Science.gov

Sample records for 3-d healthcare learning

  1. Versatile, Immersive, Creative and Dynamic Virtual 3-D Healthcare Learning Environments: A Review of the Literature

    PubMed Central

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and “serious gaming” that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger’s Diffusion of Innovations Theory and Siemens’ Connectivism Theory for today’s learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  2. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    PubMed

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  3. Applications of 3D printing in healthcare.

    PubMed

    Dodziuk, Helena

    2016-09-01

    3D printing is a relatively new, rapidly expanding method of manufacturing that found numerous applications in healthcare, automotive, aerospace and defense industries and in many other areas. In this review, applications in medicine that are revolutionizing the way surgeries are carried out, disrupting prosthesis and implant markets as well as dentistry will be presented. The relatively new field of bioprinting, that is printing with cells, will also be briefly discussed.

  4. Applications of 3D printing in healthcare

    PubMed Central

    2016-01-01

    3D printing is a relatively new, rapidly expanding method of manufacturing that found numerous applications in healthcare, automotive, aerospace and defense industries and in many other areas. In this review, applications in medicine that are revolutionizing the way surgeries are carried out, disrupting prosthesis and implant markets as well as dentistry will be presented. The relatively new field of bioprinting, that is printing with cells, will also be briefly discussed. PMID:27785150

  5. Multiple 3D medical data watermarking for healthcare data management.

    PubMed

    Lee, Suk-Hwan; Kwon, Ki-Ryong

    2011-12-01

    The rapid development of healthcare information management for 3D digital medical libraries, 3D PACS, and 3D medical diagnosis has addressed the security issues pertaining to medical IT technology. This paper presents multiple watermarking schemes for a healthcare information management system for 3D medical image data for the protection, authentication, indexing, and hiding of diagnosis information. The proposed scheme, which is based on POCS watermarking, embeds a robust watermark for a doctor's digital signature and an information retrieval indexing key to the distribution of vertex curvedness; the scheme also embeds a fragile watermark for diagnosis information and an authentication reference message to the vertex distance difference. The multiple embedding process creates three convex sets for robustness, fragileness, and invisibility and projects the 3D medical image data onto these three convex sets alternately and iteratively. Experimental results confirmed that the proposed scheme has the robustness and fragileness to handle various 3D geometric and mesh modifiers simultaneously.

  6. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  7. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  8. Virtual Representations in 3D Learning Environments

    ERIC Educational Resources Information Center

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  9. Evaluation of Kinect 3D Sensor for Healthcare Imaging.

    PubMed

    Pöhlmann, Stefanie T L; Harkness, Elaine F; Taylor, Christopher J; Astley, Susan M

    2016-01-01

    Microsoft Kinect is a three-dimensional (3D) sensor originally designed for gaming that has received growing interest as a cost-effective and safe device for healthcare imaging. Recent applications of Kinect in health monitoring, screening, rehabilitation, assistance systems, and intervention support are reviewed here. The suitability of available technologies for healthcare imaging applications is assessed. The performance of Kinect I, based on structured light technology, is compared with that of the more recent Kinect II, which uses time-of-flight measurement, under conditions relevant to healthcare applications. The accuracy, precision, and resolution of 3D images generated with Kinect I and Kinect II are evaluated using flat cardboard models representing different skin colors (pale, medium, and dark) at distances ranging from 0.5 to 1.2 m and measurement angles of up to 75°. Both sensors demonstrated high accuracy (majority of measurements <2 mm) and precision (mean point to plane error <2 mm) at an average resolution of at least 390 points per cm(2). Kinect I is capable of imaging at shorter measurement distances, but Kinect II enables structures angled at over 60° to be evaluated. Kinect II showed significantly higher precision and Kinect I showed significantly higher resolution (both p < 0.001). The choice of object color can influence measurement range and precision. Although Kinect is not a medical imaging device, both sensor generations show performance adequate for a range of healthcare imaging applications. Kinect I is more appropriate for short-range imaging and Kinect II is more appropriate for imaging highly curved surfaces such as the face or breast.

  10. Pathways for Learning from 3D Technology

    PubMed Central

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  11. Learning in 3-D Virtual Worlds: Rethinking Media Literacy

    ERIC Educational Resources Information Center

    Qian, Yufeng

    2008-01-01

    3-D virtual worlds, as a new form of learning environments in the 21st century, hold great potential in education. Learning in such environments, however, demands a broader spectrum of literacy skills. This article identifies a new set of media literacy skills required in 3-D virtual learning environments by reviewing exemplary 3-D virtual…

  12. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  13. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  14. What Are the Learning Affordances of 3-D Virtual Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.

    2010-01-01

    This article explores the potential learning benefits of three-dimensional (3-D) virtual learning environments (VLEs). Drawing on published research spanning two decades, it identifies a set of unique characteristics of 3-D VLEs, which includes aspects of their representational fidelity and aspects of the learner-computer interactivity they…

  15. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  16. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  17. Joint sparse learning for 3-D facial expression generation.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Bu, Jiajun

    2013-08-01

    3-D facial expression generation, including synthesis and retargeting, has received intensive attentions in recent years, because it is important to produce realistic 3-D faces with specific expressions in modern film production and computer games. In this paper, we present joint sparse learning (JSL) to learn mapping functions and their respective inverses to model the relationship between the high-dimensional 3-D faces (of different expressions and identities) and their corresponding low-dimensional representations. Based on JSL, we can effectively and efficiently generate various expressions of a 3-D face by either synthesizing or retargeting. Furthermore, JSL is able to restore 3-D faces with holes by learning a mapping function between incomplete and intact data. Experimental results on a wide range of 3-D faces demonstrate the effectiveness of the proposed approach by comparing with representative ones in terms of quality, time cost, and robustness.

  18. 3D Printing Prototypes for Healthcare Professionals: Creating a Reciprocating Syringe.

    PubMed

    Rothenberg, Steven; Abdullah, Selwan; Hirsch, Jeffrey

    2017-01-30

    3D printing (additive manufacturing) has been around since 1984, but interest in the technology has increased exponentially as it has become both accessible and inexpensive. The applications of the technology in healthcare are still being explored; however, initial forays have been encouraging. It has the potential to revolutionize the process of prototyping for healthcare professionals by democratizing the process and enhancing collaboration, making it cheaper to do iterative prototyping with little or no engineering experience. This case report details the creation of a multi-lumen reciprocating syringe with 3D printing. The product has been created and tested using a variety of publicly available resources. It provides a detailed overview of the approach and the framework required to create such a medical device. However, the implications of this report are much larger than this one product, and the fundamental ideas discussed here could be used for creating customized solutions for many healthcare problems.

  19. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  20. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  1. Deep Nonlinear Metric Learning for 3-D Shape Retrieval.

    PubMed

    Xie, Jin; Dai, Guoxian; Zhu, Fan; Shao, Ling; Fang, Yi

    2016-12-28

    Effective 3-D shape retrieval is an important problem in 3-D shape analysis. Recently, feature learning-based shape retrieval methods have been widely studied, where the distance metrics between 3-D shape descriptors are usually hand-crafted. In this paper, motivated by the fact that deep neural network has the good ability to model nonlinearity, we propose to learn an effective nonlinear distance metric between 3-D shape descriptors for retrieval. First, the locality-constrained linear coding method is employed to encode each vertex on the shape and the encoding coefficient histogram is formed as the global 3-D shape descriptor to represent the shape. Then, a novel deep metric network is proposed to learn a nonlinear transformation to map the 3-D shape descriptors to a nonlinear feature space. The proposed deep metric network minimizes a discriminative loss function that can enforce the similarity between a pair of samples from the same class to be small and the similarity between a pair of samples from different classes to be large. Finally, the distance between the outputs of the metric network is used as the similarity for shape retrieval. The proposed method is evaluated on the McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human shape datasets. Experimental results on the three datasets validate the effectiveness of the proposed method.

  2. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  3. Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces

    ERIC Educational Resources Information Center

    Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed

    2012-01-01

    The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…

  4. A Laboratory for Learning and Teaching 3D Geometry.

    ERIC Educational Resources Information Center

    Hidaka, Kazuyoshi

    A software tool called 3D-LAB has been developed for learning and teaching three-dimensional geometry. With this microworld, educators and students can display three dimensional solid objects, rotate them, modify them, open them up, draw points and segments, and measure lengths, areas, volumes, and angles. The major characteristics of this tool…

  5. Learning Languages in 3D Worlds with Machinima

    ERIC Educational Resources Information Center

    Schneider, Christel

    2016-01-01

    This paper, based on the findings of the EU funded CAMELOT project (2013-2015), explores the added value of Machinima (videos produced in 3D virtual environments) in language learning. The project research evaluated all stages, from developing to field testing Machinima. To achieve the best outcome, mixed methods were used for the research,…

  6. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  7. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  8. NeuroGlasses: a neural sensing healthcare system for 3-D vision technology.

    PubMed

    Gong, Fang; Xu, Wenyao; Lee, Jueh-Yu; He, Lei; Sarrafzadeh, Majid

    2012-03-01

    3-D vision technologies are extensively used in a wide variety of applications. Particularly glasses-based 3-D technology facilities are increasingly becoming affordable to our daily lives. Considering health issues raised by 3-D video technologies, to the best of our knowledge, most of the pilot studies are practiced in a highly-controlled laboratory environment only. In this paper, we present NeuroGlasses, a nonintrusive wearable physiological signal monitoring system to facilitate health analysis and diagnosis of 3-D video watchers. The NeuroGlasses system acquires health-related signals by physiological sensors and provides feedbacks of health-related features. Moreover, the NeuroGlasses system employs signal-specific reconstruction and feature extraction to compensate the distortion of signals caused by variation of the placement of the sensors. We also propose a server-based NeuroGlasses infrastructure where physiological features can be extracted for real-time response or collected on the server side for long term analysis and diagnosis. Through an on-campus pilot study, the experimental results show that NeuroGlasses system can effectively provide physiological information for healthcare purpose. Furthermore, it approves that 3-D vision technology has a significant impact on the physiological signals, such as EEG, which potentially leads to neural diseases. © 2012 IEEE

  9. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  10. 2D/3D Image Registration using Regression Learning.

    PubMed

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  11. 3D printing of wearable fractal-based sensor systems for neurocardiology and healthcare

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the pathophysiological interplay of nervous and cardiovascular systems. The communication between the heart and brain has revealed various methodologies in healthcare that could be investigated to study the heart-brain interactions and other cardiovascular and neurological diseases. A textile based wearable nanosensor system in the form of e-bra, e-shirt, e-headband, e-brief, underwear etc, was presented in this SPIE conferences earlier for noninvasive recording of EEG and EKG, and showing the correlation between the brain and heart signals. In this paper, the technology is expanded further using fractal based geometries using 3D printing system for low cost and flexible wearable sensor system for healthcare.

  12. Enabling Team Learning in Healthcare

    ERIC Educational Resources Information Center

    Boak, George

    2016-01-01

    This paper is based on a study of learning processes within 35 healthcare therapy teams that took action to improve their services. The published research on team learning is introduced, and the paper suggests it is an activity that has similarities with action research and with those forms of action learning where teams address collective…

  13. Enabling Team Learning in Healthcare

    ERIC Educational Resources Information Center

    Boak, George

    2016-01-01

    This paper is based on a study of learning processes within 35 healthcare therapy teams that took action to improve their services. The published research on team learning is introduced, and the paper suggests it is an activity that has similarities with action research and with those forms of action learning where teams address collective…

  14. 3D printing and IoT for personalized everyday objects in nursing and healthcare

    NASA Astrophysics Data System (ADS)

    Asano, Yoshihiro; Tanaka, Hiroya; Miyagawa, Shoko; Yoshioka, Junki

    2017-04-01

    Today, application of 3D printing technology for medical use is getting popular. It strongly helps to make complicated shape of body parts with functional materials. We can complement injured, weakened or lacked parts, and recover original shape and functions. However, these cases are mainly focusing on the symptom itself, not on everyday lives of patients. With life span extending, many of us will live a life with chronic disease for long time. Then, we should think about our living environment more carefully. For example, we can make personalized everyday objects and support their body and mind. Therefore, we use 3D printing for making everyday objects from nursing / healthcare perspective. In this project, we have 2 main research questions. The first one is how to make objects which patients really require. We invited many kinds of people such as engineer, nurses and patients to our research activity. Nurses can find patient's real demands firstly, and engineers support them with rapid prototyping. Finally, we found the best collaboration methodologies among nurses, engineers and patients. The second question is how to trace and evaluate usages of created objects. Apparently, it's difficult to monitor user's activity for a long time. So we're developing the IoT sensing system, which monitor activities remotely. We enclose a data logger which can lasts about one month with 3D printed objects. After one month, we can pick up the data from objects and understand how it has been used.

  15. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  16. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  17. Think3d!: Improving mathematics learning through embodied spatial training.

    PubMed

    Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.

  18. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  19. Targeted Learning in Healthcare Research.

    PubMed

    Gruber, Susan

    2015-12-01

    The increasing availability of Big Data in healthcare encourages investigators to seek answers to big questions. However, nonparametric approaches to analyzing these data can suffer from the curse of dimensionality, and traditional parametric modeling does not necessarily scale. Targeted learning (TL) combines semiparametric methodology with advanced machine learning techniques to provide a sound foundation for extracting information from data. Predictive models, variable importance measures, and treatment benefits and risks can all be addressed within this framework. TL has been applied in a broad range of healthcare settings, including genomics, precision medicine, health policy, and drug safety. This article provides an introduction to the two main components of TL, targeted minimum loss-based estimation and super learning, and gives examples of applications in predictive modeling, variable importance ranking, and comparative effectiveness research.

  20. Strategic learning in healthcare organizations.

    PubMed

    O'Sullivan, M J

    1999-01-01

    There is no definitive blueprint for the healthcare organization involved in strategic learning. However, what distinguishes strategic learning institutions is their acknowledgment that they must discover their own paths and solutions rather than blindly follow a detailed strategic mandate from administration. Answers to their most critical implementation and adaptive questions will not flow down ready-made from above, but will be tailored to meet the requirements of their own particular situation. Strategic learning organizations have certain attributes in common in developing their own answers: They continuously experiment rather than seek final solutions. They favor improvisation over forecasts. They formulate new actions rather than defend past ones. They nurture change rather than permanence. They encourage creative conflict rather than tranquillity. They encourage questioning rather than compliance. They expose contradictions rather than hide them (Weick 1977). Most importantly, strategic learning organizations realize that successful strategic change is best undertaken as a process of learning (O'Sullivan 1999). Healthcare organizations can no longer afford the illusion of traditional strategic planning, with its emphasis on bureaucratic controls from the top to the bottom. They must embrace the fundamental truth that most change occurs through processes of learning that occur in many locations simultaneously throughout the organization. The initial step in discovering ways to improve the capability of healthcare organizations is to adapt continuously while fulfilling their mission. Healthcare leaders must create a shared vision of where an institution is heading rather than what the final destination will be, nurture a spirit of experimentation and discovery rather than close supervision and unbending control, and recognize that plans have to be continuously changed and adjusted. To learn means to face the unknown: to recognize that we do not possess all

  1. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  2. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  3. Learning in 3-D Multiuser Virtual Environments: Exploring the Use of Unique 3-D Attributes for Online Problem-Based Learning

    ERIC Educational Resources Information Center

    Omale, Nicholas; Hung, Wei-Chen; Luetkehans, Lara; Cooke-Plagwitz, Jessamine

    2009-01-01

    The purpose of this article is to present the results of a study conducted to investigate how the attributes of 3-D technology such as avatars, 3-D space, and comic style bubble dialogue boxes affect participants' social, cognitive, and teaching presences in a blended problem-based learning environment. The community of inquiry model was adopted…

  4. Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects

    ERIC Educational Resources Information Center

    Azmy, Nabil Gad; Ismaeel, Dina Ahmed

    2010-01-01

    The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…

  5. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or…

  6. Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects

    ERIC Educational Resources Information Center

    Azmy, Nabil Gad; Ismaeel, Dina Ahmed

    2010-01-01

    The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…

  7. Simulation, Mastery Learning and Healthcare.

    PubMed

    Dunn, William; Dong, Yue; Zendejas, Benjamin; Ruparel, Raaj; Farley, David

    2017-02-01

    Healthcare organizations, becoming increasingly complex, need to use simulation techniques as a tool to provide consistently safe care. Mastery learning techniques minimize variation in learner outcome, thus improving the consistency and cost-effectiveness of care. Today׳s organizations (and their teams of decision makers) exist within varying states of transformation. These transformational times afford opportunities to use mastery learning concepts at an organizational level and to affect necessary change(s). Evolving technologies, including simulation, have provided mechanisms to enhance system performance, reducing reliance on custom-built "problem-solving" solutions for individual system needs. As such, simulation has emerged as an increasingly necessary organizational tool in improving value-driven, consistent processes of care. Both computer-based and non-computer-based algorithms of healthcare simulations offer distinct advantages in improving system performance over traditional methods of quality improvement. Simulation as a process engineering tool, integrated with mastery learning techniques, provides powerful platforms for improving value-based care. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  8. Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques

    ERIC Educational Resources Information Center

    Wang, Yushun; Zhuang, Yueting

    2008-01-01

    Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…

  9. Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques

    ERIC Educational Resources Information Center

    Wang, Yushun; Zhuang, Yueting

    2008-01-01

    Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…

  10. Manifold Learning for 3D Shape Description and Classification

    DTIC Science & Technology

    2014-06-09

    tennis swing,” “golf swing,” “picking up and throwing”. Each action is performed by 10 subjects, each performing 2-3 times. There are 567 samples in...comes to 12, our algorithm can distinguish both gender and shape types. Table 1-3 show the accuracy of different methods on the MSR 3D databases. It

  11. The 3D Heliosphere: What Can We Learn from STEREO?

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Many techniques have been used to study the 3D heliosphere, with the earliest probably being the analysis of comet tails. I will list most of these and mention a few, focusing on existing multi-point studies. The result, from more than 50 years of study, Is that a lot is known. This has led to a good picture of the quasi-steady heliosphere and its relation to the 3D Corona. But, there are also some large gaps and STEREO is designed to address one of these: the timing, size, geometry, mass, speed, direction, and 3D propagation of Corona[ mass ejections (CMEs). In spite of the statistical analysis of a large data archive, Imaginative use of in situ and remote measurements, and extensive modeling, these properties of CMES are poorly known. I will outline an example of how STEREO instruments might work together to develop a far better 30 description of CMEs In the 3D heliosphere and note that other examples are described in the Science Definition Team report and in the Science Objectives given by the four instrument teams. Since the two STEREO spacecraft are not intended to work in isolation, I will also outline how they might be used In combination With ground-based and other spacecraft observations.

  12. Perceived Advantages of 3D Lessons in Constructive Learning for South African Student Teachers Encountering Learning Barriers

    ERIC Educational Resources Information Center

    de Jager, Thelma

    2017-01-01

    Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…

  13. Perceived Advantages of 3D Lessons in Constructive Learning for South African Student Teachers Encountering Learning Barriers

    ERIC Educational Resources Information Center

    de Jager, Thelma

    2017-01-01

    Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…

  14. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  15. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  16. Contextual EFL Learning in a 3D Virtual Environment

    ERIC Educational Resources Information Center

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  17. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images.

    PubMed

    Liang, Liang; Kong, Fanwei; Martin, Caitlin; Pham, Thuy; Wang, Qian; Duncan, James; Sun, Wei

    2017-05-01

    To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    NASA Astrophysics Data System (ADS)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections

  19. Think3d!: Improving Mathematics Learning through Embodied Spatial Training

    ERIC Educational Resources Information Center

    Burte, Heather; Gardony, Aaron L.; Hutton, Allyson; Taylor, Holly A.

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a…

  20. Learn Street Skateboarding through 3D Simulations of Angle Rotations

    ERIC Educational Resources Information Center

    Adi, Erwin; Aditya, I Gde Made Krisna; Citrawati, Meriyana

    2010-01-01

    Learning physical activities such as sports and games is expensive and time-consuming. A common advice is "repetition makes perfection," which implies that wrong actions must soon be noticed and avoided. A knowledgeable tutor is often required to provide good feedback for that purpose. However, this facility is available only for those…

  1. Learn Street Skateboarding through 3D Simulations of Angle Rotations

    ERIC Educational Resources Information Center

    Adi, Erwin; Aditya, I Gde Made Krisna; Citrawati, Meriyana

    2010-01-01

    Learning physical activities such as sports and games is expensive and time-consuming. A common advice is "repetition makes perfection," which implies that wrong actions must soon be noticed and avoided. A knowledgeable tutor is often required to provide good feedback for that purpose. However, this facility is available only for those…

  2. A 3D assessment and feedback tool for Ankylosing Spondylitis from the perspective of healthcare professionals.

    PubMed

    Li, Shijuan; Kay, Stephen; Porter, Stuart

    2016-12-05

    To investigate the utility of 3D visualization technology to augment assessment and feedback for Ankylosing Spondylitis (AS), a visualization prototype was developed, and both subjective and objective measures of current assessment instruments were compared. To verify and establish a base-line for the prototype's effectiveness, motion data and measurement data from a healthy adult in a laboratory environment were collected. To validate the prototype, a qualitative evaluation was undertaken using multiple methods including a pilot study, focus groups, and individual interviews. Research subjects comprised physiotherapists in clinical practice and academia and content analysis of their responses was used to substantiate the findings. The prototype enhanced both assessment and feedback of AS from the physiotherapist's perspective and they believed it to be superior to the current methods used in practice for assessing the condition and in documenting variations for subsequent treatment. The physiotherapists believed that such a system had potential to encourage multidisciplinary working, and to be patient-centric, both with respect to the process of treatment and with regard to the convenience it offered to patients in managing their own condition. 3D visualization of AS symptoms and its treatment via exercise is a valuable technique as demonstrated by the prototype system.

  3. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    ERIC Educational Resources Information Center

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  4. User Control and Task Authenticity for Spatial Learning in 3D Environments

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Harper, Barry

    2004-01-01

    This paper describes two empirical studies which investigated the importance for spatial learning of view control and object manipulation within 3D environments. A 3D virtual chemistry laboratory was used as the research instrument. Subjects, who were university undergraduate students (34 in the first study and 80 in the second study), undertook…

  5. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    ERIC Educational Resources Information Center

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  6. 3D Virtual Learning Environments in Education: A Meta-Review

    ERIC Educational Resources Information Center

    Reisoglu, I.; Topu, B.; Yilmaz, R.; Karakus Yilmaz, T.; Göktas, Y.

    2017-01-01

    The aim of this study is to investigate recent empirical research studies about 3D virtual learning environments. A total of 167 empirical studies that involve the use of 3D virtual worlds in education were examined by meta-review. Our findings show that the "Second Life" platform has been frequently used in studies. Among the reviewed…

  7. User Control and Task Authenticity for Spatial Learning in 3D Environments

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Harper, Barry

    2004-01-01

    This paper describes two empirical studies which investigated the importance for spatial learning of view control and object manipulation within 3D environments. A 3D virtual chemistry laboratory was used as the research instrument. Subjects, who were university undergraduate students (34 in the first study and 80 in the second study), undertook…

  8. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  10. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  11. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  12. Learning to Collaborate: Designing Collaboration in a 3-D Game Environment

    ERIC Educational Resources Information Center

    Hamalainen, Raija; Manninen, Tony; Jarvela, Sanna; Hakkinen, Paivi

    2006-01-01

    To respond to learning needs, Computer-Supported Collaborative Learning (CSCL) must provide instructional support. The particular focus of this paper is on designing collaboration in a 3-D virtual game environment intended to make learning more effective by promoting student opportunities for interaction. The empirical experiment eScape, which…

  13. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  14. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  15. Nursing Students' Experiential Learning Processes Using an Online 3D Simulation Game

    ERIC Educational Resources Information Center

    Koivisto, Jaana-Maija; Niemi, Hannele; Multisilta, Jari; Eriksson, Elina

    2017-01-01

    The growing use of game-based simulation in healthcare education reflects the opportunities afforded to learners by serious games, which simulate real-world situations and enable students to emulate the roles of healthcare professionals in a safe and engaging learning environment. As part of a design-based research project to design, test, and…

  16. Nursing Students' Experiential Learning Processes Using an Online 3D Simulation Game

    ERIC Educational Resources Information Center

    Koivisto, Jaana-Maija; Niemi, Hannele; Multisilta, Jari; Eriksson, Elina

    2017-01-01

    The growing use of game-based simulation in healthcare education reflects the opportunities afforded to learners by serious games, which simulate real-world situations and enable students to emulate the roles of healthcare professionals in a safe and engaging learning environment. As part of a design-based research project to design, test, and…

  17. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    NASA Astrophysics Data System (ADS)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  18. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  19. Healthcare Learning Community and Student Retention

    ERIC Educational Resources Information Center

    Johnson, Sherryl W.

    2014-01-01

    Teaching, learning, and retention processes have evolved historically to include multifaceted techniques beyond the traditional lecture. This article presents related results of a study using a healthcare learning community in a southwest Georgia university. The value of novel techniques and tools in promoting student learning and retention…

  20. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  1. Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study

    ERIC Educational Resources Information Center

    Mapson, Kathleen Harrell

    2011-01-01

    The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…

  2. Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study

    ERIC Educational Resources Information Center

    Mapson, Kathleen Harrell

    2011-01-01

    The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…

  3. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  4. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  5. A Collaborative Virtual Environment for Situated Language Learning Using VEC3D

    ERIC Educational Resources Information Center

    Shih, Ya-Chun; Yang, Mau-Tsuen

    2008-01-01

    A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…

  6. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  7. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  8. Visualizing Science Dissections in 3D: Contextualizing Student Responses to Multidimensional Learning Materials in Science Dissections

    NASA Astrophysics Data System (ADS)

    Walker, Robin Annette

    A series of dissection tasks was developed in this mixed-methods study of student self-explanations of their learning using actual and virtual multidimensional science dissections and visuo-spatial instruction. Thirty-five seventh-grade students from a science classroom (N = 20 Female/15 Male, Age =13 years) were assigned to three dissection environments instructing them to: (a) construct static paper designs of frogs, (b) perform active dissections with formaldehyde specimens, and (c) engage with interactive 3D frog visualizations and virtual simulations. This multi-methods analysis of student engagement with anchored dissection materials found learning gains on labeling exercises and lab assessments among most students. Data revealed that students who correctly utilized multimedia text and diagrams, individually and collaboratively, manipulated 3D tools more effectively and were better able to self-explain and complete their dissection work. Student questionnaire responses corroborated that they preferred learning how to dissect a frog using 3D multimedia instruction. The data were used to discuss the impact of 3D technologies, programs, and activities on student learning, spatial reasoning, and their interest in science. Implications were drawn regarding how to best integrate 3D visualizations into science curricula as innovative learning options for students, as instructional alternatives for teachers, and as mandated dissection choices for those who object to physical dissections in schools.

  9. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    PubMed

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  10. Learning 3D Object Templates by Quantizing Geometry and Appearance Spaces.

    PubMed

    Hu, Wenze; Zhu, Song-Chun

    2015-06-01

    While 3D object-centered shape-based models are appealing in comparison with 2D viewer-centered appearance-based models for their lower model complexities and potentially better view generalizabilities, the learning and inference of 3D models has been much less studied in the recent literature due to two factors: i) the enormous complexities of 3D shapes in geometric space; and ii) the gap between 3D shapes and their appearances in images. This paper aims at tackling the two problems by studying an And-Or Tree (AoT) representation that consists of two parts: i) a geometry-AoT quantizing the geometry space, i.e. the possible compositions of 3D volumetric parts and 2D surfaces within the volumes; and ii) an appearance-AoT quantizing the appearance space, i.e. the appearance variations of those shapes in different views. In this AoT, an And-node decomposes an entity into constituent parts, and an Or-node represents alternative ways of decompositions. Thus it can express a combinatorial number of geometry and appearance configurations through small dictionaries of 3D shape primitives and 2D image primitives. In the quantized space, the problem of learning a 3D object template is transformed to a structure search problem which can be efficiently solved in a dynamic programming algorithm by maximizing the information gain. We focus on learning 3D car templates from the AoT and collect a new car dataset featuring more diverse views. The learned car templates integrate both the shape-based model and the appearance-based model to combine the benefits of both. In experiments, we show three aspects: 1) the AoT is more efficient than the frequently used octree method in space representation; 2) the learned 3D car template matches the state-of-the art performances on car detection and pose estimation in a public multi-view car dataset; and 3) in our new dataset, the learned 3D template solves the joint task of simultaneous object detection, pose/view estimation, and part

  11. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    PubMed

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-06

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  12. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI

    NASA Astrophysics Data System (ADS)

    Liu, Saifeng; Zheng, Huaixiu; Feng, Yesu; Li, Wei

    2017-03-01

    A novel deep learning architecture (XmasNet) based on convolutional neural networks was developed for the classification of prostate cancer lesions, using the 3D multiparametric MRI data provided by the PROSTATEx challenge. End-to-end training was performed for XmasNet, with data augmentation done through 3D rotation and slicing, in order to incorporate the 3D information of the lesion. XmasNet outperformed traditional machine learning models based on engineered features, for both train and test data. For the test data, XmasNet outperformed 69 methods from 33 participating groups and achieved the second highest AUC (0.84) in the PROSTATEx challenge. This study shows the great potential of deep learning for cancer imaging.

  13. Pattern identification or 3D visualization? How best to learn topographic map comprehension

    NASA Astrophysics Data System (ADS)

    Atit, Kinnari

    Science, Technology, Engineering, and Mathematics (STEM) experts employ many representations that novices find hard to use because they require a critical STEM skill, interpreting two-dimensional (2D) diagrams that represent three-dimensional (3D) information. The current research focuses on learning to interpret topographic maps. Understanding topographic maps requires knowledge of how to interpret the conventions of contour lines, and skill in visualizing that information in 3D (e.g. shape of the terrain). Novices find both tasks difficult. The present study compared two interventions designed to facilitate understanding for topographic maps to minimal text-only instruction. The 3D Visualization group received instruction using 3D gestures and models to help visualize three topographic forms. The Pattern Identification group received instruction using pointing and tracing gestures to help identify the contour patterns associated with the three topographic forms. The Text-based Instruction group received only written instruction explaining topographic maps. All participants then completed a measure of topographic map use. The Pattern Identification group performed better on the map use measure than participants in the Text-based Instruction group, but no significant difference was found between the 3D Visualization group and the other two groups. These results suggest that learning to identify meaningful contour patterns is an effective strategy for learning how to comprehend topographic maps. Future research should address if learning strategies for how to interpret the information represented on a diagram (e.g. identify patterns in the contour lines), before trying to visualize the information in 3D (e.g. visualize the 3D structure of the terrain), also facilitates students' comprehension of other similar types of diagrams.

  14. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  15. Integrating Online and Offline 3D Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng Ann

    2016-12-07

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer (CRC) prevention and diagnosis. Traditional manual screening is time-consuming, operator-dependent and error-prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intra-class variations in polyp size, color, shape and texture and low inter-class variations between polyps and hard mimics. In this paper, we propose a novel offline and online 3D deep learning integration framework by leveraging the 3D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with previous methods employing hand-crafted features or 2D-CNNs, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  16. 3D web based learning of medical equipment employed in intensive care units.

    PubMed

    Cetin, Aydın

    2012-02-01

    In this paper, both synchronous and asynchronous web based learning of 3D medical equipment models used in hospital intensive care unit have been described over the moodle course management system. 3D medical equipment models were designed with 3ds Max 2008, then converted to ASE format and added interactivity displayed with Viewpoint-Enliven. 3D models embedded in a web page in html format with dynamic interactivity-rotating, panning and zooming by dragging a mouse over images-and descriptive information is embedded to 3D model by using xml format. A pilot test course having 15 h was applied to technicians who is responsible for intensive care unit at Medical Devices Repairing and Maintenance Center (TABOM) of Turkish High Specialized Hospital.

  17. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  18. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  19. Three Primary School Students' Cognition about 3D Rotation in a Virtual Reality Learning Environment

    ERIC Educational Resources Information Center

    Yeh, Andy

    2010-01-01

    This paper reports on three primary school students' explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students…

  20. Structuring Narrative in 3D Digital Game-Based Learning Environments to Support Second Language Acquisition

    ERIC Educational Resources Information Center

    Neville, David O.

    2010-01-01

    The essay is a conceptual analysis from an instructional design perspective exploring the feasibility of using three-dimensional digital game-based learning (3D-DGBL) environments to assist in second language acquisition (SLA). It examines the shared characteristics of narrative within theories of situated cognition, context-based approaches to…

  1. Biview Learning for Human Posture Segmentation from 3D Points Cloud

    PubMed Central

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  2. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  3. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  4. Enhancement of temporal bone anatomy learning with computer 3D rendered imaging software.

    PubMed

    Venail, Frederic; Deveze, Arnaud; Lallemant, Benjamin; Guevara, Nicolas; Mondain, Michel

    2010-01-01

    To determine whether the use of 3D anatomical models is helpful to students and enhances their anatomical knowledge. First year undergraduate students on the speech therapy or hearing aid practitioner courses attended either a lecture alone or a lecture followed by a 3D anatomy based tutorial, the latter which was also attended by ENT residents. Participants who received the tutorial were free to use the 3D model on the university computers or on their home computer and were then asked to answer a satisfaction questionnaire. At the end of the first year examinations, the grades of the undergraduate students were compared between the lecture alone group and lecture plus tutorial group. Generally, all participants found this new tool interesting and user-friendly for the learning of temporal bone anatomy. However, most also considered the help of a teacher indispensable to guide them through the virtual dissection. First year undergraduate students who received the 3D anatomy tutorial performed significantly better during their end of year examination compared to those receiving a lecture alone, particularly concerning the more difficult questions. The 3D anatomical software, used in parallel with traditional teaching methods, such as lectures and cadaver dissection, appears to be a promising tool to improve student learning of temporal bone anatomy.

  5. An efficient dictionary learning algorithm and its application to 3-D medical image denoising.

    PubMed

    Li, Shutao; Fang, Leyuan; Yin, Haitao

    2012-02-01

    In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE

  6. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  7. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  8. 3D Modelling of Interior Spaces: Learning the Language of Indoor Architecture

    NASA Astrophysics Data System (ADS)

    Khoshelham, K.; Díaz-Vilariño, L.

    2014-06-01

    3D models of indoor environments are important in many applications, but they usually exist only for newly constructed buildings. Automated approaches to modelling indoor environments from imagery and/or point clouds can make the process easier, faster and cheaper. We present an approach to 3D indoor modelling based on a shape grammar. We demonstrate that interior spaces can be modelled by iteratively placing, connecting and merging cuboid shapes. We also show that the parameters and sequence of grammar rules can be learned automatically from a point cloud. Experiments with simulated and real point clouds show promising results, and indicate the potential of the method in 3D modelling of large indoor environments.

  9. Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice

    PubMed Central

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302

  10. Applying a 3D Situational Virtual Learning Environment to the Real World Business--An Extended Research in Marketing

    ERIC Educational Resources Information Center

    Wang, Shwu-huey

    2012-01-01

    In order to understand (1) what kind of students can be facilitated through the help of three-dimensional virtual learning environment (3D VLE), and (2) the relationship between a conventional test (ie, paper and pencil test) and the 3D VLE used in this study, the study designs a 3D virtual supermarket (3DVS) to help students transform their role…

  11. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  12. Applying a 3D Situational Virtual Learning Environment to the Real World Business--An Extended Research in Marketing

    ERIC Educational Resources Information Center

    Wang, Shwu-huey

    2012-01-01

    In order to understand (1) what kind of students can be facilitated through the help of three-dimensional virtual learning environment (3D VLE), and (2) the relationship between a conventional test (ie, paper and pencil test) and the 3D VLE used in this study, the study designs a 3D virtual supermarket (3DVS) to help students transform their role…

  13. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  14. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  15. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  16. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls.

  17. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.

  18. Web-based interactive 3D visualization as a tool for improved anatomy learning.

    PubMed

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the "virtual contrast injection" method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug-in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA-program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning.

  19. Teaching-learning: stereoscopic 3D versus Traditional methods in Mexico City.

    PubMed

    Mendoza Oropeza, Laura; Ortiz Sánchez, Ricardo; Ojeda Villagómez, Raúl

    2015-01-01

    In the UNAM Faculty of Odontology, we use a stereoscopic 3D teaching method that has grown more common in the last year, which makes it important to know whether students can learn better with this strategy. The objective of the study is to know, if the 4th year students of the bachelor's degree in dentistry learn more effectively with the use of stereoscopic 3D than the traditional method in Orthodontics. first, we selected the course topics, to be used for both methods; the traditional method using projection of slides and for the stereoscopic third dimension, with the use of videos in digital stereo projection (seen through "passive" polarized 3D glasses). The main topic was supernumerary teeth, including and diverted from their guide eruption. Afterwards we performed an exam on students, containing 24 items, validated by expert judgment in Orthodontics teaching. The results of the data were compared between the two educational methods for determined effectiveness using the model before and after measurement with the statistical package SPSS 20 version. The results presented for the 9 groups of undergraduates in dentistry, were collected with a total of 218 students for 3D and traditional methods, we found in a traditional method a mean 4.91, SD 1.4752 in the pretest and X=6.96, SD 1.26622, St Error 0.12318 for the posttest. The 3D method had a mean 5.21, SD 1.996779 St Error 0.193036 for the pretest X= 7.82, SD =0.963963, St Error 0.09319 posttest; the analysis of Variance between groups F= 5.60 Prob > 0.0000 and Bartlett's test for equal variances 21.0640 Prob > chi2 = 0.007. These results show that the student's learning in 3D means a significant improvement as compared to the traditional teaching method and having a strong association between the two methods. The findings suggest that the stereoscopic 3D method lead to improved student learning compared to traditional teaching.

  20. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine.

    PubMed

    Ryang, Yu-Mi; Villard, Jimmy; Obermüller, Thomas; Friedrich, Benjamin; Wolf, Petra; Gempt, Jens; Ringel, Florian; Meyer, Bernhard

    2015-03-01

    During the past decade, a disproportionate increase of spinal fusion procedures has been observed. Along with this trend, image-guided spine surgery has been experiencing a renaissance in the recent years. A wide range of different navigation systems are available on the market today. However, only few published studies assess the learning curves concerning these new spinal navigation techniques. So far, a study on the learning curve for intraoperative three-dimensional fluoroscopy (3DFL)-navigated pedicle screw (PS) placement is still lacking. The purpose of the study was to analyze the learning curve for 3DFL-navigated thoracolumbar PS placement. The study design included a prospective case series. A cohort of 145 patients were recruited from January 2011 to June 2012. The outcome measures were duration of intraoperative 3D scans, PS placement, PS accuracy on postoperative computed tomography (CT) scans, and PS-related revisions and complications. From the introduction of spinal navigation to our department in January 2011 until June 2012, the learning curve for the duration of intraoperative 3D scan acquisition (navigation or control scan) and placement time per screw, intraoperative screw revisions, screw-related complications, revision surgeries, and PS accuracy on postoperative CT scans were assessed in 145 patients undergoing dorsal navigated instrumentation for 928 PS (736 lumbosacral and 192 thoracic). The observed time span was divided into four intervals. Results of the second, third, and last periods were compared with the first (reference) period, respectively. The mean navigation 3D scan time decreased (first and fourth periods) from 15.4±7.8 (range, 4-40) to 8.4±3.3 (3-15) minutes (p<.001). The mean control 3D scan time (after PS placement) decreased from 11.2±4.8 (5-25) to 6.6±3.0 (3-15) minutes (p<.001). The mean PS insertion time decreased from 5.3±2.5 (1-15) to 3.2±2.3 (1-17) minutes (p<.001). The mean proportion of correctly positioned PS

  1. Progressive Shape-Distribution-Encoder for Learning 3D Shape Representation.

    PubMed

    Xie, Jin; Zhu, Fan; Dai, Guoxian; Shao, Ling; Fang, Yi

    2017-03-01

    Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive shape-distribution-encoder (PSDE). First, we develop a shape distribution representation with the kernel density estimator to characterize the intrinsic geometry structures of 3D shapes. Then, we propose to learn a deep shape feature through an unsupervised PSDE. Specially, the unsupervised PSDE aims at modeling the complex non-linear transform of the estimated shape distributions between consecutive diffusion time. In order to characterize the intrinsic structures of 3D shapes more efficiently, we stack multiple PSDEs to form a network structure. Finally, we concatenate all neurons in the middle hidden layers of the unsupervised PSDE network to form an unsupervised shape descriptor for retrieval. Furthermore, by imposing an additional constraint on the outputs of all hidden layers, we propose a supervised PSDE to form a supervised shape descriptor. For each hidden layer, the similarity between a pair of outputs from the same class is as large as possible and the similarity between a pair of outputs from different classes is as small as possible. The proposed method is evaluated on three benchmark 3D shape data sets with large geometric variations, i.e., McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human data sets, and the experimental results demonstrate the superiority of the proposed method to the existing approaches.

  2. Effects of Verbal Components in 3D Talking-Head on Pronunciation Learning among Non-Native Speakers

    ERIC Educational Resources Information Center

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah; Hoe, Tan Wee

    2015-01-01

    This study was designed to investigate the benefit of inclusion of various verbal elements in 3D talking-head on pronunciation learning among non-native speakers. In particular, the study examines the effects of three different multimedia presentation strategies in 3D talking-head Mobile-Assisted-Language-Learning (MALL) on the learning…

  3. MAT3D: a virtual reality modeling language environment for the teaching and learning of mathematics.

    PubMed

    Pasqualotti, Adriano; dal Sasso Freitas, Carla Maria

    2002-10-01

    Virtual Reality Modeling Language (VRML) is an independent platform language that allows the creation of nonimmersive virtual environments (VEs) and their use through the Internet. In these VEs, the viewer may navigate and interact with virtual objects, moving around and visualizing them from different angles. Students can benefit from this technology, because it permits them access to objects, which describe the topics covered in their studies in addition to oral and written information. In this work, we investigate the aspects involved in the use of VEs in teaching and learning and propose a conceptual model, called MAT3D, as a learning environment that can be used for the teaching and learning of mathematics. A case study is also presented, in which students use a virtual environment modeled in VRML. Data resulting from this study is analyzed statistically to evaluate the impact of this prototype when applied to the actual teaching and learning of mathematics.

  4. Comparing 2D and 3D Game-Based Learning Environments in Terms of Learning Gains and Student Perceptions

    ERIC Educational Resources Information Center

    Ak, Oguz; Kutlu, Birgul

    2017-01-01

    The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…

  5. Comparing 2D and 3D Game-Based Learning Environments in Terms of Learning Gains and Student Perceptions

    ERIC Educational Resources Information Center

    Ak, Oguz; Kutlu, Birgul

    2017-01-01

    The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…

  6. VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views

    NASA Astrophysics Data System (ADS)

    Grossberg, Stephen; Bradski, Gary

    1994-10-01

    A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.

  7. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    PubMed

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  8. Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen

    PubMed Central

    Chou, Chen-Rui; Mageras, Gig; Pizer, Stephen

    2015-01-01

    In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach. PMID:24771575

  9. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    NASA Astrophysics Data System (ADS)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  10. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.

    PubMed

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-21

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  11. Appearance learning for 3D pose detection of a satellite at close-range

    NASA Astrophysics Data System (ADS)

    Oumer, Nassir W.; Kriegel, Simon; Ali, Haider; Reinartz, Peter

    2017-03-01

    In this paper we present a learning-based 3D detection of a highly challenging specular object exposed to a direct sunlight at very close-range. An object detection is one of the most important areas of image processing, and can also be used for initialization of local visual tracking methods. While the object detection in 3D space is generally a difficult problem, it poses more difficulties when the object is specular and exposed to the direct sunlight as in a space environment. Our solution to a such problem relies on an appearance learning of a real satellite mock-up based on a vector quantization and the vocabulary tree. Our method, implemented on a standard computer (CPU), exploits a full perspective projection model and provides near real-time 3D pose detection of a satellite for close-range approach and manipulation. The time consuming part of the training (feature description, building the vocabulary tree and indexing, depth buffering and back-projection) are performed offline, while a fast image retrieval and 3D-2D registration are performed on-line. In contrast, the state of the art image-based 3D pose detection methods are slower on CPU or assume a weak perspective camera projection model. In our case the dimension of the satellite is larger than the distance to the camera, hence the assumption of the weak perspective model does not hold. To evaluate the proposed method, the appearance of a full scale mock-up of the rear part of the TerraSAR-X satellite is trained under various illumination and camera views. The training images are captured with a camera mounted on six degrees of freedom robot, which enables to position the camera in a desired view, sampled over a sphere. The views that are not within the workspace of the robot are interpolated using image-based rendering. Moreover, we generate ground truth poses to verify the accuracy of the detection algorithm. The achieved results are robust and accurate even under noise due to specular reflection

  12. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    NASA Astrophysics Data System (ADS)

    Mozerov, M.; Rius, I.; Roca, X.; González, J.

    2009-12-01

    A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  13. 3D reconstruction of synapses with deep learning based on EM Images

    NASA Astrophysics Data System (ADS)

    Xiao, Chi; Rao, Qiang; Zhang, Dandan; Chen, Xi; Han, Hua; Xie, Qiwei

    2017-03-01

    Recently, due to the rapid development of electron microscope (EM) with its high resolution, stacks delivered by EM can be used to analyze a variety of components that are critical to understand brain function. Since synaptic study is essential in neurobiology and can be analyzed by EM stacks, the automated routines for reconstruction of synapses based on EM Images can become a very useful tool for analyzing large volumes of brain tissue and providing the ability to understand the mechanism of brain. In this article, we propose a novel automated method to realize 3D reconstruction of synapses for Automated Tapecollecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) with deep learning. Being different from other reconstruction algorithms, which employ classifier to segment synaptic clefts directly. We utilize deep learning method and segmentation algorithm to obtain synaptic clefts as well as promote the accuracy of reconstruction. The proposed method contains five parts: (1) using modified Moving Least Square (MLS) deformation algorithm and Scale Invariant Feature Transform (SIFT) features to register adjacent sections, (2) adopting Faster Region Convolutional Neural Networks (Faster R-CNN) algorithm to detect synapses, (3) utilizing screening method which takes context cues of synapses into consideration to reduce the false positive rate, (4) combining a practical morphology algorithm with a suitable fitting function to segment synaptic clefts and optimize the shape of them, (5) applying the plugin in FIJI to show the final 3D visualization of synapses. Experimental results on ATUM-SEM images demonstrate the effectiveness of our proposed method.

  14. Learning Category-Specific Deformable 3D Models for Object Reconstruction.

    PubMed

    Tulsiani, Shubham; Kar, Abhishek; Carreira, Joao; Malik, Jitendra

    2017-04-01

    We address the problem of fully automatic object localization and reconstruction from a single image. This is both a very challenging and very important problem which has, until recently, received limited attention due to difficulties in segmenting objects and predicting their poses. Here we leverage recent advances in learning convolutional networks for object detection and segmentation and introduce a complementary network for the task of camera viewpoint prediction. These predictors are very powerful, but still not perfect given the stringent requirements of shape reconstruction. Our main contribution is a new class of deformable 3D models that can be robustly fitted to images based on noisy pose and silhouette estimates computed upstream and that can be learned directly from 2D annotations available in object detection datasets. Our models capture top-down information about the main global modes of shape variation within a class providing a "low-frequency" shape. In order to capture fine instance-specific shape details, we fuse it with a high-frequency component recovered from shading cues. A comprehensive quantitative analysis and ablation study on the PASCAL 3D+ dataset validates the approach as we show fully automatic reconstructions on PASCAL VOC as well as large improvements on the task of viewpoint prediction.

  15. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  16. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  17. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    PubMed

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs.

  18. Active learning in the lecture theatre using 3D printed objects

    PubMed Central

    Smith, David P.

    2016-01-01

    The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme’s active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student. PMID:27366318

  19. Active learning in the lecture theatre using 3D printed objects.

    PubMed

    Smith, David P

    2016-01-01

    The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme's active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student.

  20. The Influence of Design Strategy of Peer Learning on 3-D Software Learning

    ERIC Educational Resources Information Center

    Tu, Jui-Che; Chiang, Yu-Hsien

    2016-01-01

    The research is now an instructor in the department of animation in a college, discovering that students can not pay attention to their study and lack of motivation to learn. Therefore, the research motivation is how to restore students' learning motivation and have them plunge into course learning. The study aimed to develop "design strategy…

  1. The Influence of Design Strategy of Peer Learning on 3-D Software Learning

    ERIC Educational Resources Information Center

    Tu, Jui-Che; Chiang, Yu-Hsien

    2016-01-01

    The research is now an instructor in the department of animation in a college, discovering that students can not pay attention to their study and lack of motivation to learn. Therefore, the research motivation is how to restore students' learning motivation and have them plunge into course learning. The study aimed to develop "design strategy…

  2. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  3. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  4. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  5. Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking

    NASA Astrophysics Data System (ADS)

    Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2017-03-01

    Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.

  6. Robust autonomous model learning from 2D and 3D data sets.

    PubMed

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets.

  7. [Web-based education: learning surgical procedures step-by-step with 3D visualization].

    PubMed

    van der Velde, Susanne; Maljers, Jaap; Wiggers, Theo

    2014-01-01

    There is a need for more uniform, structured education focused on surgical procedures. We offer a standardized, step-by-step, web-based procedural training method with which surgeons can train more interns efficiently. The basis of this learning method is formed by 3D films in which surgical procedures are performed in clearly defined steps and the anatomic structures behind the surgical operating planes are further dissected. This basis is supported by online modules in which, aside from the operation, preparation and postoperative care are also addressed. Registrars can test their knowledge with exams. Trainers can see what the registrars studied, how they scored and how they progressed with their clinical skills. With the online portfolio we offer building blocks for certification and accreditation. With this clearly structured research method of constant quality, registrars are less dependent on the local trainer. In addition, through better preparation, the operation capacity can be used more efficiently for the training.

  8. Adverse events in healthcare: learning from mistakes.

    PubMed

    Rafter, N; Hickey, A; Condell, S; Conroy, R; O'Connor, P; Vaughan, D; Williams, D

    2015-04-01

    Large national reviews of patient charts estimate that approximately 10% of hospital admissions are associated with an adverse event (defined as an injury resulting in prolonged hospitalization, disability or death, caused by healthcare management). Apart from having a significant impact on patient morbidity and mortality, adverse events also result in increased healthcare costs due to longer hospital stays. Furthermore, a substantial proportion of adverse events are preventable. Through identifying the nature and rate of adverse events, initiatives to improve care can be developed. A variety of methods exist to gather adverse event data both retrospectively and prospectively but these do not necessarily capture the same events and there is variability in the definition of an adverse event. For example, hospital incident reporting collects only a very small fraction of the adverse events found in retrospective chart reviews. Until there are systematic methods to identify adverse events, progress in patient safety cannot be reliably measured. This review aims to discuss the need for a safety culture that can learn from adverse events, describe ways to measure adverse events, and comment on why current adverse event monitoring is unable to demonstrate trends in patient safety.

  9. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition

  10. GEARS a 3D Virtual Learning Environment and Virtual Social and Educational World Used in Online Secondary Schools

    ERIC Educational Resources Information Center

    Barkand, Jonathan; Kush, Joseph

    2009-01-01

    Virtual Learning Environments (VLEs) are becoming increasingly popular in online education environments and have multiple pedagogical advantages over more traditional approaches to education. VLEs include 3D worlds where students can engage in simulated learning activities such as Second Life. According to Claudia L'Amoreaux at Linden Lab, "at…

  11. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  12. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  13. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features With Structure Preservation on 3-D Meshes.

    PubMed

    Han, Zhizhong; Liu, Zhenbao; Han, Junwei; Vong, Chi-Man; Bu, Shuhui; Chen, Chun Long Philip

    2016-06-30

    Discriminative features of 3-D meshes are significant to many 3-D shape analysis tasks. However, handcrafted descriptors and traditional unsupervised 3-D feature learning methods suffer from several significant weaknesses: 1) the extensive human intervention is involved; 2) the local and global structure information of 3-D meshes cannot be preserved, which is in fact an important source of discriminability; 3) the irregular vertex topology and arbitrary resolution of 3-D meshes do not allow the direct application of the popular deep learning models; 4) the orientation is ambiguous on the mesh surface; and 5) the effect of rigid and nonrigid transformations on 3-D meshes cannot be eliminated. As a remedy, we propose a deep learning model with a novel irregular model structure, called mesh convolutional restricted Boltzmann machines (MCRBMs). MCRBM aims to simultaneously learn structure-preserving local and global features from a novel raw representation, local function energy distribution. In addition, multiple MCRBMs can be stacked into a deeper model, called mesh convolutional deep belief networks (MCDBNs). MCDBN employs a novel local structure preserving convolution (LSPC) strategy to convolve the geometry and the local structure learned by the lower MCRBM to the upper MCRBM. LSPC facilitates resolving the challenging issue of the orientation ambiguity on the mesh surface in MCDBN. Experiments using the proposed MCRBM and MCDBN were conducted on three common aspects: global shape retrieval, partial shape retrieval, and shape correspondence. Results show that the features learned by the proposed methods outperform the other state-of-the-art 3-D shape features.

  14. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  15. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    PubMed Central

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402

  16. A machine learning pipeline for automated registration and classification of 3D lidar data

    NASA Astrophysics Data System (ADS)

    Rajagopal, Abhejit; Chellappan, Karthik; Chandrasekaran, Shivkumar; Brown, Andrew P.

    2017-05-01

    Despite the large availability of geospatial data, registration and exploitation of these datasets remains a persis- tent challenge in geoinformatics. Popular signal processing and machine learning algorithms, such as non-linear SVMs and neural networks, rely on well-formatted input models as well as reliable output labels, which are not always immediately available. In this paper we outline a pipeline for gathering, registering, and classifying initially unlabeled wide-area geospatial data. As an illustrative example, we demonstrate the training and test- ing of a convolutional neural network to recognize 3D models in the OGRIP 2007 LiDAR dataset using fuzzy labels derived from OpenStreetMap as well as other datasets available on OpenTopography.org. When auxiliary label information is required, various text and natural language processing filters are used to extract and cluster keywords useful for identifying potential target classes. A subset of these keywords are subsequently used to form multi-class labels, with no assumption of independence. Finally, we employ class-dependent geometry extraction routines to identify candidates from both training and testing datasets. Our regression networks are able to identify the presence of 6 structural classes, including roads, walls, and buildings, in volumes as big as 8000 m3 in as little as 1.2 seconds on a commodity 4-core Intel CPU. The presented framework is neither dataset nor sensor-modality limited due to the registration process, and is capable of multi-sensor data-fusion.

  17. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  18. The Effectiveness of a 3D Computerized Tutorial to Enhance Learning of the Canine Larynx and Hyoid Apparatus.

    PubMed

    Nemanic, Sarah; Mills, Serena; Viehdorfer, Matt; Clark, Terri; Bailey, Mike

    Teaching the anatomy of the canine larynx and hyoid apparatus is challenging because dissection disassembles and/or damages these structures, making it difficult to understand their three-dimensional (3D) anatomy and spatial interrelationships. This study assessed the effectiveness of an interactive, computerized 3D tutorial for teaching the anatomy of the canine larynx and hyoid apparatus using a randomized control design with students enrolled in the first-year professional program at Oregon State University College of Veterinary Medicine. All first-year students from 2 consecutive years were eligible. All students received the traditional methods of didactic teaching and dissection to learn the anatomy of the canine larynx and hyoid apparatus, after which they were divided into two statistically equal groups based on their cumulative anatomy test scores from the prior term. The tutorial group received an interactive, computerized tutorial developed by the investigators containing 3D images of the canine larynx and hyoid apparatus, while the control group received the same 3D images without the computerized tutorial. Both groups received the same post-learning assessment and survey. Sixty-three first-year students participated in the study, 28 in the tutorial group, and 35 in the control group. Post-learning assessment and survey scores were both significantly higher among students in the computerized tutorial group than those in the control group. This study demonstrates that a 3D computerized tutorial is more effective in teaching the anatomy of the canine hyoid apparatus and larynx than 3D images without a tutorial. Students likewise rated their learning experience higher when using the 3D computerized tutorial.

  19. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. Team Learning for Healthcare Quality Improvement.

    PubMed

    Manukyan, Narine; Eppstein, Margaret J; Horbar, Jeffrey D

    2013-08-28

    In organized healthcare quality improvement collaboratives (QICs), teams of practitioners from different hospitals exchange information on clinical practices with the aim of improving health outcomes at their own institutions. However, what works in one hospital may not work in others with different local contexts because of nonlinear interactions among various demographics, treatments, and practices. In previous studies of collaborations where the goal is a collective problem solving, teams of diverse individuals have been shown to outperform teams of similar individuals. However, when the purpose of collaboration is knowledge diffusion in complex environments, it is not clear whether team diversity will help or hinder effective learning. In this paper, we first use an agent-based model of QICs to show that teams comprising similar individuals outperform those with more diverse individuals under nearly all conditions, and that this advantage increases with the complexity of the landscape and level of noise in assessing performance. Examination of data from a network of real hospitals provides encouraging evidence of a high degree of similarity in clinical practices, especially within teams of hospitals engaging in QIC teams. However, our model also suggests that groups of similar hospitals could benefit from larger teams and more open sharing of details on clinical outcomes than is currently the norm. To facilitate this, we propose a secure virtual collaboration system that would allow hospitals to efficiently identify potentially better practices in use at other institutions similar to theirs without any institutions having to sacrifice the privacy of their own data. Our results may also have implications for other types of data-driven diffusive learning such as in personalized medicine and evolutionary search in noisy, complex combinatorial optimization problems.

  1. Team Learning for Healthcare Quality Improvement

    PubMed Central

    Eppstein, Margaret J.; Horbar, Jeffrey D.

    2014-01-01

    In organized healthcare quality improvement collaboratives (QICs), teams of practitioners from different hospitals exchange information on clinical practices with the aim of improving health outcomes at their own institutions. However, what works in one hospital may not work in others with different local contexts because of nonlinear interactions among various demographics, treatments, and practices. In previous studies of collaborations where the goal is a collective problem solving, teams of diverse individuals have been shown to outperform teams of similar individuals. However, when the purpose of collaboration is knowledge diffusion in complex environments, it is not clear whether team diversity will help or hinder effective learning. In this paper, we first use an agent-based model of QICs to show that teams comprising similar individuals outperform those with more diverse individuals under nearly all conditions, and that this advantage increases with the complexity of the landscape and level of noise in assessing performance. Examination of data from a network of real hospitals provides encouraging evidence of a high degree of similarity in clinical practices, especially within teams of hospitals engaging in QIC teams. However, our model also suggests that groups of similar hospitals could benefit from larger teams and more open sharing of details on clinical outcomes than is currently the norm. To facilitate this, we propose a secure virtual collaboration system that would allow hospitals to efficiently identify potentially better practices in use at other institutions similar to theirs without any institutions having to sacrifice the privacy of their own data. Our results may also have implications for other types of data-driven diffusive learning such as in personalized medicine and evolutionary search in noisy, complex combinatorial optimization problems. PMID:25360395

  2. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    NASA Astrophysics Data System (ADS)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  3. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  4. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  5. Developing Healthcare Practice through Action Learning: Individual and Group Journeys

    ERIC Educational Resources Information Center

    Wilson, Valerie; McCormack, Brendan; Ives, Glenice

    2008-01-01

    Action Learning is now a well established strategy for reflective inquiry in healthcare. Whilst a great deal is know about action learning there has been inadequate research on the process of learning that takes place, and the impact that this holds for individuals, groups or organisations. This article reports on the findings of 15-month action…

  6. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.

    PubMed

    Loke, Yue-Hin; Harahsheh, Ashraf S; Krieger, Axel; Olivieri, Laura J

    2017-03-11

    Congenital heart disease (CHD) is the most common human birth defect, and clinicians need to understand the anatomy to effectively care for patients with CHD. However, standard two-dimensional (2D) display methods do not adequately carry the critical spatial information to reflect CHD anatomy. Three-dimensional (3D) models may be useful in improving the understanding of CHD, without requiring a mastery of cardiac imaging. The study aimed to evaluate the impact of 3D models on how pediatric residents understand and learn about tetralogy of Fallot following a teaching session. Pediatric residents rotating through an inpatient Cardiology rotation were recruited. The sessions were randomized into using either conventional 2D drawings of tetralogy of Fallot or physical 3D models printed from 3D cardiac imaging data sets (cardiac MR, CT, and 3D echocardiogram). Knowledge acquisition was measured by comparing pre-session and post-session knowledge test scores. Learner satisfaction and self-efficacy ratings were measured with questionnaires filled out by the residents after the teaching sessions. Comparisons between the test scores, learner satisfaction and self-efficacy questionnaires for the two groups were assessed with paired t-test. Thirty-five pediatric residents enrolled into the study, with no significant differences in background characteristics, including previous clinical exposure to tetralogy of Fallot. The 2D image group (n = 17) and 3D model group (n = 18) demonstrated similar knowledge acquisition in post-test scores. Residents who were taught with 3D models gave a higher composite learner satisfaction scores (P = 0.03). The 3D model group also had higher self-efficacy aggregate scores, but the difference was not statistically significant (P = 0.39). Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction. Future studies should examine the impact of models on teaching CHD that

  7. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  8. Effectiveness of Applying 2D Static Depictions and 3D Animations to Orthographic Views Learning in Graphical Course

    ERIC Educational Resources Information Center

    Wu, Chih-Fu; Chiang, Ming-Chin

    2013-01-01

    This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…

  9. Effectiveness of Applying 2D Static Depictions and 3D Animations to Orthographic Views Learning in Graphical Course

    ERIC Educational Resources Information Center

    Wu, Chih-Fu; Chiang, Ming-Chin

    2013-01-01

    This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…

  10. Using a Quest in a 3D Virtual Environment for Student Interaction and Vocabulary Acquisition in Foreign Language Learning

    ERIC Educational Resources Information Center

    Kastoudi, Denise

    2011-01-01

    The gaming and interactional nature of the virtual environment of Second Life offers opportunities for language learning beyond the traditional pedagogy. This study case examined the potential of 3D virtual quest games to enhance vocabulary acquisition through interaction, negotiation of meaning and noticing. Four adult students of English at…

  11. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  12. Improving Learning Results and Reducing Cognitive Load through 3D Courseware on Color Management and Inspection Instruction

    ERIC Educational Resources Information Center

    Hsiung, Liang-Yuan; Lai, Mu-Hui

    2013-01-01

    This study intends to solve the problem that schools in Taiwan lack of the equipment for color management and inspection instruction and seek ways to improve learning results and reduce cognitive load. The researchers developed 3D courseware for color management and inspection through a research and development process. To further scrutinize the…

  13. Characteristics of eye movements in 3-D object learning: comparison between within-modal and cross-modal object recognition.

    PubMed

    Ueda, Yoshiyuki; Saiki, Jun

    2012-01-01

    Recent studies have indicated that the object representation acquired during visual learning depends on the encoding modality during the test phase. However, the nature of the differences between within-modal learning (eg visual learning-visual recognition) and cross-modal learning (eg visual learning-haptic recognition) remains unknown. To address this issue, we utilised eye movement data and investigated object learning strategies during the learning phase of a cross-modal object recognition experiment. Observers informed of the test modality studied an unfamiliar visually presented 3-D object. Quantitative analyses showed that recognition performance was consistent regardless of rotation in the cross-modal condition, but was reduced when objects were rotated in the within-modal condition. In addition, eye movements during learning significantly differed between within-modal and cross-modal learning. Fixations were more diffused for cross-modal learning than in within-modal learning. Moreover, over the course of the trial, fixation durations became longer in cross-modal learning than in within-modal learning. These results suggest that the object learning strategies employed during the learning phase differ according to the modality of the test phase, and that this difference leads to different recognition performances.

  14. Lessons learned from China's healthcare system and nursing profession.

    PubMed

    Ungos, Kristin; Thomas, Eileen

    2008-01-01

    To examine the healthcare policy and the nursing profession in China and to share insights learned from that country, which can be used to inform health-policy decision makers in the US. Despite their significant cultural, political, and historical differences, many healthcare issues are the same for China and the US. Both countries face rising healthcare costs and widening disparities between wealthy and poor individuals, and between urban and rural sectors. Some of the ideas that can be gleaned from China's healthcare system include rewarding physicians for prescribing preventive services; using trained laypeople as gatekeepers to the healthcare system in rural areas; communicating to the public and to health-policy decision makers the importance of nurses so that staffing, work conditions, and professional status can be improved; and including nurses in health-policy decisions. Lessons learned from China's healthcare policy and healthcare system have implications for public health policy change that could lead to improved patient outcomes in the US. The current changing global health environment calls for healthcare providers to learn from and work with our international neighbors to improve health outcomes for all patients.

  15. Fruit bruise detection based on 3D meshes and machine learning technologies

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Zhang, Ping

    2016-05-01

    This paper studies bruise detection in apples using 3-D imaging. Bruise detection based on 3-D imaging overcomes many limitations of bruise detection based on 2-D imaging, such as low accuracy, sensitive to light condition, and so on. In this paper, apple bruise detection is divided into two parts: feature extraction and classification. For feature extraction, we use a framework that can directly extract local binary patterns from mesh data. For classification, we studies support vector machine. Bruise detection using 3-D imaging is compared with bruise detection using 2-D imaging. 10-fold cross validation is used to evaluate the performance of the two systems. Experimental results show that bruise detection using 3-D imaging can achieve better classification accuracy than bruise detection based on 2-D imaging.

  16. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  17. Computerized lung nodule detection using 3D feature extraction and learning based algorithms.

    PubMed

    Ozekes, Serhat; Osman, Onur

    2010-04-01

    In this paper, a Computer Aided Detection (CAD) system based on three-dimensional (3D) feature extraction is introduced to detect lung nodules. First, eight directional search was applied in order to extract regions of interests (ROIs). Then, 3D feature extraction was performed which includes 3D connected component labeling, straightness calculation, thickness calculation, determining the middle slice, vertical and horizontal widths calculation, regularity calculation, and calculation of vertical and horizontal black pixel ratios. To make a decision for each ROI, feed forward neural networks (NN), support vector machines (SVM), naive Bayes (NB) and logistic regression (LR) methods were used. These methods were trained and tested via k-fold cross validation, and results were compared. To test the performance of the proposed system, 11 cases, which were taken from Lung Image Database Consortium (LIDC) dataset, were used. ROC curves were given for all methods and 100% detection sensitivity was reached except naive Bayes.

  18. Effects of Training Method and Gender on Learning 2D/3D Geometry

    ERIC Educational Resources Information Center

    Khairulanuar, Samsudin; Nazre, Abd Rashid; Jamilah, H.; Sairabanu, Omar Khan; Norasikin, Fabil

    2010-01-01

    This article reports the findings of an experimental study involving 36 primary school students (16 girls, 20 boys, Mean age = 9.5 years, age range: 8-10 years) in geometrical understanding of 2D and 3D objects. Students were assigned into two experimental groups and one control group based on a stratified random sampling procedure. The first…

  19. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    ERIC Educational Resources Information Center

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  20. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments"…

  1. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments"…

  2. A 3D learning playground for potential attention training in ADHD: A brain computer interface approach.

    PubMed

    Ali, Abdulla; Puthusserypady, Sadasivan

    2015-01-01

    This paper presents a novel brain-computer-interface (BCI) system that could potentially be used for enhancing the attention ability of subjects with attention deficit hyperactivity disorder (ADHD). It employs the steady state visual evoked potential (SSVEP) paradigm. The developed system consists of a 3D classroom environment with active 3D distractions and 2D games executed on the blackboard. The system is concealed as a game (with stages of varying difficulty) with an underlying story to motivate the subjects. It was tested on eleven healthy subjects and the results undeniably establish that by moving to a higher stage in the game where the 2D environment is changed to 3D along with the added 3D distractions, the difficulty level in keeping attention on the main task increases for the subjects. Results also show a mean accuracy of 92.26 ± 7.97% and a mean average selection time of 3.07 ± 1.09 seconds.

  3. Demographic diversity, communication and learning behaviour in healthcare groups.

    PubMed

    Curşeu, Petru Lucian

    2013-01-01

    An integrative model of group learning was tested in a sample of 40 healthcare groups (434 respondents), and the results show that age diversity reduces the frequency of face-to-face communication whereas educational diversity reduces the frequency of virtual communication in healthcare groups. Frequency of communication (both face-to-face and virtual), in turn, positively impacts on the emergence of trust and psychological safety, which are essential drivers of learning behaviours in healthcare groups. Additional results show that average educational achievement within groups is conducive for communication frequency (both face-to-face and virtual), whereas mean age within groups has a negative association with the use of virtual communication in healthcare groups. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Enhancing healthcare education with accelerated learning techniques.

    PubMed

    Henry, S A; Swartz, R G

    1995-01-01

    In this article, the authors describe innovative teaching techniques that create a learning environment addressing nonverbal and verbal communication. The use of these accelerated learning techniques in a Basic Cardiac Dysrhythmia Course is discussed, and participant learning is measured and analyzed. When these methods, including relaxation, music, and subliminal messages were used, participant exam grades improved. The authors concluded that these simple procedures enhance learning and increase the effectiveness of teaching.

  5. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    ERIC Educational Resources Information Center

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  6. The Use of 3D Virtual Learning Environments in Training Foreign Language Pre-Service Teachers

    ERIC Educational Resources Information Center

    Can, Tuncer; Simsek, Irfan

    2015-01-01

    The recent developments in computer and Internet technologies and in three dimensional modelling necessitates the new approaches and methods in the education field and brings new opportunities to the higher education. The Internet and virtual learning environments have changed the learning opportunities by diversifying the learning options not…

  7. A 3D optical deformation measurement system supported by knowledge-based and learning techniques

    NASA Astrophysics Data System (ADS)

    Reiterer, Alexander; Lehmann, Martin; Miljanovic, Milos; Ali, Haider; Paar, Gerhard; Egly, Uwe; Eiter, Thomas; Kahmen, Heribert

    2009-03-01

    High accuracy 3D representation and monitoring of objects is receiving increasing interest both in science and industrial applications. Up to now tasks like monitoring of building displacements or deformations were solved by means of artificial targets on the objects of interest, although mature optical 3D measurement and laser scanning techniques are available. Such systems can perform their measurements even without targeting. This paper presents a new optical 3D measurement system, based on the fusion between a geodetic image sensor and a laser scanner. The main goal of its development was the automation of the whole measurement process, including the tasks of point identification and measurement, deformation analysis, and interpretation. This was only possible by means of new methods and techniques originally developed in the area of Artificial Intelligence; both point detection and deformation analysis are supported by decision systems that use such techniques. The resulting complex multi-sensor system is able to measure and analyse the deformation of objects, as shown in experiments. In this article we focus on specific key components and novel techniques that have been developed, and briefly report on the current stage of the whole system.

  8. Deep Learning Segmentation of Optical Microscopy Images Improves 3D Neuron Reconstruction.

    PubMed

    Li, Rongjian; Zeng, Tao; Peng, Hanchuan; Ji, Shuiwang

    2017-03-08

    Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging, especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different reconstruction algorithms.

  9. Secure Healthcare Internet Employee Learning Drill

    SciTech Connect

    2005-08-01

    SHIELD solves the problem of rapidly training large numbers of healthcare or other facility personnel who work around the clock - especially the non-professional semi-skilled employees who usually have "first contact" with patients and visitors - about how to limit or prevent exposure of facilities to infectious illness or other disease threats. This tool provides a very brief, realistic training experience that shows a range of facility personnel how to identify and respond to possible acute infectious respiratory illness outbreaks.

  10. Learning process for performing and analyzing 3D/4D transperineal ultrasound imaging and interobserver reliability study.

    PubMed

    Siafarikas, F; Staer-Jensen, J; Braekken, I H; Bø, K; Engh, M Ellström

    2013-03-01

    To evaluate the learning process for acquiring three- and four-dimensional (3D/4D) transperineal ultrasound volumes of the levator hiatus (LH) dimensions at rest, during pelvic floor muscle (PFM) contraction and on Valsalva maneuver, and for analyzing the ultrasound volumes, as well as to perform an interobserver reliability study between two independent ultrasound examiners. This was a prospective study including 22 women. We monitored the learning process of an inexperienced examiner (IE) performing 3D/4D transperineal ultrasonography and analyzing the volumes. The examination included acquiring volumes during three PFM contractions and three Valsalva maneuvers. LH dimensions were determined in the axial plane. The learning process was documented by estimating agreement between the IE and an experienced examiner (E) using the intraclass correlation coefficient. Agreement was calculated in blocks of 10 ultrasound examinations and analyzed volumes. After the learning process was complete the interobserver reliability for the technique was calculated between these two independent examiners. For offline analysis of the first 10 ultrasound volumes obtained by E, good to very good agreement between E and IE was achieved for all LH measurements except for the left and right levator-urethra gap and pubic arc. For the next 10 analyzed volumes, agreement improved for all LH measurements. Volumes that had been obtained by IE and E were then re-evaluated by IE, and good to very good agreement was found for all LH measurements indicating consistency in volume acquisition. The interobserver reliability study showed excellent ICC values (ICC, 0.81-0.97) for all LH measurements except the pubic arc (ICC = 0.67). 3D/4D transperineal ultrasound is a reliable technique that can be learned in a short period of time. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  11. Height control of laser metal-wire deposition based on iterative learning control and 3D scanning

    NASA Astrophysics Data System (ADS)

    Heralić, Almir; Christiansson, Anna-Karin; Lennartson, Bengt

    2012-09-01

    Laser Metal-wire Deposition is an additive manufacturing technique for solid freeform fabrication of fully dense metal structures. The technique is based on robotized laser welding and wire filler material, and the structures are built up layer by layer. The deposition process is, however, sensitive to disturbances and thus requires continuous monitoring and adjustments. In this work a 3D scanning system is developed and integrated with the robot control system for automatic in-process control of the deposition. The goal is to ensure stable deposition, by means of choosing a correct offset of the robot in the vertical direction, and obtaining a flat surface, for each deposited layer. The deviations in the layer height are compensated by controlling the wire feed rate on next deposition layer, based on the 3D scanned data, by means of iterative learning control. The system is tested through deposition of bosses, which is expected to be a typical application for this technique in the manufacture of jet engine components. The results show that iterative learning control including 3D scanning is a suitable method for automatic deposition of such structures. This paper presents the equipment, the control strategy and demonstrates the proposed approach with practical experiments.

  12. Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment

    ERIC Educational Resources Information Center

    Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho

    2012-01-01

    The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…

  13. "The Evolution of e-Learning in the Context of 3D Virtual Worlds"

    ERIC Educational Resources Information Center

    Kotsilieris, Theodore; Dimopoulou, Nikoletta

    2013-01-01

    Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…

  14. Manifold learning for shape guided segmentation of cardiac boundaries: application to 3D+t cardiac MRI.

    PubMed

    Eslami, Abouzar; Yigitsoy, Mehmet; Navab, Nassir

    2011-01-01

    In this paper we propose a new method for shape guided segmentation of cardiac boundaries based on manifold learning of the shapes represented by the phase field approximation of the Mumford-Shah functional. A novel distance is defined to measure the similarity of shapes without requiring deformable registration. Cardiac motion is compensated and phases are mapped into one reference phase, that is the end of diastole, to avoid time warping and synchronization at all cardiac phases. Non-linear embedding of these 3D shapes extracts the manifold of the inter-subject variation of the heart shape to be used for guiding the segmentation for a new subject. For validation the method is applied to a comprehensive dataset of 3D+t cardiac Cine MRI from normal subjects and patients.

  15. Workplace wellness using online learning tools in a healthcare setting.

    PubMed

    Blake, Holly; Gartshore, Emily

    2016-09-01

    The aim was to develop and evaluate an online learning tool for use with UK healthcare employees, healthcare educators and healthcare students, to increase knowledge of workplace wellness as an important public health issue. A 'Workplace Wellness' e-learning tool was developed and peer-reviewed by 14 topic experts. This focused on six key areas relating to workplace wellness: work-related stress, musculoskeletal disorders, diet and nutrition, physical activity, smoking and alcohol consumption. Each key area provided current evidence-based information on causes and consequences, access to UK government reports and national statistics, and guidance on actions that could be taken to improve health within a workplace setting. 188 users (93.1% female, age 18-60) completed online knowledge questionnaires before (n = 188) and after (n = 88) exposure to the online learning tool. Baseline knowledge of workplace wellness was poor (n = 188; mean accuracy 47.6%, s.d. 11.94). Knowledge significantly improved from baseline to post-intervention (mean accuracy = 77.5%, s.d. 13.71) (t(75) = -14.801, p < 0.0005) with knowledge increases evident for all included topics areas. Usability evaluation showed that participants perceived the tool to be useful (96.4%), engaging (73.8%) and would recommend it to others (86.9%). Healthcare professionals, healthcare educators and pre-registered healthcare students held positive attitudes towards online learning, indicating scope for development of further online packages relating to other important health parameters.

  16. An adaptive learning approach for 3-D surface reconstruction from point clouds.

    PubMed

    Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia

    2008-06-01

    In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.

  17. Comprehensive Healthcare module: medical and pharmacy students’ shared learning experiences

    PubMed Central

    Tan, Chai-Eng; Jaffar, Aida; Tong, Seng-Fah; Hamzah, Majmin Sheikh; Mohamad, Nabishah

    2014-01-01

    Introduction The Comprehensive Healthcare (CHC) module was developed to introduce pre-clinical medical and pharmacy students to the concept of comprehensive healthcare. This study aims to explore their shared learning experiences within this module. Methodology During this module, medical and pharmacy students conducted visits to patients’ homes and to related community-based organisations in small groups. They were required to write a reflective journal on their experiences regarding working with other professions as part of their module assessment. Highly scored reflective journals written by students from the 2011/2012 academic session were selected for analysis. Their shared learning experiences were identified via thematic analysis. We also analysed students’ feedback regarding the module. Results Analysis of 25 selected reflective journals revealed several important themes: ‘Understanding of impact of illness and its relation to holistic care’, ‘Awareness of the role of various healthcare professions’ and ‘Generic or soft skills for inter-professional collaboration’. Although the primary objective of the module was to expose students to comprehensive healthcare, the students learnt skills required for future collaborative practice from their experiences. Discussion The CHC module provided early clinical exposure to community-based health issues and incorporated some elements of inter-professional education. The students learnt about the roles of other healthcare professions and acquired soft skills required for future collaborative practice during this module. PMID:25327980

  18. Comprehensive Healthcare module: medical and pharmacy students' shared learning experiences.

    PubMed

    Tan, Chai-Eng; Jaffar, Aida; Tong, Seng-Fah; Hamzah, Majmin Sheikh; Mohamad, Nabishah

    2014-01-01

    Introduction The Comprehensive Healthcare (CHC) module was developed to introduce pre-clinical medical and pharmacy students to the concept of comprehensive healthcare. This study aims to explore their shared learning experiences within this module. Methodology During this module, medical and pharmacy students conducted visits to patients' homes and to related community-based organisations in small groups. They were required to write a reflective journal on their experiences regarding working with other professions as part of their module assessment. Highly scored reflective journals written by students from the 2011/2012 academic session were selected for analysis. Their shared learning experiences were identified via thematic analysis. We also analysed students' feedback regarding the module. Results Analysis of 25 selected reflective journals revealed several important themes: 'Understanding of impact of illness and its relation to holistic care', 'Awareness of the role of various healthcare professions' and 'Generic or soft skills for inter-professional collaboration'. Although the primary objective of the module was to expose students to comprehensive healthcare, the students learnt skills required for future collaborative practice from their experiences. Discussion The CHC module provided early clinical exposure to community-based health issues and incorporated some elements of inter-professional education. The students learnt about the roles of other healthcare professions and acquired soft skills required for future collaborative practice during this module.

  19. Comprehensive Healthcare module: medical and pharmacy students' shared learning experiences.

    PubMed

    Tan, Chai-Eng; Jaffar, Aida; Tong, Seng-Fah; Hamzah, Majmin Sheikh; Mohamad, Nabishah

    2014-01-01

    The Comprehensive Healthcare (CHC) module was developed to introduce pre-clinical medical and pharmacy students to the concept of comprehensive healthcare. This study aims to explore their shared learning experiences within this module. During this module, medical and pharmacy students conducted visits to patients' homes and to related community-based organisations in small groups. They were required to write a reflective journal on their experiences regarding working with other professions as part of their module assessment. Highly scored reflective journals written by students from the 2011/2012 academic session were selected for analysis. Their shared learning experiences were identified via thematic analysis. We also analysed students' feedback regarding the module. Analysis of 25 selected reflective journals revealed several important themes: 'Understanding of impact of illness and its relation to holistic care', 'Awareness of the role of various healthcare professions' and 'Generic or soft skills for inter-professional collaboration'. Although the primary objective of the module was to expose students to comprehensive healthcare, the students learnt skills required for future collaborative practice from their experiences. The CHC module provided early clinical exposure to community-based health issues and incorporated some elements of inter-professional education. The students learnt about the roles of other healthcare professions and acquired soft skills required for future collaborative practice during this module.

  20. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  1. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  2. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  3. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  4. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    NASA Technical Reports Server (NTRS)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  5. Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2016-12-01

    This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  7. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  8. Classification of amyloid status using machine learning with histograms of oriented 3D gradients.

    PubMed

    Cattell, Liam; Platsch, Günther; Pfeiffer, Richie; Declerck, Jérôme; Schnabel, Julia A; Hutton, Chloe

    2016-01-01

    Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 (18)F-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 (11)C-PiB images and 128 (18)F-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.

  9. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  10. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  11. ProQ3D: improved model quality assessments using deep learning.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2017-01-03

    Protein quality assessment is a long-standing problem in bioinformatics. For more than a decade we have developed state-of-art predictors by carefully selecting and optimising inputs to a machine learning method. The correlation has increased from 0.60 in ProQ to 0.81 in ProQ2 and 0.85 in ProQ3 mainly by adding a large set of carefully tuned descriptions of a protein. Here, we show that a substantial improvement can be obtained using exactly the same inputs as in ProQ2 or ProQ3 but replacing the support vector machine by a deep neural network. This improves the Pearson correlation to 0.90 (0.85 using ProQ2 input features).

  12. A new approach to the learning of dental morphology, function, and esthetics: the "2D-3D-4D" concept.

    PubMed

    Magne, Pascal

    2015-01-01

    A concept is proposed for an approach to the learning of dental morphology and occlusion. Dental morphology, function, and esthetics should reflect a fundamental driving force, that is, the faithful emulation of the natural dentition's structural (functional, mechanical) and esthetic properties. The innovative part of the proposed approach is the emphasis on visual arts and the 2D-3D-4D aspect that starts with drawing (2D/3D) and continues with partial wax-up exercises that are followed by labial waxups and, finally, full wax-ups using innovative technical aids (electric waxers, prefabricated wax patterns, etc). Finally, the concept of layers (4D) and the histoanatomy of enamel/dentin and optical depth are taught through the realization of layering exercises (advanced acrylic mock-ups and composite resin restorations). All these techniques and materials are not only used to teach morphology and occlusion, but also constitute essential tools that will be of significant use for the student dentists and dental technologists in their future daily practice. The clinical significance of the presented methodology should allow not only students but also practicing dentists and dental technologists to help their youngest collaborators to develop a deep sense of morphology, function, and esthetics.

  13. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  14. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients

    PubMed Central

    Nie, Dong; Zhang, Han; Adeli, Ehsan; Liu, Luyan

    2016-01-01

    High-grade glioma is the most aggressive and severe brain tumor that leads to death of almost 50% patients in 1–2 years. Thus, accurate prognosis for glioma patients would provide essential guidelines for their treatment planning. Conventional survival prediction generally utilizes clinical information and limited handcrafted features from magnetic resonance images (MRI), which is often time consuming, laborious and subjective. In this paper, we propose using deep learning frameworks to automatically extract features from multi-modal preoperative brain images (i.e., T1 MRI, fMRI and DTI) of high-grade glioma patients. Specifically, we adopt 3D convolutional neural networks (CNNs) and also propose a new network architecture for using multi-channel data and learning supervised features. Along with the pivotal clinical features, we finally train a support vector machine to predict if the patient has a long or short overall survival (OS) time. Experimental results demonstrate that our methods can achieve an accuracy as high as 89.9% We also find that the learned features from fMRI and DTI play more important roles in accurately predicting the OS time, which provides valuable insights into functional neuro-oncological applications. PMID:28149967

  15. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients.

    PubMed

    Nie, Dong; Zhang, Han; Adeli, Ehsan; Liu, Luyan; Shen, Dinggang

    2016-10-01

    High-grade glioma is the most aggressive and severe brain tumor that leads to death of almost 50% patients in 1-2 years. Thus, accurate prognosis for glioma patients would provide essential guidelines for their treatment planning. Conventional survival prediction generally utilizes clinical information and limited handcrafted features from magnetic resonance images (MRI), which is often time consuming, laborious and subjective. In this paper, we propose using deep learning frameworks to automatically extract features from multi-modal preoperative brain images (i.e., T1 MRI, fMRI and DTI) of high-grade glioma patients. Specifically, we adopt 3D convolutional neural networks (CNNs) and also propose a new network architecture for using multi-channel data and learning supervised features. Along with the pivotal clinical features, we finally train a support vector machine to predict if the patient has a long or short overall survival (OS) time. Experimental results demonstrate that our methods can achieve an accuracy as high as 89.9% We also find that the learned features from fMRI and DTI play more important roles in accurately predicting the OS time, which provides valuable insights into functional neuro-oncological applications.

  16. Advanced 3D visualization in student-centred medical education.

    PubMed

    Silén, Charlotte; Wirell, Staffan; Kvist, Joanna; Nylander, Eva; Smedby, Orjan

    2008-06-01

    Healthcare students have difficulties achieving a conceptual understanding of 3D anatomy and misconceptions about physiological phenomena are persistent and hard to address. 3D visualization has improved the possibilities of facilitating understanding of complex phenomena. A project was carried out in which high quality 3D visualizations using high-resolution CT and MR images from clinical research were developed for educational use. Instead of standard stacks of slices (original or multiplanar reformatted) volume-rendering images in the quicktime VR format that enables students to interact intuitively were included. Based on learning theories underpinning problem based learning, 3D visualizations were implemented in the existing curricula of the medical and physiotherapy programs. The images/films were used in lectures, demonstrations and tutorial sessions. Self-study material was also developed. To support learning efficacy by developing and using 3D datasets in regular health care curricula and enhancing the knowledge about possible educational value of 3D visualizations in learning anatomy and physiology. Questionnaires were used to investigate the medical and physiotherapy students' opinions about the different formats of visualizations and their learning experiences. The 3D images/films stimulated the students will to understand more and helped them to get insights about biological variations and different organs size, space extent and relation to each other. The virtual dissections gave a clearer picture than ordinary dissections and the possibility to turn structures around was instructive. 3D visualizations based on authentic, viable material point out a new dimension of learning material in anatomy, physiology and probably also pathophysiology. It was successful to implement 3D images in already existing themes in the educational programs. The results show that deeper knowledge is required about students' interpretation of images/films in relation to

  17. An Examination of the Effects of Collaborative Scientific Visualization via Model-based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning Within an Immersive 3D World

    NASA Astrophysics Data System (ADS)

    Soleimani, Ali

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits associated with the use of scientific visualization tools involving model-based reasoning (MBR). Little is known, however, about collaborative use of scientific visualization, via MBR, within an immersive 3D-world learning environment for helping to improve perceived value of STEM learning and knowledge acquisition in a targeted domain such as geothermal energy. Geothermal energy was selected as the study's STEM focus, because understanding in the domain is highly dependent on successfully integrating science and mathematics concepts. This study used a 2x2 Mixed ANOVA, with repeated measures, design to analyze collaborative usage of a geothermal energy MBR model and its effects on learning within an immersive 3D world. The immersive 3D world used for the study is supported by the Open Simulator platform. Findings from this study can suggest ways to improve STEM learning and inform the design of MBR activities when conducted within an immersive 3D world.

  18. Introducing an Avatar Acceptance Model: Student Intention to Use 3D Immersive Learning Tools in an Online Learning Classroom

    ERIC Educational Resources Information Center

    Kemp, Jeremy William

    2011-01-01

    This quantitative survey study examines the willingness of online students to adopt an immersive virtual environment as a classroom tool and compares this with their feelings about more traditional learning modes including our ANGEL learning management system and the Elluminate live Web conferencing tool. I surveyed 1,108 graduate students in…

  19. Introducing an Avatar Acceptance Model: Student Intention to Use 3D Immersive Learning Tools in an Online Learning Classroom

    ERIC Educational Resources Information Center

    Kemp, Jeremy William

    2011-01-01

    This quantitative survey study examines the willingness of online students to adopt an immersive virtual environment as a classroom tool and compares this with their feelings about more traditional learning modes including our ANGEL learning management system and the Elluminate live Web conferencing tool. I surveyed 1,108 graduate students in…

  20. Investigating the Affective Learning in a 3D Virtual Learning Environment: The Case Study of the Chatterdale Mystery

    ERIC Educational Resources Information Center

    Molka-Danielsen, Judith; Hadjistassou, Stella; Messl-Egghart, Gerhilde

    2016-01-01

    This research is motivated by the emergence of virtual technologies and their potential as engaging pedagogical tools for facilitating comprehension, interactions and collaborations for learning; and in particular as applied to learning second languages (L2). This paper provides a descriptive analysis of a case study that examines affective…

  1. Collaborative 3D Learning Games for Future Learning: Teachers' Instructional Practices to Enhance Shared Knowledge Construction among Students

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; Oksanen, Kimmo

    2014-01-01

    Collaborative games will enable new kinds of possibilities for learning. In the future, the goal of game-based learning should be to introduce new ideas and deepen learners' in-depth understanding. However, studies have shown that shared high-level knowledge construction is a challenging process. Moreover, thus far, few empirical studies have…

  2. Collaborative 3D Learning Games for Future Learning: Teachers' Instructional Practices to Enhance Shared Knowledge Construction among Students

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; Oksanen, Kimmo

    2014-01-01

    Collaborative games will enable new kinds of possibilities for learning. In the future, the goal of game-based learning should be to introduce new ideas and deepen learners' in-depth understanding. However, studies have shown that shared high-level knowledge construction is a challenging process. Moreover, thus far, few empirical studies have…

  3. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    ERIC Educational Resources Information Center

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  4. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    ERIC Educational Resources Information Center

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  5. iSocial: delivering the Social Competence Intervention for Adolescents (SCI-A) in a 3D virtual learning environment for youth with high functioning autism.

    PubMed

    Stichter, Janine P; Laffey, James; Galyen, Krista; Herzog, Melissa

    2014-02-01

    One consistent area of need for students with autism spectrum disorders is in the area of social competence. However, the increasing need to provide qualified teachers to deliver evidence-based practices in areas like social competence leave schools, such as those found in rural areas, in need of support. Distance education and in particular, 3D Virtual Learning, holds great promise for supporting schools and youth to gain social competence through knowledge and social practice in context. iSocial, a distance education, 3D virtual learning environment implemented the 31-lesson social competence intervention for adolescents across three small cohorts totaling 11 students over a period of 4 months. Results demonstrated that the social competence curriculum was delivered with fidelity in the 3D virtual learning environment. Moreover, learning outcomes suggest that the iSocial approach shows promise for social competence benefits for youth.

  6. Encoding, learning, and spatial updating of multiple object locations specified by 3-D sound, spatial language, and vision.

    PubMed

    Klatzky, Roberta L; Lippa, Yvonne; Loomis, Jack M; Golledge, Reginald G

    2003-03-01

    Participants standing at an origin learned the distance and azimuth of target objects that were specified by 3-D sound, spatial language, or vision. We tested whether the ensuing target representations functioned equivalently across modalities for purposes of spatial updating. In experiment 1, participants localized targets by pointing to each and verbalizing its distance, both directly from the origin and at an indirect waypoint. In experiment 2, participants localized targets by walking to each directly from the origin and via an indirect waypoint. Spatial updating bias was estimated by the spatial-coordinate difference between indirect and direct localization; noise from updating was estimated by the difference in variability of localization. Learning rate and noise favored vision over the two auditory modalities. For all modalities, bias during updating tended to move targets forward, comparably so for three and five targets and for forward and rightward indirect-walking directions. Spatial language produced additional updating bias and noise from updating. Although spatial representations formed from language afford updating, they do not function entirely equivalently to those from intrinsically spatial modalities.

  7. A new machine learning classifier for high dimensional healthcare data.

    PubMed

    Padman, Rema; Bai, Xue; Airoldi, Edoardo M

    2007-01-01

    Data sets with many discrete variables and relatively few cases arise in health care, commerce, information security, and many other domains. Learning effective and efficient prediction models from such data sets is a challenging task. In this paper, we propose a new approach that combines Metaheuristic search and Bayesian Networks to learn a graphical Markov Blanket-based classifier from data. The Tabu Search enhanced Markov Blanket (TS/MB) procedure is based on the use of restricted neighborhoods in a general Bayesian Network constrained by the Markov condition, called Markov Blanket Neighborhoods. Computational results from two real world healthcare data sets indicate that the TS/MB procedure converges fast and is able to find a parsimonious model with substantially fewer predictor variables than in the full data set. Furthermore, it has comparable or better prediction performance when compared against several machine learning methods, and provides insight into possible causal relations among the variables.

  8. Healthcare

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Gulish, Artem; Beach, Bennett H.

    2012-01-01

    This report, provides detailed analyses and projections of occupations in healthcare fields, and wages earned. In addition, the important skills and work values associated with workers in those fields of healthcare are discussed. Finally, the authors analyze the implications of research findings for the racial, ethnic, and class diversity of the…

  9. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  10. The Learning Healthcare System and Cardiovascular Care: A Scientific Statement From the American Heart Association.

    PubMed

    Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E

    2017-03-02

    The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented.

  11. Mobile learning for HIV/AIDS healthcare worker training in resource-limited settings

    PubMed Central

    2010-01-01

    Background We present an innovative approach to healthcare worker (HCW) training using mobile phones as a personal learning environment. Twenty physicians used individual Smartphones (Nokia N95 and iPhone), each equipped with a portable solar charger. Doctors worked in urban and peri-urban HIV/AIDS clinics in Peru, where almost 70% of the nation's HIV patients in need are on treatment. A set of 3D learning scenarios simulating interactive clinical cases was developed and adapted to the Smartphones for a continuing medical education program lasting 3 months. A mobile educational platform supporting learning events tracked participant learning progress. A discussion forum accessible via mobile connected participants to a group of HIV specialists available for back-up of the medical information. Learning outcomes were verified through mobile quizzes using multiple choice questions at the end of each module. Methods In December 2009, a mid-term evaluation was conducted, targeting both technical feasibility and user satisfaction. It also highlighted user perception of the program and the technical challenges encountered using mobile devices for lifelong learning. Results With a response rate of 90% (18/20 questionnaires returned), the overall satisfaction of using mobile tools was generally greater for the iPhone. Access to Skype and Facebook, screen/keyboard size, and image quality were cited as more troublesome for the Nokia N95 compared to the iPhone. Conclusions Training, supervision and clinical mentoring of health workers are the cornerstone of the scaling up process of HIV/AIDS care in resource-limited settings (RLSs). Educational modules on mobile phones can give flexibility to HCWs for accessing learning content anywhere. However lack of softwares interoperability and the high investment cost for the Smartphones' purchase could represent a limitation to the wide spread use of such kind mLearning programs in RLSs. PMID:20825677

  12. Mobile learning for HIV/AIDS healthcare worker training in resource-limited settings.

    PubMed

    Zolfo, Maria; Iglesias, David; Kiyan, Carlos; Echevarria, Juan; Fucay, Luis; Llacsahuanga, Ellar; de Waard, Inge; Suàrez, Victor; Llaque, Walter Castillo; Lynen, Lutgarde

    2010-09-08

    We present an innovative approach to healthcare worker (HCW) training using mobile phones as a personal learning environment.Twenty physicians used individual Smartphones (Nokia N95 and iPhone), each equipped with a portable solar charger. Doctors worked in urban and peri-urban HIV/AIDS clinics in Peru, where almost 70% of the nation's HIV patients in need are on treatment. A set of 3D learning scenarios simulating interactive clinical cases was developed and adapted to the Smartphones for a continuing medical education program lasting 3 months. A mobile educational platform supporting learning events tracked participant learning progress. A discussion forum accessible via mobile connected participants to a group of HIV specialists available for back-up of the medical information. Learning outcomes were verified through mobile quizzes using multiple choice questions at the end of each module. In December 2009, a mid-term evaluation was conducted, targeting both technical feasibility and user satisfaction. It also highlighted user perception of the program and the technical challenges encountered using mobile devices for lifelong learning. With a response rate of 90% (18/20 questionnaires returned), the overall satisfaction of using mobile tools was generally greater for the iPhone. Access to Skype and Facebook, screen/keyboard size, and image quality were cited as more troublesome for the Nokia N95 compared to the iPhone. Training, supervision and clinical mentoring of health workers are the cornerstone of the scaling up process of HIV/AIDS care in resource-limited settings (RLSs). Educational modules on mobile phones can give flexibility to HCWs for accessing learning content anywhere. However lack of softwares interoperability and the high investment cost for the Smartphones' purchase could represent a limitation to the wide spread use of such kind mLearning programs in RLSs.

  13. Experience, Trajectories, and Reifications: An Emerging Framework of Practice-Based Learning in Healthcare Workplaces

    ERIC Educational Resources Information Center

    Teunissen, Pim W.

    2015-01-01

    Learning by working is omnipresent in healthcare education. It enables people to learn how to perform, think, and interact in ways that work for their specific context. In this paper, I review my approach to studying this process. It centers on the question why healthcare professionals do what they do and how their actions and learning are…

  14. Experience, Trajectories, and Reifications: An Emerging Framework of Practice-Based Learning in Healthcare Workplaces

    ERIC Educational Resources Information Center

    Teunissen, Pim W.

    2015-01-01

    Learning by working is omnipresent in healthcare education. It enables people to learn how to perform, think, and interact in ways that work for their specific context. In this paper, I review my approach to studying this process. It centers on the question why healthcare professionals do what they do and how their actions and learning are…

  15. Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016).

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  17. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  18. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education.

  19. Policy Capacity in the Learning Healthcare System Comment on "Health Reform Requires Policy Capacity".

    PubMed

    Gardner, William

    2015-08-07

    Pierre-Gerlier Forest and his colleagues make a strong argument for the need to expand policy capacity among healthcare actors. In this commentary, I develop an additional argument in support of Forest et al view. Forest et al rightly point to the need to have embedded policy experts to successfully translate healthcare reform policy into healthcare change. Translation of externally generated innovation policy into local solutions is only one source of healthcare system change. We also need to build learning healthcare systems that can discover new health solutions at the frontline of care. Enhanced policy capacity staffing in those organizations will be key to building continuously learning health systems.

  20. Readiness for interprofessional learning among healthcare professional students

    PubMed Central

    Fahs, Deborah B.; Kayingo, Gerald; Wong, Risa; Jeon, Sangchoon; Honan, Linda

    2016-01-01

    Objectives The purpose of this study was to investigate attitudes toward interprofessional learning among first year medical, nursing, and physician associate students at an American university at the start of their training. Methods First year medical (n=101), nursing (n=81), and physician associate (n=35) students were invited to complete an anonymous online survey which included items related to demographic information and the Readiness for Interprofessional Learning Scale. Scores were compared by the general linear model and Duncan’s multiple range test while controlling for demographic differences.  Results All three groups scored in the high range, indicating readiness for shared learning. Female students, those with advanced degrees, and those with healthcare experience prior to enrolment in health professional school had significantly higher scores than their counterparts. After controlling for differences in demographic factors, nursing students scored significantly higher than physician associate and medical students (F (2,162) = 6.22, 0.0025).  Conclusions Health professions students demonstrated readiness for interprofessional learning early in their academic programs, however important differences in baseline readiness emerged. These findings suggest that educators consider baseline attitudes of students when designing interprofessional education curricula, and use caution when extrapolating data from other geographies or cultures. PMID:27171559

  1. Optimizing learning in healthcare: how Island Health is evolving to learn at the speed of change.

    PubMed

    Gottfredson, Conrad; Stroud, Carol; Jackson, Mary; Stevenson, R Lynn; Archer, Jana

    2014-01-01

    Healthcare organizations are challenged with constrained resources and increasing service demands by an aging population with complex care needs. Exponential growth in competency requirements also challenges staff's ability to provide quality patient care. How can a healthcare organization support its staff to learn "at or above the speed of change" while continuing to provide the quality patient care? Island Health is addressing this challenge by transforming its traditional education model into an innovative, evidence-based learning and performance support approach. Implementation of the methodology is yielding several lessons learned, both for the internal Learning and Performance Support team, and for what it takes to bring a new way of doing business into an organization. A key result is that this approach is enabling the organization to be more responsive in helping staff gain and maintain competencies.

  2. The future of e-learning in healthcare professional education: some possible directions. Commentary.

    PubMed

    Walsh, Kieran

    2014-01-01

    E-learning in healthcare professional education still seems like it is a new innovation but the reality is that e-learning has been around for as long as the internet has been around. This is approximately twenty years and so it is probably appropriate to now take stock and consider what the future of e-learning in healthcare professional education might be. One likely occurrence is that there will be more formats, more interactive technology, and sometimes game-based learning. Another future of healthcare professional education will likely be in simulation. Like other forms of technology outside of medicine, the cost of e-learning in healthcare professional education will fall rapidly. E-learning will also become more adaptive in the future and so will deliver educational content based on learners' exact needs. The future of e-learning will also be mobile. Increasingly in the future e-learning will be blended with face to face education.

  3. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-07-21

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  4. An Assessment of Students' Perceptions of Learning Benefits Stemming from the Design and Instructional Use of a Web3D Atlas

    ERIC Educational Resources Information Center

    Salajan, Florin D.; Mount, Greg J.; Prakki, Anuradha

    2015-01-01

    This article has a dual purpose: it describes the development of First Year Dental Anatomy (FYDA), a web-based 3D interactive application used in the dental curriculum at a major Canadian university, and it reports on the results of a research study conducted to assess the perception of learning benefits students experienced through the use of…

  5. Effects of Type of Exploratory Strategy and Prior Knowledge on Middle School Students' Learning of Chemical Formulas from a 3D Role-Playing Game

    ERIC Educational Resources Information Center

    Chen, Ming-Puu; Wong, Yu-Ting; Wang, Li-Chun

    2014-01-01

    The purpose of this study was to examine the effects of the type of exploratory strategy and level of prior knowledge on middle school students' performance and motivation in learning chemical formulas via a 3D role-playing game (RPG). Two types of exploratory strategies-RPG exploratory with worked-example and RPG exploratory without…

  6. Effects of Type of Exploratory Strategy and Prior Knowledge on Middle School Students' Learning of Chemical Formulas from a 3D Role-Playing Game

    ERIC Educational Resources Information Center

    Chen, Ming-Puu; Wong, Yu-Ting; Wang, Li-Chun

    2014-01-01

    The purpose of this study was to examine the effects of the type of exploratory strategy and level of prior knowledge on middle school students' performance and motivation in learning chemical formulas via a 3D role-playing game (RPG). Two types of exploratory strategies-RPG exploratory with worked-example and RPG exploratory without…

  7. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture.

    PubMed

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components.

  8. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture

    PubMed Central

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative ‘apps’ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  9. [Managing digital medical imaging projects in healthcare services: lessons learned].

    PubMed

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  10. Fostering the development of effective person-centered healthcare communication skills: an interprofessional shared learning model.

    PubMed

    Cavanaugh, James T; Konrad, Shelley Cohen

    2012-01-01

    To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.

  11. E-service learning: A pedagogic innovation for healthcare management education.

    PubMed

    Malvey, Donna M; Hamby, Eileen F; Fottler, Myron D

    2006-01-01

    This paper proposes an innovation in service learning that we identify as e-service learning. By adding the "e" to service learning, we create a service learning model that is dynamic, mediated by technology, and delivered online. This paper begins by examining service learning, which is a distinct learning concept. Service learning furnishes students with opportunities for applied learning through participation in projects and activities in community organizations. The authors then define and conceptualize e-service learning, including the anticipated outcomes of implementation such as enhanced access, quality, and cost effectiveness of healthcare management education. Because e-service learning is mediated by technology, we identify state of the art technologies that support e-service learning activities. In addition, possible e-service learning projects and activities that may be included in healthcare management courses such as finance, human resources, quality, service management/marketing and strategy are identified. Finally, opportunities for future research are suggested.

  12. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    NASA Astrophysics Data System (ADS)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  13. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    SciTech Connect

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  14. Learning teams and networks: using information technology as a means of managing work process development in healthcare organizations.

    PubMed

    Korhonen, Vesa; Paavilainen, Eija

    2002-01-01

    This article focuses on the introduction of team learning and shared knowledge creation using computer-based learning environments and teams as networks in the development of healthcare organizations. Using computer technology, care units can be considered learning teams and the hospital a network of those learning teams. Team learning requires that the healthcare workers' intellectual capital and personal competence be viewed as an important resource in developing the quality of action of the entire healthcare organization.

  15. The Indiana University Center for Healthcare Innovation and Implementation Science: Bridging healthcare research and delivery to build a learning healthcare system.

    PubMed

    Azar, Jose; Adams, Nadia; Boustani, Malaz

    2015-01-01

    In the United States, it is estimated that 75,000 deaths every year could be averted if the healthcare system implemented high quality care more effectively and efficiently. Patient harm in the hospital occurs as a consequence of inadequate procedures, medications and other therapies, nosocomial infections, diagnostic evaluations and patient falls. Implementation science, a new emerging field in healthcare, is the development and study of methods and tools aimed at enhancing the implementation of new discoveries and evidence into daily healthcare delivery. The Indiana University Center for Healthcare Innovation and Implementation Science (IU-CHIIS) was launched in September 2013 with the mission to use implementation science and innovation to produce great-quality, patient-centered and cost-efficient healthcare delivery solutions for the United States of America. Within the first 24 months of its initiation, the IU-CHIIS successfully scaled up an evidence-based collaborative care model for people with dementia and/or depression, successfully expanded the Accountable Care Unit model positively impacting the efficiency and quality of care, created the first Certificate in Innovation and Implementation Science in the US and secured funding from National Institutes of Health to investigate innovations in dementia care. This article summarizes the establishment of the IU-CHIIS, its impact and outcomes and the lessons learned during the journey.

  16. Extracellular environment contribution to astrogliosis—lessons learned from a tissue engineered 3D model of the glial scar

    PubMed Central

    Rocha, Daniela N.; Ferraz-Nogueira, José P.; Barrias, Cristina C.; Relvas, João B.; Pêgo, Ana P.

    2015-01-01

    Glial scars are widely seen as a (bio)mechanical barrier to central nervous system regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of several variables simultaneously, up to now no comprehensive study has addressed and clarified how different lesion microenvironment properties affect astrogliosis. Using astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have built a simple and reproducible 3D culture system of astrogliosis mimicking many features of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing changes in gene expression (e.g., GFAP) and increased extra-cellular matrix production (chondroitin 4 sulfate and collagen), inhibiting neuronal outgrowth. This behavior being influenced by the hydrogel network properties. Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of extracellular matrix composition modification with chondroitinase ABC, can diminish astrogliosis. Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, controlled and reproducible 3D culture system constitutes a good scar-like system and offers great potential in future neurodegenerative mechanism studies, as well as in drug screenings envisaging the development of new therapeutic approaches to minimize the effects of the glial scar in the context of central nervous system disease. PMID:26483632

  17. Extracellular environment contribution to astrogliosis-lessons learned from a tissue engineered 3D model of the glial scar.

    PubMed

    Rocha, Daniela N; Ferraz-Nogueira, José P; Barrias, Cristina C; Relvas, João B; Pêgo, Ana P

    2015-01-01

    Glial scars are widely seen as a (bio)mechanical barrier to central nervous system regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of several variables simultaneously, up to now no comprehensive study has addressed and clarified how different lesion microenvironment properties affect astrogliosis. Using astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have built a simple and reproducible 3D culture system of astrogliosis mimicking many features of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing changes in gene expression (e.g., GFAP) and increased extra-cellular matrix production (chondroitin 4 sulfate and collagen), inhibiting neuronal outgrowth. This behavior being influenced by the hydrogel network properties. Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of extracellular matrix composition modification with chondroitinase ABC, can diminish astrogliosis. Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, controlled and reproducible 3D culture system constitutes a good scar-like system and offers great potential in future neurodegenerative mechanism studies, as well as in drug screenings envisaging the development of new therapeutic approaches to minimize the effects of the glial scar in the context of central nervous system disease.

  18. Issues for Deployment of Mobile Learning by Nurses in Australian Healthcare Settings.

    PubMed

    Mather, Carey; Cummings, Elizabeth

    2016-01-01

    Undergraduate nursing curricula are being redesigned to include strategies for deployment of mobile learning as a legitimate nursing function. A recent online survey exploring the use of mobile learning by undergraduate student nurses revealed barriers, challenges, risks, and benefits to using mobile learning at the workplace. Inability to access mobile learning at both individual and organisational levels impacted on student learning and teaching opportunities. Students also indicated that educational preparation for ensuring appropriate use of mobile learning is necessary to guide learning and teaching in situ at point of care. This highlights the need for the development of policy to guide best practice that will enable this new pedagogy to be fully utilised for learning and teaching in healthcare settings. Until governance of mobile learning in educational and healthcare settings in Australia is addressed, harnessing the indubitable benefit of mobile learning and teaching will be unachievable.

  19. The Transformative Role of ePortfolios: Feedback in Healthcare Learning

    ERIC Educational Resources Information Center

    Peacock, Susi; Murray, Sue; Scott, Alison; Kelly, Jacquie

    2011-01-01

    This article reports findings of a study based in Scotland that explored healthcare learners' experiences of feedback and ePortfolios. Feedback is a highly complex, multi-dimensional phenomenon, and healthcare learners consider it essential for their learning, recognizing that without it patient safety may be compromised. This study sought to…

  20. Generational Learning Style Preferences Based on Computer-Based Healthcare Training

    ERIC Educational Resources Information Center

    Knight, Michaelle H.

    2016-01-01

    Purpose. The purpose of this mixed-method study was to determine the degree of perceived differences for auditory, visual and kinesthetic learning styles of Traditionalist, Baby Boomers, Generation X and Millennial generational healthcare workers participating in technology-assisted healthcare training. Methodology. This mixed-method research…

  1. Generational Learning Style Preferences Based on Computer-Based Healthcare Training

    ERIC Educational Resources Information Center

    Knight, Michaelle H.

    2016-01-01

    Purpose. The purpose of this mixed-method study was to determine the degree of perceived differences for auditory, visual and kinesthetic learning styles of Traditionalist, Baby Boomers, Generation X and Millennial generational healthcare workers participating in technology-assisted healthcare training. Methodology. This mixed-method research…

  2. A novel class of machine-learning-driven real-time 2D/3D tracking methods: texture model registration (TMR)

    NASA Astrophysics Data System (ADS)

    Steininger, Philipp; Neuner, Markus; Fritscher, Karl; Sedlmayer, Felix; Deutschmann, Heinrich

    2011-03-01

    We present a novel view on 2D/3D image registration by introducing a generic algorithmic framework that is based on supervised machine learning (SML). First and foremost, this class of algorithms, referred to as texture model registration (TMR), aims at making 2D/3D registration applicable for time-critical image guided medical procedures. TMR methods are two-stage. In a first offline pre-computational stage, a prediction rule is derived from a pre-interventional 3D image and according geometric constraints. This is achieved by computing digitally reconstructed radiographs, pre-processing them, extracting their texture, and applying SML methods. In a second online stage, the inferred rule is used for predicting the spatial rigid transformation of unseen intrainterventional 2D images. A first simple concrete TMR implementation, referred to as TMR-PCR, is introduced. This approach involves principal component regression (PCR) and simple intermediate pre-processing steps. Using TMR-PCR, first experimental results on five clinical IGRT 3D data sets and synthetic intra-interventional images are presented. The implementation showed an average registration rate of 48 Hz over 40000 registrations, and succeeded in the majority of cases with a mean target registration error smaller than 2 mm. Finally, the potential and characteristics of the proposed methodical framework are discussed.

  3. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    PubMed

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.

  4. 3D Talking-Head Mobile App: A Conceptual Framework for English Pronunciation Learning among Non-Native Speakers

    ERIC Educational Resources Information Center

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah

    2013-01-01

    One of the critical issues pertaining learning English as second language successfully is pronunciation, which consequently contributes to learners' poor communicative power. This situation is moreover crucial among non-native speakers. Therefore, various initiatives have been taken in order to promote effective language learning, which includes…

  5. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  6. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  7. Attitudes and Readiness of Students of Healthcare Professions towards Interprofessional Learning.

    PubMed

    Maharajan, Mari Kannan; Rajiah, Kingston; Khoo, Suan Phaik; Chellappan, Dinesh Kumar; De Alwis, Ranjit; Chui, Hui Cing; Tan, Lui Lee; Tan, Yee Ning; Lau, Shin Yee

    2017-01-01

    To evaluate the attitudes and readiness of students of healthcare professions towards interprofessional learning. A cross-sectional study design was used. Two different scales were used to measure the readiness for and perception of interprofessional learning; these were the 'Readiness for Interprofessional Learning Scale' and the 'Interdisciplinary Education Perception Scale'. A convenience sampling method was employed. The sample was drawn from undergraduate students enrolled in years 1 to 5 of medical, dental, pharmacy and health sciences programme. Descriptive and inferential statistics were used to analyse the data. The overall response rate was 83%. The students mentioned that shared learning with other healthcare professional students will increase their ability to understand clinical problems. The students also mentioned that such shared learning will help them to communicate better with patients and other professionals. The students preferred to work with individuals from their own profession. Participants from medical, dental, pharmacy, and health sciences had a difference in opinion about 'negative professional identity', a domain of the Readiness for Interprofessional Learning Scale. Based on the different year of study of the students, 'team work and collaboration', 'negative professional identity' and 'roles and responsibility' were the Interdisciplinary Education Perception Scale domains where students had a difference in opinion. Attitudes and readiness towards interprofessional learning showed significant differences among students of various healthcare professions; these differences also depended on the students' year of study. Interprofessional learning should be incorporated in the curriculum of all healthcare professional programs, which may foster students to become competent healthcare providers and understand each profession's role.

  8. Examining Informal Learning Using Mobile Devices in the Healthcare Workplace

    ERIC Educational Resources Information Center

    Fahlman, Dorothy

    2013-01-01

    The study of workplace learning and informal learning are not new to adult education and pedagogy. However, the use of mobile devices as learning tools for informal learning in the workplace is an understudied area. Using theories on informal learning and constructivism as a framework, this paper explores informal learning of registered nurses…

  9. Learning Evaluation: blending quality improvement and implementation research methods to study healthcare innovations.

    PubMed

    Balasubramanian, Bijal A; Cohen, Deborah J; Davis, Melinda M; Gunn, Rose; Dickinson, L Miriam; Miller, William L; Crabtree, Benjamin F; Stange, Kurt C

    2015-03-10

    In healthcare change interventions, on-the-ground learning about the implementation process is often lost because of a primary focus on outcome improvements. This paper describes the Learning Evaluation, a methodological approach that blends quality improvement and implementation research methods to study healthcare innovations. Learning Evaluation is an approach to multi-organization assessment. Qualitative and quantitative data are collected to conduct real-time assessment of implementation processes while also assessing changes in context, facilitating quality improvement using run charts and audit and feedback, and generating transportable lessons. Five principles are the foundation of this approach: (1) gather data to describe changes made by healthcare organizations and how changes are implemented; (2) collect process and outcome data relevant to healthcare organizations and to the research team; (3) assess multi-level contextual factors that affect implementation, process, outcome, and transportability; (4) assist healthcare organizations in using data for continuous quality improvement; and (5) operationalize common measurement strategies to generate transportable results. Learning Evaluation principles are applied across organizations by the following: (1) establishing a detailed understanding of the baseline implementation plan; (2) identifying target populations and tracking relevant process measures; (3) collecting and analyzing real-time quantitative and qualitative data on important contextual factors; (4) synthesizing data and emerging findings and sharing with stakeholders on an ongoing basis; and (5) harmonizing and fostering learning from process and outcome data. Application to a multi-site program focused on primary care and behavioral health integration shows the feasibility and utility of Learning Evaluation for generating real-time insights into evolving implementation processes. Learning Evaluation generates systematic and rigorous cross

  10. Discrete curvatures combined with machine learning for automated extraction of impact craters on 3D topographic meshes

    NASA Astrophysics Data System (ADS)

    Christoff, Nicole; Jorda, Laurent; Viseur, Sophie; Bouley, Sylvain; Manolova, Agata; Mari, Jean-Luc

    2017-04-01

    One of the challenges of Planetary Science is to estimate as accurately as possible the age of the geological units that crop out on the different space objects in the Solar system. This dating relies on the counting of the impact craters that cover the given outcrop surface. Using this technique, a chronology of the geological events can be determined and their formation and evolution processes can be understood. Over the last decade, several missions to asteroids and planets, such as Dawn to Vesta and Ceres, Messenger to Mercury, Mars Orbiter and Mars Express, produced a huge amount of images, from which equally huge DEMs have been generated. Planned missions, such as BepiColombo, will produce an even larger set of images. This rapidly growing amount of visible images and DEMs makes it more and more fastidious to manually identify craters. Acquisition data will become bigger and this will then require more accurate planetary surface analysis. Because of the importance of the problem, many Crater Detection Algorithm (CDA) were developed and applied onto either image data (2D) or DEM (2D1/5), and rarely onto full 3D data such as 3D topographic meshes. We propose a new approach, based on the detection of crater rim, which form a characteristic round shape. The proposed approach contains two main steps: 1) each vertex is labelled with the values of the mean curvature and minimal curvatures; 2) this curvature map is injected into a Neural Network (NN) to automatically process the region of interest. As a NN approach, it requires a training set of manually detected craters to estimate the optimal weights of the NN. Once trained, the NN can be applied onto the regions of interest for automatically extracting all the craters. As a result, it was observed that detecting forms using a two-dimensional map based on the computation of discrete differential estimators on the 3D mesh is more efficient than using a simple elevation map. This approach significantly reduces the

  11. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  12. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  13. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  14. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  15. Implementation of 3d Tools and Immersive Experience Interaction for Supporting Learning in a Library-Archive Environment. Visions and Challenges

    NASA Astrophysics Data System (ADS)

    Angeletaki, A.; Carrozzino, M.; Johansen, S.

    2013-07-01

    In this paper we present an experimental environment of 3D books combined with a game application that has been developed by a collaboration project between the Norwegian University of Science and Technology in Trondheim, Norway the NTNU University Library, and the Percro laboratory of Santa Anna University in Pisa, Italy. MUBIL is an international research project involving museums, libraries and ICT academy partners aiming to develop a consistent methodology enabling the use of Virtual Environments as a metaphor to present manuscripts content through the paradigms of interaction and immersion, evaluating different possible alternatives. This paper presents the results of the application of two prototypes of books augmented with the use of XVR and IL technology. We explore immersive-reality design strategies in archive and library contexts for attracting new users. Our newly established Mubil-lab has invited school classes to test the books augmented with 3D models and other multimedia content in order to investigate whether the immersion in such environments can create wider engagement and support learning. The metaphor of 3D books and game designs in a combination allows the digital books to be handled through a tactile experience and substitute the physical browsing. In this paper we present some preliminary results about the enrichment of the user experience in such environment.

  16. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  17. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  18. Responding to the Widening Participation Agenda through Improved Access to and within 3D Virtual Learning Environments

    ERIC Educational Resources Information Center

    Wood, Denise; Willems, Julie

    2012-01-01

    The Australian Government's widening participation agenda--also referred to as the social inclusion agenda--considers equity through the triple focus of access, participation and outcomes. These foci are catalysts for re-examining teaching and learning approaches in formal education. This article considers this national refocus and the…

  19. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  20. Responding to the Widening Participation Agenda through Improved Access to and within 3D Virtual Learning Environments

    ERIC Educational Resources Information Center

    Wood, Denise; Willems, Julie

    2012-01-01

    The Australian Government's widening participation agenda--also referred to as the social inclusion agenda--considers equity through the triple focus of access, participation and outcomes. These foci are catalysts for re-examining teaching and learning approaches in formal education. This article considers this national refocus and the…

  1. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  2. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  3. Enhancing Project-Based Learning through Student and Industry Engagement in a Video-Augmented 3-D Virtual Trade Fair

    ERIC Educational Resources Information Center

    Lee, Mark J. W.; Nikolic, Sasha; Vial, Peter J.; Ritz, Christian H.; Li, Wanqing; Goldfinch, Tom

    2016-01-01

    Project-based learning is a widely used pedagogical strategy in engineering education shown to be effective in fostering problem-solving, design, and teamwork skills. There are distinct benefits to be gained from giving students autonomy in determining the nature and scope of the projects that they wish to undertake, but a lack of expert guidance…

  4. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  5. 3-D EM exploration of the hepatic microarchitecture – lessons learned from large-volume in situ serial sectioning

    PubMed Central

    Shami, Gerald John; Cheng, Delfine; Huynh, Minh; Vreuls, Celien; Wisse, Eddie; Braet, Filip

    2016-01-01

    To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions. PMID:27834401

  6. 3-D EM exploration of the hepatic microarchitecture - lessons learned from large-volume in situ serial sectioning.

    PubMed

    Shami, Gerald John; Cheng, Delfine; Huynh, Minh; Vreuls, Celien; Wisse, Eddie; Braet, Filip

    2016-11-11

    To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions.

  7. Healthcare for Men and Women with Learning Disabilities: Understanding Inequalities in Access

    ERIC Educational Resources Information Center

    Redley, Marcus; Banks, Carys; Foody, Karen; Holland, Anthony

    2012-01-01

    Healthcare for men and women with learning disabilities (known internationally as intellectual disabilities) has risen up the political agenda in the United Kingdom, propelled by a report from the charity Mencap. This report has resulted in renewed efforts, set out in "Valuing People Now", to ensure that people with learning disabilities…

  8. Team Learning to Narrow the Gap between Healthcare Knowledge and Practice

    ERIC Educational Resources Information Center

    Anand, Tejwansh S.

    2014-01-01

    This study explored team-based learning in teams of healthcare professionals working on making meaning of evidence-based clinical guidelines in their field to apply them within their practice setting. The research based team learning models posited by Kasl, Marsick, and Dechant (1997) and Edmondson, Dillon, and Roloff (2007) were used as the…

  9. Team Learning to Narrow the Gap between Healthcare Knowledge and Practice

    ERIC Educational Resources Information Center

    Anand, Tejwansh S.

    2014-01-01

    This study explored team-based learning in teams of healthcare professionals working on making meaning of evidence-based clinical guidelines in their field to apply them within their practice setting. The research based team learning models posited by Kasl, Marsick, and Dechant (1997) and Edmondson, Dillon, and Roloff (2007) were used as the…

  10. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  11. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. GPCR 3D homology models for Ligand Screening: Lessons Learned from Blind Predictions of Adenosine A2a Receptor complex

    PubMed Central

    Katritch, Vsevolod; Rueda, Manuel; Lam, Polo Chun-Hung; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    Proteins of the G-protein coupled receptor (GPCR) family present numerous attractive targets for rational drug design, but also a formidable challenge for identification and conformational modeling of their 3D structure. A recently performed assessment of blind predictions of adenosine A2a receptor (AA2AR) structure in complex with ZM241385 (ZMA) antagonist provided a first example of unbiased evaluation of the current modeling algorithms on a GPCR target with ~30% sequence identity to the closest structural template. Several of the 29 groups participating in this assessment exercise (Michino et al., doi:10.1038/nrd2877) successfully predicted the overall position of the ligand ZMA in the AA2AR ligand binding pocket, however models from only three groups captured more than 40% of the ligand-receptor contacts. Here we describe two of these top performing approaches, in which all-atom models of the AA2AR were generated by homology modeling followed by ligand guided backbone ensemble receptor optimization (LiBERO). The resulting AA2AR-ZMA models, along with the best models from other groups are assessed here for their virtual ligand screening (VLS) performance on a large set of GPCR ligands. We show that ligand guided optimization was critical for improvement of both ligand-receptor contacts and VLS performance as compared to the initial raw homology models. The best blindly predicted models performed on par with the crystal structure of AA2AR in selecting known antagonists from decoys, as well as from antagonists for other adenosine subtypes and AA2AR agonists. These results suggest that despite certain inaccuracies, the optimized homology models can be useful in the drug discovery process. PMID:20063437

  14. Mentor experiences of international healthcare students' learning in a clinical environment: A systematic review.

    PubMed

    Mikkonen, Kristina; Elo, Satu; Tuomikoski, Anna-Maria; Kääriäinen, Maria

    2016-05-01

    Globalisation has brought new possibilities for international growth in education and professional mobility among healthcare professionals. There has been a noticeable increase of international degree programmes in non-English speaking countries in Europe, creating clinical learning challenges for healthcare students. The aim of this systematic review was to describe mentors' experiences of international healthcare students' learning in a clinical environment. The objective of the review was to identify what influences the success or failure of mentoring international healthcare students when learning in the clinical environment, with the ultimate aim being to promote optimal mentoring practice. A systematic review was conducted according to the guidelines of the Centre for Reviews and Dissemination. Seven electronic databases were used to search for the published results of previous research: CINAHL, Medline Ovid, Scopus, the Web of Science, Academic Search Premiere, Eric, and the Cochrane Library. Search inclusion criteria were planned in the PICOS review format by including peer-reviewed articles published in any language between 2000 and 2014. Five peer-reviewed articles remained after the screening process. The results of the original studies were analysed using a thematic synthesis. The results indicate that a positive intercultural mentor enhanced reciprocal learning by improving the experience of international healthcare students and reducing stress in the clinical environment. Integrating international healthcare students into work with domestic students was seen to be important for reciprocal learning and the avoidance of discrimination. Many healthcare students were found to share similar experiences of mentoring and learning irrespective of their cultural background. However, the role of a positive intercultural mentor was found to make a significant difference for international students: such mentors advocated and mediated cultural differences and

  15. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  16. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  18. Experience, trajectories, and reifications: an emerging framework of practice-based learning in healthcare workplaces.

    PubMed

    Teunissen, Pim W

    2015-10-01

    Learning by working is omnipresent in healthcare education. It enables people to learn how to perform, think, and interact in ways that work for their specific context. In this paper, I review my approach to studying this process. It centers on the question why healthcare professionals do what they do and how their actions and learning are intertwined. The aim of this paper is to illustrate what I have learned from the research I have been involved in, in such a way that it enables other researchers, educators, and clinicians to understand and study practice-based learning in healthcare workplaces. Therefore, I build on a programmatic line of research to present a framework of practice-based learning consisting of three inextricably linked levels of analysis. The first level focuses on how situations lead to personal experiences, the second level looks at strings of experiences that lead to multiple trajectories, and the third level deals with reifications arising from recurrent activities. This framework, and its interrelations and inherent tensions, helps to understand why healthcare workplaces can be both a powerful learning environment and a frustratingly hard place to change.

  19. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages.

    PubMed

    Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M; Chakraborty, Anirban; Katz, William T

    2014-01-01

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them.

  20. Augmented saliency model using automatic 3D head pose detection and learned gaze following in natural scenes.

    PubMed

    Parks, Daniel; Borji, Ali; Itti, Laurent

    2015-11-01

    Previous studies have shown that gaze direction of actors in a scene influences eye movements of passive observers during free-viewing (Castelhano, Wieth, & Henderson, 2007; Borji, Parks, & Itti, 2014). However, no computational model has been proposed to combine bottom-up saliency with actor's head pose and gaze direction for predicting where observers look. Here, we first learn probability maps that predict fixations leaving head regions (gaze following fixations), as well as fixations on head regions (head fixations), both dependent on the actor's head size and pose angle. We then learn a combination of gaze following, head region, and bottom-up saliency maps with a Markov chain composed of head region and non-head region states. This simple structure allows us to inspect the model and make comments about the nature of eye movements originating from heads as opposed to other regions. Here, we assume perfect knowledge of actor head pose direction (from an oracle). The combined model, which we call the Dynamic Weighting of Cues model (DWOC), explains observers' fixations significantly better than each of the constituent components. Finally, in a fully automatic combined model, we replace the oracle head pose direction data with detections from a computer vision model of head pose. Using these (imperfect) automated detections, we again find that the combined model significantly outperforms its individual components. Our work extends the engineering and scientific applications of saliency models and helps better understand mechanisms of visual attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data

    PubMed Central

    Navarro, Pedro J.; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-01-01

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%). PMID:28025565

  2. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.

    PubMed

    Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-12-23

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).

  3. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  4. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.

  5. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke.

    PubMed

    Meadmore, Katie L; Hughes, Ann-Marie; Freeman, Chris T; Cai, Zhonglun; Tong, Daisy; Burridge, Jane H; Rogers, Eric

    2012-06-07

    Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients' voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants' arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  6. Challenges of information security incident learning: an industrial case study in a Chinese healthcare organization.

    PubMed

    He, Ying; Johnson, Chris

    2017-01-09

    Security incidents can have negative impacts on healthcare organizations, and the security of medical records has become a primary concern of the public. However, previous studies showed that organizations had not effectively learned lessons from security incidents. Incident learning as an essential activity in the "follow-up" phase of security incident response lifecycle has long been addressed but not given enough attention. This paper conducted a case study in a healthcare organization in China to explore their current obstacles in the practice of incident learning. We interviewed both IT professionals and healthcare professionals. The results showed that the organization did not have a structured way to gather and redistribute incident knowledge. Incident response was ineffective in cycling incident knowledge back to inform security management. Incident reporting to multiple stakeholders faced a great challenge. In response to this case study, we suggest the security assurance modeling framework to address those obstacles.

  7. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  8. Attitudes and Readiness of Students of Healthcare Professions towards Interprofessional Learning

    PubMed Central

    Rajiah, Kingston; Khoo, Suan Phaik; Chellappan, Dinesh Kumar; De Alwis, Ranjit; Chui, Hui Cing; Tan, Lui Lee; Tan, Yee Ning; Lau, Shin Yee

    2017-01-01

    Objectives To evaluate the attitudes and readiness of students of healthcare professions towards interprofessional learning. Methodology A cross-sectional study design was used. Two different scales were used to measure the readiness for and perception of interprofessional learning; these were the 'Readiness for Interprofessional Learning Scale' and the 'Interdisciplinary Education Perception Scale'. A convenience sampling method was employed. The sample was drawn from undergraduate students enrolled in years 1 to 5 of medical, dental, pharmacy and health sciences programme. Descriptive and inferential statistics were used to analyse the data. Results The overall response rate was 83%. The students mentioned that shared learning with other healthcare professional students will increase their ability to understand clinical problems. The students also mentioned that such shared learning will help them to communicate better with patients and other professionals. The students preferred to work with individuals from their own profession. Participants from medical, dental, pharmacy, and health sciences had a difference in opinion about 'negative professional identity', a domain of the Readiness for Interprofessional Learning Scale. Based on the different year of study of the students, 'team work and collaboration', 'negative professional identity' and 'roles and responsibility' were the Interdisciplinary Education Perception Scale domains where students had a difference in opinion. Conclusions Attitudes and readiness towards interprofessional learning showed significant differences among students of various healthcare professions; these differences also depended on the students' year of study. Interprofessional learning should be incorporated in the curriculum of all healthcare professional programs, which may foster students to become competent healthcare providers and understand each profession's role. PMID:28060838

  9. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  10. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  11. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  12. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  13. The Learning Healthcare System: Where are we now? A systematic review.

    PubMed

    Budrionis, Andrius; Bellika, Johan Gustav

    2016-12-01

    The Learning Healthcare System paradigm has attracted the attention of researchers worldwide. The great potential originating from high-scale health data reuse and the inclusion of patient perspectives into care models promises personalized care, lower costs of health services and minimized consumption of resources. The aim of this review is to summarize the attempts to adopt the novel paradigm, putting emphasis on implementations and evaluating the impact on current medical practices. PRISMA methodology was followed for structuring the review process. Three major research databases (PubMed, IEEE Xplore and ACM DL) were queried with the predefined search terms "learning healthcare" and "learning health". Publications containing specific theoretical or empirical results were considered. Three hundred and fifty-eight publications were identified; however, only 32 met the inclusion criteria. Nineteen papers were characterized as theoretical contributions, while the rest presented empirical achievements. Only one paper described the initial estimates of impact and economy. Individualistic communication of studies ignoring popular frameworks for assessing and reporting research achievements prevents the systematic generation of knowledge. Evaluating the impact of the Learning Healthcare System instances where it is implemented could work as a catalyst in reaching higher acceptance and adoption of the proposed ideas by healthcare worldwide; however, it mostly remains described in theory. The review demonstrated the interest of researchers in exploring the Learning Healthcare System ideas. However, it also revealed minimal focus on evaluating the impact of the novel paradigm on both healthcare service delivery and patient outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sustainability of healthcare improvement: what can we learn from learning theory?

    PubMed

    Hovlid, Einar; Bukve, Oddbjørn; Haug, Kjell; Aslaksen, Aslak Bjarne; von Plessen, Christian

    2012-08-03

    Changes that improve the quality of health care should be sustained. Falling back to old, unsatisfactory ways of working is a waste of resources and can in the worst case increase resistance to later initiatives to improve care. Quality improvement relies on changing the clinical system yet factors that influence the sustainability of quality improvements are poorly understood. Theoretical frameworks can guide further research on the sustainability of quality improvements. Theories of organizational learning have contributed to a better understanding of organizational change in other contexts. To identify factors contributing to sustainability of improvements, we use learning theory to explore a case that had displayed sustained improvement. Førde Hospital redesigned the pathway for elective surgery and achieved sustained reduction of cancellation rates. We used a qualitative case study design informed by theory to explore factors that contributed to sustain the improvements at Førde Hospital. The model Evidence in the Learning Organization describes how organizational learning contributes to change in healthcare institutions. This model constituted the framework for data collection and analysis. We interviewed a strategic sample of 20 employees. The in-depth interviews covered themes identified through our theoretical framework. Through a process of coding and condensing, we identified common themes that were interpreted in relation to our theoretical framework. Clinicians and leaders shared information about their everyday work and related this knowledge to how the entire clinical pathway could be improved. In this way they developed a revised and deeper understanding of their clinical system and its interdependencies. They became increasingly aware of how different elements needed to interact to enhance the performance and how their own efforts could contribute. The improved understanding of the clinical system represented a change in mental models of

  15. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  16. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  17. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  18. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  19. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  20. Student-directed investigation of natural phenomena: Using digital simulations to achieve NGSS-aligned 3D learning in middle school

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Spafford, C. D.

    2016-12-01

    Many Earth Science phenomena cannot be observed directly because they happen slowly (e.g., Plate Motion) or at large spatial scales (e.g., Weather Patterns). Such topics are investigated by scientists through analysis of large data sets, numerical modeling, and laboratory studies that isolate aspects of the overall phenomena. Middle school students have limited time and lab equipment in comparison, but can employ authentic science practices through investigations using interactive digital simulations (sims). Designing a sim aligned to the Next Generation Science Standards (NGSS) allows students to explore and connect to science ideas in a seamless and supportive way that also deepens their understanding of the phenomena. We helped develop seven units, including the two above, that cover the middle school Earth Science Disciplinary Core Ideas and give students exposure to the other two dimensions of the NGSS (science practices and cross-cutting concepts). These units are developed by the Learning Design Group and Amplify Science. Sims are key to how students engage in 3D learning in these units. For example, in the Rock Transformations Sim students can investigate the ideas that energy from the sun and from Earth's interior can transform rock, and that the transformation processes change the Earth's surface at varying time and spatial scales (ESS2.A). Students can choose and selectively apply transformation processes (melting, weathering, etc.) or energy sources to rock in a cross-section landscape to explore their effects. Students are able to plan steps for making a particular rock transformation happen and carry out their own investigations. A benefit of using a digital platform for student learning is the ability to embed formative assessment. When students plan and carry out missions to achieve specific objectives, the digital platform can capture a record of their actions to measure how they apply science ideas from instruction. Data of these actions, combined

  1. Interactive, technology-enhanced self-regulated learning tools in healthcare education: a literature review.

    PubMed

    Petty, Julia

    2013-01-01

    Learning technology is increasingly being implemented for programmes of blended learning within nurse education. With a growing emphasis on self-directed study particularly in post-basic education, there is a need for learners to be guided in their learning away from practice and limited classroom time. Technology-enabled (TE) tools which engage learners actively can play a part in this. The effectiveness and value of interactive TE learning strategies within healthcare is the focus of this paper. To identify literature that explores the effectiveness of interactive, TE tools on knowledge acquisition and learner satisfaction within healthcare with a view to evaluating their use for post-basic nurse education. A Literature Review was performed focusing on papers exploring the comparative value and perceived benefit of TE tools compared to traditional modes of learning within healthcare. The Databases identified as most suitable due to their relevance to healthcare were accessed through EBSCOhost. Primary, Boolean and advanced searches on key terms were undertaken. Inclusion and exclusion criteria were applied which resulted in a final selection of 11 studies for critique. Analysis of the literature found that knowledge acquisition in most cases was enhanced and measured learner satisfaction was generally positive for interactive, self-regulated TE tools. However, TE education may not suit all learners and this is critiqued in the light of the identified limitations. Interactive self regulation and/or testing can be a valuable learning strategy that can be incorporated into self-directed programmes of study for post-registration learners. Whilst acknowledging the learning styles not suited to such tools, the concurrent use of self-directed TE tools with those learning strategies necessitating a more social presence can work together to support enhancement of knowledge required to deliver rationale for nursing practice. Copyright © 2012 Elsevier Ltd. All rights

  2. Transforming Professional Healthcare Narratives into Structured Game-Informed-Learning Activities

    ERIC Educational Resources Information Center

    Begg, Michael; Ellaway, Rachel; Dewhurst, David; Macleod, Hamish

    2007-01-01

    Noting the dependency of healthcare education on practice-based learning, Michael Begg, Rachel Ellaway, David Dewhurst, and Hamish Macleod suggest that creating a virtual clinical setting for students to interact with virtual patients can begin to address educational demands for clinical experience. They argue that virtual patient simulations that…

  3. Inclusion and Healthcare Choices: The Experiences of Adults with Learning Disabilities

    ERIC Educational Resources Information Center

    Ferguson, Morag; Jarrett, Dominic; Terras, Melody

    2011-01-01

    People with learning disabilities have fewer choice opportunities than the general population. Existing research provides some insight, but the choice-making experiences of those who do not always utilise available healthcare remains under-explored. This research explored the choice-making experiences of two groups of individuals with a learning…

  4. Exploring the Learning Experiences of Filipino Nurse Immigrants New to the U.S. Healthcare Industry

    ERIC Educational Resources Information Center

    Smith, Walter L.

    2011-01-01

    Precepting, coaching, and mentoring are teaching methods used extensively in nursing education in U.S. healthcare facilities. Filipino nurse immigrants have cultural backgrounds that may influence their experience with and perspectives of these learning interventions. Although Filipino nurse immigrants comprise approximately 0.2% of the population…

  5. Evaluating the Quality of the Learning Outcome in Healthcare Sector: The Expero4care Model

    ERIC Educational Resources Information Center

    Cervai, Sara; Polo, Federica

    2015-01-01

    Purpose: This paper aims to present the Expero4care model. Considering the growing need for a training evaluation model that does not simply fix processes, the Expero4care model represents the first attempt of a "quality model" dedicated to the learning outcomes of healthcare trainings. Design/Methodology/Approach: Created as development…

  6. Inclusion and Healthcare Choices: The Experiences of Adults with Learning Disabilities

    ERIC Educational Resources Information Center

    Ferguson, Morag; Jarrett, Dominic; Terras, Melody

    2011-01-01

    People with learning disabilities have fewer choice opportunities than the general population. Existing research provides some insight, but the choice-making experiences of those who do not always utilise available healthcare remains under-explored. This research explored the choice-making experiences of two groups of individuals with a learning…

  7. Frequent Deadlines: Evaluating the Effect of Learner Control on Healthcare Executives' Performance in Online Learning

    ERIC Educational Resources Information Center

    Fulton, Lawrence V.; Ivanitskaya, Lana V.; Bastian, Nathaniel D.; Erofeev, Dmitry A.; Mendez, Francis A.

    2013-01-01

    In a three-group, gender-matched, preexisting knowledge-controlled, randomized experiment, we evaluated the effect of learner control over study pace on healthcare executives' performance in an online statistics course. Overall, frequent deadlines enhanced distribution of practice and improved learning. Students with less control over pace (in…

  8. Evaluating the Quality of the Learning Outcome in Healthcare Sector: The Expero4care Model

    ERIC Educational Resources Information Center

    Cervai, Sara; Polo, Federica

    2015-01-01

    Purpose: This paper aims to present the Expero4care model. Considering the growing need for a training evaluation model that does not simply fix processes, the Expero4care model represents the first attempt of a "quality model" dedicated to the learning outcomes of healthcare trainings. Design/Methodology/Approach: Created as development…

  9. Deep learning for healthcare: review, opportunities and challenges.

    PubMed

    Miotto, Riccardo; Wang, Fei; Wang, Shuang; Jiang, Xiaoqian; Dudley, Joel T

    2017-05-06

    Gaining knowledge and actionable insights from complex, high-dimensional and heterogeneous biomedical data remains a key challenge in transforming health care. Various types of data have been emerging in modern biomedical research, including electronic health records, imaging, -omics, sensor data and text, which are complex, heterogeneous, poorly annotated and generally unstructured. Traditional data mining and statistical learning approaches typically need to first perform feature engineering to obtain effective and more robust features from those data, and then build prediction or clustering models on top of them. There are lots of challenges on both steps in a scenario of complicated data and lacking of sufficient domain knowledge. The latest advances in deep learning technologies provide new effective paradigms to obtain end-to-end learning models from complex data. In this article, we review the recent literature on applying deep learning technologies to advance the health care domain. Based on the analyzed work, we suggest that deep learning approaches could be the vehicle for translating big biomedical data into improved human health. However, we also note limitations and needs for improved methods development and applications, especially in terms of ease-of-understanding for domain experts and citizen scientists. We discuss such challenges and suggest developing holistic and meaningful interpretable architectures to bridge deep learning models and human interpretability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Healthcare students' experiences when integrating e-learning and flipped classroom instructional approaches.

    PubMed

    Telford, Mark; Senior, Emma

    2017-06-08

    This article describes the experiences of undergraduate healthcare students taking a module adopting a 'flipped classroom' approach. Evidence suggests that flipped classroom as a pedagogical tool has the potential to enhance student learning and to improve healthcare practice. This innovative approach was implemented within a healthcare curriculum and in a module looking at public health delivered at the beginning of year two of a 3-year programme. The focus of the evaluation study was on the e-learning resources used in the module and the student experiences of these; with a specific aim to evaluate this element of the flipped classroom approach. A mixed-methods approach was adopted and data collected using questionnaires, which were distributed across a whole cohort, and a focus group involving ten participants. Statistical analysis of the data showed the positive student experience of engaging with e-learning. The thematic analysis identified two key themes; factors influencing a positive learning experience and the challenges when developing e-learning within a flipped classroom approach. The study provides guidance for further developments and improvements when developing e-learning as part of the flipped classroom approach.

  11. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    PubMed Central

    Giraud, Stéphanie; Brock, Anke M.; Macé, Marc J.-M.; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs. PMID:28649209

  12. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    PubMed

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  13. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  14. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  15. Assessing Health Care Students' Intentions and Motivations for Learning: The Healthcare Learning and Studying Inventory (HLSI)

    ERIC Educational Resources Information Center

    Baxter, Lisa; Mattick, Karen; Kuyken, Willem

    2013-01-01

    Inventories that measure approaches to learning have revealed that certain approaches are associated with better academic performance. However, these inventories were developed primarily with higher education students on non-vocational courses and recent research shows they fail to capture the full range of healthcare students' intentions and…

  16. Assessing Health Care Students' Intentions and Motivations for Learning: The Healthcare Learning and Studying Inventory (HLSI)

    ERIC Educational Resources Information Center

    Baxter, Lisa; Mattick, Karen; Kuyken, Willem

    2013-01-01

    Inventories that measure approaches to learning have revealed that certain approaches are associated with better academic performance. However, these inventories were developed primarily with higher education students on non-vocational courses and recent research shows they fail to capture the full range of healthcare students' intentions and…

  17. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  18. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  19. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  20. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  1. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  2. How Multi-Levels of Individual and Team Learning Interact in a Public Healthcare Organisation: A Conceptual Framework

    ERIC Educational Resources Information Center

    Doyle, Louise; Kelliher, Felicity; Harrington, Denis

    2016-01-01

    The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…

  3. How Multi-Levels of Individual and Team Learning Interact in a Public Healthcare Organisation: A Conceptual Framework

    ERIC Educational Resources Information Center

    Doyle, Louise; Kelliher, Felicity; Harrington, Denis

    2016-01-01

    The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…

  4. Problem-based learning: a strategic learning system design for the education of healthcare professionals in the 21st century.

    PubMed

    Gwee, Matthew Choon-Eng

    2009-05-01

    Problem-based learning (PBL) was first implemented by McMaster University medical school in 1969 as a radical, innovative, and alternative pathway to learning in medical education, thus setting a new educational trend. PBL has now spread widely across the globe and beyond the healthcare disciplines, and has prevailed for almost four decades. PBL is essentially a strategic learning system design, which combines several complementary educational principles for the delivery of instruction. PBL is specifically aimed at enhancing and optimizing the educational outcomes of learner-centered, collaborative, contextual, integrated, self-directed, and reflective learning. The design and delivery of instruction in PBL involve peer teaching and learning in small groups through the social construction of knowledge using a real-life problem case to trigger the learning process. Therefore, PBL represents a major shift in the educational paradigm from the traditional teacher-directed (teacher-centered) instruction to student-centered (learner-centered) learning. PBL is firmly underpinned by several educational theories, but problems are often encountered in practice that can affect learning outcomes. Educators contemplating implementing PBL in their institutions should have a clear understanding of its basic tenets, its practice and its philosophy, as well as the issues, challenges, and opportunities associated with its implementation. Special attention should be paid to the training and selection of PBL tutors who have a critical role in the PBL process. Furthermore, a significant change in the mindsets of both students and teachers are required for the successful implementation of PBL. Thus, effective training programs for students and teachers must precede its implementation. PBL is a highly resource-intensive learning strategy and the returns on investment (i.e. the actual versus expected learning outcomes) should be carefully and critically appraised in the decision

  5. Combining Speech Recognition/Natural Language Processing with 3D Online Learning Environments to Create Distributed Authentic and Situated Spoken Language Learning

    ERIC Educational Resources Information Center

    Jones, Greg; Squires, Todd; Hicks, Jeramie

    2008-01-01

    This article will describe research done at the National Institute of Multimedia in Education, Japan and the University of North Texas on the creation of a distributed Internet-based spoken language learning system that would provide more interactive and motivating learning than current multimedia and audiotape-based systems. The project combined…

  6. Designing Multimedia Learning Application with Learning Theories: A Case Study on a Computer Science Subject with 2-D and 3-D Animated Versions

    ERIC Educational Resources Information Center

    Rias, Riaza Mohd; Zaman, Halimah Badioze

    2011-01-01

    Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…

  7. Combining Speech Recognition/Natural Language Processing with 3D Online Learning Environments to Create Distributed Authentic and Situated Spoken Language Learning

    ERIC Educational Resources Information Center

    Jones, Greg; Squires, Todd; Hicks, Jeramie

    2008-01-01

    This article will describe research done at the National Institute of Multimedia in Education, Japan and the University of North Texas on the creation of a distributed Internet-based spoken language learning system that would provide more interactive and motivating learning than current multimedia and audiotape-based systems. The project combined…

  8. Designing Multimedia Learning Application with Learning Theories: A Case Study on a Computer Science Subject with 2-D and 3-D Animated Versions

    ERIC Educational Resources Information Center

    Rias, Riaza Mohd; Zaman, Halimah Badioze

    2011-01-01

    Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…

  9. Speech-language pathologists' informal learning in healthcare settings: behaviours and motivations.

    PubMed

    Walden, Patrick R; Bryan, Valerie C

    2011-08-01

    The current research sought to identify the types of informal learning behaviours speech-language pathologists (SLPs) working in healthcare settings engage in as well as SLPs' motivations for engaging in informal learning. Twenty-four American Speech-Language-Hearing Association (ASHA)-certified SLPs participated in this qualitative study. Data collection consisted of computer-mediated interviews, online journaling, and a virtual focus group. These textual data were coded and collapsed into themes. All participant SLPs reported that they learned through collaboration (inter- and intra-disciplinary), worked with patients to learn through trial-and-error, and consulted non-peer-reviewed material on the internet as well as peer-reviewed research in order to learn informally in the workplace. Eighteen of the 24 participants reported being motivated to learn at work to meet a patient's need to meet therapy goals. Five of the 24 participants reported meeting their own personal learning needs was a motivating factor and 10 of the 24 participants reported learning informally to meet the needs of the healthcare organization/SLP profession. Results were compared to past research on SLPs' information retrieval behaviours. It was concluded that SLPs acknowledge their personal work-related gaps in knowledge and skills and actively seek to develop their knowledge and skill base through informal means.

  10. Deployment of Analytics into the Healthcare Safety Net: Lessons Learned

    PubMed Central

    Hartzband, David; Jacobs, Feygele

    2016-01-01

    Background As payment reforms shift healthcare reimbursement toward value-based payment programs, providers need the capability to work with data of greater complexity, scope and scale. This will in many instances necessitate a change in understanding of the value of data, and the types of data needed for analysis to support operations and clinical practice. It will also require the deployment of different infrastructure and analytic tools. Community health centers, which serve more than 25 million people and together form the nation’s largest single source of primary care for medically underserved communities and populations, are expanding and will need to optimize their capacity to leverage data as new payer and organizational models emerge. Methods To better understand existing capacity and help organizations plan for the strategic and expanded uses of data, a project was initiated that deployed contemporary, Hadoop-based, analytic technology into several multi-site community health centers (CHCs) and a primary care association (PCA) with an affiliated data warehouse supporting health centers across the state. An initial data quality exercise was carried out after deployment, in which a number of analytic queries were executed using both the existing electronic health record (EHR) applications and in parallel, the analytic stack. Each organization carried out the EHR analysis using the definitions typically applied for routine reporting. The analysis deploying the analytic stack was carried out using those common definitions established for the Uniform Data System (UDS) by the Health Resources and Service Administration.1 In addition, interviews with health center leadership and staff were completed to understand the context for the findings. Results The analysis uncovered many challenges and inconsistencies with respect to the definition of core terms (patient, encounter, etc.), data formatting, and missing, incorrect and unavailable data. At a population

  11. Deployment of Analytics into the Healthcare Safety Net: Lessons Learned.

    PubMed

    Hartzband, David; Jacobs, Feygele

    2016-01-01

    As payment reforms shift healthcare reimbursement toward value-based payment programs, providers need the capability to work with data of greater complexity, scope and scale. This will in many instances necessitate a change in understanding of the value of data, and the types of data needed for analysis to support operations and clinical practice. It will also require the deployment of different infrastructure and analytic tools. Community health centers, which serve more than 25 million people and together form the nation's largest single source of primary care for medically underserved communities and populations, are expanding and will need to optimize their capacity to leverage data as new payer and organizational models emerge. To better understand existing capacity and help organizations plan for the strategic and expanded uses of data, a project was initiated that deployed contemporary, Hadoop-based, analytic technology into several multi-site community health centers (CHCs) and a primary care association (PCA) with an affiliated data warehouse supporting health centers across the state. An initial data quality exercise was carried out after deployment, in which a number of analytic queries were executed using both the existing electronic health record (EHR) applications and in parallel, the analytic stack. Each organization carried out the EHR analysis using the definitions typically applied for routine reporting. The analysis deploying the analytic stack was carried out using those common definitions established for the Uniform Data System (UDS) by the Health Resources and Service Administration.(1) In addition, interviews with health center leadership and staff were completed to understand the context for the findings. The analysis uncovered many challenges and inconsistencies with respect to the definition of core terms (patient, encounter, etc.), data formatting, and missing, incorrect and unavailable data. At a population level, apparent underreporting

  12. Information technology for competitive advantage: the case of learning and innovation in behavioural healthcare service.

    PubMed

    Hsieh, Chang-tseh; Lin, Binshan

    2011-01-01

    The utilisation of IS/IT could offer a substantial competitive advantage to healthcare service providers through the realisation of improved clinical, financial, and administrative outcomes. In this study, 42 journal articles were reviewed and summarised with respect to identified benefits and challenges of the development and implementation of electronic medical records, tele-health, and electronic appointment reminders. Results of this study help pave the knowledge foundation for management of the behavioural healthcare to learn how to apply state-of-the-art information technology to offer higher quality, clinically proven effective services at lower costs than those of their competitors.

  13. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  14. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  15. Teaching and learning teamwork: competency requirements for healthcare managers.

    PubMed

    Leggat, Sandra G

    2007-01-01

    This paper addresses an essential element of postgraduate health service management education - development of individual competencies to enhance teamwork among health service managers. A survey of qualified health service managers in the state of Victoria, Australia revealed a set of individual competencies that the managers felt made a positive contribution to the success of workplace teams. The identified competencies included skills in leadership and communication; clinical knowledge and knowledge of organizational goals and strategies; motives such as commitment to the organization, to quality, to working collaboratively and to a consumer focus; and respect for others as a trait. Building on acknowledged teaching and learning theories, a teamwork teaching and learning model was successfully introduced into the postgraduate health services management curriculum at La Trobe University in Melbourne.

  16. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    PubMed

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

  17. MO-B-BRD-00: Clinical Applications of 3D Printing

    SciTech Connect

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  18. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    SciTech Connect

    Ehler, E.

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  19. MO-B-BRD-02: 3D Printing in the Clinic

    SciTech Connect

    Remmes, N.

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  20. MO-B-BRD-04: Sterilization for 3D Printed Brachytherapy Applicators

    SciTech Connect

    Cunha, J.

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  1. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  2. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  3. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  4. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  5. Medical 3-D Printing.

    PubMed

    Furlow, Bryant

    2017-05-01

    Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.

  6. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  7. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  8. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  9. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  10. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  11. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  12. Hold that TIGER! A collaborative service-learning academic-practice partnership with rural healthcare facilities.

    PubMed

    Fairchild, Roseanne Moody

    2012-01-01

    Observing a renewed focus on community engagement as part of our university's strategic plan and the experiential learning partnerships encouraged by the TIGER (Technology and Information Guiding Education Reform) Initiative in health information technology, an academic-practice partnership was initiated between a group of Midwestern rural hospitals and a university's advanced practice nursing students via the graduate online nursing informatics course. Using a service-learning approach, the course features an emphasis on the collaborative design and implementation of student- and healthcare provider team-driven projects to support rural hospital staff and administrators in meeting the broad spectrum of challenges they face every day. The author discusses the adaptable course outline of foundational and service-learning course activities, recent service-learning projects and outcomes, and results of a cumulative 2-year course evaluation by internal/external stakeholders.

  13. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo.

    PubMed

    Aydin, Zafer; Murray, John I; Waterston, Robert H; Noble, William S

    2010-02-11

    Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing) is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions) and train a support vector machine (SVM) classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.

  14. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning.

    PubMed

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. The eigenbrain method

  15. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  16. The role of blended learning in the clinical education of healthcare students: a systematic review.

    PubMed

    Rowe, Michael; Frantz, Jose; Bozalek, Vivienne

    2012-01-01

    Developing practice knowledge in healthcare is a complex process that is difficult to teach. Clinical education exposes students to authentic learning situations, but students also need epistemological access to tacit knowledge and clinical reasoning skills in order to interpret clinical problems. Blended learning offers opportunities for the complexity of learning by integrating face-to-face and online interaction. However, little is known about its use in clinical education. To determine the impact of blended learning in the clinical education of healthcare students. Articles published between 2000 and 2010 were retrieved from online and print sources, and included multiple search methodologies. Search terms were derived following a preliminary review of relevant literature. A total of 71 articles were retrieved and 57 were removed after two rounds of analysis. Further methodological appraisals excluded another seven, leaving seven for the review. All studies reviewed evaluated the use of a blended learning intervention in a clinical context, although each intervention was different. Three studies included a control group, and two were qualitative in nature. Blended learning was shown to help bridge the gap between theory and practice and to improve a range of selected clinical competencies among students. Few high-quality studies were found to evaluate the role of blended learning in clinical education, and those that were found provide only rudimentary evidence that integrating technology-enhanced teaching with traditional approaches have potential to improve clinical competencies among health students. Further well-designed research into the use of blended learning in clinical education is therefore needed before we rush to adopt it.

  17. 3D Virtual Reality for Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  18. The Value of E-Learning for the Prevention of Healthcare-Associated Infections.

    PubMed

    Labeau, Sonia O; Rello, Jordi; Dimopoulos, George; Lipman, Jeffrey; Sarikaya, Aklime; Oztürk, Candan; Vandijck, Dominique M; Vogelaers, Dirk; Vandewoude, Koenraad; Blot, Stijn I

    2016-09-01

    BACKGROUND Healthcare workers (HCWs) lack familiarity with evidence-based guidelines for the prevention of healthcare-associated infections (HAIs). There is good evidence that effective educational interventions help to facilitate guideline implementation, so we investigated whether e-learning could enhance HCW knowledge of HAI prevention guidelines. METHODS We developed an electronic course (e-course) and tested its usability and content validity. An international sample of voluntary learners submitted to a pretest (T0) that determined their baseline knowledge of guidelines, and they subsequently studied the e-course. Immediately after studying the course, posttest 1 (T1) assessed the immediate learning effect. After 3 months, during which participants had no access to the course, a second posttest (T2) evaluated the residual learning effect. RESULTS A total of 3,587 HCWs representing 79 nationalities enrolled: 2,590 HCWs (72%) completed T0; 1,410 HCWs (39%) completed T1; and 1,011 HCWs (28%) completed T2. The median study time was 193 minutes (interquartile range [IQR], 96-306 minutes) The median scores were 52% (IQR, 44%-62%) for T0, 80% (IQR, 68%-88%) for T1, and 74% (IQR, 64%-84%) for T2. The immediate learning effect (T0 vs T1) was +24% (IQR, 12%-34%; P300 minutes yielded the greatest residual effect (24%). CONCLUSIONS Moderate time invested in e-learning yielded significant immediate and residual learning effects. Decision makers could consider promoting e-learning as a supporting tool in HAI prevention. Infect Control Hosp Epidemiol 2016;37:1052-1059.

  19. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  20. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  2. Self-directed learning competence assessment within different healthcare professionals and amongst students in Italy.

    PubMed

    Cadorin, Lucia; Suter, Nicoletta; Dante, Angelo; Williamson, Swapna Naskar; Devetti, Angie; Palese, Alvisa

    2012-05-01

    In the last few years the significance of life-long learning skills has been greatly realised with regard to adult learning, which is based on self-motivation, engagement in learning and making full use of a person's resources. In this context, it is paramount that healthcare professionals take responsibility for their profession by being innovative, creative and flexible to change in order to facilitate the adaptation process and encourage responsiveness to change. The main principles can be summarized as lifelong learning, which are strictly linked to self-directed learning. The aims of this study were to describe (a) the self-directed learning competence of nurses (registered nurse, RN) and radiologist technicians (RT); (b) the self-directed learning competence of RN and RT students before their graduation. A comparative cross-sectional study approach was adopted; a consecutive sample of RNs and RTs attending continuing education seminars, workshops and other initiatives from 2009 to 2010 were considered for this study. Moreover, all nursing and radiology technicians students about to graduate in the same course and studying in the same region were included. The self-rating scale of self-directed learning (SRSSDL) was used to collect data for the purpose of the study. Eight hundred and forty-seven participants were involved (453 RNs, 141 RTs, 182 RN students and 68 RT students) who obtained an average SRSSDL score of 224.7 (±25.0). RNs and RTs got on average a medium-high score (229.1 ± 22.9 and 219.6 ± 29.2, respectively) and the majority of them (63.8-51.1%) reached a high level of self-directed learning. In order to promote tailored continuing education programs and interprofessional continuing education strategies, and identify the support to offer to healthcare workers according to their needs, educators should be aware of their self-directed learning skills. Therefore, individuals with high competence should adopt different strategies from those who

  3. Culturally and linguistically diverse healthcare students' experiences of learning in a clinical environment: A systematic review of qualitative studies.

    PubMed

    Mikkonen, Kristina; Elo, Satu; Kuivila, Heli-Maria; Tuomikoski, Anna-Maria; Kääriäinen, Maria

    2016-02-01

    Learning in the clinical environment of healthcare students plays a significant part in higher education. The greatest challenges for culturally and linguistically diverse healthcare students were found in clinical placements, where differences in language and culture have been shown to cause learning obstacles for students. There has been no systematic review conducted to examine culturally and linguistically diverse healthcare students' experiences of their learning in the clinical environment. This systematic review aims to identify culturally and linguistically diverse healthcare students' experiences of learning in a clinical environment. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The original studies were identified from seven databases (CINAHL, Medline Ovid, Scopus, Web of Science, Academic Search Premiere, Eric and Cochrane Library) for the period 2000-2014. Two researchers selected studies based on titles, abstracts and full texts using inclusion criteria and assessed the quality of studies independently. Twelve original studies were chosen for the review. The culturally and linguistically diverse healthcare students' learning experiences were divided into three influential aspects of learning in a clinical environment: experiences with implementation processes and provision; experiences with peers and mentors; and experiences with university support and instructions. The main findings indicate that culturally and linguistically diverse healthcare students embarking on clinical placements initially find integration stressful. Implementing the process of learning in a clinical environment requires additional time, well prepared pedagogical orientation, prior cultural and language education, and support for students and clinical staff. Barriers to learning by culturally and linguistically diverse healthcare students were not being recognized and individuals were not considered motivated; learners experienced the

  4. Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    DTIC Science & Technology

    2014-05-01

    1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized

  5. Impacts of service learning on Irish healthcare students, educators, and communities.

    PubMed

    McMenamin, Ruth; McGrath, Margaret; D'Eath, Maureen

    2010-12-01

    This study investigated the impact of service learning on healthcare students, educators, and community partners in Ireland. Using a qualitative approach with focus groups and interviews, 38 participants' perceptions of the impact of service learning were recorded, transcribed, and analyzed. The findings in relation to the students reflected previous research: service learning had the capacity to support personal development, enhance academic performance, and increase civic awareness. The primary impacts for the community partners involved accessing students and services. The educators appreciated the opportunities to link academic theory to practice and to engage with the community partners. The results identified that the evaluation of learning outcomes was challenging because of both the evolving nature and breadth of learning achieved by all the stakeholders. However, our findings suggested that some impacts of service learning are consistent between Ireland and the USA. Further research is needed to explore whether the impacts of service learning are comparable across other cultures and contexts. © 2011 Blackwell Publishing Asia Pty Ltd.

  6. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  7. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  10. Instruments for measuring meaningful learning in healthcare students: a systematic psychometric review.

    PubMed

    Cadorin, Lucia; Bagnasco, Annamaria; Tolotti, Angela; Pagnucci, Nicola; Sasso, Loredana

    2016-09-01

    To identify, evaluate and describe the psychometric properties of instruments that measure learning outcomes in healthcare students. Meaningful learning is an active process that enables a wider and deeper understanding of concepts. It is the result of an interaction between new and prior knowledge and produces a long-standing change in knowledge and skills. In the field of education, validated and reliable instruments for assessing meaningful learning are needed. A psychometric systematic review. MEDLINE CINAHL, SCOPUS, ERIC, Cochrane Library, Psychology & Behavioural Sciences Collection Database from 1990-December 2013. Using pre-determined inclusion criteria, three reviewers independently identified studies for full-text review. Then they extracted data for quality appraisal and graded instrument validity using the Consensus-based Standards for the selection of the health status Measurement INstruments checklist and the Psychometric Grading Framework. Of the 57 studies identified for full-text review, 16 met the inclusion criteria and 13 different instruments were assessed. Following quality assessment, only one instrument was considered of good quality but it measured meaningful learning only in part; the others were either fair or poor. The Psychometric Grading Framework indicated that one instrument was weak, while the others were very weak. No instrument displayed adequate validity. The systematic review produced a synthesis of the psychometric properties of tools that measure learning outcomes in students of healthcare disciplines. Measuring learning outcomes is very important when educating health professionals. The identified tools may constitute a starting point for the development of other assessment tools. © 2016 John Wiley & Sons Ltd.

  11. A systems-based partnership learning model for strengthening primary healthcare

    PubMed Central

    2013-01-01

    Background Strengthening primary healthcare systems is vital to improving health outcomes and reducing inequity. However, there are few tools and models available in published literature showing how primary care system strengthening can be achieved on a large scale. Challenges to strengthening primary healthcare (PHC) systems include the dispersion, diversity and relative independence of primary care providers; the scope and complexity of PHC; limited infrastructure available to support population health approaches; and the generally poor and fragmented state of PHC information systems. Drawing on concepts of comprehensive PHC, integrated quality improvement (IQI) methods, system-based research networks, and system-based participatory action research, we describe a learning model for strengthening PHC that addresses these challenges. We describe the evolution of this model within the Australian Aboriginal and Torres Strait Islander primary healthcare context, successes and challenges in its application, and key issues for further research. Discussion IQI approaches combined with system-based participatory action research and system-based research networks offer potential to support program implementation and ongoing learning across a wide scope of primary healthcare practice and on a large scale. The Partnership Learning Model (PLM) can be seen as an integrated model for large-scale knowledge translation across the scope of priority aspects of PHC. With appropriate engagement of relevant stakeholders, the model may be applicable to a wide range of settings. In IQI, and in the PLM specifically, there is a clear role for research in contributing to refining and evaluating existing tools and processes, and in developing and trialling innovations. Achieving an appropriate balance between funding IQI activity as part of routine service delivery and funding IQI related research will be vital to developing and sustaining this type of PLM. Summary This paper draws together

  12. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  13. 3-D Art Tasks.

    ERIC Educational Resources Information Center

    Niswander, Virginia

    1983-01-01

    Perceptual motor dysfunctions may not allow children with learning and behavior problems to perform as most children do. A successful art activity for these children is construction using wood scraps. (SR)

  14. Influence of a quality improvement learning collaborative program on team functioning in primary healthcare.

    PubMed

    Kotecha, Jyoti; Brown, Judith Belle; Han, Han; Harris, Stewart B; Green, Michael; Russell, Grant; Roberts, Sharon; Webster-Bogaert, Susan; Fournie, Meghan; Thind, Amardeep; Reichert, Sonja M; Birtwhistle, Richard

    2015-09-01

    Quality improvement (QI) programs are frequently implemented to support primary healthcare (PHC) team development and to improve care outcomes. In Ontario, Canada, the Quality Improvement and Innovation Partnership (QIIP) offered a learning collaborative (LC) program to support the development of interdisciplinary team function and improve chronic disease management, disease prevention, and access to care. A qualitative study using a phenomenological approach was conducted as part of a mixed-method evaluation to explore the influence of the program on team functioning in participating PHC teams. A purposive sampling strategy was used to identify PHC teams (n = 10), from which participants of different professional roles were selected through a purposeful recruitment process to reflect maximum variation of team roles. Additionally, QI coaches working with the interview participants and the LC administrators were also interviewed. Data were collected through semistructured telephone interviews that were audiotaped and transcribed verbatim. Thematic analysis was conducted through an iterative and interpretive approach. The shared experience of participating in the program appeared to improve team functioning. Participants described increased trust and respect for each other's clinical and administrative roles and were inspired by learning about different approaches to interdisciplinary care. This appeared to enhance collegial relationships, collapse professional silos, improve communication, and increase interdisciplinary collaboration. Teamwork involves more than just physically grouping healthcare providers from multiple disciplines and mandating them to work together. The LC program provided opportunities for participants to learn how to work collaboratively, and participation in the LC program appeared to enhance team functioning.

  15. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  16. Instruments measuring meaningful learning in undergraduate healthcare students: a systematic review protocol.

    PubMed

    Bagnasco, Annamaria; Cadorin, Lucia; Tolotti, Angela; Pagnucci, Nicola; Rocco, Gennaro; Sasso, Loredana

    2015-03-01

    To establish the psychometric properties of instruments to measure learning outcomes in healthcare students. Meaningful learning is an active process that promotes a wider and deeper understanding of concepts. It is the result of an interaction between new and previous knowledge. Meaningful learning produces a long-term change in knowledge and skills, which is underpinned by willingness to learn and experience and it is exclusively built by the learner. Systematic psychometric review protocol developed from Cochrane Effective Practice and Organization of Care guidance. Searches of MEDLINE, CINAHL, SCOPUS, ERIC, PsycINFO, Cochrane Library, Psychology & Behavioral Sciences Collection Database between 1990-2013. Selected studies will be evaluated with the Consensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist. Funding for the review was confirmed on January 2011 by the Centre of Excellence for Nursing Scholarship in Rome. The systematic review will produce a synthesis of the data related to the instruments that measure learning outcomes. These data will help us decide which tools to use and identify the state of knowledge in this field. Measuring learning outcomes is very important for the large amount of human and financial resources employed in educating and training health professionals and this requires reliable and valid instruments. © 2014 John Wiley & Sons Ltd.

  17. SU-D-201-05: On the Automatic Recognition of Patient Safety Hazards in a Radiotherapy Setup Using a Novel 3D Camera System and a Deep Learning Framework

    SciTech Connect

    Santhanam, A; Min, Y; Beron, P; Agazaryan, N; Kupelian, P; Low, D

    2016-06-15

    Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter. To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.

  18. Nursing and healthcare students' experiences and use of e-learning in higher education.

    PubMed

    Moule, Pam; Ward, Rod; Lockyer, Lesley

    2010-12-01

    This paper presents research on nursing and healthcare students' experiences and use of e-learning. The inception of e-learning in higher education is supported by a policy background and technological developments, yet little is known of student experience and use in the United Kingdom. Conducted in 2007 and 2008, this study employed a mixed methods approach. An initial quantitative questionnaire was completed by 25 Higher Education Institutions and nine case study sites were visited. In the sites 41 students took part in focus groups and 35 staff were interviewed. Twenty-four Higher Education Institutions used a virtual learning environment and all respondents used e-learning to enable access to course materials and web-based learning resources. Three main themes were identified from student interviews, 'Pedagogic use'; 'Factors inhibiting use' and 'Facilitating factors to engagement'. Student's main engagement with e-learning was at an instructivist level and as a support to existing face-to-face modes of delivery. Student use of Web 2.0 was limited, although a number were using social software at home. Limited computer access, computing skills, technical issues and poor peer commitment affected use. Motivation and relevance to the course and practice, in addition to an appreciation of the potential for student-centred and flexible learning, facilitated use. There is scope to broaden the use of e-learning that would engage students in the social construction of knowledge. In addition, experiences of e-learning use could be improved if factors adversely affecting engagement were addressed. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  19. Visual symbols in healthcare settings for children with learning disabilities and autism spectrum disorder.

    PubMed

    Vaz, Irene

    Children with learning disabilities (LD) and autism spectrum disorder (ASD) get anxious while attending healthcare settings as it is not part of their usual routine. They often understand visual symbols better than speech. Many of these children are accustomed to using symbols at school and at home to support their verbal understanding. A list of commonly conducted physical examinations, medical investigations and treatment procedures was compiled by the author with the help of parent support groups for ASD and Down's syndrome. In total, 150 visual symbols were developed for use in healthcare settings in consultation with parents, special needs teachers and a software company. Overall, 50 health professionals from 12 clinical areas in the hospital and community were consulted for their views on introducing symbols in healthcare settings. All had experienced difficulties in gaining cooperation from this group of children and strongly endorsed the use of symbols. They suggested using symbols in clinics and sending visual symbols home before the appointments to improve the children's understanding and cooperation.

  20. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease.

    PubMed

    Chuong, Kim H; Mack, David R; Stintzi, Alain; O'Doherty, Kieran C

    2017-03-10

    Healthcare institutions face widespread challenges of delivering high-quality and cost-effective care, while keeping up with rapid advances in biomedical knowledge and technologies. Moreover, there is increased emphasis on developing personalized or precision medicine targeted to individuals or groups of patients who share a certain biomarker signature. Learning healthcare systems (LHS) have been proposed for integration of research and clinical practice to fill major knowledge gaps, improve care, reduce healthcare costs, and provide precision care. To date, much discussion in this context has focused on the potential of human genomic data, and not yet on human microbiome data. Rapid advances in human microbiome research suggest that profiling of, and interventions on, the human microbiome can provide substantial opportunity for improved diagnosis, therapeutics, risk management, and risk stratification. In this study, we discuss a potential role for microbiome science in LHSs. We first review the key elements of LHSs, and discuss possibilities of Big Data and patient engagement. We then consider potentials and challenges of integrating human microbiome research into clinical practice as part of an LHS. With rapid growth in human microbiome research, patient-specific microbial data will begin to contribute in important ways to precision medicine. Hence, we discuss how patient-specific microbial data can help guide therapeutic decisions and identify novel effective approaches for precision care of inflammatory bowel disease. To the best of our knowledge, this expert analysis makes an original contribution with new insights poised at the emerging intersection of LHSs, microbiome science, and postgenomics medicine.

  1. Imagining Technology-Enhanced Learning with Heritage Artefacts: Teacher-Perceived Potential of 2D and 3D Heritage Site Visualisations

    ERIC Educational Resources Information Center

    Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle

    2015-01-01

    Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…

  2. Imagining Technology-Enhanced Learning with Heritage Artefacts: Teacher-Perceived Potential of 2D and 3D Heritage Site Visualisations

    ERIC Educational Resources Information Center

    Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle

    2015-01-01

    Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…

  3. Brave New (Interactive) Worlds: A Review of the Design Affordances and Constraints of Two 3D Virtual Worlds as Interactive Learning Environments

    ERIC Educational Resources Information Center

    Dickey, Michele D.

    2005-01-01

    Three-dimensional virtual worlds are an emerging medium currently being used in both traditional classrooms and for distance education. Three-dimensional (3D) virtual worlds are a combination of desk-top interactive Virtual Reality within a chat environment. This analysis provides an overview of Active Worlds Educational Universe and Adobe…

  4. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes?

    NASA Astrophysics Data System (ADS)

    Kirchmair, Johannes; Markt, Patrick; Distinto, Simona; Wolber, Gerhard; Langer, Thierry

    2008-03-01

    Within the last few years a considerable amount of evaluative studies has been published that investigate the performance of 3D virtual screening approaches. Thereby, in particular assessments of protein-ligand docking are facing remarkable interest in the scientific community. However, comparing virtual screening approaches is a non-trivial task. Several publications, especially in the field of molecular docking, suffer from shortcomings that are likely to affect the significance of the results considerably. These quality issues often arise from poor study design, biasing, by using improper or inexpressive enrichment descriptors, and from errors in interpretation of the data output. In this review we analyze recent literature evaluating 3D virtual screening methods, with focus on molecular docking. We highlight problematic issues and provide guidelines on how to improve the quality of computational studies. Since 3D virtual screening protocols are in general assessed by their ability to discriminate between active and inactive compounds, we summarize the impact of the composition and preparation of test sets on the outcome of evaluations. Moreover, we investigate the significance of both classic enrichment parameters and advanced descriptors for the performance of 3D virtual screening methods. Furthermore, we review the significance and suitability of RMSD as a measure for the accuracy of protein-ligand docking algorithms and of conformational space sub sampling algorithms.

  5. A Rapid Review of the Factors Affecting Healthcare Students' Satisfaction with Small-Group, Active Learning Methods.

    PubMed

    Kilgour, James M; Grundy, Lisa; Monrouxe, Lynn V

    2016-01-01

    PHENOMENON: Problem-based learning (PBL) and other small-group, active learning methodologies have been widely adopted into undergraduate and postgraduate healthcare curricula across the world. Although much research has examined student perceptions of these innovative teaching pedagogies, there are still questions over which factors influence these views. This article aims to identify these key elements that affect healthcare student satisfaction with PBL and other small-group learning methods, including case-based and team-based learning. A systematic rapid review method was used to identify high-quality original research papers from the healthcare education literature from between 2009 and 2014. All papers were critically appraised before inclusion in line with published guidelines. Narrative synthesis was achieved using an inductively developed, thematic framework approach. Fifty-four papers were included in the narrative synthesis. The evidence suggests that, despite an initial period of negative emotion and anxiety, the perspectives of healthcare students toward small-group, active learning methods are generally positive. The key factors influencing this satisfaction level include (a) the facilitator role, (b) tutorial structure, (c) individual student factors, (d) case authenticity, (e) increased feedback, (f) group harmony, and (g) resource availability. Insights: Student satisfaction is an important determinant of healthcare education quality, and the findings of this review may be of value in future curriculum design. The evidence described here suggests that an ideal curriculum may be based on an expert-led, hybrid PBL model.

  6. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  7. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  8. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  10. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  11. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  12. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  13. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  14. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  15. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  16. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  17. Challenge of Supporting Vocational Learning: Empowering Collaboration in a Scripted 3D Game--How Does Teachers' Real-Time Orchestration Make a Difference?

    ERIC Educational Resources Information Center

    Hamalainen, Raija; Oksanen, Kimmo

    2012-01-01

    Along with the development of new technologies, orchestrating computer-supported collaborative learning (CSCL) has become a topic of discussion because new learning spaces challenge teacher to support collaborative learning in new ways. However, despite the optimistic notions of teachers' orchestration in CSCL situations, there are still no…

  18. Evidence of collaboration, pooling of resources, learning and role blurring in interprofessional healthcare teams: a realist synthesis.

    PubMed

    Sims, Sarah; Hewitt, Gillian; Harris, Ruth

    2015-01-01

    Interprofessional teamwork has become an integral feature of healthcare delivery in a wide range of conditions and services in many countries. Many assumptions are made in healthcare literature and policy about how interprofessional teams function and about the outcomes of interprofessional teamwork. Realist synthesis is an approach to reviewing research evidence on complex interventions which seeks to explore these assumptions. It does this by unpacking the mechanisms of an intervention, exploring the contexts which trigger or deactivate them and connecting these contexts and mechanisms to their subsequent outcomes. This is the second in a series of four papers reporting a realist synthesis of interprofessional teamworking. The paper discusses four of the 13 mechanisms identified in the synthesis: collaboration and coordination; pooling of resources; individual learning; and role blurring. These mechanisms together capture the day-to-day functioning of teams and the dependence of that on members' understanding each others' skills and knowledge and learning from them. This synthesis found empirical evidence to support all four mechanisms, which tentatively suggests that collaboration, pooling, learning, and role blurring are all underlying processes of interprofessional teamwork. However, the supporting evidence for individual learning was relatively weak, therefore there may be assumptions made about learning within healthcare literature and policy that are not founded upon strong empirical evidence. There is a need for more robust research on individual learning to further understand its relationship with interprofessional teamworking in healthcare.

  19. MO-B-BRD-03: Principles, Pitfalls and Techniques of 3D Printing for Bolus and Compensators

    SciTech Connect

    Baker, J.

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  20. E-Learn 2002 World Conference on E-Learning in Corporate, Government, Healthcare, & Higher Education. Proceedings (7th, Montreal, Quebec, Canada, October 15-19, 2002).

    ERIC Educational Resources Information Center

    Driscoll, Margaret, Ed.; Reeves, Thomas C., Ed.

    The 7th annual E-Learn world conference on e-learning in corporate, government, healthcare, and higher education organized by the Association for the Advancement of Computing in Education (AACE) includes more than 600 papers. Papers from this proceedings come from contributors representing more than 50 countries, sharing their perspectives and…

  1. An integrative review of the characteristics of meaningful learning in healthcare professionals to enlighten educational practices in health care.

    PubMed

    Cadorin, Lucia; Bagnasco, Annamaria; Rocco, Gennaro; Sasso, Loredana

    2014-12-01

    Knowledge does not transfer automatically, but requires an active, personal progress through meaningful learning. As posited by the constructivist paradigm, the aim of this study was to identify the characteristics of meaningful learning by analysing definitions and correlated methods found in the literature. An integrative review. Articles were sought on MEDLINE, CINAHL and SCOPUS; no language, time or study-design restrictions were adopted. Only papers referring explicitly to the diverse types of learning were taken into account; 11 articles were included in this review. Findings from the literature revealed three different types of meaningful learning: (1) meaningful learning as 'active building-up process'; (2) meaningful learning as 'change'; 3-meaningful learning as 'outcome of experience'. A focus on constructivism and meaningful learning provides a new outlook on healthcare professionals in learning, including nurses, who are gradually taking on greater responsibility in self- and ongoing education.

  2. Peer-Led Team Learning in an Online Course on Controversial Medication Issues and the US Healthcare System

    PubMed Central

    LimBybliw, Amy L.

    2013-01-01

    Objective. To implement peer-led team learning in an online course on controversial issues surrounding medications and the US healthcare system. Design. The course was delivered completely online using a learning management system. Students participated in weekly small-group discussions in online forums, completed 3 reflective writing assignments, and collaborated on a peer-reviewed grant proposal project. Assessment. In a post-course survey, students reported that the course was challenging but meaningful. Final projects and peer-reviewed assignments demonstrated that primary learning goals for the course were achieved and students were empowered to engage in the healthcare debate. Conclusions. A peer-led team-learning is an effective strategy for an online course offered to a wide variety of student learners. By shifting some of the learning and grading responsibility to students, the instructor workload for the course was rendered more manageable. PMID:24052653

  3. Peer-led team learning in an online course on controversial medication issues and the US healthcare system.

    PubMed

    Pittenger, Amy L; LimBybliw, Amy L

    2013-09-12

    To implement peer-led team learning in an online course on controversial issues surrounding medications and the US healthcare system. The course was delivered completely online using a learning management system. Students participated in weekly small-group discussions in online forums, completed 3 reflective writing assignments, and collaborated on a peer-reviewed grant proposal project. In a post-course survey, students reported that the course was challenging but meaningful. Final projects and peer-reviewed assignments demonstrated that primary learning goals for the course were achieved and students were empowered to engage in the healthcare debate. A peer-led team-learning is an effective strategy for an online course offered to a wide variety of student learners. By shifting some of the learning and grading responsibility to students, the instructor workload for the course was rendered more manageable.

  4. Reflections and Learning from Using Action Learning Sets in a Healthcare Education Setting

    ERIC Educational Resources Information Center

    Dunphy, Liz; Proctor, Gillian; Bartlett, Ruth; Haslam, Mark; Wood, Chris

    2010-01-01

    This paper describes the delivery of action learning sets to students on the peer educator course provided by the Dementia Studies Department at University of Bradford. Our understanding of action learning sets is laid out together with our rationale for their use on this course. Feedback is presented that described a conflicted, even confused…

  5. Constructing Arguments with 3-D Printed Models

    ERIC Educational Resources Information Center

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  6. Constructing Arguments with 3-D Printed Models

    ERIC Educational Resources Information Center

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  7. Lessons from Albion: Can Australia learn from England's approach to primary healthcare funding?

    PubMed

    Norman, Richard; Robinson, Suzanne

    2015-01-01

    As Australia struggles to meet increased demand for healthcare and contain expenditure there has been a focus on primary care and its role in demand management and keeping people out of expensive secondary care. However, with domestic policy struggling to find a suitable approach consideration of English policy could well be fruitful in the quest to strengthen and develop primary care in Australia. The purpose of this paper is to consider policy developments in England and explores these in relation to the Australian healthcare system. The authors highlight the key changes to policy that have occurred in the English healthcare system in recent years, and discuss whether they have proven successful. The authors discuss the barriers to implementing similar approaches in Australia, particularly the difference in system structure that would necessitate policy adaptation. Whilst there are differences in the structure and organisation of funding and service provision between countries, there are developments in England that are worthy of consideration from an Australian perspective. These include a focus on funding and commissioning that rewards quality not just activity and volume. As Australia sees the development of new primary care organisations that are tasked with commissioning then developments and lessons around the technical and relational aspects will be important to consider. The work highlights that Australia might consider learning from the English experience in this area and the types of incentives that may increase efficiency and quality of health service provision. This is important as it potentially gives greater certainty about those approaches most likely to yield beneficial outcomes for patients and the broader system.

  8. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  9. Immersive 3D geovisualisation in higher education

    NASA Astrophysics Data System (ADS)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  10. Spacecraft 3D Augmented Reality Mobile App

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  11. Cancer Moonshot Data and Technology Team: Enabling a National Learning Healthcare System for Cancer to Unleash the Power of Data.

    PubMed

    Hsu, Elizabeth R; Klemm, Juli D; Kerlavage, Anthony R; Kusnezov, Dimitri; Kibbe, Warren A

    2017-01-31

    The Cancer Moonshot emphasizes the need to learn from the experiences of cancer patients to positively impact their outcomes, experiences, and qualities of life. To realize this vision, there has been a concerted effort to identify the fundamental building blocks required to establish a National Learning Healthcare System for Cancer, such that relevant data on all cancer patients is accessible, shareable, and contributing to the current state of knowledge of cancer care and outcomes. This article is protected by copyright. All rights reserved.

  12. How the Role of Socialization Affects Blended Learning Methodologies for Faculty Working with Teams in a Healthcare Setting

    ERIC Educational Resources Information Center

    Kenny, Kevin J.

    2010-01-01

    When looking at healthcare education settings, one barrier to understanding the nature of socialization and its effect on teaching methodology design is the advent of blended learning formats used within education departments. The author utilized qualitative research using grounded theory with deductive, verification and inductive processes to…

  13. Improving the Connection between Healthcare Employers and Schools to Increase Work-Based Learning Opportunities for Urban High School Students

    ERIC Educational Resources Information Center

    Loera, Gustavo

    2016-01-01

    This study advances an experiential learning framework for educators to: (1) identify workforce-building strategies from key healthcare industry informants, (2) strengthen school-industry partnerships, and (3) shape urban high school students' career readiness experiences through curriculum and real life on-the-job training opportunities. Data was…

  14. How the Role of Socialization Affects Blended Learning Methodologies for Faculty Working with Teams in a Healthcare Setting

    ERIC Educational Resources Information Center

    Kenny, Kevin J.

    2010-01-01

    When looking at healthcare education settings, one barrier to understanding the nature of socialization and its effect on teaching methodology design is the advent of blended learning formats used within education departments. The author utilized qualitative research using grounded theory with deductive, verification and inductive processes to…

  15. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  16. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  17. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  18. Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks.

    PubMed

    Tippett, William J; Lee, Jang-Han; Mraz, Richard; Zakzanis, Konstantine K; Snyder, Peter J; Black, Sandra E; Graham, Simon J

    2009-04-01

    This study assessed the convergent validity of a virtual environment (VE) navigation learning task, the Groton Maze Learning Test (GMLT), and selected traditional neuropsychological tests performed in a group of healthy elderly adults (n = 24). The cohort was divided equally between males and females to explore performance variability due to sex differences, which were subsequently characterized and reported as part of the analysis. To facilitate performance comparisons, specific "efficiency" scores were created for both the VE navigation task and the GMLT. Men reached peak performance more rapidly than women during VE navigation and on the GMLT and significantly outperformed women on the first learning trial in the VE. Results suggest reasonable convergent validity across the VE task, GMLT, and selected neuropsychological tests for assessment of spatial memory.

  19. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  20. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  1. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  3. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  4. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    ERIC Educational Resources Information Center

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  6. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    ERIC Educational Resources Information Center

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  7. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  8. Students perceive healthcare as a valuable learning environment when accepted as a part of the workplace community.

    PubMed

    Hägg-Martinell, Ann; Hult, Håkan; Henriksson, Peter; Kiessling, Anna

    2014-01-01

    The healthcare system is complex and the education of medical and nursing students is not always a priority within it. However, education offered at the point of care provides students with opportunities to apply knowledge, and to develop the necessary skills and attitudes needed to practice their future profession. The major objective of this study was to identify students' views of generic aspects of the healthcare environment that influences their progress towards professional competence. We collected free text answers of 75 medical students and 23 nursing students who had completed an extensive questionnaire concerning their learning in clinical wards. In order to obtain richer data and a deeper understanding, we also interviewed a purposive sample of students. Qualitative content analysis was conducted. We identified three themes: (1) How management, planning and organising for learning enabled content and learning activities to relate to the syllabus and workplace, and how this management influenced space and resources for supervision and learning; (2) Workplace culture elucidated how hierarchies and communication affected student learning and influenced their professional development and (3) Learning a profession illustrated the importance of supervisors' approaches to students, their enthusiasm and ability to build relationships, and their feedback to students on performance. From a student perspective, a valuable learning environment is characterised as one where management, planning and organising are aligned and support learning. Students experience a professional growth when the community of practice accepts them, and competent and enthusiastic supervisors give them opportunities to interact with patients and to develop their own responsibilities.

  9. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  10. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  12. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  13. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  17. Incorporation of learned shape priors into a graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes of mice

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Song, Qi; Abràmoff, Michael D.; Sohn, Eliott; Wu, Xiaodong; Garvin, Mona K.

    2014-03-01

    Spectral-domain optical coherence tomography (SD-OCT) finds widespread use clinically for the detection and management of ocular diseases. This non-invasive imaging modality has also begun to find frequent use in research studies involving animals such as mice. Numerous approaches have been proposed for the segmentation of retinal surfaces in SD-OCT images obtained from human subjects; however, the segmentation of retinal surfaces in mice scans is not as well-studied. In this work, we describe a graph-theoretic segmentation approach for the simultaneous segmentation of 10 retinal surfaces in SD-OCT scans of mice that incorporates learned shape priors. We compared the method to a baseline approach that did not incorporate learned shape priors and observed that the overall unsigned border position errors reduced from 3.58 +/- 1.33 μm to 3.20 +/- 0.56 μm.

  18. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  19. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  20. Using complexity theory to develop a student-directed interprofessional learning activity for 1220 healthcare students.

    PubMed

    Jorm, Christine; Nisbet, Gillian; Roberts, Chris; Gordon, Christopher; Gentilcore, Stacey; Chen, Timothy F

    2016-08-08

    More and better interprofessional practice is predicated to be necessary to deliver good care to the patients of the future. However, universities struggle to create authentic learning activities that enable students to experience the dynamic interprofessional interactions common in healthcare and that can accommodate large interprofessional student cohorts. We investigated a large-scale mandatory interprofessional learning (IPL) activity for health professional students designed to promote social learning. A mixed methods research approach determined feasibility, acceptability and the extent to which student IPL outcomes were met. We developed an IPL activity founded in complexity theory to prepare students for future practice by engaging them in a self-directed (self-organised) learning activity with a diverse team, whose assessable products would be emergent creations. Complicated but authentic clinical cases (n = 12) were developed to challenge student teams (n = 5 or 6). Assessment consisted of a written management plan (academically marked) and a five-minute video (peer marked) designed to assess creative collaboration as well as provide evidence of integrated collective knowledge; the cohesive patient-centred management plan. All students (including the disciplines of diagnostic radiology, exercise physiology, medicine, nursing, occupational therapy, pharmacy, physiotherapy and speech pathology), completed all tasks successfully. Of the 26 % of students who completed the evaluation survey, 70 % agreed or strongly agreed that the IPL activity was worthwhile, and 87 % agreed or strongly agreed that their case study was relevant. Thematic analysis found overarching themes of engagement and collaboration-in-action suggesting that the IPL activity enabled students to achieve the intended learning objectives. Students recognised the contribution of others and described negotiation, collaboration and creation of new collective knowledge after working

  1. 3D Reconstruction from a Single Image

    DTIC Science & Technology

    2008-08-01

    ITS APPLICATIONS UNIVERSITY OF MINNESOTA 400 Lind Hall 207 Church Street S.E. Minneapolis, Minnesota 55455–0436 Phone: 612-624-6066 Fax: 612-626-7370...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Minnesota ,Institute for Mathematics and Its Applications,Minneapolis,MN,55455-0436 8...accurately learn 3D priors using a single camera and the Radon transform. While we could certainly use this method in the work here presented (the

  2. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  3. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  4. ASI/MET - 3-D

    NASA Image and Video Library

    1997-07-13

    The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.

  5. 3D Models of Immunotherapy

    Cancer.gov

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  6. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  7. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  8. [Tridimensional (3D) endoscopic ultrasonography].

    PubMed

    Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R

    2007-01-01

    A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.

  9. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  10. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  11. A fine balance and a shared learning journey: Exploring healthcare engagement through the experiences of youth with Neuromuscular Disorders.

    PubMed

    Travlos, Vivienne; Bulsara, Caroline; Patman, Shane; Downs, Jenny

    2016-10-14

    Youth with Neuromuscular Disorders (NMD) who are wheelchair users can now survive well into adulthood if their multisystem comorbidities are prudently managed. Uptake of health behaviors may optimize their health outcomes. To explore youths' perceptions of health, health behaviors and healthcare engagement. This qualitative study purposefully recruited 11 youth with NMD from a concurrent, population-based study for variability of age, gender, type of NMD and their ratings of motivation and engagement. Interview data were analyzed and synthesized by thematic content. Participants perceived healthcare engagement as being given tools (knowledge and responsibility) and using them to maintain their finely balanced health. Nested in adequate social, emotional and physical support, they took responsibility for creatively integrating health behaviors they felt were informed by credible knowledge, gained primarily through personal experience. Cognizant of their compromised health, youth with NMD in this study were motivated to maintain their physical health. Limited NMD condition specific knowledge challenged youths' uptake of health behaviors. They valued a learning partnership with their healthcare professionals. By embracing the youth's experience based knowledge and through facilitating supportive relationships, healthcare professionals co-construct youth's healthcare engagement that may optimize health behaviors and outcomes.

  12. The experience of the 2003 SARS outbreak as a traumatic stress among frontline healthcare workers in Toronto: lessons learned.

    PubMed Central

    Maunder, Robert

    2004-01-01

    The outbreak of severe acute respiratory syndrome (SARS) in the first half of 2003 in Canada was unprecedented in several respects. Understanding the psychological impact of the outbreak on healthcare workers, especially those in hospitals, is important in planning for future outbreaks of emerging infectious diseases. This review draws upon qualitative and quantitative studies of the SARS outbreak in Toronto to outline the factors that contributed to healthcare workers' experiencing the outbreak as a psychological trauma. Overall, it is estimated that a high degree of distress was experienced by 29-35% of hospital workers. Three categories of contributory factors were identified. Relevant contextual factors were being a nurse, having contact with SARS patients and having children. Contributing attitudinal factors and processes were experiencing job stress, perceiving stigmatization, coping by avoiding crowds and colleagues, and feeling scrutinized. Pre-existing trait factors also contributed to vulnerability. Lessons learned from the outbreak include: (i) that effort is required to mitigate the psychological impact of infection control procedures, especially the interpersonal isolation that these procedures promote; (ii) that effective risk communication is a priority early in an outbreak; (iii) that healthcare workers may have a role in influencing patterns of media coverage that increase or decrease morale; (iv) that healthcare workers benefit from resources that facilitate reflection on the effects of extraordinary stressors; and (v) that healthcare workers benefit from practical interventions that demonstrate tangible support from institutions. PMID:15306398

  13. Meeting the challenges to European healthcare: lessons learned from the 'Stockholm Revolution'.

    PubMed

    Hjertqvist, Johan

    2002-01-01

    Healthcare is a political 'hot potato' in Sweden, just as it is throughout Europe. Regardless of whether the focus is on the 'Swedish model' or a 'European model', the operative term should be 'Culture - a set of values common to European healthcare systems'. An analysis of change and challenge in European healthcare systems must examine these values in the context of technological and societal forces before addressing the overarching concerns of where the money will come from. Discussion of the reform evidenced by the 'Stockholm Revolution' will serve as a model of how European healthcare systems can adapt to new conditions by the following approaches: modernising services through incentives; making the consumer a partner by focusing on consumer-related outcomes; building employee networks that encourage responsibility and problem solving; making healthcare an attractive labour market; and creating self-employment opportunities in the healthcare market to increase efficiency and emphasis on consumer satisfaction.

  14. Patient Relationship Management: What the U.S. Healthcare System Can Learn from Other Industries.

    PubMed

    Poku, Michael K; Behkami, Nima A; Bates, David W

    2017-01-01

    As the U.S. healthcare system moves to value-based care, the importance of engaging patients and families continues to intensify. However, simply engaging patients and families to improve their subjective satisfaction will not be enough for providers who want to maximize value. True optimization entails developing deep and long-term relationships with patients. We suggest that healthcare organizations must build such a discipline of "patient relationship management" (PRM) just as companies in non-healthcare industries have done with the concept of customer relationship management (CRM). Some providers have already made strides in this area, but overall it has been underemphasized or ignored by most healthcare systems to date. As healthcare providers work to develop their dedicated PRM systems, tools, and processes, we suggest they may benefit from emulating companies in other industries who have been able to engage their customers in innovative ways while acknowledging the differences between healthcare and other industries.

  15. 3D printed microfluidics for biological applications.

    PubMed

    Ho, Chee Meng Benjamin; Ng, Sum Huan; Li, King Ho Holden; Yoon, Yong-Jin

    2015-01-01

    The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics.

  16. ESL Teacher Training in 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  17. ESL Teacher Training in 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  18. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  19. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  20. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  1. The Impact of Learning Style on Healthcare Providers' Preference for Voice Advisory Manikins versus Live Instructors in Basic Life Support Training

    ERIC Educational Resources Information Center

    DiGiovanni, Lisa Marie

    2013-01-01

    The American Heart Association's HeartCode[TM] Healthcare Provider (HCP) Basic Life Support (BLS) e-learning program with voice-advisory manikins was implemented in an acute care hospital as the only teaching method offered for BLS certification. On course evaluations, healthcare provider staff commented that the VAM technology for skills practice…

  2. The Impact of Learning Style on Healthcare Providers' Preference for Voice Advisory Manikins versus Live Instructors in Basic Life Support Training

    ERIC Educational Resources Information Center

    DiGiovanni, Lisa Marie

    2013-01-01

    The American Heart Association's HeartCode[TM] Healthcare Provider (HCP) Basic Life Support (BLS) e-learning program with voice-advisory manikins was implemented in an acute care hospital as the only teaching method offered for BLS certification. On course evaluations, healthcare provider staff commented that the VAM technology for skills practice…

  3. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  4. 3-D threat image projection

    NASA Astrophysics Data System (ADS)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat

  5. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  6. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  7. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  8. Exploring DNA Structure with Cn3D

    PubMed Central

    Day, Joseph; McCarty, Richard E.; Shearn, Allen; Shingles, Richard; Fletcher, Linnea; Murphy, Stephanie; Pearlman, Rebecca

    2007-01-01

    Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology education. Over the past years, we have been working to help biology instructors introduce bioinformatics activities into their curricula by providing them with instructional materials that use bioinformatics programs and databases as educational tools. In this study, we measured the impact of a set of these materials on student learning. The activities in these materials asked students to use the molecular structure visualization program Cn3D to locate, identify, or analyze diverse features in DNA structures. Both the experimental groups of college and high school students showed significant increases in learning relative to control groups. Further, learning gains by the college students were correlated with the number of activities assigned. We conclude that working with Cn3D was important for improving student understanding of DNA structure. This study is one example of how a bioinformatics program for visualization can be used to support student learning. PMID:17339395

  9. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  10. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  11. "Building" 3D visualization skills in mineralogy

    NASA Astrophysics Data System (ADS)

    Gaudio, S. J.; Ajoku, C. N.; McCarthy, B. S.; Lambart, S.

    2016-12-01

    Studying mineralogy is fundamental for understanding the composition and physical behavior of natural materials in terrestrial and extraterrestrial environments. However, some students struggle and ultimately get discouraged with mineralogy course material because they lack well-developed spatial visualization skills that are needed to deal with three-dimensional (3D) objects, such as crystal forms or atomic-scale structures, typically represented in two-dimensional (2D) space. Fortunately, spatial visualization can improve with practice. Our presentation demonstrates a set of experiential learning activities designed to support the development and improvement of spatial visualization skills in mineralogy using commercially available magnetic building tiles, rods, and spheres. These instructional support activities guide students in the creation of 3D models that replicate macroscopic crystal forms and atomic-scale structures in a low-pressure learning environment and at low cost. Students physically manipulate square and triangularly shaped magnetic tiles to build 3D open and closed crystal forms (platonic solids, prisms, pyramids and pinacoids). Prismatic shapes with different closing forms are used to demonstrate the relationship between crystal faces and Miller Indices. Silica tetrahedra and octahedra are constructed out of magnetic rods (bonds) and spheres (oxygen atoms) to illustrate polymerization, connectivity, and the consequences for mineral formulae. In another activity, students practice the identification of symmetry elements and plane lattice types by laying magnetic rods and spheres over wallpaper patterns. The spatial visualization skills developed and improved through our experiential learning activities are critical to the study of mineralogy and many other geology sub-disciplines. We will also present pre- and post- activity assessments that are aligned with explicit learning outcomes.

  12. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  13. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  14. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  15. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  16. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  17. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  19. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  20. Baghdad Sulcus in 3-D

    NASA Image and Video Library

    2010-02-23

    This anaglyph from images captured by NASA Cassini spacecraft shows a dramatic, 3-D view of one of the deep fractures nicknamed tiger stripes on Saturn moon Enceladus which are located near the moon south pole, spray jets of water ice.