01

    Escape of internally generated fluids from low permeability elastic solids plays an important role in several natural environments. In geological systems, primary migration of hydrocarbons, dehydration of sediments and hydrated mantle rocks in subduction zones are examples where the existing permeability cannot accommodate transport of generated fluids in low permeability rocks and fluid pressure build-up may alter the permeability by fracturing. Fractures form and propagate in the rock due to internal pressure build-up. We have performed experiments on shales and model materials using X-ray microtomography, 2D imaging and pressure burst recordings to study the spatiotemporal evolution of drainage fracture networks and released fluids. The local growth of fractures due to internal pressure build up has been characterized and modeled. The spatial organization of the fracture networks have been characterized in a novel manner as intermediate between tree networks and hierarchical fracture networks. The dynamics of intermittent fluid release on the network show both periodic, 1/f and 1/f2 dependence of fluid release spectrum. Discrete element, algorithmic and finite element models have been used to reproduce different aspects of the drainage fracture network behavior.

  17. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    NASA Astrophysics Data System (ADS)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  18. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  19. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; Leeuw, Frank-Erik de; Ginneken, Bram van; Marchiori, Elena; Platel, Bram

    2017-01-01

    Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  20. Three-dimensional discrete fracture network simulations of flow and particle transport based on the Laxemar site data (Sweden).

    NASA Astrophysics Data System (ADS)

    Frampton, A.

    2007-12-01

    We study particle transport in a 3D DFN scenario based on the Laxemar site characterisation data in Sweden, which is a candidate repository site for high level radioactive waste in the Swedish nuclear waste management program. The site characterisation data has revealed several interesting geometric and hydraulic fracture properties, such as power-law distributed fracture sizes and transmissivities. Our study involves investigating the relationship between the resulting Eulerian flow field at a segment (sub- fracture) scale with Lagrangian trajectories at the characteristic (model domain) transport scale. We present results from a new technique for upscaling particle transitions obtained from Eulerian flow statistics to predictions of tracer discharge at the characteristic transport scale, based on previously developed methods used for 2D DFN's. This includes a mapping algorithm for transforming Eulerian into Lagrangian flow statistics without a priori knowledge of network connectivity, and by retaining the correlation between the water residence time τ and the hydrodynamic control of retention β we present accurate tracer discharge predictions. These results are illustrated using the unlimited diffusion model, and for some hypothetical tracers with properties designed to capture the behaviour of many common radionuclides. Finally we emphasise the importance of capturing the early arrival and peak of tracer breakthrough curves, i.e. to capture the bulk of the tracer mass arrival, in order to make accurate and conservative predictions.

  1. Investigation of small-scale polygonal networks on Mars using models of terrestrial fracture and ice-wedge networks.

    NASA Astrophysics Data System (ADS)

    Plug, L. J.; Werner, B. T.

    2002-12-01

    Polygons formed by closely spaced (tens to hundreds of meters) interconnected troughs, visible in Mars Orbiter Camera images, are qualitatively similar to ice- and sand-wedge patterns in lowland Arctic and Antarctic terrain on Earth. The spacing and relative orientation between troughs in Mars networks varies between polygonal networks. Terrestrial networks, which form by recurrent opening of tension fractures in perennially frozen ground during periods of rapid cooling in winter, also display broad variations in the characteristic spacing, width and intersection angles of ice- and sand-wedges. Hypothesized causes for variations between terrestrial networks include variability in magnitude and orientation of maximum cooling-induced tensile stress, in substrate-dependent strength and heterogeneity, and in limits to downward propagation of fractures owing to a temperature-dependent brittle/ductile transition at depth. To investigate mechanisms for variability in Mars and terrestrial networks and to test if properties of some or all measured Mars networks fit within the range of terrestrial variability, we explore the response of a recently-developed computational model for terrestrial networks to changes in substrate strength and heterogeneity, maximum tensile stress, and fracture depth. The model treats initiation, propagation and arrest of fractures in a tensile stress field perturbed by neighboring fractures, and includes the growth of ice or sediment wedges along fracture paths. Modeled networks are compared to 20 1x1 km network regions from MOC images of Utopia Planitia using two methods. In the first method, joint distributions of relative orientation and spacing between troughs are used to characterize mean spacing and orthogonality of networks. In the second method, regions of a pixelated image of a network are used to predict the pixel pattern of displaced regions with a nonlinear spatial forecasting algorithm that operates on pixel brightness. Prediction

  2. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  3. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  4. Fractured porous medium flow analysis using numerical manifold method with independent covers

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Hua; Lin, Shao-Zhong; Xie, Zhi-Qiang; Su, Hai-Dong

    2016-11-01

    Due to the complexity of geometry and the difficulty of mesh discretization of 3D (three-dimensional) blocks cut by complexly distributed fractures, explicitly considering arbitrary fracture network in fractured porous medium (FPM) flow analysis is very challenging for various numerical methods. In this study, we developed a FPM flow model by taking full advantage of numerical manifold method (NMM) with independent covers. With the independent covers, arbitrarily-shaped 3D blocks identified by block-cutting analysis can be directly used as basic computational elements. Along the boundaries of the divided blocks, fractures elements are generated according to the fractures' apertures. Therefore, it is able to handle very complicated fracture network in 3D flow analysis without need to subdivide 3D blocks into computational meshes. In order to refine the meshes, we introduced artificial fractures with same material properties as surrounding rock into a fracture network, without need to coordinate with the shapes of the blocks. We demonstrated our new model on different 2D examples. At last, we applied our model to 2D and 3D examples with complexly distributed fractures, and achieved reasonable results. The results show that our model is very powerful to analyze fluid flow in arbitrarily and complexly fractured rock mass in 3D.

  5. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  6. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion.

    PubMed

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO_{2} production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1/f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1/f^{2} power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  7. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  8. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando

    2014-02-03

    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.

  9. Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997

    SciTech Connect

    Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

    1998-01-01

    This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

  10. 3D image-based characterization and flow modeling of quartz-filled microfractures

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Eichhubl, P.; Bryant, S. L.; Davis, J. S.; Wanat, E. C.

    2011-12-01

    Accurate representation of geometry has first order influence on multiphase fluid flow in porous media on all relevant scales. 3D X-Ray computed microtomography (XCMT) has proved crucial in providing geometry information of many porous and fractured media of interest. Here we characterize 3D XCMT images of natural, quartz-filled fractures in tight gas sandstone from Piceance Basin, Colorado, and then build a representative flow model. While many rough-walled fractures have been analyzed/modeled using XCMT, this is to our knowledge the first 3D characterization and flow modeling of quartz-filled fractures. Natural quartz-filled fractures in samples analyzed are found to be very constricted, with many crystals bridging across the fracture but keeping large portions open to flow. In addition, this causes extreme local aperture variation. The affiliated pore space can be divided into fracture pores connected via very tight channels: a characterization typical for sandstones rather than microfractures, but with aspect ratios much higher than those found in sandstones. Single phase flow simulation in these network shows that the absolute permeability is about 100 times larger than in a conventional sandstone. We further simulate two phase fluid displacement directly in the pore space (using level-set based progressive quasi-static algorithm): both drainage and imbibition are characterized by discrete jumps in capillary-pressure vs. saturation relationships, as well as large residual saturations. Future work will include connecting the fracture network that represents both inter-granular and intra-granular porosity in the neighboring matrix.

  11. New probabilistic fracture mechanics approach with neural network-based crack modeling: Its application to multiple cracks problem

    SciTech Connect

    Yoshimura, Shinobu; Lee, J.S.; Yagawa, Genki; Sugioka, Kiyoshi; Kawai, Tadahiko

    1995-11-01

    Studies on efficient utilization and life extension of operating nuclear power plants (NPPs) have become increasingly important since ages of the first-generation NPPs are approaching their design lives. In order to predict a remaining life of each plant, it is necessary to select those critical components that strongly influence the plant life, and to evaluate their remaining lives by considering aging effects of materials and other factors. This paper proposes a new method to incorporate sophisticated crack models, such as interaction and coalescence of multiple surface cracks, into probabilistic fracture mechanism (PFM) computer programs using neural networks. First, hundreds of finite element (FE) calculations of a plate containing multiple surface cracks are performed by parametrically changing crack parameters such as sizes and locations. A fully automated 3D FE analysis system is effectively utilized here. Second, the back-propagation neural network is trained using the FE solutions, i.e. crack parameters vs. their corresponding stress intensity factors (SIFs). After a sufficient number of training iterations, the network attains an ability to promptly output SIFs for arbitrary combinations of crack parameters. The well trained network is then incorporated into the parallel PFM program which runs on one of massively parallel computers composed of 512 processing units. To demonstrate its fundamental performances, the present computer program is applied to evaluate failure probabilities of aged reactor pressure vessels considering interaction and coalescence of two dissimilar semi-elliptical surface cracks.

  12. Individual 3D region-of-interest atlas of the human brain: automatic training point extraction for neural-network-based classification of brain tissue types

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-04-01

    Individual region-of-interest atlas extraction consists of two main parts: T1-weighted MRI grayscale images are classified into brain tissues types (gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), scalp/bone (SB), background (BG)), followed by class image analysis to define automatically meaningful ROIs (e.g., cerebellum, cerebral lobes, etc.). The purpose of this algorithm is the automatic detection of training points for neural network-based classification of brain tissue types. One transaxial slice of the patient data set is analyzed. Background separation is done by simple region growing. A random generator extracts spatially uniformly distributed training points of class BG from that region. For WM training point extraction (TPE), the homogeneity operator is the most important. The most homogeneous voxels define the region for WM TPE. They are extracted by analyzing the cumulative histogram of the homogeneity operator response. Assuming a Gaussian gray value distribution in WM, a random number is used as a probabilistic threshold for TPE. Similarly, non-white matter and non-background regions are analyzed for GM and CSF training points. For SB TPE, the distance from the BG region is an additional feature. Simulated and real 3D MRI images are analyzed and error rates for TPE and classification calculated.

  13. Real-time and in situ enzyme inhibition assay for the flux of hydrogen sulfide based on 3D interwoven AuPd-reduced graphene oxide network.

    PubMed

    Yang, Hongmei; Zhang, Yan; Li, Li; Sun, Guoqiang; Zhang, Lina; Ge, Shenguang; Yu, Jinghua

    2017-01-15

    A highly sensitive enzyme inhibition analytical platform was established firstly based on paper-supported 3D interwoven AuPd-reduced graphene oxide (rGO) network (NW) for real-time and in situ analysis of H2S released from cancer cells. The novel paper working electrode (PWE) with large electric conductivity, effective surface area and unusual biocompatibility, was fabricated via controllably assembling rGO and AuPd alloy nanoparticles onto the surface of cellulose fibers and into the macropores of paper, which was employed as affinity matrix for horseradish peroxidase (HRP) loading and cells capture. It was the superior performances of AuPd-rGO-NW-PWE that made the loaded HRP exhibit excellent electrocatalytic behavior to H2O2, bring the rapid enhancement of current response. After releasing H2S, the current response would be obviously decreased due to the efficient inhibition effect of H2S on HRP activity. The inhibition degree of HRP was directly proportional to the amount of H2S, and so, the flux of H2S released from cells could be recorded availably. Thus, this proposed enzyme inhibition cyto-sensor could be applied for efficient recording of the release of H2S, which had potential utility to cellular biology and pathophysiology.

  14. Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data.

    PubMed

    Raith, Stefan; Vogel, Eric Per; Anees, Naeema; Keul, Christine; Güth, Jan-Frederik; Edelhoff, Daniel; Fischer, Horst

    2017-01-01

    Chairside manufacturing based on digital image acquisition is gainingincreasing importance in dentistry. For the standardized application of these methods, it is paramount to have highly automated digital workflows that can process acquired 3D image data of dental surfaces. Artificial Neural Networks (ANNs) arenumerical methods primarily used to mimic the complex networks of neural connections in the natural brain. Our hypothesis is that an ANNcan be developed that is capable of classifying dental cusps with sufficient accuracy. This bears enormous potential for an application in chairside manufacturing workflows in the dental field, as it closes the gap between digital acquisition of dental geometries and modern computer-aided manufacturing techniques.Three-dimensional surface scans of dental casts representing natural full dental arches were transformed to range image data. These data were processed using an automated algorithm to detect candidates for tooth cusps according to salient geometrical features. These candidates were classified following common dental terminology and used as training data for a tailored ANN.For the actual cusp feature description, two different approaches were developed and applied to the available data: The first uses the relative location of the detected cusps as input data and the second method directly takes the image information given in the range images. In addition, a combination of both was implemented and investigated.Both approaches showed high performance with correct classifications of 93.3% and 93.5%, respectively, with improvements by the combination shown to be minor.This article presents for the first time a fully automated method for the classification of teeththat could be confirmed to work with sufficient precision to exhibit the potential for its use in clinical practice,which is a prerequisite for automated computer-aided planning of prosthetic treatments with subsequent automated chairside manufacturing.

  15. Three Dimensional Flow, Transport and Geomechanical Simulations in Discrete Fracture Network Under Condition of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; Ezzedine, S. M.; Glascoe, L. G.; Antoun, T. H.

    2011-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Data collected are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable probabilistic assessment of flow, transport and geomechanical phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, we investigate the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport and geomechanics. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory. (Prepared by LLNL under Contract DE-AC52-07NA27344)

  16. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    NASA Astrophysics Data System (ADS)

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  17. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  18. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  19. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.

    PubMed

    Bukhari, W; Hong, S-M

    2016-03-07

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+) , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+) . The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating

  20. 3D-calibration of three- and four-sensor hot-film probes based on collocated sonic using neural networks

    NASA Astrophysics Data System (ADS)

    Kit, Eliezer; Liberzon, Dan

    2016-09-01

    High resolution measurements of turbulence in the atmospheric boundary layer (ABL) are critical to the understanding of physical processes and parameterization of important quantities, such as the turbulent kinetic energy dissipation. Low spatio-temporal resolution of standard atmospheric instruments, sonic anemometers and LIDARs, limits their suitability for fine-scale measurements of ABL. The use of miniature hot-films is an alternative technique, although such probes require frequent calibration, which is logistically untenable in field setups. Accurate and truthful calibration is crucial for the multi-hot-films applications in atmospheric studies, because the ability to conduct calibration in situ ultimately determines the turbulence measurements quality. Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41) described a novel methodology for calibration of hot-film probes using a collocated sonic anemometer combined with a neural network (NN) approach. An important step in the algorithm is the generation of a calibration set for NN training by an appropriate low-pass filtering of the high resolution voltages, measured by the hot-film-sensors and low resolution velocities acquired by the sonic. In Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41), Kit and Grits (2011 J. Atmos. Ocean. Technol. 28 104-10) and Vitkin et al (2014 Meas. Sci. Technol. 25 75801), the authors reported on successful use of this approach for in situ calibration, but also on the method’s limitations and restricted range of applicability. In their earlier work, a jet facility and a probe, comprised of two orthogonal x-hot-films, were used for calibration and for full dataset generation. In the current work, a comprehensive laboratory study of 3D-calibration of two multi-hot-film probes (triple- and four-sensor) using a grid flow was conducted. The probes were embedded in a collocated sonic, and their relative pitch and yaw orientation to the mean flow was changed by means of motorized

  1. Effects of using a continuum representation of discrete fracture networks

    SciTech Connect

    Hull, L.C.; Clemo, T.M.

    1987-01-01

    The substitution of matrix or continuum permeability for discrete fracture permeability in the simulation of complex fracture systems requires a radically different treatment of transport in the matrix. The spatial distribution of pressure is reasonably well described by inclusion of only the major fractures. Transport of tracer and heat, however, depends on a detailed knowledge of fluid velocities. Two factors are involved. First, the velocities are dependent on the active porosity of the system. Because fractures channel flow, the active porosity may be much smaller than the total porosity of the system. Secondly, the distribution of velocities is generally not normally distributed precluding the use of a Gaussian dispersion model. Characterization of the active porosity and velocity distribution are necessary to quantify tracer and heat movement.

  2. A hybrid mortar virtual element method for discrete fracture network simulations

    NASA Astrophysics Data System (ADS)

    Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano

    2016-02-01

    The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.

  3. Anaesthesia for proximal femoral fracture in the UK: first report from the NHS Hip Fracture Anaesthesia Network.

    PubMed

    White, S M; Griffiths, R; Holloway, J; Shannon, A

    2010-03-01

    The aim of this audit was to investigate process, personnel and anaesthetic factors in relation to mortality among patients with proximal femoral fractures. A questionnaire was used to record standardised data about 1195 patients with proximal femoral fracture admitted to 22 hospitals contributing to the Hip Fracture Anaesthesia Network over a 2-month winter period. Patients were demographically similar between hospitals (mean age 81 years, 73% female, median ASA grade 3). However, there was wide variation in time from admission to operation (24-108 h) and 30-day postoperative mortality (2-25%). Fifty percent of hospitals had a mean admission to operation time < 48 h. Forty-two percent of operations were delayed: 51% for organisational; 44% for medical; and 4% for 'anaesthetic' reasons. Regional anaesthesia was administered to 49% of patients (by hospital, range = 0-82%), 51% received general anaesthesia and 19% of patients received peripheral nerve blockade. Consultants administered 61% of anaesthetics (17-100%). Wide national variations in current management of patients sustaining proximal femoral fracture reflect a lack of research evidence on which to base best practice guidance. Collaborative audits such as this provide a robust method of collecting such evidence.

  4. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  5. Numerical Experiments on Advective Transport in Large Three-Dimensional Discrete Fracture Networks

    NASA Astrophysics Data System (ADS)

    Makedonska, N.; Painter, S. L.; Karra, S.; Gable, C. W.

    2013-12-01

    Modeling of flow and solute transport in discrete fracture networks is an important approach for understanding the migration of contaminants in impermeable hard rocks such as granite, where fractures provide dominant flow and transport pathways. The discrete fracture network (DFN) model attempts to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. An integrated DFN meshing [1], flow, and particle tracking [2] simulation capability that enables accurate flow and particle tracking simulation on large DFNs has recently been developed. The new capability has been used in numerical experiments on advective transport in large DFNs with tens of thousands of fractures and millions of computational cells. The modeling procedure starts from the fracture network generation using a stochastic model derived from site data. A high-quality computational mesh is then generated [1]. Flow is then solved using the highly parallel PFLOTRAN [3] code. PFLOTRAN uses the finite volume approach, which is locally mass conserving and thus eliminates mass balance problems during particle tracking. The flow solver provides the scalar fluxes on each control volume face. From the obtained fluxes the Darcy velocity is reconstructed for each node in the network [4]. Velocities can then be continuously interpolated to any point in the domain of interest, thus enabling random walk particle tracking. In order to describe the flow field on fractures intersections, the control volume cells on intersections are split into four planar polygons, where each polygon corresponds to a piece of a fracture near the intersection line. Thus

  6. A 3D oxalate-based network as a precursor for the CoMn₂O₄ spinel: synthesis and structural and magnetic studies.

    PubMed

    Habjanič, Jelena; Jurić, Marijana; Popović, Jasminka; Molčanov, Krešimir; Pajić, Damir

    2014-09-15

    A novel heterometallic oxalate-based compound of the formula {[Co(bpy)3][Mn2(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) was synthesized and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction (XRD), and magnetization measurement. The molecular structure of 1 is made of a three-dimensional (3D) anionic network, [Mn2(C2O4)3]n(2n-), and tris-chelated cations [Co(bpy)3](2+) occupying the vacancies of the framework. Splitting between the zero-field-cooled (ZFC) and field-cooled (FC) branches of susceptibility below the small peak at 13 K indicates magnetic ordering. Compound 1 was used as a single-source precursor for the formation of the mixed-metal oxide CoMn2O4. This conversion via thermal decomposition was explored by thermal analysis (TGA and DTA), IR spectroscopy, powder XRD, and magnetic susceptibility measurement. From refined structural parameters, it could be seen that the spinel obtained by the thermal treatment of 1 at 800 °C is characterized by the inversion parameter δ = 21%, and therefore the structural formula at room temperature can be written as (tet)[Co(0.79)Mn(0.21)](oct)[Co(0.105)Mn(0.895)]2O4. The temperature dependence of magnetization for CoMn2O4 points to at least three magnetic phases: the ferrimagnetic state is observed below 83 K, and up to 180 K blocking of the magnetic moments of nanocrystallites of 31 nm appears, transforming to paramagnetic-like behavior above 180 K. Microstructural characterization of the CoMn2O4 sample was carried out by means of XRD line-broadening analysis.

  7. Encapsulated discrete octameric water cluster, 1D water tape, and 3D water aggregate network in diverse MOFs based on bisimidazolium ligands

    NASA Astrophysics Data System (ADS)

    Shi, Ruo-Bing; Pi, Min; Jiang, Shuang-Shuang; Wang, Yuan-Yuan; Jin, Chuan-Ming

    2014-08-01

    Four new metal-organic frameworks, [Zn(2-mBIM)2(SO3CF3)2·(H2O)4] (1), [Zn(BMIE)(1,4-BDC)]·(H2O)3 (2), [Cd(BIM)2(OH)(H2O)2(PF6)]·(H2O)4 (3), and [Cd(PA-BIM)2 (ClO4)2]·11.33H2O (4) (2-mBIM = bis(2-methylimidazol-1-yl)methane, BMIE = 1,2-bis[1-(2-methylimidazole)-diethoxy]ethane, BIM = bis(imidazol-1-yl)methane, and PA-BIM = 1,1-bis [(2-phenylazo)imidazol-1-yl]methane) have been prepared and structurally characterized. Complex 1 exhibits an infinite 1D cationic beaded-chain structure, which encapsulated discrete octameric water clusters that are comprised of a chair-like hexameric water cluster with two extra water molecules dangling on two diagonal vertices of the chair. Complex 2 forms a 1D infinite zigzag metal-organic chain structure with a 1D T4(0)A(4) water tape. Complexes 3 show a 2D grid-like sheet structure with the 1D water tape T4(0)A(0)2(0) motif. Complex 4 is a porous 3D MOF with tetrahedron-coordinated Cd(II) centers and trans-conformation PA-BIM ligands. These holes are occupied by a fascinating three-dimensional water clathrate network, which consists of cage-shaped structural tetradecameric water cluster (H2O)14 units and six independent bridged water molecules. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures and different guest water aggregations. Additionally, the thermal stabilities and photoluminescence spectra of the complexes have been discussed.

  8. Corrigendum to "The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network" [J. African Earth Sci. 115 (2016) 246-270

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-12-01

    In the article titled "The 3-D Strain patterns in Turkey using Geodetic velocity fields from the RTK-CORS (TR) Network" published in Journal of African Earth Sciences Vol. 11, pp.246-270, the black arrows on the Figs. 10 and 12 are shifted due to printing error to undesired places. The correct form of Figs. 10 and 12 are given below:

  9. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  14. Impact of Geological Characterization Uncertainties on Subsurface Flow & Transport Using a Stochastic Discrete Fracture Network Approach

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2009-12-01

    Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and

  15. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  16. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  17. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  18. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  19. The effect of stagnant water zones on retarding radionuclide stransport in fractured rocks: An extension to the Channel Network Model

    NASA Astrophysics Data System (ADS)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-09-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this paper is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. In the first part of the paper, the overall impact of STWZs in retarding radionuclide transport is investigated through a deterministic calculation of far-field releases at Forsmark, Sweden. Over the time-scale of the repository safety assessments, radionuclide breakthrough curves are calculated for increasing STWZ width. It is shown that the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The rest of the paper is devoted to the probabilistic calculation of radionuclide transport in fractured rocks. The model that is developed for transport through a single channel is embedded into the Channel Network Model and new computer codes are provided for the CHAN3D. The program is used to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The required data for the model are obtained from detailed hydraulic tests in boreholes intersecting the rock mass where the tracer tests were made. The simulation results fairly well predict the release of the sorbing tracer 137Cs. It is found that

  20. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    , even if one data object lies behind another. Stereoscopic viewing is another powerful tool to