Science.gov

Sample records for 3-d heat transfer

  1. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  2. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  3. Gas flow environmental and heat transfer nonrotating 3D program

    NASA Technical Reports Server (NTRS)

    Geil, T.; Steinhoff, J.

    1983-01-01

    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  4. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  5. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.

  6. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  7. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    NASA Astrophysics Data System (ADS)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  8. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  9. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  10. Heat transfer in 3-D serpentine channels with right-angle turns

    SciTech Connect

    Chintada, S.; Ko, K.H.; Anand, N.K.

    1999-12-01

    Laminar flow and heat transfer in square serpentine channels with right-angle turns, which have applications in heat exchangers, were numerically studied. A finite volume code in FORTRAN was developed to solve this problem. For solving the flow field, a colocated-grid formulation was used, as opposed to the staggered-grid formulation, and the SIMPLE algorithm was used to link the velocity and pressure. The line-by-line method was used to solve the algebraic equations. The temperature field was solved for the uniform-wall-heat-flux boundary condition. The developed numerical code was validated by solving for fully developed flow and heat transfer in a square straight channel. The grid-independent solution was established for a reference case of serpentine channel with the highest Reynolds number. Periodically fully developed flow and heat transfer fields in serpentine channels were solved for different geometry parameters, for different Reynolds numbers, and for two different Prandtl numbers (for air and water, respectively). The enhancement of the heat transfer mechanism was explained by studying the plotted flow-field velocity vectors in different planes. The heat transfer performance of serpentine channels is better than that for straight channels for Pr = 7.0 and is worse than that for straight channels for Pr = 0.7.

  11. 3D coupled heat and mass transfer processes at the scale of sedimentary basisn

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.; Kaiser, B. O.

    2014-12-01

    We use coupled 3D simulations of fluid, heat, and transport based on a 3D structural model of a complex geological setting, the Northeast German Basin (NEGB). The geological structure of the NEGB is characterized by a relatively thick layer of Permian Zechstein salt, structured in differnet diapirs (up to 5000 m thick) and pillows locally reaching nearly the surface. Salt is thermally more conductive than other sediments, hydraulically impervious but highly solvable. Thus salt structures have first order influence on the temperature distribution, the deep flow regime and the salinity of groundawater bearing aquifers. In addition, the post-Permian sedimentary sequence is vertically subdivided into several aquifers and aquitards. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). By means of 3D numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity-related and salinity-dependent effects on the resulting flow and temperature fields. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt. Buoyancy forces triggered by temperature-dependent fluid density variations affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers. Numerical results from 3D thermo-haline numerical simulations

  12. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    NASA Astrophysics Data System (ADS)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  13. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  14. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  15. Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough

    1994-01-21

    Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  16. Chaotic advection and heat transfer in two similar 2-D periodic flows and in their corresponding 3-D periodic flows

    NASA Astrophysics Data System (ADS)

    Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.

    2016-03-01

    Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.

  17. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  18. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  19. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  20. Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear constitutive equation

    NASA Astrophysics Data System (ADS)

    Jalali, A.; Hulsen, M. A.; Norouzi, M.; Kayhani, M. H.

    2013-05-01

    This paper presents a numerical simulation of the developing flow and heat transfer of a viscoelastic fluid in a rectangular duct. In fully developed flow of a viscoelastic fluid in a non-circular duct, secondary flows normal to the flow direction are expected to enhance the rate of heat and mass transfer. On the other hand, properties such as viscosity, thermal conductivity, specific heat and relaxation time of the fluid are a function of temperature. Therefore, we developed a numerical model which solves the flow and energy equation simultaneously in three dimensional form. We included several equations of state to model the temperature dependency of the fluid parameters. The current paper is one of the first studies which present a 3D numerical simulation for developing viscoelastic duct flow that takes the dependency of flow parameters to the temperature into account. The rheological constitutive equation of the fluid is a common form of the Phan-Thien Tanner (PTT) model, which embodies both influences of elasticity and shear thinning in viscosity. The governing equations are discretized using the FTCS finite difference method on a staggered mesh. The marker-and-cell method is also employed to allocate the parameters on the staggered mesh, and static pressure is calculated using the artificial compressibility approach during the numerical simulation. In addition to report the results of flow and heat transfer in the developing region, the effect of some dimensionless parameters on the flow and heat transfer has also been investigated. The results are in a good agreement with the results reported by others in this field.

  1. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  2. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  3. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  4. Numerical simulation of heat transfer and flow structure in 3-D turbulent boundary layer with imbedded longitudinal vortex

    SciTech Connect

    Jeong, J.Y.; Ryou, H.S.

    1997-03-01

    Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.

  5. Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D)

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Ota, Atsuhito; Mukai, Yasuaki; Hosono, Takumi

    2012-07-01

    Cryogenic slush fluids, such as slush hydrogen and slush nitrogen, are two-phase, single-component fluids containing solid particles in a liquid. Since their density and refrigerant capacity are greater than those of liquid-state fluids alone, there are high expectations for use of slush fluids as functionally thermal fluids in various applications, such as fuels for spacecraft engines, clean energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. In this research, a three-dimensional numerical simulation code (SLUSH-3D), including the gravity effect based on the thermal non-equilibrium, two-fluid model, was constructed to clarify the flow and heat-transfer characteristics of cryogenic slush fluids in a horizontal circular pipe. The calculated results of slush nitrogen flow performed using the numerical code were compared with the authors' experimental results obtained using the PIV method. As a result of these comparisons, the numerical code was verified, making it possible to analyze the flow and heat-transfer characteristics of slush nitrogen with sufficient accuracy. The numerical results obtained for the flow and heat-transfer characteristics of slush nitrogen and slush hydrogen clarified the effects of the pipe inlet velocity, solid fraction, solid particle size, and heat flux on the flow pattern, solid-fraction distribution, turbulence energy, pressure drop, and heat-transfer coefficient. Furthermore, it became clear that the difference of the flow and heat-transfer characteristics between slush nitrogen and slush hydrogen were caused to a large extent by their thermo-physical properties, such as the solid-liquid density ratio, liquid viscosity, and latent heat of fusion.

  6. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.

  7. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603

  8. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    SciTech Connect

    Grant Hawkes; James E. O'Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  9. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  10. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  11. Cloud Property Retrieval and 3D Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2003-01-01

    Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.

  12. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  13. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  14. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2016-11-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of {H}2{O} and {C}{O}2. A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of {H}2{O} and {C}{O}2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of {H}2{O} and {C}{O}2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  15. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  16. Assessing the RELAPS-3D Heat Conduction Enclosure Model

    SciTech Connect

    McCann, Larry D.

    2008-09-30

    Three heat conduction problems that have exact solutions are modeled with RELAP5-3D using the conduction enclosure model. These comparisons are designed to be used in the RELAP5-3D development assessment scheduled to be completed in 2009. It is shown that with proper input choices and adequate model detail the exact solutions can be matched. In addition, this analysis identified an error and the required correction in the cylindrical and spherical heat conductor models in RELAP5-3D which will be corrected in a future version of RELAP5-3D.

  17. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  18. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  19. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  20. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.

  1. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  2. Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.

    PubMed

    Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M

    2015-05-01

    High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241

  3. 3D simulation and analytical model of chemical heating during silicon wet etching in microchannels

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-02-01

    We investigate chemical heating of a Silicon-on-Glass (SOG) chip during a highly exothermic reaction of silicon etching in potassium hydroxide (KOH) solution in a microchannel of 100-micron width inside a 1x1 cm SOG chip. Two modeling approaches have been developed, implemented and compared. (1) A detailed 3D model is based on unsteady Navier-Stokes equations, heat and mass transfer equations of a laminar flow of viscous incompressible fluid in microchannel, coupled to the heat transfer equation in the solid chip. 3D simulation results predicted temperature distributions for different KOH flow rates and silicon etching areas. Microchannels of a small diameter do not heat the chip due to the insufficient chemical heating of the cold fluid, whereas large-area etching (large channel diameter and/or length) leads to local overheating that may have negative effects on the device performance and durability. (2) A simplified analytical model solves a thermal balance equation describing the heating by chemical reactions inside the microchannel and energy loss by free convection of air around the chip. Analytical results compare well with the 3D simulations of a single straight microchannel, therefore the analytical model is suitable for quick estimation of process parameters. For complex microstructures, this simplified approach may be used as the first approximation.

  4. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  5. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  7. Role of 3d-dispersive Alfven waves in coronal heating

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Yadav, N.; Pathak, N.

    2014-05-01

    Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).

  8. Heat transfer equipment design

    NASA Astrophysics Data System (ADS)

    Shah, R. K.; Subbarao, Eleswarapu Chinna; Mashelkar, R. A.

    A comprehensive presentation is made of state-of-the-art configurations and design methodologies for heat transfer devices applicable to industrial processes, automotive systems, air conditioning/refrigeration, cryogenics, and petrochemicals refining. Attention is given to topics in heat exchanger mechanical design, single-phase convection processes, thermal design, two-phase exchanger thermal design, heat-transfer augmentation, and rheological effects. Computerized analysis and design methodologies are presented for the range of heat transfer systems, as well as advanced methods for optimization and performance projection.

  9. ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-26

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  10. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  11. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  12. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  13. Condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  14. Turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1982-01-01

    Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

  15. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  16. Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Cooper, C. M.; Lenardic, A.

    2010-12-01

    Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.

  17. 3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.

  18. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  19. Heat transfer fluids containing nanoparticles

    DOEpatents

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  20. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.

    PubMed

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki

    2016-06-10

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.

  1. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-06-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.

  2. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    PubMed Central

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki

    2016-01-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594

  3. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.

    PubMed

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki

    2016-01-01

    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594

  4. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    PubMed

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy. PMID:26045211

  5. Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.

    PubMed

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-09-01

    3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique. PMID:25966320

  6. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    PubMed

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy.

  7. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  8. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed. PMID:26832524

  9. Computer-Designed Splints for Surgical Transfer of 3D Orthognathic Planning.

    PubMed

    Zinser, Max; Zoeller, Joachim

    2015-10-01

    Advances in computers and imaging have permitted the adoption of three-dimensional (3D) planning protocols in orthognathic surgery, which may allow a paradigm shift when the computer-assisted planning can be transferred properly. The purpose of this investigation was to introduce an innovative clinical protocol using computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints for surgical transfer of 3D orthognathic planning compared with the classic technique using arbitrary occlusal splints. The clinical protocols consisted of computed tomography (CT) or cone-beam CT (CBCT) maxillofacial imaging, bone segmentation, 3D diagnosis, computer-assisted surgical treatment planning, and CAD/CAM surgical splints (group A) and manufacture of arbitrary occlusal splints (group B) for intraoperative surgical planning transfer. The observed patients underwent bimaxillary osteotomies and, if necessary, an additional genioplasty. Both techniques were evaluated by applying 13 hard tissue parameters to compare the 3D orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry. The CAD/CAM splints showed significant better precision for the maxilla (ΔT < 0.23 mm) and mandible (ΔT < 0.33 mm) compared with a maxillary deviation of 1.3 mm and a mandibular deviation of 1.8 mm when using the arbitrary splints. Computer-assisted diagnosis and preoperative surgical planning provide clinicians with valuable tools and allow 3D imagination. CAD/CAM splints provide a reliable, innovative, and precise approach for the transfer of 3D orthognathic planning, which is more precise compared with the conventional arbitrary occlusal splints.

  10. HEAT TRANSFER METHOD

    DOEpatents

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  11. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  12. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  13. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  14. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  15. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  16. Geothermal Heat Transfer

    SciTech Connect

    Basmajian, V.V.

    1986-01-28

    This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

  17. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  18. Heating properties of non-invasive hyperthermia treatment for abdominal deep tumors by 3-D FEM.

    PubMed

    Morita, E; Kato, K; Ono, S; Shindo, Y; Tsuchiya, K; Kubo, M

    2009-01-01

    This paper discusses the heating properties of a new type of hyperthermia system composed of a re-entrant type resonant cavity applicator for deep tumors of the abdominal region. In this method, a human body is placed in the gap of two inner electrodes and is non-invasively heated with electromagnetic fields stimulated in the cavity. Here, we calculated temperature distributions of a simple human abdominal phantom model that we constructed to examine the heating properties of the developed hyperthermia system. First, the proposed heating method and a simple abdominal model to calculate the temperature distribution are presented. Second, the computer simulation results of temperature distribution by 3-D FEM are presented. From these results, it was found that the proposed simple human abdominal phantom model composed of muscle, fat and lung was useful to test the heating properties of our heating method. Our heating method was also effective to non-invasively heat abdominal deep tumors.

  19. Heat transfer in aeropropulsion systems

    NASA Astrophysics Data System (ADS)

    Simoneau, R. J.

    1985-07-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  20. Heat transfer in aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1985-01-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  1. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  2. Heat transfer probe

    DOEpatents

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  3. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    SciTech Connect

    Gu, Y.; Liou, K. N.; Lee, W. -L.; Leung, L. R.

    2012-01-01

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m-2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m-2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m-2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation

  4. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  5. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  6. Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice

    PubMed Central

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302

  7. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  8. Gas flow environmental and heat transfer nonrotating 3D program

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1984-01-01

    The experimental contract objective is to provide a complete set of benchmark quality data for the flow within a large rectangular turning duct. The data are to be used to evaluate and verify three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  9. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  10. Conduction heat transfer solutions

    SciTech Connect

    VanSant, J.H.

    1980-03-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

  11. Efficient software-hardware 3D heat equation solver with applications on the non-destructive evaluation of minefields

    NASA Astrophysics Data System (ADS)

    Pardo, F.; López, P.; Cabello, D.; Balsi, M.

    2009-11-01

    This paper targets the efficient computational solution of the heat transfer processes that take place in the soil and at the soil-air interface and its use in non-destructive evaluation (NDE) techniques. In particular, the problem of the detection of plastic antipersonnel mines is considered. To this aim we projected a 3D finite-difference (FD) thermal model of the soil on a FPGA platform using Handel-C and VHDL. A speedup factor of 34 over a purely software solution is achieved, obtaining processing times that permit the use of the system on the field.

  12. Heat transfer from internally heated hemispherical pools

    SciTech Connect

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO/sub 4/-H/sub 2/O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere.

  13. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  14. Heat transfer in counterflow heat exchangers with helical turbulators

    NASA Astrophysics Data System (ADS)

    Zamankhan, Piroz

    2010-10-01

    A 3D mathematical model has been developed to investigate the heat transfer augmentation in a circular tube with a helical turbulator. Glycol-water blends of various concentrations were used in the inner tube, and pure water was used in the outer tube. Changes in fluid physical properties with temperature were taken into account, and k- ε, k - ω , and large eddy simulations were developed for turbulence modeling. The simulation results showed a nonlinear variation in Reynolds and Prandtl numbers for a long model of a heat exchanger even in the absence of a turbulator. The presence of the turbulator was found to increase the heat transfer, sometimes without inducing turbulence, but also increased the pressure drop. The results demonstrate that the model could be used as a useful tool for optimization of heat exchanger performance in the presence of a turbulator. Comparisons with experimental data showed reasonably agreement with large eddy simulation results.

  15. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  16. 3D topographic correction of the BSR heat flow and detection of focused fluid flow

    NASA Astrophysics Data System (ADS)

    He, Tao; Li, Hong-Lin; Zou, Chang-Chun

    2014-06-01

    The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.

  17. Braiding, Turbulent 3D Reconnection and Impulsive Heating of the Magnetically Closed Corona

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Hornig, G.; Yeates, A.

    2015-12-01

    Magnetic braiding is one of the leading theories for heating the magnetically closed corona, however, understanding of the central processes has changed dramatically in recent years. In particular, it is now recognized that braided fields allow impulsive heating via the formation of large numbers of turbulently forming and evolving reconnection regions, which are volume filling and inherently 3D, and it is no longer necessary to invoke topological discontinuities to dissipate stored energy. It has also become clear that turbulent reconnection produces structures that are inconsistent with a Taylor relaxation model, raising questions about how much stored energy is available for heating and particle acceleration. Here, we look at recent progress that has been made in dealing with this complex heating mechanism and present a new advance that greatly improves estimates of the magnetic energy available for heating and particle acceleration.

  18. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  19. Tubing for augmented heat transfer

    SciTech Connect

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  20. Thermally induced apoptosis, necrosis, and heat shock protein expression in 3D culture.

    PubMed

    Song, Alfred S; Najjar, Amer M; Diller, Kenneth R

    2014-07-01

    This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in

  1. A range/depth modulation transfer function (RMTF) framework for characterizing 3D imaging LADAR performance

    NASA Astrophysics Data System (ADS)

    Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas

    2005-05-01

    3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.

  2. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  3. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  4. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  5. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky-Sierra Mountains

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-07-01

    Essentially all modern climate models utilize a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF) model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations

  6. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells

    PubMed Central

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443

  7. A numerical investigation of the 3-D flow in shell and tube heat exchangers

    SciTech Connect

    Prithiviraj, M.; Andrews, M.J.

    1996-12-31

    A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.

  8. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  9. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  10. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  11. HEAT TRANSFER MEANS

    DOEpatents

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  12. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.

    PubMed

    Zhang, Jianwei; Shi, Gang; Jiang, Cai; Ju, Su; Jiang, Dazhi

    2015-12-01

    Graphene paper (GP) has attracted great attention as a heat dissipation material due to its unique thermal transfer property exceeding the limit of graphite. However, the relatively poor thermal transfer properties in the normal direction of GP restricts its wider applications in thermal management. In this work, a 3D bridged carbon nanoring (CNR)/graphene hybrid paper is constructed by the intercalation of polymer carbon source and metal catalyst particles, and the subsequent in situ growth of CNRs in the confined intergallery spaces between graphene sheets through thermal annealing. Further investigation demonstrates that the CNRs are covalently bonded to the graphene sheets and highly improve the thermal transport in the normal direction of the CNR/graphene hybrid paper. This full-carbon architecture shows excellent heat dissipation ability and is much more efficient in removing hot spots than the reduced GP without CNR bridges. This highly thermally conductive CNR/graphene hybrid paper can be easily integrated into next generation commercial high-power electronics and stretchable/foldable devices as high-performance lateral heat spreader materials. This full-carbon architecture also has a great potential in acting as electrodes in supercapacitors or hydrogen storage devices due to the high surface area. PMID:26476622

  13. Sphere Drag and Heat Transfer.

    PubMed

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  14. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  15. Sphere Drag and Heat Transfer

    PubMed Central

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-01-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698

  16. Monitoring of resin transfer in CFRP molding using 3D-DIC technique

    NASA Astrophysics Data System (ADS)

    Chen, Dingding; Arakawa, Kazuo; Uchino, Masakazu

    2014-06-01

    Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process that is used to make large and complex composite structures. While promising, VARTM still suffers from relatively low fiber volume fractions and high void content in the final products. The infusion step of VARTM is very important, because the quality of the final product is usually decided by this process. Consequently, a comprehensive understanding of the infusion process is essential. In this study, a three-dimensional digital image correlation (3D-DIC) testing system was set up to research the entire infusion process through the monitor of the thickness change of the laminates in this process. Two distinct VARTM processes, with and without a rigid cover mold, were designed to be studied. The 3D-DIC technique proved to be a valid method that not only can monitor the thickness evolution of isolated points but also can give a full-field distribution of the thickness change of the laminate. The results showed that, without the use of a rigid cover mold, the stack of reinforcements initially shrank and then expanded as the resin filled the cavities before closing the inlet, while when using a rigid cover mold there was an additional expansion period before the shrinkage occurred. Such an expansion stage could promote the flow of the resin, shortening the infusion time.

  17. 3D finite element model of RF heating: novel nonablative cutaneous therapy

    NASA Astrophysics Data System (ADS)

    Pham, Linda; Pope, Karl A.

    2003-06-01

    This study presents a finite element model of a non-ablative RF tissue heating system for dermatological applications. The Thermage ThermaCool TC System consists of a capacitively coupled treatment tip, handpiece, RF generator, and cryogen delivery system. Various electrode geometries were created to generate uniform thermal profiles at specific depths in the tissue. The optimal thermal treatment depth for a clinical indication is influenced by factors such as tissue thickness for a given anatomical location, the desired target for heating in that tissue, and anesthesia factors. Electrodes of ¼, 1, and 1½cm2 area were evaluated for depth of treatment. A 3D multi-physics finite element model was developed to simulate RF heating in tissue. The program coupled electrical and thermal models to predict the electric field produced and the consequent heating. The electrical portion of the model was verified using an electric field mapping system. The thermal section of the model was confirmed via thermocouple measurements for cooling and infrared imaging measurements for RF heating. The FEM model produced electrical and thermal predictions that were verified with experimental measurements. The finite element model shows significant potential as a predictive R&D tool to assist in RF electrode design and reduce product development time.

  18. Introductory heat-transfer

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  19. Coronal heating above active regions - 3D MHD model versus multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Bingert, Sven; Peter, Hardi

    2014-05-01

    The plasma heating mechanism in the Solar corona is a puzzle since decades. Today high-performance computing together with multi-spacecraft observations offer new insights. We conducted a high-resolution simulation of the corona above an active region and compare synthetic emission deduced from the model with co-temporal observations. Photospheric observations act as a boundary condition for our model that drives magnetic-field braiding by advection and generates a net upwards Poynting flux. In particular, we do not only get a sufficient energy input to the base of the corona, but we also reproduce the observed coronal loops: the 3D structure of the hot AR loops system in the model compares well to joint STEREO-A/-B and Hinode observations. The plasma flows along these loops are similar to observed Doppler maps. Draining and siphon flows along magnetic structures at different temperatures offer a new alternative explanation for the average Doppler red-shifts in the transition region and coronal blue-shifts. This match between model and observations indicates a realistic distribution of the coronal heating in time and space and shows that our 3D MHD model of the corona captures the relevant processes involved.

  20. Heat transfer, diffusion, and evaporation

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  1. Heat-transfer thermal switch

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  2. North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects

    NASA Astrophysics Data System (ADS)

    Li, Hong-lin; He, Tao; Spence, George D.

    2014-01-01

    The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.

  3. Heat transfer in damaged material

    NASA Astrophysics Data System (ADS)

    Kruis, J.

    2013-10-01

    Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

  4. Enhanced heat transfer using nanofluids

    DOEpatents

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  5. Heat transfer from oriented heat exchange areas

    NASA Astrophysics Data System (ADS)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  6. Investigation of Three-Dimensional (3-D) Solar Radiative Transfer Effects Using A-Train Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ham, S.; Kato, S.; Barker, H.; Rose, F. G.

    2012-12-01

    Three-dimensional (3-D) radiative effects are examined for cloudy atmosphere obtained from A-train satellite measurements. Since CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) only provide two-dimensional (2-D) nadir profiles along the satellite track, Moderate Resolution Imaging Spectroradiometer (MODIS) spectral radiances are used to extend the 2-D cloud profiles to the cross track direction (Barker et al., 2011). Then one-dimensional (1-D) and 3-D simulations are performed to get (SW) broad band (BB) flux and heating rate profile for constructed 3-D cloud field. In the simulation, correlated k-distribution model is employed to obtain rapid estimation of gaseous optical depths for 70 solar spectral bands. The difference between 1-D and 3-D results are interpreted as 3-D solar effects, and analyzed for different cloud types and solar zenith angle. In addition, modeled top-of-atmosphere (TOA) irradiances by the 1-D and 3-D models are compared to Clouds and the Earth's Radiant Energy System (CERES)-derived TOA irradiances. The preliminary results show that 3-D cloud absorption is larger than 1-D calculation, and thus 3-D heating rate is larger than 1-D heating rate for cloud layer. On the other hand, 3-D downward flux at surface is smaller than 1-D flux. Reference Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011, A 3D cloud-construction algorithm for the EarthCARE mission, Q. J. R. Meteorol. Soc., 137, 1042-1058.

  7. Nanofluid impingement jet heat transfer.

    PubMed

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  8. Nanofluid impingement jet heat transfer

    PubMed Central

    2012-01-01

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669

  9. Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding

    NASA Astrophysics Data System (ADS)

    Courtois, Mickael; Carin, Muriel; Le Masson, Philippe; Gaied, Sadok; Balabane, Mikhaël

    2016-04-01

    During the past few years, numerous sophisticated models have been proposed to predict in a self-consistent way the dynamics of the keyhole, together with the melt pool and vapor jet. However, these models are only partially compared to experimental data, so the reliability of these models is questionable. The present paper aims to propose a more complete experimental set-up in order to validate the most relevant results calculated by these models. A complete heat transfer and fluid flow three-dimensional (3D) model is first proposed in order to describe laser welding in keyhole regimes. The interface is tracked with a level set method and fluid flows are calculated in liquid and gas. The mechanisms of recoil pressure and keyhole creation are highlighted in a fusion line configuration chosen as a reference. Moreover, a complete validation of the model is proposed with guidelines on the variables to observe. Numerous comparisons with dedicated experiments (thermocouples, pyrometry, high-speed camera) are proposed to estimate the validity of the model. In addition to traditional geometric measurements, the main variables calculated, temperatures, and velocities in the melt pool are at the center of this work. The goal is to propose a reference validation for complex 3D models proposed over the last few years.

  10. The 3D heat flux density distribution on a novel parabolic trough wavy absorber

    NASA Astrophysics Data System (ADS)

    Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira

    2016-05-01

    The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.

  11. Investigation of Heat Transfer From

    NASA Technical Reports Server (NTRS)

    Lewis, James P.; Ruggeri, Robert S.

    1956-01-01

    The convective heat transfer from the surface of an ellipsoidal forebody of fineness ratio 3 and 20-inch maximum diameter was investigated in clear air for both stationary and rotating operation over a range of conditions including air speeds up to 240 knots, rotational speeds up to 1200 rpm, and angles of attack of 0 deg, 3 deg, and 6 deg. The results are presented in the form of heat-transfer coefficients and the correlation of Nusselt and Reynolds numbers. Both a uniform surface temperature and a uniform input heater density distribution were used. The experimental results agree well with theoretical predictions for uniform surface temperature distribution. Complete agreement was not obtained with uniform input heat density in the laminar-flow region because of conduction effects. No significant effects of rotation were obtained over the range of airstream and rotational speeds investigated. Operation at angle of attack had only minor effects on the local heat transfer. Transition from laminar to turbulent heat transfer occurred over a wide range of Reynolds numbers. The location of transition depended primarily on surface roughness and pressure and temperature gradients. Limited transient heating data indicate that the variation of surface temperature with time followed closely an exponential relation.

  12. New insights into photodynamic therapy treatment through the use of 3D Monte Carlo radiation transfer modelling

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Wood, Kenneth; Brown, C. Tom A.; Moseley, Harry

    2016-02-01

    Photodynamic therapy (PDT) has been theoretically investigated using a Monte Carlo radiation transfer (MCRT) model. By including complex three dimensional (3D) tumour models a more appropriate representation of the treatment was achieved. The 3D clustered tumour model was compared to a smooth model, resulting in a significantly deeper penetration associated with the clustered model. The results from the work presented here indicates that light might penetrate deeper than suggested by 2D or simple layered models.

  13. Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Lopez-Caballero, Miguel

    2013-11-01

    The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.

  14. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    USGS Publications Warehouse

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  15. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  16. Host turbine heat transfer overview

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1984-01-01

    Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.

  17. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  18. Heating properties of the needle type applicator made of shape memory alloy by 3-D anatomical human head model.

    PubMed

    Mimoto, N; Kato, K; Kanazawa, Y; Shindo, Y; Tsuchiya, K; Kubo, M; Uzuka, T; Takahashi, H; Fujii, Y

    2009-01-01

    Since the human brain is protected by the skull, it is not easy to non-invasively heat deep brain tumors with electromagnetic energy for hyperthermia treatments. Generally, needle type applicators were used in clinical practice to heat brain tumors. To expand the heating area of needle type applicators, we have developed a new type of needle made of a shape memory alloy (SMA). In this paper, heating properties of the proposed SMA needle type applicator were discussed. Here, in order to apply the SMA needle type applicator clinically. First, we constructed an anatomical 3-D FEM model from MRI and X-ray CT images using 3D-CAD software. Second, we estimated electric and temperature distributions to confirm the SMA needle type applicator using the FEM soft were JMAG-Studio. From these results, it was confirmed that the proposed method can expand the heating area and control the heating of various sizes of brain tumors.

  19. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  20. A 3D Model for Gas Transfer, Storage and Resulting Displacement in a Permeable Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen

    2014-05-01

    The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. Whilst gas release is evident from surface gas emission measurements, gas storage is also thought to play an important role, as evidenced by large gas emissions after some large dome collapse events, suggesting gas may be stored in large volumes at shallow depths within the dome and edifice. Consequently, it is essential to understand degassing, to appreciate how much gas may be stored and where, and under what conditions it may be transferred or emitted to the atmosphere. We use previous experimental data on permeabilities to create 3D numerical models to investigate gas transport and storage in a permeable volcanic edifice. We combine the continuity equation, Darcy's law and the ideal gas law to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas velocity. In addition, we use the momentum equation to investigate how the presence of gas and variations in permeability influence the rate and degree of deformation in the volcanic edifice. Hence this provides two important surface constraints: gas emissions and surface displacement. Geometries are created to simulate the topography of actual volcanoes and the pressure and permeabilities incorporated into the model as boundary and domain conditions, respectively. This method is applied to investigate a variety of volcanological phenomena affecting gas, for example regions of high permeability due to fractures, or low permeability due to sealing.

  1. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  2. Heat transfer in plasma spraying

    NASA Astrophysics Data System (ADS)

    Hijikata, Kunio; Mitui, Kenzi

    A Bi2Te3 film was directly coated by a plasma spraying and its heat transfer process was experimentally investigated. A new thermal probe for measuring the temperature field was developed and its accuracy was checked from a structure of coated film. The Seebeck coefficients of Bi2Te3 films made under different ambient conditions were compared, and it was determined that the cooling condition during film deposition had a great effect on the thermoelectric performance of the film, especially of Bi2Te3 films. It was also shown that a thick thermoelectric film is able to be directly coated on the heat transfer pipe, which may bring about a large improvement in the conversion efficiency caused by the contact resistance between the thermoelectric elements and a heat source.

  3. Heat transfer in serpentine flow passages with rotation

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Takamura, J.; Yamawaki, S.; Yang, Wen-Jei

    1992-06-01

    Results are reported of an experimental study tracing heat transfer performance in a rotating serpentine flow passage of a square cross section. The test section is preceded by a hydrodynamic calming region. The test model is a blow-up (by seven times) of actual winding flow passages in rotor blades. It is concluded that the flow in the 180-deg bends exhibits strong 3D structure. The heat transfer coefficient in the bend is substantially higher than in the straight flow passages. The average heat transfer characteristics over the entire flow passage is greatly affected by flow at the 180-deg bends. Due to secondary flow induced by the Coriolis force, the heat transfer coefficient in the radially outward flow passages diminish on the leading surface, but increase on the trailing surface, with an increase in rotational speed. The trend is reversed in the radially inward flow passages.

  4. Three-Dimensional Phylogeny Explorer: Distinguishing paralogs, lateral transfer, and violation of "molecular clock" assumption with 3D visualization

    PubMed Central

    Kim, Namshin; Lee, Christopher

    2007-01-01

    Background Construction and interpretation of phylogenetic trees has been a major research topic for understanding the evolution of genes. Increases in sequence data and complexity are creating a need for more powerful and insightful tree visualization tools. Results We have developed 3D Phylogeny Explorer (3DPE), a novel phylogeny tree viewer that maps trees onto three spatial axes (species on the X-axis; paralogs on Z; evolutionary distance on Y), enabling one to distinguish at a glance evolutionary features such as speciation; gene duplication and paralog evolution; lateral gene transfer; and violation of the "molecular clock" assumption. Users can input any tree on the online 3DPE, then rotate, scroll, rescale, and explore it interactively as "live" 3D views. All objects in 3DPE are clickable to display subtrees, connectivity path highlighting, sequence alignments, and gene summary views, and etc. To illustrate the value of this visualization approach for microbial genomes, we also generated 3D phylogeny analyses for all clusters from the public COG database. We constructed tree views using well-established methods and graph algorithms. We used Scientific Python to generate VRML2 3D views viewable in any web browser. Conclusion 3DPE provides a novel phylogenetic tree projection method into 3D space and its web-based implementation with live 3D features for reconstruction of phylogenetic trees of COG database. PMID:17584922

  5. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  6. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-12-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  7. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km

  8. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  9. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  10. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  11. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  12. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  13. Heat transfer in the Knudsen layer.

    PubMed

    Sharipov, Felix

    2004-06-01

    A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced. It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity was related to the thermal slip coefficient.

  14. Heat transfer in the Knudsen layer

    NASA Astrophysics Data System (ADS)

    Sharipov, Felix

    2004-06-01

    A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced. It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity was related to the thermal slip coefficient.

  15. Heat Transfer in a Thermoacoustic Process

    ERIC Educational Resources Information Center

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  16. Heat-transfer enhancement in AC electro-osmotic micro-flows

    NASA Astrophysics Data System (ADS)

    Liu, Z. P.; Speetjens, M. F. M.; Frijns, A. J. H.; van Steenhoven, A. A.

    2012-11-01

    Heat transfer in micro-flows is essential to emerging technologies as advanced microelectronics cooling systems and chemical processes in lab-on-a-chip applications. The present study explores the potential of AC electro-osmotic (ACEO) flow forcing, a promising technique for the actuation and manipulation of micro-flows, for heat-transfer enhancement. Subjects of investigation include the 3D flow structure due to ACEO forcing via an array of electrodes in a micro-channel by way of 3D velocity measurements. Presence and properties of vortical structures of the 3D flow are quantified in laboratory experiments. Typical outcomes of the experimental study result from a number of 3D particle trajectories obtained by using 3D micro-Particle-Tracking Velocimetry (3D μ-PTV). The steady nature of the flow enables combination of results from a series of measurements into one dense data set. This facilitates accurate evaluation of quantities relevant for heat transfer by data-processing methods. The primary circulation is given above one half of an electrode in terms of the spanwise component of vorticity. The outline of the vortex boundary is determined via the eigenvalues of the strain-rate tensor. To estimate convective heat transfer, wall shear rate above one half of an electrode is quantitatively analyzed as function of voltage amplitude and frequency. These results yield first insights into the characteristics of 3D ACEO flows and ways to exploit and manipulate them for heat-transfer enhancement.

  17. Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

    PubMed

    Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M

    2016-02-10

    Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process.

  18. Application of 3-D radiative transfer theory to atmospheric correction of land surface images

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Martonchik, J. V.; Danielson, E. D.; Bruegge, C. J.

    1988-01-01

    Three dimensional radiative transfer theory was applied to computation of atmospheric effects on remotely sensed imagery. The atmospheric correction algorithm derived is used to estimate aerosol opacity.

  19. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts. PMID:23291561

  20. 3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A

    2013-03-01

    A 3D block of radiogenic heat production was constructed from the subsurface total gamma ray logs of Bahariya Formation, Western Desert, Egypt. The studied rocks possess a range of radiogenic heat production varying from 0.21 μWm(-3) to 2.2 μWm(-3). Sandstone rocks of Bahariya Formation have higher radiogenic heat production than the average for crustal sedimentary rocks. The high values of density log of Bahariya Formation indicate the presence of iron oxides which contribute the uranium radioactive ores that increase the radiogenic heat production of these rocks. The average radiogenic heat production produced from the study area is calculated as 6.3 kW. The histogram and cumulative frequency analyses illustrate that the range from 0.8 to 1.2 μWm(-3) is about 45.3% of radiogenic heat production values. The 3D slicing of the reservoir shows that the southeastern and northeastern parts of the study area have higher radiogenic heat production than other parts.

  1. 3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule

    NASA Astrophysics Data System (ADS)

    Berkner, A.; Schweitzer, A.; Hauschildt, P. H.

    2015-01-01

    The photospheres of cool stars are both rich in molecules and an environment where the assumption of LTE can not be upheld under all circumstances. Unfortunately, detailed 3D non-LTE calculations involving molecules are hardly feasible with current computers. For this reason, we present our implementation of the super level technique, in which molecular levels are combined into super levels, to reduce the number of unknowns in the rate equations and, thus, the computational effort and memory requirements involved, and show the results of our first tests against the 1D implementation of the same method.

  2. Heat Transfer in Complex Fluids

    SciTech Connect

    Mehrdad Massoudi

    2012-01-01

    (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an

  3. Part B: Heat Transfer to Slush Hydrogen

    NASA Technical Reports Server (NTRS)

    Sindt, C. F.

    1972-01-01

    Heat transfer to slush hydrogen was measured at one atmosphere and at triple-point pressure. The data were compared with those for heat transfer to liquid hydrogen, and to classical heat transfer correlations for nucleate boiling. The slush data fit convective heat transfer correlations quite well. In general, the data show that for a given heat flux, the temperature difference between the wall and the bulk liquid is not as highly influenced by pressure as predicted by the core correlation for nucleate boiling.

  4. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  5. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect

    Kumpinsky, E.

    1996-03-01

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  6. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    NASA Astrophysics Data System (ADS)

    Hua, Weihong; Yang, Zining; Wang, Hongyan

    2012-01-01

    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  7. Constructing a model of 3D radiogenic heat production in Ireland

    NASA Astrophysics Data System (ADS)

    Willmot Noller, N. M.; Daly, J. S.

    2012-04-01

    Heat production values in the crust and mantle rock inform heat flow density data to provide crucial information about the structure of the Earth's lithosphere. In addition, accurate models of horizontal and vertical distribution of heat production can help to define geothermal exploration targets. Low-enthalpy district scale space heating and Enhanced Geothermal Systems (EGS) using hot, dry rock may provide sustainable energy resources in regions currently perceived as having low geothermal energy potential. Ireland is located within stable lithosphere, unaffected by recent tectonism and volcanism, and has an estimated heat flow range below the measured global continental average. Nevertheless, borehole data indicate that heat production is variable across the island, with anomalously high rates observed, for example, in Cavan, Meath and Antrim. Data coverage is, however, poor. Radioactive isotopic decay generates heat in rock. By using established heat production constants and known concentrations of unstable isotopes of uranium, thorium and potassium, along with rock density values, a heat production rate in μW m -3 is obtained. With the objective of compiling the first comprehensive database of information about the Irish lithosphere, in three dimensions, the authors present here initial results obtained from published and unpublished whole-rock major and trace element analyses. The presence of systematic trends correlating heat production to properties such as age and lithology are also investigated. Offering insight into the vertical component of heat production distribution, Irish xenoliths emplaced in Lower Carboniferous volcanics are regarded as a reliable proxy for the present-day lower crust. Their geochemical composition gives heat production values that are higher than expected for the depths indicated by their thermobarometric data, suggesting that heat production rates do not simply reduce with depth.

  8. Heat Transfer in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  9. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  10. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    SciTech Connect

    Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-01-12

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (εDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  11. Finite Element Heat & Mass Transfer Code

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  12. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  13. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L.

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  14. Exact variational principle for 3-D unsteady heat conduction with second sound

    NASA Astrophysics Data System (ADS)

    Liu, Gaolian

    2006-12-01

    The exact variational formulation of the extended unsteady heat conduction equation with finite propagation speed (the 2nd sound speed) of hyperbolic type is derived herein via a systematic and natural way. Moreover, the boundary-and the physically acceptable initial-value conditions are accommodated in the variational principle by a novel method suggested just recently. In this way a perfect justification of the variational theory of transient heat conduction and a rigorous theoretical basis for the finite element analysis of heat conduction are provided.

  15. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  16. Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Hamilton, H. H.

    1974-01-01

    A relatively simple method was developed previously (authors, 1973) for calculating laminar, transitional, and turbulent heating rates on three-dimensional bodies in hypersonic flows. This method was shown to yield reasonably accurate results for laminar heating on blunted circular and elliptical cones and an earlier version of the space shuttle vehicle. As the boundary layer along the surface grows, more and more of the inviscid-flow mass is entrained into the boundary layer, and the streamlines which passed through the nearly normal portion of the bow shock wave are 'swallowed' by the boundary layer. This phenomenon is often referred to as entropy-layer or streamline swallowing, and it can have a significant effect on the calculated heating rates. An approximate, yet simple, method for including the effects of entropy-layer swallowing in the heating-rate calculations is given.

  17. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    NASA Astrophysics Data System (ADS)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  18. Experimental Investigation and 3D Finite Element Prediction of Temperature Distribution during Travelling Heat Sourced from Oxyacetylene Flame

    NASA Astrophysics Data System (ADS)

    Umar Alkali, Adam; Lenggo Ginta, Turnad; Majdi Abdul-Rani, Ahmad

    2015-04-01

    This paper presents a 3D transient finite element modelling of the workpiece temperature field produced during the travelling heat sourced from oxyacetylene flame. The proposed model was given in terms of preheat-only test applicable during thermally enhanced machining using the oxyacetylene flame as a heat source. The FEA model as well as the experimental test investigated the surface temperature distribution on 316L stainless steel at scanning speed of 100mm/min, 125mm/min 160mm/min, 200mm/min and 250mm/min. The parametric properties of the heat source maintained constant are; lead distance Ld =10mm, focus height Fh=7.5mm, oxygen gas pressure Poxy=15psi and acetylene gas pressure Pacty=25psi. An experimental validation of the temperature field induced on type 316L stainless steel reveal that temperature distribution increases when the travelling speed decreases.

  19. Exploring Brushlet Based 3D Textures in Transfer Function Specification for Direct Volume Rendering of Abdominal Organs.

    PubMed

    Alper Selver, M

    2015-02-01

    Intuitive and differentiating domains for transfer function (TF) specification for direct volume rendering is an important research area for producing informative and useful 3D images. One of the emerging branches of this research is the texture based transfer functions. Although several studies in two, three, and four dimensional image processing show the importance of using texture information, these studies generally focus on segmentation. However, TFs can also be built effectively using appropriate texture information. To accomplish this, methods should be developed to collect wide variety of shape, orientation, and texture of biological tissues and organs. In this study, volumetric data (i.e., domain of a TF) is enhanced using brushlet expansion, which represents both low and high frequency textured structures at different quadrants in transform domain. Three methods (i.e., expert based manual, atlas and machine learning based automatic) are proposed for selection of the quadrants. Non-linear manipulation of the complex brushlet coefficients is also used prior to the tiling of selected quadrants and reconstruction of the volume. Applications to abdominal data sets acquired with CT, MR, and PET show that the proposed volume enhancement effectively improves the quality of 3D rendering using well-known TF specification techniques. PMID:26357028

  20. A Fourier rebinning algorithm incorporating spectral transfer efficiency for 3D PET.

    PubMed

    Tanaka, E; Amo, Y

    1998-04-01

    This paper presents a Fourier rebinning algorithm for three-dimensional image reconstruction in PET that incorporates the concept of spectral transfer function. It suggests the need for discarding low-frequency components in the rebinning. It also includes the correction for rebinning efficiency which was evaluated by simulations as a function of oblique angle of projections. The performance was optimized by high-pass filters and axial smoothing. The algorithm yields satisfactory images with negligible axial cross-talk for a maximum oblique angle up to 26.6 degrees. The statistical noise was evaluated in terms of 'noise equivalent number of oblique angles', and reasonable results were obtained in view of the theoretical expectation. Ring artefacts due to noise are negligibly small.

  1. Transport phenomena of crystal growth—heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Rudolph, Peter

    2010-07-01

    Selected fundamentals of transport processes and their importance for crystal growth are given. First, principal parameters and equations of heat and mass transfer, like thermal flux, radiation and diffusion are introduced. The heat- and mass- balanced melt-solid and solution-solid interface velocities are derived, respectively. The today's significance of global numeric simulation for analysis of thermo-mechanical stress and related dislocation dynamics within the growing crystal is shown. The relation between diffusion and kinetic regime is discussed. Then, thermal and solutal buoyancy-driven and Marangoni convections are introduced. Their important interplay with the diffusion boundary layer, component and particle incorporation as well as morphological interface stability is demonstrated. Non-steady crystallization phenomena (striations) caused by convective fluctuations are considered. Selected results of global 3D numeric modeling are shown. Finally, advanced methods to control heat and mass transfer by external forces, such as accelerated container rotation, ultrasonic vibration and magnetic fields are discussed.

  2. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  3. Magma Mixing Chronometry: Quantitative 3D Tomographic Analysis of Biotite Breakdown in Heating Experiments

    NASA Astrophysics Data System (ADS)

    Grocke, S. B.; Andrews, B. J.; Manga, M.; Quinn, E. T.

    2015-12-01

    Dacite lavas from Chaos Crags, Lassen Volcanic Center, CA contain inclusions of more mafic magmas, suggesting that mixing or mingling of magmas occurred just prior to lava dome extrusion, and perhaps triggered the eruption. The timescales between the mixing event and eruption are unknown, but reaction rims on biotite grains hosted in the Chaos Crags dacite may provide a record of the timescale (i.e., chronometer) between mixing and eruption. To quantify the effect of pre-eruptive heating on the formation of reaction rims on biotite, we conducted isobaric (150 MPa), H2O-saturated, heating experiments on the dacite end-member. In heating experiments, we held the natural dacite at 800°C and 150MPa for 96 hours and then isobarically heated the experiments to 825 and 850°C (temperatures above the biotite liquidus, <815°C at 150MPa) for durations ≤96 hours. We analyzed run products using high-resolution SEM imaging and synchrotron-based X-ray tomography, which provides a 3-dimensional rendering of biotite breakdown reaction products and textures. X-ray tomography images of experimental run products reveal that in all heating experiments, biotite breakdown occurs and reaction products include orthopyroxenes, Fe-Ti oxides, and vapor (inferred from presence of bubbles). Experiments heated to 850°C for 96 h show extensive breakdown, consisting of large orthopyroxene crystals, Fe-Ti oxide laths (<100μm), and bubbles. When the process of biotite breakdown goes to completion, the resulting H2O bubble comprises roughly the equivalent volume of the original biotite crystal. This observation suggests that biotite breakdown can add significant water to the melt and lead to extensive bubble formation. Although bubble expansion and magma flow may disrupt the reaction products in some magmas, our experiments suggest that biotite breakdown textures in natural samples can be used as a chronometer for pre-eruptive magma mixing.

  4. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  5. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs.

    PubMed

    Roper, Christopher S; Schubert, Randall C; Maloney, Kevin J; Page, David; Ro, Christopher J; Yang, Sophia S; Jacobsen, Alan J

    2015-04-17

    A scalable method for fabricating architected materials well-suited for heat and mass exchange is presented. These materials exhibit unprecedented combinations of small hydraulic diameters (13.0-0.09 mm) and large hydraulic-diameter-to-thickness ratios (5.0-30,100). This process expands the range of material architectures achievable starting from photopolymer waveguide lattices or additive manufacturing.

  6. Rotary Joint for Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shauback, R.

    1986-01-01

    Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

  7. Heat transfer coefficient of cryotop during freezing.

    PubMed

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  8. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  9. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  10. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  11. Characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.

    2015-12-01

    The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.

  12. The Neighboring Column Approximation (NCA) - A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to -150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only -100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5-2 higher compared to a 1D

  13. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  14. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  15. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  16. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  17. The magnetic fluid for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.

    2002-11-01

    Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case.

  18. Thermodynamics of Flow Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  19. Fluid flow and heat transfer in polygonal micro heat pipes

    NASA Astrophysics Data System (ADS)

    Rao, Sai; Wong, Harris

    2015-11-01

    Micro heat pipes have been used to cool microelectronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. We model heat and mass transfer in triangular, square, hexagonal, and rectangular micro heat pipes under small imposed temperature differences. A micro heat pipe is a closed microchannel filled with a wetting liquid and a long vapor bubble. When a temperature difference is applied across a micro heat pipe, the equilibrium vapor pressure at the hot end is higher than that at the cold end, and the difference drives a vapor flow. As the vapor moves, the vapor pressure at the hot end drops below the saturation pressure. This pressure drop induces continuous evaporation from the interface. Two dimensionless numbers emerge from the momentum and energy equations: the heat-pipe number H, and the evaporation exponent S. When H >> 1 and S >> 1, vapor-flow heat transfer dominates and a thermal boundary layer appears at the hot end, the thickness of which scales as L/S, where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, the temperature is uniform. We also find a dimensionless optimal pipe length Sm =Sm(H) for maximum evaporative heat transfer. Thus, our model suggests that micro heat pipes should be designed with H >> 1 and S =Sm. We calculate H and S for four published micro-heat-pipe experiments, and find encouraging support for our design criterion.

  20. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect

    Kumpinsky, E.

    1995-12-01

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  1. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    PubMed

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  2. Heat and mass transfer in an explosion

    SciTech Connect

    Zakharova, I.G.

    1982-06-01

    The filtration of gaseous detonation products of high explosives from an underground chamber is investigated. The retention of gas in the pores by absorption is considered. The sorption process is determined to have three stages: outer diffusion (transfer of molecules of sorbed material to the outer surfaces of particles) an inner diffusion, and absorption per se. Equations are derived for diffusion flux, outer mass-transfer coefficient, mass balance in primary pores, motion of the gas, heat transfer, and so on. Within this framework, following assumptions of gas ideality, disregarding vaccum expansion, porosity variation, and heat transfer through wall, the filtration leakage of gaseous products of underground detonation of high explosives from an underground cavity is studied. Pressure in the cavity is measured as a function of filtration without heat and mass transfer; and with heat transfer; with heat and mass and limited sorption; and with heat and mass and infinite sorption capability. It is determined that heat-mass transfer significantly influences explosion efficiency. Thus, an increase in sorption capacities can increase the entrapment of gases.

  3. 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cel

    NASA Astrophysics Data System (ADS)

    Nabiei, F.; Cantoni, M.; Badro, J.; Dorfman, S. M.; Gaal, R.; Piet, H.; Gillet, P.

    2015-12-01

    The diamond anvil cell is a unique tool to study materials under static pressures up to several hundreds of GPa. It is possible to generate temperatures as high as several thousand degrees in the diamond anvil cell by laser heating. This allows us to achieve deep mantle conditions in the laser-heated diamond anvil cell (LHDAC). The small heated volume is surrounded by thermally conductive diamond anvils results in high temperature gradients which affect phase transformation and chemical distribution in the LH-DAC. Analytical characterization of samples in three dimensions is essential to fully understand phase assemblages and equilibrium in LHDAC. In this study we used San Carlos olivine as a starting material as a simple proxy to deep mantle composition. Three samples were melted at ~3000 K and at ~45 GPa for three different durations ranging from 1 to 6 minutes; two other samples were melted at 30 GPa and 70 GPa. All samples were then sliced by focused ion beam (FIB). From each slice, an electron image and energy dispersive X-ray (EDX) map were acquired by scanning electron microscope (SEM) in the dual beam FIB instrument. These slices were collected on one half of the heated area in each sample, from which we obtained 3D elemental and phase distribution. The other half of the heated area was used to extract a 100 nm thick section for subsequent analysis by analytical transmission electron microscopy (TEM) to obtain diffraction patterns and high resolution EDX maps. 3D reconstruction of SEM EDX results shows at least four differentiated regions in the heated area for all samples. The exact Fe and Mg compositions mentioned below are an example of the sample melted at 45 GPa for 6 minutes. The bulk of the heated are is surrounded by ferropericlase (Mg0.92, Fe0.08)O shell (Fp). Inside this shell we find a thick region of (Mg,Fe)SiO3 perovskite-structured bridgmanite (Brg) coexisting with Fp. In the center lies a Fe-rich core which is surrounded by magnesiow

  4. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  5. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  6. 3D crustal-scale heat-flow regimes at a developing active margin (Taranaki Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.; Nicol, A.; Fohrmann, M.; Bland, K. J.; King, P. R.

    2013-04-01

    The Taranaki Basin in the west of New Zealand's North Island has evolved from a rifted Mesozoic Gondwana margin to a basin straddling the Neogene convergent Australian-Pacific plate margin. However, given its proximity to the modern subduction front, Taranaki Basin is surprisingly cold when compared to other convergent margins. To investigate the effects of active margin evolution on the thermal regime of the Taranaki Basin we developed a 3D crustal-scale forward model using the petroleum industry-standard basin-modelling software Petromod™. The crustal structure inherited from Mesozoic Gondwana margin breakup and processes related to modern Hikurangi convergent margin initiation are identified to be the main controls on the thermal regime of the Taranaki Basin. Present-day surface heat flow across Taranaki on average is 59 mW/m2, but varies by as much as 30 mW/m2 due to the difference in crustal heat generation between mafic and felsic basement terranes alone. In addition, changes in mantle heat advection, tectonic subsidence, crustal thickening and basin inversion, together with related sedimentary processes result in variability of up to 10 mW/m2. Modelling suggests that increased heating of the upper crust due to additional mantle heat advection following the onset of subduction is an ongoing process and heating has only recently begun to reach the surface, explaining the relatively low surface heat flow. We propose that the depth of the subducted slab and related mantle convection processes control the thermal and structural regimes in the Taranaki Basin. The thermal effects of the subduction initiation process are modified and overprinted by the thickness, structure and composition of the lithosphere.

  7. Passive heat transfer means for nuclear reactors

    DOEpatents

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  8. Determination of the heat transfer coefficients in transient heat conduction

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.

    2013-09-01

    The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.

  9. Heat transfer behavior of molten nitrate salt

    NASA Astrophysics Data System (ADS)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  10. High thermal power density heat transfer

    SciTech Connect

    Morris, J.F.

    1980-10-01

    Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The first heat pipe is used to cool the nuclear reactor while the second heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically non-conducting gap between the two heat pipes.

  11. The 3D plant canopy radiative transfer analysis in an Alaskan black spruce forest: the characteristics of fraction of absorbed photosynthetically active radiation in the heterogeneous landscape

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2012-12-01

    Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than

  12. Heat Transfer in Heterogeneous Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2013-12-01

    Modeling heat transfer in fracture networks involves simulations of transport processes in individual fractures and ambient matrix and at fracture-matrix interfaces. In typical applications with meter-scale computational domains and millimeter-scale fracture apertures, such fracture-resolving computations can be prohibitively expensive even when nonuniform meshes are used. We develop a heat transfer particle-tracking approach that significantly reduces computational costs. Most particle-tracking methods assume infinite matrix and all of them assume one-dimensional (1D) transport in the matrix blocks. Yet our analytical solution for heat transfer in a single fracture indicates that the 1D assumption is inadequate, leading to large predictive errors. Our approach is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. Our model is used to analyze the impact of fracture network topology and matrix block distribution on heat transport in heterogeneous fractured rocks.

  13. Nanoparticle enhanced ionic liquid heat transfer fluids

    SciTech Connect

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  14. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  15. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  16. Solving nonlinear heat transfer constant area fin problems

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Tables and graphs were compiled for solving nonlinear heat transfer constant area fin problems. The differential equation describing one-dimensional steady-state temperature distribution and heat flow under three modes of heat transfer with heat generation was investigated.

  17. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  18. Capillary-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  19. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

  20. Interactive Heat Transfer Simulations for Everyone

    ERIC Educational Resources Information Center

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  1. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    SciTech Connect

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each

  2. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  3. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    SciTech Connect

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  4. Interactive Heat Transfer Simulations for Everyone

    NASA Astrophysics Data System (ADS)

    Xie, Charles

    2012-04-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy, temperature distribution, and heat transfer may provide a straightforward method for teaching and learning these concepts. Through interacting with visual representations of the concepts and observing how they respond to manipulations, the misconceptions may be dispelled more effectively. This paper presents a new educational simulation tool called Energy2D developed to explore this idea.

  5. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  6. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  7. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing

    PubMed Central

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C–1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C–1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds

  8. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  9. Indirect evaporative coolers with enhanced heat transfer

    SciTech Connect

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  10. Detection and characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Schmutz, Werner; Hansteen, Viggo

    2016-07-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating we focus on analyzing the properties of the magnetically generated small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to detect and follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We study the lifetime, energy and spectral signatures and show that the energy flux dissipated by them is enough to heat the corona. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other instruments on board solar orbiter.

  11. Simplified models for heat transfer in rooms

    NASA Astrophysics Data System (ADS)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  12. Modeling microscale heat transfer using Calore.

    SciTech Connect

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  13. Micro heat spreader enhanced heat transfer in MCMs

    SciTech Connect

    Shen, D.S.; Mitchell, R.T.; Dobranich, D.; Adkins, D.R.; Tuck, M.R.

    1994-12-31

    The peak thermal power generated in microelectronics assemblies has risen from less than 1 W/cm{sup 2} in 1980 to greater than 40 W/cm{sup 2} today, due primarily to increasing densities at both the IC and packaging levels. The authors have demonstrated enhanced heat transfer in a prototype Si substrate with a backside micro heat channel structure. Unlike conventional micro heat pipes, these channels are biaxial with a greater capacity for fluid transfer. Thermal modeling and preliminary experiments have shown an equivalent increase in substrate thermal conductivity to over 500 W/m{center_dot}K, or a four times improvement. Optimization of the structure and alternative liquids will further increase the thermal conductivity of the micro heat channel substrate with the objective being polycrystalline diamond, or about 1,200 W/m{center_dot}K. The crucial design parameters for the micro heat channel system and the thermal characteristics of the system will be covered.

  14. A heat transfer model of a horizontal ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  15. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y.

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  16. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  17. Numerical calculation of the radiation heat transfer between rocket motor nozzle's wall and gas

    NASA Astrophysics Data System (ADS)

    Zhou, Yipeng; Zhu, Dingqiang

    2014-11-01

    The heat flux density of radiation heat transfer between rocket motor nozzle's wall and gas is one of the most important factors to decide temperature of nozzle's wall. It also provides an invaluable references advice for choosing the material of wall and type of cooling. The numerical calculation based on finite volume method is introduced in the paper. After analysis of the formula of FVM without the influence of scattering, a formula that is used to let spectral radiant intensity that is the calculation of FVM be converted into heat flux density of radiation heat transfer is deduced. It is compiled that the program based on FVM is used to calculate the heat flux density. At the end, the heat flux density of radiation heat transfer of 3D model of double-arc nozzle's wall is calculated under different condition, then simply analysis cooling system is performed.

  18. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1993-01-01

    Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.

  19. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOEpatents

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  20. Characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner

    2016-04-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating and the ubiquitous redshifts observed in the lower transition region we focus on analyzing the properties of small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We present results for the lifetime, energy and spectral signatures of the SSHEs. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other interments on board solar orbiter. ​

  1. Self supporting heat transfer element

    DOEpatents

    Story, Grosvenor Cook; Baldonado, Ray Orico

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  2. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-10-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  3. Metallized Gelled Propellant Heat Transfer Tests Analyzed

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.

  4. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

    2015-01-01

    In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

  5. Evaporative heat transfer in beds of sensible heat pellets

    SciTech Connect

    Arimilli, R.V.; Moy, C.A.

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  6. Heat transfer characteristics of an emergent strand

    NASA Technical Reports Server (NTRS)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  7. Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.

    1996-01-01

    An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.

  8. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-01

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  9. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  10. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  11. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-01

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process. PMID:24003985

  12. Natural convective heat transfer from square cylinder

    NASA Astrophysics Data System (ADS)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  13. Heat transfer characteristics of porous media

    NASA Technical Reports Server (NTRS)

    Singh, B. S.; Dybbs, A.

    1974-01-01

    An investigation was conducted regarding the relative effects of conduction and convection in a saturated porous medium. A method reported by Singh et al. (1973) is used to determine the effective thermal conductivity of the saturated porous material. Heat transfer measurements are conducted under conditions of forced convection of the saturated liquid parallel and countercurrent to the flow of heat. The results are compared with the data obtained with the aid of an analytical model.

  14. Heat as a tracer for improving a transient 3D groundwater model at a bank filtration site with changing riverbed

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha; Strasser, Daniel; Lensing, Hermann

    2016-04-01

    Bank filtration, by its effective improvement of water quality is widely used in many countries for water supply, and its major characteristics, the interaction between groundwater and surface water has been a hot topic for decades. As a key parameter, the travel time of the infiltrating river water to the wells is considered to be highly correlated with its water quality and has always been used as a main reference for estimating the filtering performance. As a periodic environmental tracer, heat has been used for estimating travel times by comparing the attenuation and the phase shift for temperature patterns in both the river and groundwater observation points. In most cases, the methods applied are analytical time series analysis, or 2D and 3D groundwater models with homogeneous attributes, in which many details of geological discontinuity and heterogeneity might be missed and further decrease the reliability of model result. However in our study, the transient heat transport model was set up based on a calibrated transient groundwater model with complex and discontinuous geological structures referenced by available geological information. At the study area, a water work is placed hundreds of meters from a river. By the pumping induced hydraulic gradient, river water flows into pumping wells through the river bank and shallow aquifers. The unconsolidated impermeable glacial deposits of different glacial periods showed discontinuities in forms of geological windows and lenses. Referenced by 145 drillings and 7 geological cross-sections, a geological model was set up and further translated into a groundwater model in FEFLOW. The model was first calibrated by FEPEST in steady state referenced by 104 observation wells and then it was adapted into a transient model. Influenced by an excavation at the channel bottom, a substantial water head rise happened. And in the model this could be simulated well by introducing an increasing hydraulic conductivity at the

  15. Heat flux sensors for infrared thermography in convective heat transfer.

    PubMed

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  16. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    PubMed Central

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  17. Computational Aspects of Heat Transfer in Structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M. (Compiler)

    1982-01-01

    Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.

  18. Heat transfer in rotating coolant channels

    NASA Astrophysics Data System (ADS)

    Wang, Baoguan; Zheng, Jirui; Ding, Xiaojiang

    The effect of cooling channels' rotation on the local and mean heat transfer is investigated using an experimental simulation of three types of flow in rotating circular tubes: (1) flow parallel to the rotating axis, (2) radially outward flow perpendicular to the rotating axis, and (3) radially inward flow perpendicular to the rotating axis. Theoretical analysis uses the boundary layer model method, in which the flow in a tube is divided into the core and boundary layer zones with different assumptions for each zone, and the equations are solved using the momentum integration method. Experimental results were obtained using a specially designed facility incorporating all three modes of flow. The results confirm that rotation of the flow in a tube can enhance the heat transfer processes whether the flow is parallel or perpendicular to the rotating axis. The incremental increase in heat transfer rate due to rotation was found to be more pronounced at low rotational speeds than at high speeds. The variation of local heat transfer coefficients along axial direction is affected by the inlet and outlet sections and by the ratio of length to diameter.

  19. Heat transfer in a nuclear rocket engine

    SciTech Connect

    Konyukhov, G.V.; Petrov, A.I.

    1995-02-01

    Special features of heat transfer in the reactor of a nuclear rocket engine (NRE) are dealt with. It is shown that the design of the cooling system of the NRE reactor is governed by its stability to small deviations of the parameters from the corresponding calculated values and the possibility of compensating for effects due to nonuniformities and distrubances of various types and scales.

  20. Heat Transfer and Thermodynamics: a Compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.

  1. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  2. FED. Zoning for TRUMP Heat Transfer Code

    SciTech Connect

    Elrod, D.

    1987-10-23

    FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.

  3. Information highway and numerical heat transfer

    SciTech Connect

    Shih, T.M.; Minkowycz, W.J.

    1996-11-22

    It is proposed that researchers in the numerical heat transfer community need to realize the trend of the information highway and agree to use a protocol or a module that constitutes the core of a computer program solving heat transfer problems. This will avoid duplicate programming and accelerate the technology advancement of numerical heat transfer. The module for two-dimensional incompressible Navier-Stokes flows is presented and explained. It is further demonstrated that, using this module as the foundation, the user can straightforwardly build up an entire personal computer code by inputting the data, specifying boundary conditions, and outputting the result. Other modules for slightly more complicated problems, such as transient flows with variable viscosity in irregular geometries, are also presented. Other than zoning matches for problems with multizones, the programming task for a user becomes minimal and simple: input, prescribe the boundary conditions, and output. The availability of Navier-Stokes modules is particularly helpful for less experienced numerical researchers, newcomers, and graduate students who have just entered the area of heat transfer and fluid flows.

  4. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  5. Cooperative heat transfer and ground coupled storage system

    DOEpatents

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  6. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  7. Heat transfer in a real engine environment

    NASA Astrophysics Data System (ADS)

    Gladden, Herbert J.

    1985-10-01

    The hot section facility at the Lewis Research Center was used to demonstrate the capability of instruments to make required measurements of boundary conditions of the flow field and heat transfer processes in the hostile environment of the turbine. The results of thermal scaling tests show that low temperature and pressure rig tests give optimistic estimates of the thermal performance of a cooling design for high pressure and temperature application. The results of measuring heat transfer coefficients on turbine vane airfoils through dynamic data analysis show good comparison with measurements from steady state heat flux gauges. In addition, the data trends are predicted by the STAN5 boundary layer code. However, the magnitude of the experimental data was not predicted by the analysis, particularly in laminar and transitional regions near the leading edge. The infrared photography system was shown capable of providing detailed surface thermal gradients and secondary flow features on a turbine vane and endwell.

  8. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  9. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  10. BWR Core Heat Transfer Code System.

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  11. Heat transfer in bioengineering and medicine

    SciTech Connect

    Chato, J.C.; Diller, T.E.; Diller, K.R.; Roemer, R.B.

    1987-01-01

    This book contains the following papers: New ideas in heat transfer for agricultural animals; Issues in heat transfer and tumor blood flow in localized hyperthermia treatments of cancer; Ultrasound enhances adriamycin toxicity in vitro; Scanned, focused ultrasound hyperthermia treatment of brain tumors; Mathematical prediction and phantom studies of the clinical target ''hot spot'' using a three applicator phased array system (TRIPAS); Development of an endoscopic RF hyperthermia system for deep tumor therapy; Simultaneous measurement of intrinsic and effective thermal conductivity; Determination of the transport of thermal energy by conduction in perfused tissue; A whole body thermal model of man with a realistic circulatory system; and Canine muscle blood flow changes in response to initial heating rates.

  12. Nonlinear Heat Transfer 2d Structure

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  13. Analysis of a heat transfer device for measuring film coefficients

    NASA Technical Reports Server (NTRS)

    Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.

    1975-01-01

    A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.

  14. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  15. Heat transfer simulation in solid substrate fermentation.

    PubMed

    Saucedo-Castañeda, G; Gutiérrez-Rojas, M; Bacquet, G; Raimbault, M; Viniegra-González, G

    1990-04-01

    A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.

  16. Unsteady heat transfer during subcooled film boiling

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  17. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  18. Heat transfer between graphene and amorphous SiO2.

    PubMed

    Persson, B N J; Ueba, H

    2010-11-24

    We study the heat transfer between graphene and amorphous SiO(2). We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  19. Heat transfer between graphene and amorphous SiO2.

    PubMed

    Persson, B N J; Ueba, H

    2010-11-24

    We study the heat transfer between graphene and amorphous SiO(2). We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data. PMID:21403360

  20. Exergy Transfer Characteristics on Low Temperature Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Yuan, X. F.; Li, Y. R.; Peng, L.

    By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.

  1. Free surface deformation and heat transfer by thermocapillary convection

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  2. A numerical study of heat and water vapor transfer in MDCT-based human airway models.

    PubMed

    Wu, Dan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2014-10-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography-based human airways with minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditions for the 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: [Formula: see text] and [Formula: see text], where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, D a is the airway equivalent diameter, and [Formula: see text] is the tracheal equivalent diameter.

  3. Heat Transfer Problems of Mixed Refrigerants

    NASA Astrophysics Data System (ADS)

    Fujii, Tetsu; Koyama, Shigeru; Goto, Masao; Takamatsu, Hiroshi

    From the point of view of the application of non-azeotropic mixed refrigerants to heat pump and refrigeration cycles, literatures on condensation and evaporation are surveyed and future problems to be studied are extracted. All researches on the relevant problems are recently started and still in developing way except for condensation on a single horizontal tube. Particularly, the studies for condensation and evaporation of mixed Freon refrigerant in a horizontal tube, which are the most important in practice, are far backward in comparison with single component refrigerant in every point of heat transfer characteristics, flow pattern and theoretical analysis.

  4. Investigation of Conjugate Heat Transfer in Turbine Blades and Vanes

    NASA Technical Reports Server (NTRS)

    Kassab, A. J.; Kapat, J. S.

    2001-01-01

    We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which arises naturally in analysis of systems exposed to a convective environment. Here, heat conduction within a structure is coupled to heat transfer to the external fluid which is convecting heat into or out of the solid structure. There are two basic approaches to solving coupled fluid structural systems. The first is a direct coupling where the solution of the different fields is solved simultaneously in one large set of equations. The second approach is a loose coupling strategy where each set of field equations is solved to provide boundary conditions for the other. The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid interface. The loose coupling strategy is particularly attractive when coupling auxiliary field equations to computational fluid dynamics codes. We adopt the latter method in which the BEM is used to solve heat conduction inside a structure which is exposed to a convective field which in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface, and a radial-basis function scheme is used to interpolated information between the CFD and BEM surface grids. Additionally, relaxation is implemented in passing the fluxes from the conduction solution to the fluid solution. Results from a simple test example are reported.

  5. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  6. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  7. Radiation heat transfer shapefactors for combustion systems

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  8. Low-melting point heat transfer fluid

    SciTech Connect

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  9. Liquid crystal thermography in boiling heat transfer

    SciTech Connect

    Klausner, J.F.; Mei, R.; Chen, W.C.

    1995-12-31

    The utilization of liquid crystal thermography to study heterogeneous boiling phenomena has gained popularity in recent years. In order not to disturb the nucleation process, which occurs in the microstructure of the heating surface, the crystals are applied to the backside of a thin heater. This work critically examines the ability of liquid crystal thermography to quantitatively capture the thermal field on the boiling surface. The thermal field identified experimentally through liquid crystal thermography is compared against that computed in the vicinity of a growing vapor bubble using a simulation which considers the simultaneous heat transfer between three phases: the solid heater, the liquid microlayer, and the growing vapor bubble. The temperature history beneath a growing vapor bubble elucidates the high frequency response required to capture the transient thermal fields commonly encountered in boiling experiments. Examination of the governing equations and numerical results reveal that due to the heater thermal inertia, the temperature variation on the bottom of the heater is significantly different than that on the boiling surface. In addition, the crystals themselves have a finite spatial resolution and frequency response which filter out much of the microscale phenomenon associated with boiling heat transfer. Analysis of existing pool and flow boiling liquid crystal thermographs indicate that the typical spacial resolution is on the order of 0.25 mm and the response time is on the order of 5 ms which are insufficient to resolve the fine spacial and temporal details of the heating surface thermal field. Thus the data obtained from liquid crystal thermography applied to boiling heat transfer must be cautiously interpreted.

  10. Enhanced condensation heat transfer with wettability patterning

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  11. Heat transfer to rough turbine blading

    NASA Astrophysics Data System (ADS)

    Tarada, Fathi Hasan Ali

    1987-12-01

    The project arose from an industrial interest in the quantification of the effects of external surface roughness on the temperatures, both local and means, of internally cooled gas turbine blades, with a view to estimating the possible changes in operating life. Such roughness may occur due to the process involved in the production of the blades or during operation in hostile environments. A dual theoretical and experimental approach was employed to better understand and predict the complex mechanisms influencing the boundary-layer heat transfer on turbine blade surfaces. In order to quantify typical blade roughness levels, a blade roughness survey was undertaken as a pre-cursor to the experimental investigations. The experimental component consisted of heat transfer measurements to one rotor blade and two nozzle guide vanes, with different levels and types of external surface roughness, and with and without significant free-stream turbulence intensity, using two heat transfer measurement techniques. The (dominant) theoretical component comprised the derivation of a low Reynolds number k-epsilon turbulence model, supplemented by an algebraic stress model, for rough curved boundary layer flow, and the development of topographical models of stochastic surface roughness. Computer programs were written to implement the theoretical models developed, and extensive validation tests were conducted with reference to published data sets.

  12. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  13. Boiling and nonboiling heat transfer to electrolyte solutions

    SciTech Connect

    Najibi, S.H.; Mueller-Steinhagen, H.; Jamialahmadi, M.

    1996-10-01

    Heat transfer to electrolyte solutions is a common engineering problem in the chemical and petrochemical industries. Nevertheless, only a few experimental investigations of heat transfer to electrolyte solutions can be found in the literature. To improve design of heat transfer equipment and to understand fouling characteristics, it is important to know the clean heat transfer coefficient of electrolyte solutions, and whether heat transfer to electrolyte solutions can be predicted with models found for less complicated fluids. A wide range of experiments were performed to determine the effects of various dissolved salts on forced-convective, pool boiling, and subcooled flow-boiling heat transfer. The effect of dissolved salts on bubble size and nucleation site density were also investigated. The measured heat transfer coefficients are compared with recommended correlations for the different heat transfer modes.

  14. An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs

    SciTech Connect

    Li, Xiao-wei; Meng, Ji-an; Li, Zhi-xin

    2010-11-15

    The flow and heat transfer between inclined discrete rib plates for plate heat exchangers have been experimentally studied. Dye injection method is used to visualize the flow structures. The visualization results show that front vortex, rear vortex and main vortex are formed between the plates. The rib parameter influence is also studied using visualization method. The pressure drop and heat transfer between the inclined discrete rib plates as well as that between inclined continuous rib plates and smooth plates are also measured. The measured results show that the inclined discrete rib plate can enhanced heat transfer 20-25% at the same pumping power compared with the commonly used inclined continuous rib plates. (author)

  15. Visualization study on pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Kamei, Shuya; Hirata, Masaru

    1991-04-01

    The visualized boiling phenomena were observed by means of high speed photographic shadowgraphy using a rotating prism camera (nac HIGH SPEED CAMERA model-16HD) with the speed of about 3500 frames per second. The photographs show that pool boiling heat transfer phenomena are varied for the boiling curve based on the experiments. Experiments have been carried out to investigate pool boiling heat transfer phenomena on a horizontal thin filament in subcooled and saturated distilled water. The experiments were performed for atmospheric pressure,for filament diameters of about 0.3 mm, for region of natural convection to film boiling. The color-film made by high speed movie camera are converted to high speed color video-tape. It is convenient to edit and show the tape for visualization with teaching the students. The high speed color video showed that the successive motion and shape of bubbles during their process of detachment varied with increasing heat flux on the heated surface of a filament. From these results, it was confirmed that the high speed phenomena of boiling by the slow motion video pictures could be estimated clearly.

  16. Supercritical oxygen heat transfer. [regenerative cooling

    NASA Technical Reports Server (NTRS)

    Spencer, R. G.; Rousar, D. C.

    1977-01-01

    Heat transfer to supercritical oxygen was experimentally measured in electrical heated tubes. Experimental data were obtained for pressures ranging from 17 to 34.5 MPa (2460 to 5000 psia), and heat fluxes from 2 to 90 million w/sq cm (1.2 to 55 Btu/(sq in. sec)). Bulk temperatures ranged from 96 to 217 K (173 to 391 R). Experimental data obtained by other investigators were added to this to increase the range of pressure down to 2 MPa (290 psia) and increase the range of bulk temperature up to 566 K (1019 R). From this compilation of experimental data a correlating equation was developed which predicts over 95% of the experimental data within + or - 30%.

  17. Survey of computer programs for heat transfer analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1986-01-01

    An overview is given of the current capabilities of thirty-three computer programs that are used to solve heat transfer problems. The programs considered range from large general-purpose codes with broad spectrum of capabilities, large user community, and comprehensive user support (e.g., ABAQUS, ANSYS, EAL, MARC, MITAS II, MSC/NASTRAN, and SAMCEF) to the small, special-purpose codes with limited user community such as ANDES, NTEMP, TAC2D, TAC3D, TEPSA and TRUMP. The majority of the programs use either finite elements or finite differences for the spatial discretization. The capabilities of the programs are listed in tabular form followed by a summary of the major features of each program. The information presented herein is based on a questionnaire sent to the developers of each program. This information is preceded by a brief background material needed for effective evaluation and use of computer programs for heat transfer analysis. The present survey is useful in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program.

  18. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  19. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  20. 3-D radiative transfer in large-eddy simulations - experiences coupling the TenStream solver to the UCLA-LES

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Mayer, Bernhard

    2016-04-01

    The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.

  1. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  2. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    ERIC Educational Resources Information Center

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  3. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  4. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  5. Low heat transfer oxidizer heat exchanger design and analysis

    NASA Technical Reports Server (NTRS)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

    1987-01-01

    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  6. Heat transfer to a supercritical hydrocarbon fuel with endothermic reaction.

    SciTech Connect

    Yu, W.; France, D. M.; Wambsganss, M. W.; Energy Technology; Univ. of Illinois at Chicago

    2000-01-01

    Supercritical fuel reforming is being studied as a technology for reducing emissions of industrial gas turbine engines. In this study, experiments were performed in a 2.67-mm-inside-diameter stainless steel tube with a heated length of 0.610 m for the purpose of investigating the characteristics of supercritical heat transfer with endothermic fuel reforming. Thermocouples were positioned along the tube both in the fluid stream and on the heated wall for local heat transfer measurements. Both heat transfer coefficients and endotherms were calculated from the measured results. State-of-the-art correlations for heat transfer were evaluated, and a correlation for supercritical heat transfer to hydrocarbon fuel has been developed. The results provide a basis for supercritical fuel heat-exchanger/reactor design and its practical applications, in an area that has received relatively little attention in the engineering literature, viz., supercritical forced convection heat transfer with endothermic chemical reaction.

  7. Condensation heat transfer coefficient versus wettability

    NASA Astrophysics Data System (ADS)

    Roudgar, M.; De Coninck, J.

    2015-05-01

    In this paper we show how condensation on substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We describe surfaces with the same wettability in ambient conditions presenting different wetting behavior and growth of droplets in condensation. The experimental results show a rapid spread of droplets and formation of the film on the copper surface, while droplets on SU-8 surface remains on the regular shape while they grow within the time, without coalescence, as observed for Cu. Although the heat conductivity of SU-8 is much lower, due to a difference in wetting behavior, the heat transfer coefficient (h) is higher for dropwise condensation on Cu with a thin layer of SU-8 than filmwise on the bare copper.

  8. Advances in refrigeration and heat transfer engineering

    SciTech Connect

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  9. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  10. USINT. Heat and Mass Transfer In Concrete

    SciTech Connect

    Eyberger, L.R.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  11. USINT. Heat and Mass Transfer in Concrete

    SciTech Connect

    Beck, J.V.; Knight, R.L.

    1989-12-01

    USINT was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as water and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.

  12. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  13. Microscale heat transfer enhancement using spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Poesio, Pietro; Molin, Dafne; Hadjiconstantinou, Nicolas G.; Beretta, Gian Paolo

    2011-11-01

    In many cases, miniaturization is limited by our ability to quickly remove heat; current state-of-the-art cooling approaches have significant limitations, particularly for high heat flux applications. Recent studies have shown that phase separation of a binary liquid-liquid mixture quenched to a temperature below the spinodal curve can be used to enhance heat transfer in small-scale devices. In particular, it has been shown that the self propulsion of single droplets formed during the intermediate stage of spinodal decomposition can produce considerable agitation and, as a result, enhanced heat transport. Spinodal phase separation dynamics can be described by the coupled Cahn-Hilliard/Navier-Stokes equations; unfortunately, simulation of these equations at the device scale is computationally costly due to the mulltiscale nature of spinodal decomposition, which requires resolution of the phase interface between the two fluids which is of atomistic size. In this talk we discuss possible approaches for reducing this computational cost by calculating the resulting transport from synthetic fluctuating fields that simulate the effect of spinodal decomposition but are generated stochastically without solving the Cahn-Hilliard equation at close-to-atomistic resolution.

  14. Convective Heat Transfer in Acoustic Streaming Flows

    NASA Astrophysics Data System (ADS)

    Gopinath, Ashok

    1992-01-01

    Convective heat transfer due to acoustic streaming has been studied in the absence of an imposed mean flow. The work is motivated by the need to design and control the thermal features of a suitable experimental rig for the containerless processing of materials by heat treatment of acoustically levitated alloy samples at near zero-gravity. First the problem of heat transfer from an isolated sphere (in a standing sound field) is explored in detail. The streaming Reynolds number, Rs, which characterizes the resulting steady flows, is determined from the acoustic signal. A scale analysis is used to ascertain the importance of buoyancy and viscous dissipation. The steady velocity and temperature fields are determined using asymptotic techniques and numerical methods for the limiting cases of Rs<<1 and Rsgg1. Working correlations for the average Nusselt number are obtained for a wide range of Prandtl numbers. A simple experiment is conducted to verify the predictions for the more relevant case of Rsgg1. The acoustic levitation chamber itself is modelled as a Kundt tube (supporting a plane axial standing sound wave) with insulated side-wall and isothermal end-walls. Analytical solution techniques are used to determine the steady fields close to the tube walls. For the steady recirculatory transport in the core, the numerical solver PHOENICS is adopted for the solution of the complete elliptic form of the governing equations. A study of the effects of a range of acoustic and geometric parameters on the flow and heat transfer is performed and Nusselt number correlations are obtained for air. PHOENICS is also used to study the effects of variable fluid properties and axial side-wall conduction (coupled with radiation). The role of normal/reduced gravity is assessed and suggestions made for terrestrial testing of the levitation apparatus. Finally, with the sample located at a node in the levitation chamber, the effect of the interaction of the streaming flows (on the sphere

  15. [Mechanism of heat transfer in various regions of human body].

    PubMed

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  16. Pumped, Two-Phase Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1986-01-01

    Two-phase heat-transfer system delivers coolant to equipment as liquid and removes it as vapor. Alternatively, system heats equipment by delivering vapor and removing condensed liquid. Two-phase scheme effective for heat transfer over long distances. Heat-transfer plates remove heat from or supply heat to equipment. If temperature of plate is high, valve opens liquid-supply line to plate, and cooling results. If plate temperature is low, valve opens liquid-suction line to plate, and heating ensues.

  17. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    SciTech Connect

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  18. Electron transfer through ordered metallic chains in LiNbO 3 : (Mg, Zn) : Me(3d)

    NASA Astrophysics Data System (ADS)

    Rakitina, L. G.; Shanina, B. D.; Corradi, G.; Polgar, K.

    1998-04-01

    In crystal and ceramic LiNbO 3 double doped with Mg or Zn above the threshold concentration ( CMg,Zn⩾4-6 mol%) and with transition metals of the 3d group (Cr, Fe, Mn) non-resonant microwave absorption (NRMA) dependent on the magnetic field was studied. Peak-like dependencies of the NRMA signal intensity on the concentration of dopants and stoichiometry of lithium niobate were found. The EPR line of mobile electrons (Δ B=30 mT) with g=2.0023 was detected. The interaction energy between the substitutional impurities of Mg and Cr was calculated. It was concluded, that in LiNbO 3 : (Mg, Zn) : (Cr, Fe, Mn) ordered metallic chains exist with electron conductivity.

  19. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  20. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  1. Heat Transfer in High Temperature Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.

    2007-01-01

    High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.

  2. Micro-grooved heat transfer combustor wall

    NASA Technical Reports Server (NTRS)

    Ward, Steven D. (Inventor)

    1994-01-01

    A gas turbine engine hot section combustor liner is provided a non-film cooled portion of a heat transfer wall having a hot surface and a plurality of longitudinally extending micro-grooves disposed in the portion of the wall along the hot surface in a direction parallel to the direction of the hot gas flow. The depth of the micro-grooves is very small and on the order of magnitude of a predetermined laminar sublayer of a turbulent boundary layer. The micro-grooves are sized so as to inhibit heat transfer from the hot gas flow to the hot surface of the wall while reducing NOx emissions of the combustor relative to an otherwise similar combustor having a liner wall portion including film cooling apertures. In one embodiment the micro-grooves are about 0.001 inches deep and have a preferred depth range of from about 0.001 inches to 0.005 inches and which are square, rectangular, or triangular in cross-section and the micro-grooves are spaced about one width apart.

  3. Heat transfer and fluid flow in microchannels

    NASA Astrophysics Data System (ADS)

    Mala, Ghulam Mohiuddin

    Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the

  4. Modelling of Radiation Heat Transfer in Reacting Hot Gas Flows

    NASA Astrophysics Data System (ADS)

    Thellmann, A.; Mundt, C.

    2009-01-01

    In this work the interaction between a turbulent flow including chemical reactions and radiation transport is investigated. As a first step, the state-of-the art radiation models P1 based on the moment method and Discrete Transfer Model (DTM) based on the discrete ordinate method are used in conjunction with the CFD code ANSYS CFX. The absorbing and emitting medium (water vapor) is modeled by Weighted Sum of Gray Gases. For the chemical reactions the standard Eddy dissipation model combined with the two equation turbulence model k-epsilon is employed. A demonstration experiment is identified which delivers temperature distribution, species concentration and radiative intensity distribution in the investigated combustion enclosure. The simulation results are compared with the experiment and reveals that the P1 model predicts the location of the maximal radiation intensity unphysically. On the other hand the DTM model does better but over predicts the maximum value of the radiation intensity. This radiation sensitivity study is a first step on the way to identify a suitable radiation transport and spectral model in order to implement both in an existing 3D Navier-Stokes Code. Including radiation heat transfer we intend to investigate the influence on the overall energy balance in a hydrogen/oxygen rocket combustion chamber.

  5. Glenn-ht/bem Conjugate Heat Transfer Solver for Large-scale Turbomachinery Models

    NASA Technical Reports Server (NTRS)

    Divo, E.; Steinthorsson, E.; Rodriquez, F.; Kassab, A. J.; Kapat, J. S.; Heidmann, James D. (Technical Monitor)

    2003-01-01

    A coupled Boundary Element/Finite Volume Method temperature-forward/flux-hack algorithm is developed for conjugate heat transfer (CHT) applications. A loosely coupled strategy is adopted with each field solution providing boundary conditions for the other in an iteration seeking continuity of temperature and heat flux at the fluid-solid interface. The NASA Glenn Navier-Stokes code Glenn-HT is coupled to a 3-D BEM steady state heat conduction code developed at the University of Central Florida. Results from CHT simulation of a 3-D film-cooled blade section are presented and compared with those computed by a two-temperature approach. Also presented are current developments of an iterative domain decomposition strategy accommodating large numbers of unknowns in the BEM. The blade is artificially sub-sectioned in the span-wise direction, 3-D BEM solutions are obtained in the subdomains, and interface temperatures are averaged symmetrically when the flux is updated while the fluxes are averaged anti-symmetrically to maintain continuity of heat flux when the temperatures are updated. An initial guess for interface temperatures uses a physically-based 1-D conduction argument to provide an effective starting point and significantly reduce iteration. 2-D and 3-D results show the process converges efficiently and offers substantial computational and storage savings. Future developments include a parallel multi-grid implementation of the approach under MPI for computation on PC clusters.

  6. Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2016-05-01

    The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.

  7. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  8. Boiling local heat transfer enhancement in minichannels using nanofluids.

    PubMed

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  9. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  10. Study and Analysis of Heat Transfer Limitation of Separated Heat Pipe

    NASA Astrophysics Data System (ADS)

    Mou, Qizheng; Mou, Kai

    2002-01-01

    satellite and spacecraft. evaporator, heat isolation and condenser along the axial direction. The working fluid absorbs heat and evaporates in evaporator, and then the vapor flows to condenser and gives out heat. The condensed liquid is pumped to evaporator by wick. By the circulation, the heat can by transferred continuously. heat pipe as follow: - Vapor-liquid two phase flow inside pipe; - The manner of latent heat to transfer heat; - Automatic circulation by working fluid flowing - A certain extent of vacuum. and the traditional heat pipe, that is, the vapor fluid and liquid fluid flow along the same direction. So it is obviously that the separated heat pipe has special internal heat transfer characteristic and crisis. This paper has regard for the heat transfer crisis of the separated heat pipe, and meanwhile relevant calculation and analysis have been done. 1. FLOW TYPE OF THE WORKING FLUID IN SEPARATED HEAT PIPE 2. HEAT TRANSFER CRISIS IN THE EVAPORATOR 3. CARRYING PHENOMENON INSIDE SEPARATED HEAT PIPE 4. THE STAGNANT FLOW PHENOMENON AND THE BACKWARD FLOW PHENOMENON IN EVAPORATOR CONCLUSION transfer limitation of location burn-out, and the heat transfer limitation of flow unconventionality in erective pipe. The carrying phenomenon can occurs not only in evaporator but also in condenser of separated heat pipe. It is in the evaporator that should take place the heat transfer limitation of liquid film dry-out at first. Then with the increasing of heat flux, the heat transfer limitation of location burn-out would happen. In order to avoid the heat transfer limitation of flow unconventionality in erective pipe, the length and diameter of the outflow tube and inflow tube must be reasonably calculated to control the flow velocity of the working fluid inside pipe. Key words:Separated Heat PipeHeat Transfer LimitationDry-OutCarryingStagnancy

  11. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    DOEpatents

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  13. The thermal structure and the location of the snow line in the protosolar nebula: Axisymmetric models with full 3-D radiative transfer

    NASA Astrophysics Data System (ADS)

    Min, M.; Dullemond, C. P.; Kama, M.; Dominik, C.

    2011-03-01

    The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.

  14. Three-dimensional Navier-Stokes analysis of turbine passage heat transfer

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Arnone, Andrea

    1991-01-01

    The three-dimensional Reynolds-averaged Navier-Stokes equations are numerically solved to obtain the pressure distribution and heat transfer rates on the endwalls and the blades of two linear turbine cascades. The TRAF3D code which has recently been developed in a joint project between researchers from the University of Florence and NASA Lewis Research Center is used. The effect of turbulence is taken into account by using the eddy viscosity hypothesis and the two-layer mixing length model of Baldwin and Lomax. Predictions of surface heat transfer are made for Langston's cascade and compared with the data obtained for that cascade by Graziani. The comparison was found to be favorable. The code is also applied to a linear transonic rotor cascade to predict the pressure distributions and heat transfer rates.

  15. Multiscale simulations of heat transfer in nanocomposites

    NASA Astrophysics Data System (ADS)

    Bui, Khoa Nguyen Dang

    The field of nanotechnology has been expanded by the discovery of fullerenes and carbon nanotubes (CNTs) in the 20th century. Geim and Novoselov won the Nobel prize in 2010 for their work on graphene sheets (GSs). Those materials with their outstanding properties have been suggested as reinforcement fillers in a variety of composite materials. By incorporating these nanomaterials into a polymer matrix, or dispersing them into a solution, the effective thermal conductivity of the resulting composite (Keff) can be increased. For example, this enhancement can range from 80% to 125% at 1.0wt% of CNTs over pure polymer for the case of epoxy composites or by a factor of almost 4 in the case of high concentration of single-walled carbon nanotubes (SWNTs) in poly-styrene. However, based on the properties of pristine CNTs and GSs, one would expect a much higher value of Keff of such composites, more than one order of magnitude according to the classical theory of Maxwell. The presence of resistance to heat transfer at the nanoinclusion-polymer interface, known as the interfacial thermal resistance or Kapitza resistance, is the reason for this difference. Experimentally measuring and characterizing heat transport at the nanoscale are not trivial tasks and current theory in this area is limited to simple cases only. The acoustic mismatch theory and the effective medium theory provide a rough estimation of Kapitza resistance and Keff of the composites, respectively. However, the effect of dispersion pattern and the orientation of nanoinclusions inside the polymer matrix on Keff is still an open question. For the case of multi-walled carbon nanotubes (MWCNTs) embedded in polymer matrix, it is unknown whether thermal transfer occurs solely via the outermost wall or through the center of the tube. In this work, Monte Carlo (MC) simulations were developed to investigate heat transfer in nanocomposites. This approach is capable of taking into account the effect of different

  16. [Numerical Simulation of Heat Transfer in the Human Anterior Chamber at Different Corneal Temperatures].

    PubMed

    Guo, Jingmin; Zhang, Hong; Wang, Junming

    2015-12-01

    A three-dimensional (3D) model of human anterior chamber is reconstructed to explore the effect of different corneal temperatures on the heat transfer in the chamber. Based on the optical coherence tomography imaging of the volunteers with normal anterior chamber, a 3D anterior chamber model was reconstructed by the method of UG parametric design. Numerical simulation of heat transfer and aqueous humor flow in the whole anterior chamber were analyzed by the finite volume methods at different corneal temperatures. The results showed that different corneal temperatures had obvious influence on the temperature distribution and the aqueous flow in the anterior chamber. The temperature distribution is linear and axial symmetrical around the pupillary axis. As the temperature difference increases, the symmetry becomes poorer. Aqueous floated along the warm side and sank along the cool side which forms a vortexing flow. Its velocity increased with the addition of temperature difference. Heat fluxes of cornea, lens and iris were mainly affected by the aqueous velocity. The higher the velocity, the bigger more absolute value of the above-mentioned heat fluxes became. It is practicable to perform the numerical simulation of anterior chamber by the optical coherence tomography imaging. The results are useful for studying the important effect of corneal temperature on the heat transfer and aqueous humor dynamics in the anterior chamber.

  17. Submersible pumping system with heat transfer mechanism

    SciTech Connect

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  18. Heat transfer mechanisms and thermal dosimetry.

    PubMed

    Bowman, H F

    1982-06-01

    The heat transfer mechanisms that led to the development of the bioheat equation are reviewed. Thermal modeling and analytical judgments which must be made in application of the equation are noted. Temperature profiles that result from solution of the equation with a simple spherical model are considered with particular emphasis on the influence of thermal conductivity and perfusion. Thermal conductivity values of a host of both normal and tumor tissues are discussed. The importance of adequate macroscopic thermal dosimetry to the evaluation of the ultimate promise of hyperthermia is observed. Experience in the quantification of temperature, thermal conductivity, thermal diffusivity, and perfusion from a single, minimally invasive measurement in small volumes of tissue with the thermal diffusion probe is presented.

  19. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

    DOEpatents

    Johnson, E.F.

    1962-06-01

    This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

  20. Investigation of heat transfer in porous duct

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Khan, T. M. Yunus

    2016-05-01

    Investigation of heat transfer in a square porous duct is carried out. The porous medium is sandwiched between inner and outer surface of a square duct. The flow is assumed to follow the Darcy law. The governing momentum and energy equations are non-dimensionalised and then converted to algebraic form of equations using finite element method. Galerkin method is used to transform the partial differential equations into simpler algebraic equations then solved in a iterative manner to arrive at the solution. The results are presented with respect to various geometric and physical parameters such as depth of porous medium, Rayleigh number etc. It is found that the isotherms and the streamlines take symmetrical position along the vertical central line of square duct. The isotherms are penetrated into deeper area at upper half of duct as compared to lower half.

  1. Low-melting point heat transfer fluid

    DOEpatents

    Cordaro, Joseph G.; Bradshaw, Robert W.

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  2. Nanofluids for heat transfer : an engineering approach.

    SciTech Connect

    Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L.

    2011-02-28

    An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

  3. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  4. Investigation on Heat Transfer Characteristics of Water Through Narrow Annulus

    SciTech Connect

    Guangyao Lu; Jing Wang

    2006-07-01

    A study is carried out to investigate the forced convective heat transfer characteristics of water through narrow annulus. For most works undertaken before were mainly concerned with the heat transfer characteristics of heat removal systems, the experiments herein are conducted to detect the heat transfer characteristics of heated fluid, as well as cooled fluid, flowing through narrow annulus. In the experiments, directions of flow include horizontal, upstream and downstream. The Reynolds number range, based on the annular hydraulic diameter, of 10 to 30,000 is covered in the experiments. During the experiments, the transitions from laminar to turbulent convective heat transfer are carefully observed. It is found that fully turbulent convective heat transfer is achieved at a lower Reynolds number in narrow annulus than that in larger tubes. When the Reynolds number is lower than 150, the heat transfer is degraded attributed to the slow flow rate and axial heat conduction. The experimental results indicate that the heat transfer characteristics of narrow annular flow are different from that of lager, more conventionally sized pipe flow. A convective heat transfer correlation is developed and the comparisons are made with the correlations of other works. (authors)

  5. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures. PMID:27480606

  6. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures.

  7. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  8. Convective heat transfer for fluids passing through aluminum foams

    NASA Astrophysics Data System (ADS)

    Dyga, Roman; Troniewski, Leon

    2015-03-01

    This paper analyses the experimental findings within heat transfer when heating up air, water and oil streams which are passed through a duct with internal structural packing elements in the form of metal foams. Three types of aluminum foams with different cell sizes, porosity specifications and thermal conductivities were used in the study. The test data were collected and they made it possible to establish the effect of the foam geometry, properties of fluids and flow hydrodynamic conditions on the convective heat transfer process from the heating surface to the fluid flowing by (wetting) that surface. The foam was found to be involved in heat transfer to a limited extent only. Heat is predominantly transferred directly from the duct wall to a fluid, and intensity of convective heat transfer is controlled by the wall effects. The influence of foam structural parameters, like cell size and/or porosity, becomes more clearly apparent under laminar flow conditions.

  9. Personalized recommendation based on heat bidirectional transfer

    NASA Astrophysics Data System (ADS)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  10. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  11. TACO: a finite element heat transfer code

    SciTech Connect

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

  12. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  13. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    NASA Astrophysics Data System (ADS)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  14. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  15. Heat transfer enhancement -- the maturing of second-generation heat transfer technology

    SciTech Connect

    Bergles, A.E.

    1997-01-01

    This paper is basically the text of the Kern Lecture for 1991 (the 1990 Kern Award). The paper begins with some remarks about Dr. Kern. By way of introduction to heat transfer enhancement, historical notes and the evolution of literature in this area are presented. Comments are made about the increasing practical applications of enhancement technology. Developments in single-phase convection are presented, with particular emphasis on offset strip fins and twisted-tape inserts. Pool boiling and flow boiling (particularly microfin tubes) are then considered in some detail. It is concluded that enhancement represents a powerful technology to improve heat exchanger performance.

  16. Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    2000-01-01

    The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.

  17. Heat Transfer Variation on Protuberances and Surface Roughness Elements

    NASA Technical Reports Server (NTRS)

    Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.

    1995-01-01

    In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.

  18. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces

    NASA Astrophysics Data System (ADS)

    Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.

    2016-06-01

    The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.

  19. Heat transfer coefficient in serpentine coolant passage for CCDTL

    SciTech Connect

    Leslie, P.; Wood, R.; Sigler, F.; Shapiro, A.; Rendon, A.

    1998-12-31

    A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold`s number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected.

  20. Heat Transfer in Regions of Separated and Reattached Flows

    NASA Technical Reports Server (NTRS)

    Crawford, Davis H; Rumsey, Charles B

    1957-01-01

    Past experimental work has indicated that separated flow can greatly increase the heat transfer to a surface; whereas, some theoretical studies have indicated a possible decrease. Recent investigations have helped to clarify the effects of separation on heat transfer and have indicated a method of reducing separation. This paper considers the results of some of these investigations and shows the heat transfer in regions of separation and reattachment for a few specific shapes. These results show that the heat transfer in a separated region is strongly affected by the extent of separation, the location of the reattachment point, and the location of transition along the separated boundary.

  1. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  2. Transient 3D heat flow analysis for integrated circuit devices using the transmission line matrix method on a quad tree mesh

    NASA Astrophysics Data System (ADS)

    Smy, T.; Walkey, D.; Dew, S. K.

    2001-07-01

    This paper presents a 3D transmission line matrix (TLM) implementation for the solution of transient heat flow in integrated semiconductor devices. The implementation uses a rectangular discontinuous mesh to allow for local mesh refinement. This approach is based on a quad tree meshing technique which can have a complex geometry using blocks of varying sizes. Each such block can have a maximum of two adjacent blocks on any vertical side and a maximum of four blocks on the top or bottom. The TLM implementation is based on a physical extraction of a resistance and capacitance network and then the creation of the appropriate TLM matrix. The formulation allows for temperature-dependent material parameters and a non-uniform time stepping. The simulator is first tested using a 2D example of a heat source in a rectangular region. Using this example the numerical error is determined and found to be less than 0.4%. Next, non-linearities are included, and a number of non-uniform time stepping algorithms are tested. Then, a 3D problem is also compared to an analytical solution and again the error is very small. Finally, an example of a full solution of heat flow in a realistic Si trench device is presented.

  3. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section...

  4. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section...

  5. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section...

  6. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section...

  7. 46 CFR 153.430 - Heat transfer systems; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section...

  8. High thermal power density heat transfer. [thermionic converters

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1980-01-01

    Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically non-conducting gap between the two heat pipes.

  9. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  10. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect

    Nix, Andrew Carl

    2015-03-23

    modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  11. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect

    Not Available

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  12. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    SciTech Connect

    Banerjee, S.; Hassan, Y.A.

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  13. Heat transfer enhancement using tip and junction vortices

    NASA Astrophysics Data System (ADS)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  14. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  15. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry.

  16. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  17. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  18. Wake Modes and Heat Transfer from Rotationally Oscillating Cylinder

    NASA Astrophysics Data System (ADS)

    Sellappan, Prabu; Pottebaum, Tait

    2012-11-01

    Wake formation is an important problem in engineering due to its effect on phenomena such as vortex induced vibrations and heat transfer. While prior work has focused on the wake formation due to vortex shedding from stationary and oscillating cylinders, limited information is available on the relationship between wake modes and heat transfer from rotationally oscillating cylinders. Experiments were carried out at Re=150 and 750, using an electrically heated cylinder, in a water tunnel for oscillation frequencies from 0.67 to 3.5 times the natural shedding frequency and peak-to-peak oscillation amplitudes up to 320. DPIV was used to identify and map wake modes to various regions of the parameter space. Temperature data from a thermocouple embedded in the cylinder was used to calculate heat transfer rates. Correlation between heat transfer enhancement and certain wake mode regions were observed in the parameter space. The relationship between wake formation and heat transfer enhancement will be described.

  19. Heat transfer research on supercritical water flow upward in tube

    SciTech Connect

    Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.

    2012-07-01

    The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

  20. Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-03-01

    We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.

  1. Study of a high performance evaporative heat transfer surface

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  2. Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow

    SciTech Connect

    Bassem F. Armaly

    2007-10-31

    The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations

  3. Capillary Pumped Heat Transfer (CHT) Experiment

    NASA Technical Reports Server (NTRS)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  4. Heat transfer of suspended carbon nanotube yarn to gases

    NASA Astrophysics Data System (ADS)

    Wada, Yukiko; Kita, Koji; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2016-08-01

    We investigate the pressure dependence of heat transfer to ambient gases for a suspended carbon nanotube yarn. The heat transport of the yarn including the heat exchange with surrounding gases is investigated using a simple one-dimensional heat transport model under Joule heating of the yarn. It is revealed that the effective diameter of the yarn for heat exchange is much smaller than the geometrical diameter of the yarn. This smaller effective diameter for heat exchange should contribute to realizing higher sensitivity and sensing over a wider range of pressures for heat-exchange-type vacuum gauges and flow sensors.

  5. Investigation of heat transfer efficiency in coplanar channels

    NASA Astrophysics Data System (ADS)

    Pelevin, F. V.; Yaroslavtsev, N. L.; Vikulin, A. V.; Orlin, S. A.; Ponomarev, A. V.

    2015-03-01

    Achieving more efficient heat transfer in heat-transfer devices is a topical problem. Heat transfer and pressure drop in paths containing coplanar channels of different shapes are experimentally studied in this work. It is found that the mutual crossing angles of coplanar channels, finning ratio, and the dimensions of coplanar channels are the main parameters influencing heat transfer enhancement. The best effect from using coplanar channels is achieved at the values of Reynolds number Re = 103-104. The coefficient of heat transfer in coplanar channels can be increased by a factor of 3-10 as compared with that for a smooth channel. The pressure drop coefficient ξ increases with increasing the total mutual channel crossing angle. It is found that heat transfer in flat paths with coplanar channels becomes less efficient with decreasing the coplanar channel's equivalent hydraulic diameter to 0.5-1.0 mm, whereas more efficient heat transfer is obtained by fitting these channels with flow microturbulizers. It is shown that increasing the finning height in cylindrical paths with coplanar channels has no effect on vortex formation in them; however, it results in a higher finning ratio, due to which more efficient heat transfer is obtained

  6. Improving Heat Transfer Performance of Printed Circuit Boards

    NASA Technical Reports Server (NTRS)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  7. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  8. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  9. Mixed convection heat transfer in concave and convex channels

    SciTech Connect

    Moukalled, F.; Doughan, A.; Acharya, S.

    1997-07-01

    Mixed convection heat transfer studies in the literature have been primarily confined to pipe and rectangular channel geometry's. In some applications, however, heat transfer in curved channels may be of interest (e.g., nozzle and diffuser shaped passages in HVAC systems, fume hoods, chimneys, bell-shaped or dome-shaped chemical reactors, etc.). A numerical investigation of laminar mixed convection heat transfer of air in concave and convex channels is presented. Six different channel aspects ratios (R/L = 1.04, 1.25, 2.5, 5, 10, and {infinity}) and five different values of Gr/Re{sup 2} (Gr/Re{sup 2} = 0, 0.1, 1, 3, 5) are considered. Results are displayed in terms of streamline and isotherm plots, velocity and temperature profiles, and local and average Nusselt number estimates. Numerical predictions reveal that compared to straight channels of equal height, concave channels of low aspect ratio have lower heat transfer at relatively low values of Gr/Re{sup 2} and higher heat transfer at high values of Gr/Re{sup 2}. When compared to straight channels of equal heated length, concave channels are always found to have lower heat transfer and for all values of Gr/Re{sup 2}. On the other hand, predictions for convex channels revealed enhancement in heat transfer compared to straight channels of equal height and/or equal heated length for all values of Gr/Re{sup 2}.

  10. Proceedings of the 33rd national heat transfer conference NHTC'99

    SciTech Connect

    Jensen, M.K.; Di Marzo, M.

    1999-07-01

    The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference.

  11. Flow-Induced Vibration of a Reed in a Channel: Effect of Reed Shape on Convective Heat Transfer with Application to Electronic Cooling

    NASA Astrophysics Data System (ADS)

    Rips, Aaron; Shoele, Kourosh; Glezer, Ari; Mittal, Rajat

    2015-11-01

    Flow-induced vibration of a reed (a thin plate or flag) in a channel can improve heat transfer efficiency in forced convection applications, allowing for more heat transfer for the same fan power. Such systems have wide ranging applications in electronic and power cooling. We investigate the effect of 3D reed shape on heat transfer enhancement. To study 3D effects, we first use 2D fluid-structure interaction (FSI) simulations of an optimized reed (in terms of mass and stiffness) to generate a prescribed reed motion. We then apply that motion to a pseudo 3D reed (i.e. infinitely stiff in the spanwise direction) and study the heat transfer enhancement in a 3D channel. This method allows us to explore a large parameter space exhaustively, and using this method, we examine the effect of several parameters, such as reed planform and spanwise gap, on the heat transfer enhancements for forced convection in a channel. Simulations indicate that these geometrical feature have a significant effect on the vortex dynamics in the wake as well as the heat transfer efficiency. This work was supported by grants from AFOSR, EPRI and NSF.

  12. Flow and heat transfer characteristics of orthogonally rotating channel

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroshi; Ishigaki, Hiroshi

    1991-12-01

    Numerical analysis was conducted to predict the centripetal buoyant effect on flow and heat transfer characteristics in a channel rotating about a perpendicular axis. The conditions were assumed to be laminar, fully developed, and uniform heat flux. Calculation were conducted both for radially outward flow from the rotating axis and radially inward flow. The calculated results indicated that for radially outward flow buoyancy decreases the suction side friction and heat transfer while increasing pressure side friction and heat transfer. This trends were reversed for radially inward flow.

  13. Phononic heat transfer across an interface: thermal boundary resistance.

    PubMed

    Persson, B N J; Volokitin, A I; Ueba, H

    2011-02-01

    We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  14. A review of NASA combustor and turbine heat transfer research

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Graham, R. W.

    1984-01-01

    The thermal design of the combustor and turbine of a gas turbine engine poses a number of difficult heat transfer problems. The importance of improved prediction techniques becomes more critical in anticipation of future generations of gas turbine engines which will operate at higher cycle pressure and temperatures. Research which addresses many of the complex heat transfer processes holds promise for yielding significant improvements in prediction of metal temperatures. Such research involves several kinds of program including: (1) basic experiments which delineate the fundamental flow and heat transfer phenomena that occur in the hot sections of the gas turbine but at low enthalpy conditions; (2) analytical modeling of these flow and heat transfer phenomena which results from the physical insights gained in experimental research; and (3) verification of advanced prediction techniques in facilities which operate near the real engine thermodynamic conditions. In this paper, key elements of the NASA program which involves turbine and combustor heat transfer research will be described and discussed.

  15. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  16. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    SciTech Connect

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  17. Analytical and Numerical Modeling of Fluid Flow and Heat Transfer through Open-Cell Metal Foam Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Taheri, Mehrdad

    In this thesis analytical and numerical investigations of fluid flow and heat transfer through open cell metal foam heat exchangers are presented. Primarily, different representative unit cell approximations, i.e, tetrakaidecahedron, dodecahedron and cubic are discussed. By applying the thermal resistance analogy, a novel formulation for evaluation of the effective thermal conductivity of metal foams is proposed. The model improves previous models based on cubic or hexagonal cells. By using computer tomography images of a nickel foam sample a realistic 3D geometry is created and the foam's geometrical properties (i.e., porosity and surface area to volume ratio) and effective thermal conductivity are obtained. By using the experimentally found values of permeability, Forchheimer coefficient and solid-fluid interfacial convection coefficient, mathematical models for fluid flow and heat transfer in metal foams are developed. Two different assumptions: local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE), are used. LTNE yields more accurate results. A three-dimensional computational fluid dynamics (CFD) model of metal foam is made and validated against the experimental data for a square cross sectional nickel foam heat exchanger channel heated from the side walls while cooling air passes through the foam. The simulations are carried out for constant temperature or heat flux and different foam materials with pore densities of 10 and 40 pores per inch. The results show that the bonding of the foam to the walls has a considerable impact on the heat transfer rate. Convective heat transfer coefficients in terms of Nusselt number as functions of Reynolds number are also obtained. The design and CFD modeling of metal foam cross flow heat exchangers are also discussed. The results indicate both effectiveness and number of transfer units (NTU) for the metal foam heat exchangers are higher than those of a hollow channel; however, the effectiveness-NTU curves

  18. Conjugate heat transfer with the entropic lattice Boltzmann method.

    PubMed

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  19. Conjugate heat transfer with the entropic lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  20. Conjugate heat transfer with the entropic lattice Boltzmann method.

    PubMed

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube. PMID:27575234

  1. Unsteady transonic heat transfer in a transient facility

    NASA Technical Reports Server (NTRS)

    Lagraff, J. E.

    1985-01-01

    A facility for making heat transfer measurements on solid surfaces using transient techniques is constructed. The facility being constructed is a Ludweig tube with isentropic compression heating (LICH tube). The work completed is detailed as is the work remaining in order to complete the facility and make useful heat transfer measurements. The scope of the project is briefly discussed along with an overall appraisal of the progress.

  2. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  3. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  4. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  5. Heat transfer during transient compression: Measurements and simulations

    NASA Astrophysics Data System (ADS)

    Buttsworth, D. R.

    Experiments have been performed to assess the utility of unsteady one-dimensional heat conduction modelling for the calculation of heat losses during a free piston compression process. Heat transfer measurements have been obtained within a gun tunnel barrel using surface junction thermocouple instrumentation. The gun tunnel was operated with a relatively heavy piston such that the shock waves induced by the piston motion were weak. Peak heat transfer values are estimated reasonably well by the unsteady one-dimensional model. However, overall quantitative agreement between the measurements and calculations has not been achieved at this stage, principally because the development of turbulent heat transport was not properly modelled.

  6. Enhanced two phase flow in heat transfer systems

    DOEpatents

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  7. Flow characteristics and heat transfer in wavy walled channels

    NASA Astrophysics Data System (ADS)

    Mills, Zachary; Shah, Tapan; Monts, Vontravis; Warey, Alok; Balestrino, Sandro; Alexeev, Alexander

    2013-11-01

    Using lattice Boltzmann simulations, we investigated the effects of wavy channel geometry on the flow and heat transfer within a parallel plate heat exchanger. We observed three distinct flow regimes that include steady flow with and without recirculation and unsteady time-periodic flow. We determined the critical Reynolds numbers at which the flow transitions between different flow regimes. To validate our computational results, we compared the simulated flow structures with the structures observed in a flowing soap film. Furthermore, we examine the effects of the wavy channel geometry on the heat transfer. We find that the unsteady flow regime drastically enhances the rate of heat transfer and show that heat exchangers with wavy walls outperform currently used heat exchangers with similar volume and power characteristics. Results from our study point to a simple and efficient method for increasing performance in compact heat exchangers.

  8. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  9. Droplet Evaporator For High-Capacity Heat Transfer

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  10. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method

    NASA Astrophysics Data System (ADS)

    Ke, Quanpeng

    Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of

  11. Cfd Modeling of Iter Cable-In Superconductors. Part v: Combined Momentum and Heat Transfer in Rib Roughened Pipes

    NASA Astrophysics Data System (ADS)

    Zanino, R.; Giors, S.

    2008-03-01

    Computational Fluid Dynamics (CFD) techniques have been proposed and applied in a series of papers to analyze cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER). Previous work on the pressure drop in the central channel of ITER CICC is extended here to the problem of combined heat and momentum transfer. The CFD model, solved by the FLUENT commercial code, is first validated against 2D and 3D data from compact heat exchangers, showing good agreement. The Colburn analogy between the friction factor f and the Nusselt number Nu is not verified in the considered 2D geometries, as shown by both experiment and simulation. The validated CFD model is finally applied to the 3D analysis of central channel-like geometries relevant for ITER CICC. It is shown that the heat transfer coefficient on the central channel side stays relatively close to the smooth-pipe (Dittus-Boelter) value.

  12. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  13. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  14. Radiation Heat Transfer Procedures for Space-Related Applications

    NASA Technical Reports Server (NTRS)

    Chai, John C.

    2000-01-01

    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  15. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312

  16. Heat transfer and flow characteristics on a gas turbine shroud.

    PubMed

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  17. Flow and heat transfer of petal shaped double tube

    NASA Astrophysics Data System (ADS)

    Shakouchi, Toshihiko; Kawashima, Yuki; Tsujimoto, Koichi; Ando, Toshitake

    2014-06-01

    In this study, the flow and heat transfer characteristics of petal-shaped double tube with 6 petals are examined experimentally for a compact heat exchanger. As results, the heat transfer rate, Q, of the 6 petal shaped double tube (6-p tube) is much larger than that, Qp, of conventional circular double tube in all Reynolds number Rein,h (where, the reference length is hydraulic diameter) ranges. For example, at Rein,h =(0.5~1.0)× 104 it is about 4 times of Qp. The heat transfer enhancement of 6-p tube is by the increase of heat transfer area, wetting perimeter, and a highly fluctuating flow, and Q of the 6-p tube can be expressed by Q [kW/m] = 0.54Rein,h + 2245.

  18. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  19. Heat transfer and flow characteristics on a gas turbine shroud.

    PubMed

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions. PMID:11460639

  20. Heat Transfer - Milwaukee 1981; Proceedings of the Twentieth National Heat Transfer Conference, Milwaukee, WI, August 2-5, 1981

    NASA Astrophysics Data System (ADS)

    Stein, R. P.

    Aspects of direct contact heat transfer are considered along with transport phenomena in fusion reactors, enhanced nucleate boiling, flow boiling, heat transfer in non-Newtonian systems, two-phase systems, heat transfer in fossil fuel conversion systems, process heat transfer, thermal and hydraulic behavior in rod and tube bundles, and two-phase systems in rod and tube bundles. Attention is also given to solar energy heat transfer, heat transfer in fluidized beds, and fire and combustion fundamentals, taking into account thermal stress oscillations induced by dynamic instabilities in radiation-heated boiler tubes, convection losses from a cavity receiver, numerical solutions of turbulent models for flow over a flat plate with angle of attack, and the heat transfer from smooth horizontal tubes immersed in gas fluidized beds. A description is provided of aspects of turbulent combustion modelling, the exhaust gas emission from a swirl stabilized combustor, the analytical solution for diffusion in the core of a droplet with internal circulation, and the radiant ignition of a thin combustible solid.

  1. Preparation and photo-induced charge transfer of the composites based on 3D structural CdS nanocrystals and MEH-PPV

    SciTech Connect

    Deng, Dan; Shi, Minmin; Chen, Fei; Chen, Lin; Jiang, Xiaoxia; Chen, Hongzheng

    2010-05-15

    We report the synthesis of 3D structural CdS nanocrystals by a simple biomolecule-assisted hydrothermal process. The CdS nanocrystals are composed of many branched nanorods with the diameter of about 50 nm, and the length of about 250 nm. The phase and crystallographic properties are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). The composites based on CdS nanocrystals and poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) have been prepared by spin-coating of the mixture in the common solvent. The optical properties of the composites are investigated using ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopies. A significant fluorescence quenching of MEH-PPV in the composites is observed at high CdS nanocrystals/MEH-PPV ratios, indicating that the photo-induced charge transfer occurred due to the energy level offset between the donor MEH-PPV and the acceptor CdS nanocrystals. The obvious photovoltaic behavior of the solar cell made from this composite further demonstrates the mentioned photo-induced charge transfer process. (author)

  2. Cryogenic apparatus for study of near-field heat transfer.

    PubMed

    Kralik, T; Hanzelka, P; Musilova, V; Srnka, A; Zobac, M

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10(0) to 10(3) μm. The heat transferred from the hot (10 - 100 K) to the cold sample (∼5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ∼2 nW∕cm(2) and ∼30 μW∕cm(2) is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  3. Cryogenic apparatus for study of near-field heat transfer

    SciTech Connect

    Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M.

    2011-05-15

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10{sup 0} to 10{sup 3} {mu}m. The heat transferred from the hot (10 - 100 K) to the cold sample ({approx}5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within {approx}2 nW/cm{sup 2} and {approx}30 {mu}W/cm{sup 2} is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  4. Cryogenic apparatus for study of near-field heat transfer.

    PubMed

    Kralik, T; Hanzelka, P; Musilova, V; Srnka, A; Zobac, M

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10(0) to 10(3) μm. The heat transferred from the hot (10 - 100 K) to the cold sample (∼5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ∼2 nW∕cm(2) and ∼30 μW∕cm(2) is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer. PMID:21639537

  5. Cryogenic apparatus for study of near-field heat transfer

    NASA Astrophysics Data System (ADS)

    Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M.

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 100 to 103 μm. The heat transferred from the hot (10 - 100 K) to the cold sample (˜5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ˜2 nW/cm2 and ˜30 μW/cm2 is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  6. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  7. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  8. Heat transfer during the boiling of liquids in heat pipe wicks

    NASA Technical Reports Server (NTRS)

    Gontarev, Yu. K.; Navruzov, Yu. V.; Prisnyakov, V. F.; Serebryanskiy, N.

    1987-01-01

    Data in the literature on heat transfer in the case of nucleate boiling of various liquids in the wicks of heat pipes are reviewed. It is shown that none of the known analytical relationships can be used to generalize, with sufficient accuracy, the experimental data found in the literature. It is further shown that the exponent of the specific heat flux in the heat transfer law changes as a function of the liquid and wick properties. A relationship is obtained which generalizes experimental data for heat transfer agents of moderate temperatures (water, acetone, ethanol, and R-11 and R-113 coolants) and ammonia.

  9. A review on boiling heat transfer enhancement with nanofluids.

    PubMed

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  10. Determination of the heat transfer coefficients in porous media

    SciTech Connect

    Kim, L.V.

    1994-06-01

    The process of transpiration cooling is considered. Methods are suggested for estimating the volumetric coefficient of heat transfer with the use of a two-temperature model and the surface heat transfer coefficient at entry into a porous wall. The development of new technology under conditions of increasing heat loads puts the search for effective methods of heat transfer enhancement in the forefront of theoretical investigations. One of the promising trends in the solution of this problem is the use of porous materials (PM) in the elements of power units. For thermal protection against convective or radiative heat fluxes, the method of transpiration cooling is successfully used. The mechanism operative in the thermal protection involves the injection of a coolant through a porous medium to produce a screen over the contour of a body in a flow for removing heat energy from the skeleton of the porous material.

  11. A Compact Remote Heat Transfer Device for Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Yan, T.; Zhao, Y.; Liang, T.

    In this paper a compact remote heat transfer device (CRHD) for cryocoolers is proposed. This device is especially attractive in cases where cryocoolers are not easy to set near the heat source, generally the infrared sensor. The CRHD is designed on basis of the concept of loop heat pipes, while the primary evaporator is located near the cryocooler cold head and a simple tube-in-tube secondary evaporator is remotely located and thermally connected with the heat source for cooling. With such a device a cooling power of 1 W is achieved across a heat transfer distance of about 2 m. The major problem of this device is the low heat transfer efficiency (1 W of net cooling power at the cost of about 7 W of cooling power from the cryocooler), and in the future a secondary wicked evaporator will be used instead of the tube-in-tube evaporator in order to improve the efficiency.

  12. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  13. A review on boiling heat transfer enhancement with nanofluids

    NASA Astrophysics Data System (ADS)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-12-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  14. Tissue heat transfer in water: lessons from the Korean divers.

    PubMed

    Rennie, D W

    1988-10-01

    The factors which influence tissue heat transfer and temperature gradients from body core to skin surface are reviewed in the context of studies on Korean diving women. The resistance to heat transfer imposed by resting muscle is shown to be 2-3 times as great as that imposed by overlying fat and skin. However, exercising muscle imposes very little resistance to heat flux because of the increase in convective heat transfer. Accordingly, the limiting resistance to heat flow is shifted to subcutaneous fat and skin during exercise in cold water. Hypothetical examples are given of how important the subcutaneous fat can be in maintaining a high core-to-water temperature gradient in cold water and the same validated by examples from the literature. Last, hypothetical examples are given of the role cutaneous blood flow must play in controlling heat flux and temperature gradients across the subcutaneous fat layer.

  15. Turbulent flow and heat transfer in rotating channels and tubes

    NASA Astrophysics Data System (ADS)

    Mitiakov, V. Y.; Petropavlovskii, R. R.; Ris, V. V.; Smirnov, E. M.; Smirnov, S. A.

    This document is a reduction of the author's experimental results on turbulent flow characteristics and heat transfer in rotating channels whose axes are parallel to the plane of rotation. Substantial dissimilarities of longitudinal velocity field profile and pulsational characteristics are caused by effects of stabilization and destabilization and secondary flow production. Local heat transfer coefficients vary over the perimeter of the tube section connecting detected flow peculiarities. It is shown that the increase in rotational intensity caused an increase in the relative dissimilarity of the local heat transfer coefficients and increased their mean value.

  16. Intensification of heat transfer by changing the burner nozzle

    NASA Astrophysics Data System (ADS)

    DzurÅák, Róbert; Kizek, Ján; Jablonský, Gustáv

    2016-06-01

    Thermal aggregates are using burner which burns combustible mixture with an oxidizing agent, by adjustment of the burner nozzle we can achieve better conditions of combustion to intensify heat transfer at furnace space. The aim of the present paper was using a computer program Ansys Workbench to create a computer simulation which analyzes the impact of the nozzle on the shape of a flame thereby intensifies heat transfer in rotary drum furnaces and radiation heat transfer from the flue gas into the furnace space. Article contains analysis of the geometry of the burner for achieving temperature field in a rotary drum furnace using oxy-combustion and the practical results of computer simulations

  17. Nanoscale heat transfer in the head-disk interface for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Xiong, Shaomin; Canchi, Sripathi; Schreck, Erhard; Bogy, David

    2016-02-01

    Laser heating has been introduced in heat-assisted magnetic recording in order to reduce the magnetic coercivity and enable data writing. However, the heat flow inside a couple of nanometers head-disk gap is still not well understood. An experimental stage was built for studying heat transfer in the head-disk interface (HDI) and the heat-induced instability of the HDI. A laser heating system is included to produce a heated spot on the disk at the position of the slider. A floating air bearing slider is implemented in the stage for sensing the temperature change of the slider due to the heat transfer from the disk by the use of an embedded contact sensor, and the gap between the two surfaces is controlled by the use of a thermal fly-height control actuator. By using this system, we explore the dependency of the heat transfer on the gap spacing as well as the disk temperature.

  18. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  19. Transient Heat Transfer in TCAP Coils

    SciTech Connect

    Steimke, J.L.

    1999-03-09

    The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0 tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly

  20. Two-Pipe Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Richter, Robert

    1989-01-01

    Device like heat pipe transports heat over long distance with negligible loss in temperature, though with considerably smaller total weight. Uses no pumps or other mechanical means to move working fluid: Instead converts part of available thermal energy to kinetic energy upon vaporization. Vapor carries thermal energy in form of latent heat of vaporization. Delivers thermal energy with drop in temperature of only fraction of degree from source sink.

  1. Enhancement of natural-convection heat transfer from a horizontal heated plate using grid fins

    SciTech Connect

    Kitamura, Kenzo; Nagae, Naoyuki; Kimura, Fumiyoshi

    1996-01-01

    An enhancement technique was developed for natural-convection heat transfer from a horizontal heated plate. In order to enhance the heat transfer, grid fins made of copper plates were soldered to the copper base plate. These grid fins function not only as an extended surface but also as a heat-transfer promoter. The apparent heat-transfer coefficient of the above enhanced plate were measured and compared with those of a nontreated, smooth plate and a conventional plate with vertical straight fins. It was found that the highest performance is achieved by the present plate. By adopting grid fins with appropriate size and height, the heat-transfer coefficient at the central portion of the present plate is increased by 35% compared to that of the conventional finned plate with the same fin area of fin height.

  2. Many-body radiative heat transfer theory.

    PubMed

    Ben-Abdallah, Philippe; Biehs, Svend-Age; Joulain, Karl

    2011-09-01

    In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale. PMID:22026672

  3. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  4. Heat transfer through an extended surface containing He II

    SciTech Connect

    Van Sciver, S.W.

    1999-02-01

    A semi-analytic solution for the heat transfer process between a He II pressurized bath and a saturated tube-type heat exchanger is presented. The problem is modeled with an extended surface heat transfer formulation analogous to that in conventional conduction. The process is governed by Kapitza conductance and counterflow within the bulk fluid in the tube. The resulting nonlinear differential equation may be integrated for the special case of constant properties, yielding a simple solution applicable to design and analysis of practical heat exchangers.

  5. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  6. Boiling heat transfer and droplet spreading of nanofluids.

    PubMed

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  7. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  8. Optimal Shape Design of Compact Heat Exchangers Based on Adjoint Analysis of Momentum and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Morimoto, Kenichi; Suzuki, Yuji; Kasagi, Nobuhide

    An adjoint-based shape optimization method of heat exchangers, which takes into account the heat transfer performance with the pressure loss penalty, is proposed, and its effectiveness is examined through a series of numerical simulation. Undulated heat transfer surface is optimized under an isothermal heated condition based on the variational method with the first derivative of the cost function, which is determined by an adjoint analysis of momentum and heat transfer. When applied to a modeled heat-exchanger passage with a pair of oblique wavy walls, the present optimization method refines the duct shape so as to enhance the heat transfer while suppressing the flow separation. It is shown that the j/f factor is further increased by 4% from the best value of the initial obliquely wavy duct. The effects of the initial wave amplitude upon the shape evolution process are also investigated.

  9. Nonlinear aspects of high heat flux nucleate boiling heat transfer. Part 1, Formulation

    SciTech Connect

    Sadasivan, P.; Unal, C.; Nelson, R.

    1994-04-01

    This paper outlines the essential details of the formulation and numerical implementation of a model used to study nonlinear aspects of the macrolayer-controlled heat transfer process associated with high heat flux nucleate boiling and the critical heat flux. The model addresses the three-dimensional transient conduction heat transfer process within the problem domain comprised of the macrolayer and heater. Heat dissipation from the heater is modeled as the sum of transient transport into the macrolayer, and the heat loss resulting from evaporation of menisci associated with vapor stems.

  10. Asymmetric heat transfer from nanoparticles in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Potdar, Dipti; Sammalkorpi, Maria

    2015-12-01

    Here, we use molecular dynamics simulations to characterize the heat transfer properties of lipid bilayer - gold nanoparticle systems in which the nanoparticle acts as a heat source. The focus is on dipalmitoylphosphatidylcholine (DPPC) lipid bilayers and thiolated alcohol and alkyl functionalized nanoparticles as prototype hydrophilic and hydrophobic nanoparticles. We find hydrophilic nanoparticles which are partly in contact with the surrounding water environment are more efficient in transferring heat to the system than hydrophobic ones which reside surrounded by the membrane. This is because of the hydrogen bonding capability of the hydroxy pentanethiol and the more efficient heat conductivity through water than the lipid bilayer. Additionally, we find the heat conductance is strongly asymmetric and has a discontinuity between the bilayer leaflets. In total, the findings provide understanding on heat transport from localized heat sources in lipid bilayers and could bear significance, e.g., in engineering and controlling photoactivated triggering of liposomal systems.

  11. Heat Transfer of Airfoils and Plates

    NASA Technical Reports Server (NTRS)

    Seibert, Otto

    1943-01-01

    The few available test data on the heat dissipation of wholly or partly heated airfoil models are compared with the corresponding data for the flat plate as obtained by an extension of Prandtl's momentum theory, with differentiation between laminar and turbulent boundary layer and transitional region between both, the extent and appearance of which depend upon certain critical factors. The satisfactory agreement obtained justifies far-reaching conclusions in respect to other profile forms and arrangements of heated surface areas. The temperature relationship of the material quantities in its effect on the heat dissipation is discussed as far as is possible at tk.e present state of research, and it is shown that the profile drag of heated wing surfaces can increase or decrease with the temperature increase depending upon the momentarily existent structure of the boundary layer.

  12. Numerical investigation of the heat transfer in cylindrical annulus with a dielectric fluid under microgravity

    NASA Astrophysics Data System (ADS)

    Travnikov, V.; Crumeyrolle, O.; Mutabazi, I.

    2015-05-01

    Three-dimensional (3D) flow driven by thermal convection in a dielectric liquid confined in the gap between two coaxial cylinders is investigated by direct numerical simulations. The inner surface is warmer than the outer one and a high frequency alternating electric tension is applied to the cylinders. The fluid is therefore subjected to a radial dielectrophoretic force which plays the role of a buoyancy force that can generate a thermal convection. We have performed 3D simulations using periodic boundary conditions. The transition from the base state to convective flow occurs via a supercritical bifurcation and leads to helicoidal stationary vortices. The behavior of the heat transfer by convective flow is investigated for different values of the radius ratio, Prandtl number, and electric Rayleigh number.

  13. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  14. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  15. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  16. Heat Transfer at Supercritical Pressures and the Onset of Deterioration

    SciTech Connect

    Kirillov, Pavel L.; Grabezhnaya, Vera A.

    2006-07-01

    The comparison of the data on heat transfer at supercritical pressures (SCP) demonstrates that they have a considerable spread, which shows a complex nature of the process and a probable inaccuracy in the methods of data processing caused by a sharp change in thermophysical properties near the pseudo-critical point. The recent experimental data at SCP for upward flow of water are compared with some correlations applicable to engineering analysis. The correlations for the onset of heat transfer deterioration against the experimental data were analyzed. The heat transfer deterioration in this data was far from test section inlet The generalization of data on the onset of heat transfer deterioration for various coolants (water, CO{sub 2}, R12) was proposed. (authors)

  17. The new limit of heat transfer under extreme strain

    NASA Astrophysics Data System (ADS)

    Lee, Victor; Chen, Renkun; Chang, Chih-Wei

    2012-12-01

    Theoretical works have predicted that the thermal conductance of a deformed 1D system will start to decrease when the radius of curvature (Rc) is comparable to the phonon mean free path (l). However, due to limited mechanical strengths and short phonon mean free paths of most materials, no experimental works are capable of testing this fundamental limit of heat transfer so far. Here we utilize the superior mechanical strength and the high thermal conductivity of single-wall carbon nanotubes (SWCNTs) to investigate the heat transfer phenomena at previously inaccessible experimental regime. Surprisingly, the thermal conductivity of SWCNTs remains intact under cyclic strains and the ultimate condition of l/Rc > 10. Moreover, the robustness of heat transfer is found to be independent of defects, dislocations, structural kinks, bent angles, or bent curvatures. Our results demonstrate that SWCNTs are exceptional 1D thermal conductors with capabilities of going beyond the fundamental limit of heat transfer under extreme strain.

  18. Navier-Stokes analysis of turbine blade heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1990-01-01

    Comparisons with experimental heat transfer and surface pressures were made for seven turbine vane and blade geometries using a quasi-three-dimensional thin-layer Navier-Stokes analysis. Comparisons are made for cases with both separated and unseparated flow over a range of Reynolds numbers and freestream turbulence intensities. The analysis used a modified Baldwin-Lomax turbulent eddy viscosity mode. Modifications were made to account for the effects of: (1) freestream turbulence on both transition and leading edge heat transfer; (2) strong favorable pressure gradients on relaminarization; and (3) variable turbulent Prandtl number heat transfer. In addition, the effect of heat transfer on the near wall model of Deissler is compared with the Van Driest model.

  19. Enhancement of laminar convective heat transfer using microparticle suspensions

    NASA Astrophysics Data System (ADS)

    Zhu, Jiu Yang; Tang, Shiyang; Yi, Pyshar; Baum, Thomas; Khoshmanesh, Khashayar; Ghorbani, Kamran

    2016-04-01

    This paper investigates the enhancement of convective heat transfer within a sub-millimetre diameter copper tube using Al2O3, Co3O4 and CuO microparticle suspensions. Experiments are conducted at different particle concentrations of 1.0, 2.0 and 5.0 wt% and at various flow rates ranging from 250 to 1000 µl/min. Both experimental measurements and numerical analyses are employed to obtain the convective heat transfer coefficient. The results indicate a significant enhancement in convective heat transfer coefficient due to the implementation of microparticle suspensions. For the case of Al2O3 microparticle suspension with 5.0 wt% concentration, a 20.3 % enhancement in convective heat transfer coefficient is obtained over deionised water. This is comparable to the case of Al2O3 nanofluid at the same concentration. Hence, there is a potential for the microparticle suspensions to be used for cooling of compact integrated systems.

  20. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    NASA Astrophysics Data System (ADS)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  1. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    SciTech Connect

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {+-}5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  2. Heat transfer across the interface between nanoscale solids and gas.

    PubMed

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  3. Particle-water heat transfer during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Gilbert, J. S.; Lane, S. J.

    2012-10-01

    Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic particles produced by explosive eruption. Heat removal is restricted by resistance to heat transfer from the volcanic particles with intraparticle thermal conduction important for large particles and surface cooling by boiling dominating for small particles. In most cases, volcanic particles approach thermal equilibrium with the surrounding fluid during an explosive eruption. Application of the results to a sample from the Gjálp 1996, Iceland eruption indicates that, relative to 0○C, 70-80% of the heat is transferred from the particles to boiling water during the settling time before burial in the stratigraphic succession. The implication is that, for subglacial explosive eruptions, much of the heat content of the magma is coupled into melting ice extremely rapidly. If all particles of the Gjálp 1996 deposit were cooled to the local boiling point by the end of the eruption then approximately 78% of the initial heat content was removed from the erupting magma during the eruption. This is consistent with calorimetric calculations based on volumes of ice melted during and after the eruption.

  4. Large-eddy Simulation of Heat and Water Vapor Transfer in CT-Based Human Airway Models

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tawhai, Merryn; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    We propose a novel imaging-based thermodynamic model to study local heat and mass transfers in the human airways. Both 3D and 1D CFD models are developed and validated. Large-eddy simulation (LES) is adopted to solve 3D incompressible Navier-Stokes equations with Boussinesq approximation along with temperature and water vapor transport equations and energy-flux based wall boundary condition. The 1D model provides initial and boundary conditions to the 3D model. The computed tomography (CT) lung images of three healthy subjects with sinusoidal waveforms and minute ventilations of 6, 15 and 30 L/min are considered. Between 1D and 3D models and between subjects, the average temperature and water vapor distributions are similar, but their regional distributions are significantly different. In particular, unlike the 1D model, the heat and water vapor transfers in the 3D model are elevated at the bifurcations during inspiration. Moreover, the correlations of Nusselt number (Nu) and Sherwood number (Sh) with local Reynolds number and airway diameter are proposed. In conclusion, use of the subject-specific lung model is essential for accurate prediction of local thermal impacts on airway epithelium. Supported in part by NIH grants R01-HL094315, U01-HL114494 and S10-RR022421.

  5. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect

    Morris, J. F.

    1985-03-19

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  6. Development of heat-transfer circuits in the blast furnace

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.

    2016-09-01

    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  7. Enhanced heat transfer in partially-saturated hydrothermal systems

    SciTech Connect

    Bixler, N.E.; Carrigan, C.R.

    1986-01-01

    The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.

  8. Application of ray tracing in radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1993-01-01

    This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

  9. Jet-impingement heat transfer in gas turbine systems.

    PubMed

    Han, B; Goldstein, R J

    2001-05-01

    A review of jet-impingement heat transfer in gas turbine systems is presented. Characteristics of the different flow regions for submerged jets--free jet, stagnation flow, and wall jet--are reviewed. Heat transfer characteristics of both single and multiple jets are discussed with consideration of the effects of important parameters relevant to gas turbine systems including curvature of surfaces, crossflow, angle of impact, and rotation.

  10. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  11. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Je-Chin Han; Schobeiri, M.T.

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  12. Advanced turbine cooling, heat transfer, and aerodynamic studies

    SciTech Connect

    Han, Je-Chin; Schobeiri, M.T.

    1995-12-31

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  13. High-Power Liquid-Metal Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Fujita, Toshio

    1991-01-01

    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  14. Experimental and numerical investigation of HyperVapotron heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo

    2014-12-01

    The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the

  15. Revealing the complex conduction heat transfer mechanism of nanofluids.

    PubMed

    Sergis, A; Hardalupas, Y

    2015-12-01

    Nanofluids are two-phase mixtures consisting of small percentages of nanoparticles (sub 1-10 %vol) inside a carrier fluid. The typical size of nanoparticles is less than 100 nm. These fluids have been exhibiting experimentally a significant increase of thermal performance compared to the corresponding carrier fluids, which cannot be explained using the classical thermodynamic theory. This study deciphers the thermal heat transfer mechanism for the conductive heat transfer mode via a molecular dynamics simulation code. The current findings are the first of their kind and conflict with the proposed theories for heat transfer propagation through micron-sized slurries and pure matter. The authors provide evidence of a complex new type of heat transfer mechanism, which explains the observed abnormal heat transfer augmentation. The new mechanism appears to unite a number of popular speculations for the thermal heat transfer mechanism employed by nanofluids as predicted by the majority of the researchers of the field into a single one. The constituents of the increased diffusivity of the nanoparticle can be attributed to mismatching of the local temperature profiles between parts of the surface of the solid and the fluid resulting in increased local thermophoretic effects. These effects affect the region surrounding the solid manifesting interfacial layer phenomena (Kapitza resistance). In this region, the activity of the fluid and the interactions between the fluid and the nanoparticle are elevated. Isotropic increased nanoparticle mobility is manifested as enhanced Brownian motion and diffusion effects.

  16. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  17. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Astrophysics Data System (ADS)

    Vanfossen, G. J.

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  18. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Astrophysics Data System (ADS)

    Vanfossen, G. J.

    1981-03-01

    Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  19. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  20. Spinodal turbulence enhances heat transfer in micro devices

    NASA Astrophysics Data System (ADS)

    Farisé, Stefano; Poesio, Pietro; Beretta, Gian Paolo

    2012-11-01

    We experimentally prove the possibility of using spinodal mixtures to increase heat transfer in micro devices as a consequence of an evenly distributed micro agitation, which increases the effective diffusivity. Despite the Re -number is as low as 5, turbulence-like mixing can be achieved by mass transfer effects. A mixture of acetone-hexadecane is quenched in a micro heat exchanger to induce spinodal decomposition. The heat transfer rate is enhanced by self-induced convective motion (spinodal turbulence) because the drops of one phase move against each others under the influence of non-equilibrium capillary forces, Korteweg stresses,which are sustained by the free energy liberated during phase separation. The heat transfer is increased up to the 200% and the effect become larger as the bulk Re decreses, while no dramatic increase in the pressure drop is observed. We built two different experimental set-ups: in the first we measure the heat transfer with a feedback method and in the second we measure the pressure drop and we visualize the induced convection. High-speed camera visualization,pressure drop and temperature measurements allow a complete characterization of the phenomenon, with a special attention to the quantification of the heat transfer coefficent enhancement.

  1. Heat Transfer and Flow Structure Evaluation of a Synthetic Jet Emanating from a Planar Heat Sink

    NASA Astrophysics Data System (ADS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-07-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  2. HEAT2. Two-Dimensional Heat Transfer Finite Element Code

    SciTech Connect

    Charman, C.

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  3. Sliding bubble dynamics and the effects on surface heat transfer

    NASA Astrophysics Data System (ADS)

    Donnelly, B.; Robinson, A. J.; Delauré, Y. M. C.; Murray, D. B.

    2012-11-01

    An investigation into the effects of a single sliding air bubble on heat transfer from a submerged, inclined surface has been undertaken. Existing literature has shown that both vapour and gas bubbles can increase heat transfer rates from adjacent heated surfaces. However, the mechanisms involved are complex and dynamic and in some cases poorly understood. The present study utilises high speed, high resolution, infrared thermography and video photography to measure two dimensional surface heat transfer and three dimensional bubble position and shape. This provides a unique insight into the complex interactions at the heated surface. Bubbles of volume 0.05, 0.1, 0.2 and 0.4 ml were released onto a surface inclined at 30 degrees to horizontal. Results confirmed that sliding bubbles can enhance heat transfer rates up to a factor of 9 and further insight was gained about the mechanisms behind this phenomenon. The enhancement effects were observed over large areas and persisted for a long duration with the bubble exhibiting complex shape and path oscillations. It is believed that the periodic wake structure present behind the sliding bubble affects the bubble motion and is responsible for the heat transfer effects observed. The nature of this wake is proposed to be that of a chain of horseshoe vortices.

  4. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  5. Two phase flow and heat transfer characteristics of a separate-type heat pipe

    NASA Astrophysics Data System (ADS)

    Tang, Zhiwei; Liu, Aijie; Jiang, Zhangyan

    2011-07-01

    Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80-125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.

  6. Effect of the heating surface enhancement on the heat transfer coefficient for a vertical minichannel

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Strąk, Kinga

    2016-03-01

    The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.

  7. A correlation for heat transfer coefficients in food extruders.

    PubMed

    Levine, L; Rockwood, J

    1986-06-01

    A dimensionless correlation of heat transfer coefficient for heat flow between the extruder barrel wall and extrudate is presented. The standard error of estimate of the correlation is 12.4%. The correlation is useful for the design and scale-up of food extruders and the design of associated temperature control systems.

  8. Rocket engine heat transfer and material technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Hiltabiddle, J.; Campbell, J.

    1974-01-01

    Liquid fueled rocket engine combustion, heat transfer, and material technology have been utilized in the design and development of compact combustion and heat exchange equipment intended for application in the commercial field. An initial application of the concepts to the design of a compact steam generator to be utilized by electrical utilities for the production of peaking power is described.

  9. Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory

    ERIC Educational Resources Information Center

    Pathare, S. R.; Pradhan, H. C.

    2010-01-01

    Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…

  10. Thin-film gage measures low heat-transfer rates

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1966-01-01

    Low heat-transfer gage facilitates determination of the transition between laminar and turbulent conditions, in the boundary layer surrounding slender and moderately slender cones under test in a hypersonic blowdown helium tunnel. The gage consists of a thin layer of vacuum-evaporated platinum on a heat resistant glass substrate contoured to fit model surfaces.

  11. Heat transfer to blood flow in a small tube.

    PubMed

    Wang, C Y

    2008-04-01

    Blood flow in a small tube (30-1000 mum) can be successfully modeled by the two-fluid model. The fully developed, constant heat flux convective heat transfer problem is studied. The velocity and temperature profiles are determined in closed form. Formulas for friction-factor-Reynolds number product, axial temperature gradient, and Nusselt number are found.

  12. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  13. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  14. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and inter-station horizontal magnetic transfer function data: Results from a synthetic case study

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-09-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in two dimensional (2-D) and three dimensional (3-D) environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterisation of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with inter-station horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies is evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identifies the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface is evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements are observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterising the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral

  15. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    ERIC Educational Resources Information Center

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that…

  16. Heat Transfer Over the Circumference of a Heated Cylinder in Transverse Flow

    NASA Technical Reports Server (NTRS)

    Schmidt, Ernst; Wenner, Karl

    1943-01-01

    A method for recording the local heat-transfer coefficients on bodies in flow was developed. The cylinder surface was kept at constant temperature by the condensation of vapor except for a narrow strip which is heated separately to the same temperature by electricity. The heat-transfer coefficient at each point was determined from the electric heat output and the temperature increase. The distribution of the heat transfer along the circumference of cylinders was recorded over a range of Reynolds numbers of from 5000 to 426,000. The pressure distribution was measured at the same time. At Reynolds numbers up to around 100,000 high maximums of the heat transfer occurred in the forward stagnation point at and on the rear side at 180C, while at around 80 the heat-transfer coefficient on both sides of the cylinder behind the forward stagnation point manifested distinct minimums. Two other maximums occurred at around 115 C behind the forward stagnation point between 170,000 and 426,000. At 426,000 the heat transfer at the location of those maximums was almost twice as great as in the forward stagnation point, and the rear half of the cylinder diffused about 60 percent of the entire heat, The tests are compared with the results of other experimental and theoretical investigations.

  17. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  18. Multi-wavelength simulations of atmospheric radiation from Io with a 3-D spherical-shell backward Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Gratiy, Sergey L.; Walker, Andrew C.; Levin, Deborah A.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.

    2010-05-01

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io's atmosphere including both sublimation and volcanic sources of SO 2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io's atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io's sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman- α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ˜30° toward lower orbital longitudes. The simulations of Lyman- α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support

  19. Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method

    PubMed Central

    Dalir, Nemat

    2014-01-01

    An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. PMID:27433511

  20. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    SciTech Connect

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.; Mitra, N.K.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, and strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.