Science.gov

Sample records for 3-d laser radar

  1. Counter-sniper 3D laser radar

    NASA Astrophysics Data System (ADS)

    Shepherd, Orr; LePage, Andrew J.; Wijntjes, Geert J.; Zehnpfennig, Theodore F.; Sackos, John T.; Nellums, Robert O.

    1999-01-01

    Visidyne, Inc., teaming with Sandia National Laboratories, has developed the preliminary design for an innovative scannerless 3-D laser radar capable of acquiring, tracking, and determining the coordinates of small caliber projectiles in flight with sufficient precision, so their origin can be established by back projecting their tracks to their source. The design takes advantage of the relatively large effective cross-section of a bullet at optical wavelengths. Kay to its implementation is the use of efficient, high- power laser diode arrays for illuminators and an imaging laser receiver using a unique CCD imager design, that acquires the information to establish x, y (angle-angle) and range coordinates for each bullet at very high frame rates. The detection process achieves a high degree of discrimination by using the optical signature of the bullet, solar background mitigation, and track detection. Field measurements and computer simulations have been used to provide the basis for a preliminary design of a robust bullet tracker, the Counter Sniper 3-D Laser Radar. Experimental data showing 3-D test imagery acquired by a lidar with architecture similar to that of the proposed Counter Sniper 3-D Lidar are presented. A proposed Phase II development would yield an innovative, compact, and highly efficient bullet-tracking laser radar. Such a device would meet the needs of not only the military, but also federal, state, and local law enforcement organizations.

  2. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  3. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  4. 3-D Imaging of Partly Concealed Targets by Laser Radar

    DTIC Science & Technology

    2005-10-01

    laser in the green wavelength region was used for illumination. 3-D Imaging of Partly Concealed Targets by Laser Radar 11 - 8 RTO-MP-SET-094...acknowledge Marie Carlsson and Ann Charlotte Gustavsson for their assistance in some of the experiments. 7.0 REFERENCES [1] U. Söderman, S. Ahlberg...SPIE Vol. 3707, pp. 432-448, USA, 1999. [14] D. Letalick, H. Larsson, M. Carlsson, and A.-C. Gustavsson , “Laser sensors for urban warfare,” FOI

  5. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  6. An overview of avalanche photodiodes and pulsed lasers as they are used in 3D laser radar type applications

    NASA Astrophysics Data System (ADS)

    Dion, Bruno; Bertone, Nick

    2004-08-01

    This paper will examine how Avalanche Photodiodes (APD) and Infrared Pulsed lasers (PL) are used and optimized to provide the "intelligence" to smart weapons. The basics of APD's and PL will be covered and the principle "time of flight ranging" which is the underlining principle of 3D laser radar will be illustrated. The time of flight principle is used for range finding, lidar, 3D laser radar and speed measurements - this information can then be used to provide intelligence to the smart weapon. Examples of such systems are discussed and illustrated, for example: Cluster bombs, Proximity fuses, and how laser range finding systems can be incorporated with GPS to produce effective and lethal weapons. The APD's that are discussed include silicon APD's for cost effective weapons, and 1550nm APDs for eye-safe systems. An overview of the different PL's will be outlined, but the focus will be on 905nm laser pulsars for cost effective laser weapons.

  7. Novel eye-safe line scanning 3D laser-radar

    NASA Astrophysics Data System (ADS)

    Eberle, B.; Kern, Tobias; Hammer, Marcus; Schwanke, Ullrich; Nowak, Heinrich

    2014-10-01

    Today, the civil market provides quite a number of different 3D-Sensors covering ranges up to 1 km. Typically these sensors are based on single element detectors which suffer from the drawback of spatial resolution at larger distances. Tasks demanding reliable object classification at long ranges can be fulfilled only by sensors consisting of detector arrays. They ensure sufficient frame rates and high spatial resolution. Worldwide there are many efforts in developing 3D-detectors, based on two-dimensional arrays. This paper presents first results on the performance of a recently developed 3D imaging laser radar sensor, working in the short wave infrared (SWIR) at 1.5 μm. It consists of a novel Cadmium Mercury Telluride (CMT) linear array APD detector with 384x1 elements at a pitch of 25 μm, developed by AIM Infrarot Module GmbH. The APD elements are designed to work in the linear (non-Geiger) mode. Each pixel will provide the time of flight measurement, and, due to the linear detection mode, allowing the detection of three successive echoes. The resolution in depth is 15 cm, the maximum repetition rate is 4 kHz. We discuss various sensor concepts regarding possible applications and their dependence on system parameters like field of view, frame rate, spatial resolution and range of operation.

  8. Development of a high-resolution laser radar for 3D imaging in artwork cataloging

    NASA Astrophysics Data System (ADS)

    Bordone, Andrea; Ferri De Collibus, Mario; Fantoni, Roberta; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-04-01

    A high resolution Amplitude Modulation Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets -- either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotation platform. Both intensity and phase shift of the back-scattered light are then collected and processed, providing respectively a shade-free photographic-like picture and accurate range data in the form of a range or depth image, with resolution depending mainly on the laser modulation frequency. Starting from the sample points, with an uncertainty that can be made as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) and is expected to have significant applications in industrial machining, artwork cataloguing and medical diagnostics. Examples of 3D reconstructions are presented and the relevance of this technology for reverse engineering applied to artwork restoration and conservation is briefly discussed.

  9. Applications of Tunable Lasers to Laser Radar and 3D Imaging.

    DTIC Science & Technology

    2007-11-02

    The resulting form for U(z) is elliptical in shape: U(z) = &nf(a) cot2a^a2 sin2a - z2 for |z|<|ösina| . (21) This result is intuitive because...the range-resolved laser radar cross section of a disk is proportional to the length of the straight-line integration path, which varies elliptically ...autocorrelation functions of real quantities are even functions, the replicated U(z) curves on either side of the origin are mirror images of each other. If the

  10. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    NASA Astrophysics Data System (ADS)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  11. A fast 3D image simulation algorithm of moving target for scanning laser radar

    NASA Astrophysics Data System (ADS)

    Li, Jicheng; Shi, Zhiguang; Chen, Xiao; Chen, Dong

    2014-10-01

    Scanning Laser Radar has been widely used in many military and civil areas. Usually there are relative movements between the target and the radar, so the moving target image modeling and simulation is an important research content in the field of signal processing and system design of scan-imaging laser radar. In order to improve the simulation speed and hold the accuracy of the image simulation simultaneously, a novel fast simulation algorithm is proposed in this paper. Firstly, for moving target or varying scene, an inequation that can judge the intersection relations between the pixel and target bins is obtained by deriving the projection of target motion trajectories on the image plane. Then, by utilizing the time subdivision and approximate treatments, the potential intersection relations of pixel and target bins are determined. Finally, the goal of reducing the number of intersection operations could be achieved by testing all the potential relations and finding which of them is real intersection. To test the method's performance, we perform computer simulations of both the new proposed algorithm and a literature's algorithm for six targets. The simulation results show that the two algorithm yield the same imaging result, whereas the number of intersection operations of former is equivalent to only 1% of the latter, and the calculation efficiency increases a hundredfold. The novel simulation acceleration idea can be applied extensively in other more complex application environments and provide equally acceleration effect. It is very suitable for the case to produce a great large number of laser radar images.

  12. High-resolution laser radar: a powerful tool for 3D imaging with potential applications in artwork restoration and medical prosthesis

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Bordone, Andrea; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-11-01

    A high-resolution laser radar has been developed for laboratory applications at an accurate 3D reconstruction of real objects. The laser scanner can be used to produce single cylindrical range image when the object is placed on a controlled rotating platform or, alternatively, 3 or more linear range images, in order to fully characterize the surface of the object as seen from different points of view. From the sample points, characterized by an uncertainty as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) with relevant applications in industrial machining, artwork classification and medical diagnostics. Significant examples of 3D reconstructions are shown and discussed in view of a specific utilization for reverse engineering applied to artwork restoration and medical prosthesis.

  13. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    NASA Astrophysics Data System (ADS)

    Hervas, Jaime Rubio; Reyhanoglu, Mahmut; Tang, Hui

    2014-12-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  14. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  15. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  16. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and

  17. The science case for the EISCAT_3D radar

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Aikio, Anita; Alfonsi, Lucilla; Belova, Evgenia; Buchert, Stephan; Clilverd, Mark; Engler, Norbert; Gustavsson, Björn; Heinselman, Craig; Kero, Johan; Kosch, Mike; Lamy, Hervé; Leyser, Thomas; Ogawa, Yasunobu; Oksavik, Kjellmar; Pellinen-Wannberg, Asta; Pitout, Frederic; Rapp, Markus; Stanislawska, Iwona; Vierinen, Juha

    2015-12-01

    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who

  18. 3D volumetric radar using 94-GHz millimeter waves

    NASA Astrophysics Data System (ADS)

    Takács, Barnabás

    2006-05-01

    This article describes a novel approach to the real-time visualization of 3D imagery obtained from a 3D millimeter wave scanning radar. The MMW radar system employs a spinning antenna to generate a fan-shaped scanning pattern of the entire scene. The beams formed this way provide all weather 3D distance measurements (range/azimuth display) of objects as they appear on the ground. The beam width of the antenna and its side lobes are optimized to produce the best possible resolution even at distances of up to 15 Kms. To create a full 3D data set the fan-pattern is tilted up and down with the help of a controlled stepper motor. For our experiments we collected data at 0.1 degrees increments while using both bi-static as well as a mono-static antennas in our arrangement. The data collected formed a stack of range-azimuth images in the shape of a cone. This information is displayed using our high-end 3D visualization engine capable of displaying high-resolution volumetric models with 30 frames per second. The resulting 3D scenes can then be viewed from any angle and subsequently processed to integrate, fuse or match them against real-life sensor imagery or 3D model data stored in a synthetic database.

  19. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  20. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  1. Laser 3D micro-manufacturing

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  2. 3D wind field from spaceborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Lemaître, Y.; Viltard, N.

    2013-10-01

    Numerous space radar missions are presently envisioned to study the water cycle in the tropics. Among them, the DYCECT (DYnamique, énergie et Cycle de l'Eau dans la Convection Tropicale) mission, a French proposal (submitted to the French CNES Agency), could embark a Doppler radar (W-band or Ka-band) with scanning possibilities onboard a low-orbiting satellite. This instrument could be implemented in addition to a Passive Microwave Radiometer (PMR), and eventually an improved ScaraB-like broadband radiometer, and a lightning detection instrument. This package will document the ice microphysics and the heat budgets. Since the microphysics and the water and energy budgets are strongly driven by the dynamics, the addition of a Doppler radar with scanning possibilities could provide valuable information (3D wind and rain fields) and a large statistic of such critical information over the entire tropics and for all the stages of development. These new information could be used to better understand the tropical convection and to improve convection parameterization relevant for cloud and climate models. It could be used also to associate direct applications such as now-casting and risk prevention. The present study focuses on the feasibility of such 3D wind field retrieval from spaceborne radar. It uses a simulator of some parts of the spaceborne radar in order i) to evaluate the sensitivity of the retrieved wind fields to the scanning strategies and sampling parameters, and to the instrumental and platform parameters and ii) to determine the best parameters providing the most accurate wind fields.

  3. 3D wind field retrieval from spaceborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Lemaêtre, Y.; Viltard, N.

    2012-11-01

    Numerous space missions carrying a radar are presently envisioned, particularly to study tropical rain systems. Among those missions, BOITATA is a joint effort between Brazil (INPE/AEB) and France (CNES). The goal is to embark a Doppler radar with scanning possibilities onboard a low-orbiting satellite. This instrument should be implemented in addition to a Passive Microwave Radiometer (PMR) between 19 and 183 GHz, an improved ScaraB-like broadband radiometer, a mm/submm PMR and a lightning detection instrument. This package would be meant to document the feedback of the ice microphysics on the rain systems life cycle and on their heat and radiative budgets. Since the microphysics and the water and energy budgets are strongly driven by the dynamics, the addition of a Doppler radar with scanning possibilities could provide precious information (3D wind and rain fields). It would allow us to build a large statistics of such critical information over the entire tropics and for all the stages of development of the convection. This information could be used to better understand the tropical convection and to improve convection parameterization relevant for cloud and climate models and associated applications such as now-casting and risk prevention. The present work focuses on the feasibility to retrieve 3D winds in precipitating areas from such a radar. A simulator of some parts of the spaceborne radar is developed to estimate the precision on the retrieved wind field depending on the scanning strategies and instrumental parameters and to determine the best sampling parameters.

  4. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  5. Slate characterization using 3D laser scanning

    NASA Astrophysics Data System (ADS)

    López, M.; Taboada, J.; Martínez, J.; Matías, J. M.; Vilán, J. A.

    2012-12-01

    Quality control is a necessary component of the slate slab manufacturing process so as to evaluate defects as defined by the current standard for slate. Quality control has traditionally been performed manually by an expert in the field, with the consequent human subjectivity. We studied the feasibility of using a 3D laser scanner to measure slate slabs and analyze possible defects that would lead to the rejection of slabs for particular industrial processes. The application requires slate characterization to be performed in real time and thereby requires a short computation time. We describe an optimized calibration method based on Tsai's approach that reduces calculation complexity and cost in this key 3D laser scanning stage. Configured and implemented for slate slab characterization, the system produces the required information in real time during the production process.

  6. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  7. Laser processing in 3D diamond detectors

    NASA Astrophysics Data System (ADS)

    Murphy, S. A.; Booth, M.; Li, L.; Oh, A.; Salter, P.; Sun, B.; Whitehead, D.; Zadoroshnyj, A.

    2017-02-01

    A technique for electrode production within diamond using a femtosecond laser system is described. Diagnosis tests to quantify the stress, the diamond to graphite ratio, and the resistivity of these electrodes are discussed. A 3D electronic grade single crystal diamond detector produced using this technique is shown, and the electrodes have a resistivity of O(1 Ω cm). An improvement to the technique through the use of an adaptive wavefront shows a reduction of the diamond to graphite ratio, and smaller, higher quality electrodes were manufactured.

  8. Polarimetric laser radar target classification.

    PubMed

    Chun, Cornell S L; Sadjadi, Firooz A

    2005-07-15

    Imaging laser radar (ladar) systems have been developed for automatic target identification in surveillance systems. Ladar uses the range value at the target pixels to estimate the target's 3-D shape and identify the target. For targets in clutter and partially hidden targets, there are ambiguities in determining which pixels are on target that lead to uncertainties in determining the target's 3-D shape. An improvement is to use the polarization components of the reflected light. We describe the operation and preliminary evaluation of a polarization diverse imaging ladar system. Using a combination of intensity, range, and degree of polarization, we are better able to identify and distinguish the target from other objects of the same class.

  9. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  10. Imaging topological radar for 3D imaging in cultural heritage reproduction and restoration

    NASA Astrophysics Data System (ADS)

    Poggi, Claudio; Guarneri, Massimiliano; Fornetti, Giorgio; Ferri de Collibus, Mario; De Dominicis, Luigi; Paglia, Emiliano; Ricci, Roberto

    2005-10-01

    We present the last results obtained by using our Imaging Topological Radar (ITR), an high resolution laser scanner aimed at reconstruction 3D digital models of real targets, either single objects or complex scenes. The system, based on amplitude modulation ranging technique, enables to obtain simultaneously a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image, with resolution depending mainly on the laser modulation frequency (current best performance are ~100μm). The complete target surface is reconstructed from sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloy, bones) and is suitable of relevant applications in different fields, ranging from industrial machining to medical diagnostics. We present some relevant examples of 3D reconstruction in the heritage field. Such results were obtained during recent campaigns carried out in situ in various Italian historical and archaeological sites (S. Maria Antiqua in Roman Forum, "Grotta dei cervi" Porto Badisco - Lecce, South Italy). The presented 3D models will be used by cultural heritage conservation authorities for restoration purpose and will available on the Internet for remote inspection.

  11. Overview of 3D laser materials processing concepts

    NASA Astrophysics Data System (ADS)

    Tsoukantas, George; Salonitis, Konstantinos; Stavropoulos, Panagiotis; Chryssolouris, George

    2003-04-01

    The term of 3D laser processing has been used so far to describe a group of different three-dimensional laser processing concepts. At each of these concepts the 3D aspect refers to a different manipulation of one or more laser beams, as to process and/or produce three-dimensional geometries by performing material removal, welding or heat treating. The most important concepts are focused mainly in laser machining and laser welding processes by incorporating one or two laser beams simultaneously. This paper overviews a number of these concepts that have been developed in research or industrial level, along with their advantages, drawbacks and fields of application.

  12. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are

  13. Three-dimensional laser radar modeling

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Carlsson, Tomas

    2001-09-01

    Laser radars have the unique capability to give intensity and full 3-D images of an object. Doppler lidars can give velocity and vibration characteristics of an objects. These systems have many civilian and military applications such as terrain modelling, depth sounding, object detection and classification as well as object positioning. In order to derive the signal waveform from the object one has to account for the laser pulse time characteristics, media effects such as the atmospheric attenuation and turbulence effects or scattering properties, the target shape and reflection (BRDF), speckle noise together with the receiver and background noise. Finally the type of waveform processing (peak detection, leading edge etc.) is needed to model the sensor output to be compared with observations. We have developed a computer model which models performance of a 3-D laser radar. We will give examples of signal waveforms generated from model different targets calculated by integrating the laser beam profile in space and time over the target including reflection characteristics during different speckle and turbulence conditions. The result will be of help when designing and using new laser radar systems. The importance of different type of signal processing of the waveform in order to fulfil performance goals will be shown.

  14. Space Radar Image of Missoula, Montana in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Missoula, Montana, created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are useful because they show scientists the shapes of the topographic features such as mountains and valleys. This technique helps to clarify the relationships of the different types of materials on the surface detected by the radar. The view is looking north-northeast. The blue circular area at the lower left corner is a bend of the Bitterroot River just before it joins the Clark Fork, which runs through the city. Crossing the Bitterroot River is the bridge of U.S. Highway 93. Highest mountains in this image are at elevations of 2,200 meters (7,200 feet). The city is about 975 meters (3,200 feet) above sea level. The bright yellow areas are urban and suburban zones, dark brown and blue-green areas are grasslands, bright green areas are farms, light brown and purple areas are scrub and forest, and bright white and blue areas are steep rocky slopes. The two radar images were taken on successive days by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue are differences seen in the L-band data between the two days. This image is centered near 46.9 degrees north latitude and 114.1 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA

  15. Space Radar Image of Mammoth, California in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a Spaceborne Imaging Radar-C (SIR-C) radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 1.87 times. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on its 67th orbit on April 13, 1994. In this color representation, red is C-band HV-polarization, green is C-band VV-polarization and blue is the ratio of C-band VV to C-band HV. Blue areas are smooth, and yellow areas are rock out-crops with varying amounts of snow and vegetation. Crowley Lake is in the foreground, and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  16. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  17. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  18. Modeling and experiments with a subsea laser radar system

    NASA Astrophysics Data System (ADS)

    Bjarnar, Morten L.; Klepsvik, John O.; Nilsen, Jan E.

    1991-12-01

    Subsea laser radar has a potential for accurate 3-D imaging in water. A prototype system has been developed at Seatex A/S in Norway as a prestudy for the design of an underwater laser radar scanning system. Parallel to the experimental studies, a numerical radiometric model has been developed as an aid in the system design. This model simulates a raster scanning laser radar system for in-water use. Thus this parametric model allows for analysis and predictions of the performance of such a sensor system. Experiments have been conducted to test a prototype laser radar system. The experimental system tested uses a Q-switched, frequency doubled, Nd:YAG solid state laser operating at a wavelength of 532 nm, which is close to optimal for use in water due to the small light attenuation around this wavelength in seawater. The laser has an energy output of 6 (mu) J per pulse 1 kHz pulse repetition frequency (PRF) and the receiver aperture is approximately 17 cm2. The laser radar prototype was mounted onto an accurate pan and tilt unit in order to test the 3-D imaging capabilities. The ultimate goal of the development is to provide an optical 3-D imaging tool for distances comparable to high frequency sonars with a range capability of approximately 30 - 50 m. The results from these experiments are presented. The present implementation of the scanning laser radar model is described and some outputs from the simulation are shown.

  19. 3D Visualization of Radar Backscattering Diagrams Based on OpenGL

    NASA Astrophysics Data System (ADS)

    Zhulina, Yulia V.

    2004-12-01

    A digital method of calculating the radar backscattering diagrams is presented. The method uses a digital model of an arbitrary scattering object in the 3D graphics package "OpenGL" and calculates the backscattered signal in the physical optics approximation. The backscattering diagram is constructed by means of rotating the object model around the radar-target line.

  20. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  1. 3D laser imaging for concealed object identification

    NASA Astrophysics Data System (ADS)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  2. Space Radar Image of Karakax Valley, China 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. The two radar images were acquired on separate days during the second flight of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in October 1994. The interferometry technique provides elevation measurements of all points in the scene. The resulting digital topographic map was used to create this view, looking northwest from high over the valley. Variations in the colors can be related to gravel, sand and rock outcrops. This image is centered at 36.1 degrees north latitude, 79.2 degrees east longitude. Radar image data are draped over the topography to provide the color with the following assignments: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted

  3. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information

  4. A semi-automatic 3D laser scan system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    Digital 3D models are now used everywhere, from traditional fields of industrial design, artistic design, to heritage conservation. Although laser scan is very useful to get densely samples of the objects, nowadays, such an instrument is expensive and always need to be connected to a computer with stable power supply, which prevent it from usage for fieldworks. In this paper, a new semi-automatic 3D laser scan method is proposed using two line laser sources. The planes projected from the laser sources are orthogonal, one of which is fixed relative to the camera, and the other can be rotated along a settled axis. Before scanning, the system must be calibrated, from which the parameters of the camera, the position of the fixed laser plane and the settled axis are introduced. In scanning process, the fixed laser plane and the camera form a conventional structured light system, and the 3d positions of the intersection curves of the fixed laser plane with the object can be computed. The other laser plane is rotated manually or mechanically, and its position can be determined from the cross point intersecting with the fixed laser plane on the object, so the coordinates of sweeping points can be obtained. The new system can be used without a computer (The data can be processed later), which make it suitable for fieldworks. A scanning case is given in the end.

  5. On 3D radar data visualization and merging with camera images

    NASA Astrophysics Data System (ADS)

    Kjellgren, J.

    2008-10-01

    The possibilities to support the interpretation of spatial 3D-radar data visually both with and without camera images are studied. Radar measurements and camera pictures of a person are analyzed. First, the received signal amplitudes distributed in three dimensions, spherical range and two angles, are fed to a selection procedure using amplitude and the scene volume of interest. A number of resolution cells will then form images based on a volume representation depending upon the amplitude and location. Projecting the images of all the cells upon an imaging plane then forms the total image. Different images of a radar data set are performed for different projecting planes. The images were studied to find efficient aspect angles to get the target information of most interest. Rotating the target data around a suitable axis may perform such search. In addition, a visualization method for presenting radar data merged with a camera picture has been developed. An aim in this part of the work has been to keep the high information content of the camera image in the merged image. From the 3D-radar measurements the radar data may be projected upon the imaging plane of a camera with an arbitrary viewing center. This possibility is presented in examples with one camera looking at the target scene from the radar location and another camera looking from an aspect angle differing 45° relative to the aspect angle of the radar.

  6. 3D Lasers Increase Efficiency, Safety of Moving Machines

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.

  7. Laser origami: a new technique for assembling 3D microstructures

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Mathews, Scott A.; Charipar, Nicholas A.; Birnbaum, Andrew J.

    2012-03-01

    The ability to manufacture and assemble complex three-dimensional (3D) systems via traditional photolithographic techniques has attracted increasing attention. However, most of the work to date still utilizes the traditional patterning and etching processes designed for the semiconductor industry where 2D structures are first fabricated, followed by some alternative technique for releasing these structures out-of-plane. Here we present a novel technique called Laser Origami, which has demonstrated the ability to generate 3D microstructures through the controlled out-of-plane folding of 2D patterns. This non-lithographic, and non silicon-based process is capable of microfabricating 3D structures of arbitrary shape and geometric complexity on a variety of substrates. The Laser Origami technique allows for the design and fabrication of arrays of 3D microstructures, where each microstructure can be made to fold independently of the others. Application of these folded micro-assemblies might make possible the development of highly complex and interconnected electrical, optical and mechanical 3D systems. This article will describe the unique advantages and capabilities of Laser Origami, discuss its applications and explore its role for the assembly and generation of 3D microstructures.

  8. Meteor head echo observations with the MU radar and future possibilities with EISCAT 3D

    NASA Astrophysics Data System (ADS)

    Kero, Johan

    2013-01-01

    EISCAT 3D is a three-dimensional imaging radar project for atmospheric and geospace research. It will consist of multiple phased arrays located in northern Fenno-Scandia. The multi-purpose experiment and data analysis approach will enable continuous meteor observations, unique in terms of coverage and quality. The aim of this paper is to establish a channel through which the EISCAT and IMO communities can interact. A presentation of the meteor head echo observations using the Shigaraki Middle and Upper atmosphere (MU) radar in Japan gives a flavor of some of the possibilities of EISCAT 3D.

  9. Laser radar in a system perspective

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2011-06-01

    As a result of recent achievements in the field of laser radars, new options are available for their operation as system components. In addition to complementing and cross-checking one another, system components can generate new synergetic values. In this article, we address various roles and functions that laser radar may perform in a complete system context. Special attention is paid to range-gated imaging ladars operating in conjunction with infrared 2D sensors providing target recognition/identification at long distances and under adverse conditions of natural illumination. The multi- or hyper-spectral features of passive IR or visible sensors may be complemented by multispectral, broadband, tunable or switchable 3D imaging ladar in order to exploit the differences in target reflectance and absorption. This option opens another possibility for multi-spectral, mid-IR ladar to differentiate targets of various types, or to enhance the visualization potential and to facilitate the scene description with small targets like mines or mine-like objects. The recently discovered specificity of Raman scattering in the perturbed sea water makes the long-standing efforts in submarine wake detection more viable. Furthermore, the combination of microwave radar and laser radar, when amplified with new achievements in the fourth generation dual-mode imaging sensors, creates the possibility of single payload configurations suitable for small platforms. Emphasis is also made of the efficiency of Doppler velocimetry for precise vehicle navigation, such as for advance cruise missile control or autonomous landing. Finally, recent advances in coherent micro-ladars for optical coherence tomography now permit the reconstruction of time resolved 3D (i.e., 4D) dynamics of blood flow in heart vessels.

  10. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOEpatents

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  11. 3D measurements in the polar mesosphere using coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zecha, M.; Sommer, S.; Rapp, M.; Stober, G.; Latteck, R.

    2012-12-01

    Radars provide the opportunity of continuous measurements in the interesting area of the polar mesosphere. Usually the spatial resolution of measurements by pulsed VHF radars is limited by the radar beam width, transmitting pulse length, and sampling time. Due to these technical restrictions the typical small-scale structures in the mesosphere often cannot be resolved. Furthermore the quality of the estimation of dynamic atmosphere parameters is reduced if the position and direction of scatter returns cannot determined exactly. Radar interferometry methods have been developed to reduce these limitations. The coherent radar imaging method gives a high resolving image of the scatter structure insight the radar beam volume. In recent years the VHF radar MAARSY was installed in Andenes/Norway (69°N). This new radar was designed to allow improved three-dimensional observations in the atmosphere. It consists of 433 Yagis and allows a minimum beam width of about 4 degree. The beam direction can be changed pulse-by-pulse freely in azimuth angle and practicable up to 40 degree in zenith angle. The pulse length can be varied from a couple of km down to 50 m. Up to 16 receiving channels of spaced antennas can be used. In this presentation we show the detection of the angles-of-arrival of radar echoes and the correction of the wind measurements. We demonstrate the improvement of measurement results by using coherent radar imaging. The differences to the results of conventional methods depend on the beam width, range resolution, antenna distances, and beam tilting. We show that the application of interferometry is necessary to improve considerably the quality of 3D-measurement results. Furthermore we demonstrate the synthesis of high resolved images to get a real 3D image of the mesosphere.

  12. Reconstruction of 3-D cloud geometry using a scanning cloud radar

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Winkler, C.; Zinner, T.

    2014-11-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground based remote sensing of cloud properties at high spatial resolution could be improved crucially with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of static LES model clouds, the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality a trade-off between scan resolution and scan duration has to be found as clouds are changing quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  13. Precision Control Module For UV Laser 3D Micromachining

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Hong; Hung, Min-Wei; Chang, Chun-Li

    2011-01-01

    UV laser has been widely used in various micromachining such as micro-scribing or patterning processing. At present, most of the semiconductors, LEDs, photovoltaic solar panels and touch panels industries need the UV laser processing system. However, most of the UV laser processing applications in the industries utilize two dimensional (2D) plane processing. And there are tremendous business opportunities that can be developed, such as three dimensional (3D) structures of micro-electromechanical (MEMS) sensor or the precision depth control of indium tin oxide (ITO) thin films edge insulation in touch panels. This research aims to develop a UV laser 3D micromachining module that can create the novel applications for industries. By special designed beam expender in optical system, the focal point of UV laser can be adjusted quickly and accurately through the optical path control lens of laser beam expender optical system. Furthermore, the integrated software for galvanometric scanner and focal point adjustment mechanism is developed as well, so as to carry out the precise 3D microstructure machining.

  14. EXTRACTING A RADAR REFLECTION FROM A CLUTTERED ENVIRONMENT USING 3-D INTERPRETATION

    EPA Science Inventory

    A 3-D Ground Penetrating Radar (GPR) survey at 50 MHz center frequency was conducted at Hill Air Force Base, Utah, to define the topography of the base of a shallow aquifer. The site for the survey was Chemical Disposal Pit #2 where there are many man-made features that generate ...

  15. 220GHz wideband 3D imaging radar for concealed object detection technology development and phenomenology studies

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Macfarlane, David G.; Bryllert, Tomas

    2016-05-01

    We present a 220 GHz 3D imaging `Pathfinder' radar developed within the EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) which has been built to address two objectives: (i) to de-risk the radar hardware development and (ii) to enable the collection of phenomenology data with ~1 cm3 volumetric resolution. The radar combines a DDS-based chirp generator and self-mixing multiplier technology to achieve a 30 GHz bandwidth chirp with such high linearity that the raw point response is close to ideal and only requires minor nonlinearity compensation. The single transceiver is focused with a 30 cm lens mounted on a gimbal to acquire 3D volumetric images of static test targets and materials.

  16. Extraction of features from 3D laser scanner cloud data

    NASA Astrophysics Data System (ADS)

    Chan, Vincent H.; Bradley, Colin H.; Vickers, Geoffrey W.

    1997-12-01

    One of the road blocks on the path of automated reverse engineering has been the extraction of useful data from the copious range data generated from 3-D laser scanning systems. A method to extract the relevant features of a scanned object is presented. A 3-D laser scanner is automatically directed to obtain discrete laser cloud data on each separate patch that constitutes the object's surface. With each set of cloud data treated as a separate entity, primitives are fitted to the data resulting in a geometric and topologic database. Using a feed-forewarn neural network, the data is analyzed for geometric combinations that make up machine features such as through holes and slots. These features are required for the reconstruction of the solid model by a machinist or feature based CAM algorithms, thus completing the reverse engineering cycle.

  17. Measurement of Laser Weld Temperatures for 3D Model Input

    SciTech Connect

    Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  18. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  19. Toward 3D Reconstruction of Outdoor Scenes Using an MMW Radar and a Monocular Vision Sensor

    PubMed Central

    El Natour, Ghina; Ait-Aider, Omar; Rouveure, Raphael; Berry, François; Faure, Patrice

    2015-01-01

    In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors’ coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors’ geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data. PMID:26473874

  20. Toward 3D reconstruction of outdoor scenes using an MMW radar and a monocular vision sensor.

    PubMed

    Natour, Ghina El; Ait-Aider, Omar; Rouveure, Raphael; Berry, François; Faure, Patrice

    2015-10-14

    In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors' coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors' geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data.

  1. Three-dimensional environment models from airborne laser radar data

    NASA Astrophysics Data System (ADS)

    Soderman, Ulf; Ahlberg, Simon; Elmqvist, Magnus; Persson, Asa

    2004-09-01

    Detailed 3D environment models for visualization and computer based analyses are important in many defence and homeland security applications, e.g. crisis management, mission planning and rehearsal, damage assessment, etc. The high resolution data from airborne laser radar systems for 3D sensing provide an excellent source of data for obtaining the information needed for many of these models. To utilise the 3D data provided by the laser radar systems however, efficient methods for data processing and environment model construction needs to be developed. In this paper we will present some results on the development of laser data processing methods, including methods for data classification, bare earth extraction, 3D-reconstruction of buildings, and identification of single trees and estimation of their position, height, canopy size and species. We will also show how the results can be used for the construction of detailed 3D environment models for military modelling and simulation applications. The methods use data from discrete return airborne laser radar systems and digital cameras.

  2. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  3. Capturing atmospheric effects on 3D millimeter wave radar propagation patterns

    NASA Astrophysics Data System (ADS)

    Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy

    2016-05-01

    Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.

  4. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  5. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  6. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  7. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments

    PubMed Central

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution. PMID:26066990

  8. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.

    PubMed

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-06-09

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.

  9. 3D Synthetic Aperture Radar Imaging of the Interior of the Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Gim, Y.; Heggy, E.; Arumugam, D.; Wu, X.; Asphaug, E. I.

    2014-12-01

    A capability of constructing the primitive body's interior structure such as the cometary nucleus is the key to the successful realization of a future three-dimensional (3D) mapping mission using a long-wavelength (20-60 meters) penetrating radar system. Discontinuities in the material density and/or composition at the surface and deep interior reflect a small amount of incoming electro-magnetic waves back to the orbiting radar system that records amplitudes and travel times (or phases). By coherently processing the phase information collected from different viewing angles at different times, we would like to show that we could build 3D internal structural and compositional images, and thereby provide crucial information about the origin and evolution of the cometary nucleus. Here, we will report our efforts on the high-fidelity electromagnetic (E&M) forward modeling, comet modeling related to Rosetta experiments, and validation of a radar reflection tomographic imaging technique. We have developed innovative techniques to reduce numerical errors in the E&M modeling, allowing us to simulate data collection in a realistic environment while significantly reducing spurious effects caused by numerical errors or imperfect matching layers surrounding the simulation scene. For comet modeling, we have used models developed for radar sounding experiments on Rosetta comet 67P/Churyumov-Gerasimenko. These models are driven from various scientific hypothesis and lab measurements of cometary materials. For an imaging algorithm, we have used a proven SAR technique after taking into account the slowness of light inside the comet and refraction (ray-bending) at the comet surface. We have successfully imaged 2D cross-sectional images of various comet models and will pursuit 3D simulation and imaging reconstruction in the near future.

  10. Laser embedding electronics on 3D printed objects

    NASA Astrophysics Data System (ADS)

    Kirleis, Matthew A.; Simonson, Duane; Charipar, Nicholas A.; Kim, Heungsoo; Charipar, Kristin M.; Auyeung, Ray C. Y.; Mathews, Scott A.; Piqué, Alberto

    2014-03-01

    Additive manufacturing techniques such as 3D printing are able to generate reproductions of a part in free space without the use of molds; however, the objects produced lack electrical functionality from an applications perspective. At the same time, techniques such as inkjet and laser direct-write (LDW) can be used to print electronic components and connections onto already existing objects, but are not capable of generating a full object on their own. The approach missing to date is the combination of 3D printing processes with direct-write of electronic circuits. Among the numerous direct write techniques available, LDW offers unique advantages and capabilities given its compatibility with a wide range of materials, surface chemistries and surface morphologies. The Naval Research Laboratory (NRL) has developed various LDW processes ranging from the non-phase transformative direct printing of complex suspensions or inks to lase-and-place for embedding entire semiconductor devices. These processes have been demonstrated in digital manufacturing of a wide variety of microelectronic elements ranging from circuit components such as electrical interconnects and passives to antennas, sensors, actuators and power sources. At NRL we are investigating the combination of LDW with 3D printing to demonstrate the digital fabrication of functional parts, such as 3D circuits. Merging these techniques will make possible the development of a new generation of structures capable of detecting, processing, communicating and interacting with their surroundings in ways never imagined before. This paper shows the latest results achieved at NRL in this area, describing the various approaches developed for generating 3D printed electronics with LDW.

  11. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  12. Automating laser scanning of 3D surfaces for reverse engineering

    NASA Astrophysics Data System (ADS)

    Chan, Vincent H.; Bradley, Colin H.; Vickers, Geoffrey W.

    1997-12-01

    Application of current 3-D laser scanning systems to reverse engineering is limited by two obstacles. The meticulous guidance of the laser scanner over the surface of the object being scanned and the segmentation of the cloud data which is collected by the laser scanner. Presently, both obstacles are being manually solved. The guidance of the laser scanning sensor at the correct surface to sensor distance is dependent on operator judgement and the segmentation of the collected data is reliant on the user to manually define surface boundaries on a computer screen. By applying a 2-D CCD camera, both of these problems can be resolved. Depth information on the location of the object surface can be derived from a pair of stereo images from the CCD camera. Using this depth information, the scanner path can be automatically calculated. Segmentation of the object surface can be accomplished by employing a Kohonen neural network into the CCD image. Successful segmentation of the image is conditional on the locations selected to start neural nodes as well as the prevention of the neuron connectors from bleeding onto neighboring patches. Thus the CCD camera allows for the automatic path planning of the laser scanner as well as the segmentation of the surface into patches defined along its natural boundaries.

  13. 3-D Radar Imaging Reveals Deep Structures and Buried Craters Within the Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Foss, F. J., II; Campbell, B. A.; Phillips, R. J.; Smith, I. B.

    2015-12-01

    We use Shallow Radar (SHARAD) observations on thousands of orbital passes by the Mars Reconnaissance Orbiter to produce fully imaged 3-D data volumes encompassing both polar ice caps of Mars. Greatly clarifying the view of subsurface features, a completed volume for Planum Boreum provides new constraints on the nature and timing of emplacement of the northern polar deposits and their relationship to climate. The standard method of mapping subsurface features with single-pass 2-D radargrams has been very fruitful (see Brothers et al. 2015, JGR 120 in press, and references therein), but a full assessment of internal structures has been hindered by interfering off-nadir echoes from spiral troughs and other variable topography prevalent on both caps. By assembling the SHARAD radargrams into a volume and applying a 3-D imaging process (migration) borrowed from seismic processing techniques, we enhance the signal-to-noise ratio while repositioning the echoes to their proper locations, thereby unraveling the interference. As part of the process, we correct ionospheric distortions and delays of the radar echoes (Campbell et al. 2014, IEEE GRSL 11 #3). Interfaces painstakingly mapped in radargrams (e.g., the basal-unit surface, a buried chasma) are clearly visible in the 3-D volume, and new features are revealed. Structures may now be mapped through trough-rich regions, including a widespread sequence that provides corroborative evidence of recent ice ages (Smith et al. 2015, LPSC XLVI #2574). Distinctive radar signatures associated with known, partially buried craters also occur elsewhere in the volume but without surface expression. Presumably, these are fully buried craters that may provide a new means to estimate the age of the deposits. Preliminary work for Planum Australe demonstrates that the 3-D processing currently underway will illuminate deep structures that are broadly obfuscated in 2-D radargrams by a shallow scatterer (Campbell et al. 2015, LPSC XLVI #2366).

  14. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  15. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  16. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  17. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  18. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Astrophysics Data System (ADS)

    Nandhakumar, N.; Smith, Philip W.

    1993-12-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  19. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  20. An omnidirectional 3D sensor with line laser scanning

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  1. EISCAT 3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Turunen, Esa

    2010-05-01

    (This talk is given on behalf of the EISCAT Scientific Association and the EISCAT_3D Design Team) EISCAT_3D is a new kind of three-dimensional imaging radar for high-latitude atmosphere and geospace studies, located in northern Scandinavia. The facility will consist of multiple large phased-array antenna transmitters/receivers in three countries, comprising some 100 000 individual antenna elements. The new radars will measure from the upper stratosphere to the magnetosphere and beyond, contributing to the basic, environmental and applied science that underpins the use of space by contemporary society. EISCAT_3D's capabilities go beyond anything currently available to the international research community, and will form a significant enhancement to the European Research area. Located in the auroral zone, at the edge of the northern polar vortex, EISCAT_3D will provide long-term continuous data for scientists studying global change, measuring the effects of man-made and natural variability on the middle and upper atmosphere. Its observations will underpin space weather prediction and monitoring, essential for operation and improved service of European space assets. In addition, EISCAT_3D will facilitate studies of solar system influences, such as solar wind, meteors, dust, energetic particles and cosmic rays. This will be done in collaboration with other research infrastructures, including the upper atmosphere programme of the SIOS proposal, focusing on observations made from Svalbard. The importance of EISCAT_3D has been recognised by its place on the ESFRI roadmap of future European Research facilities. The project has already gone through a four-year design study, funded by the European Union under the 6th Framework, and has recently applied for Preparatory Phase funding under the EU 7th Framework. The Preparatory Phase activities will facilitate the resolution of the remaining legal, financial and technical questions which must be addressed before EISCAT_3D can be

  2. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  3. Remote sensing with laser spectrum radar

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  4. 3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali

    2014-05-01

    Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  5. Ultrafast laser inscription of 3D components for spatial multiplexing

    NASA Astrophysics Data System (ADS)

    Thomson, Robert R.

    2016-02-01

    The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.

  6. Remote Minefield Detection Using Infrared Laser Radar

    DTIC Science & Technology

    1988-11-01

    Technology of Coherent Infrared Radar, pp. 60, 1981. 22. R.M. Hardesty , T.R. Lawrence, R.A. Richter, et al., "Ground- Based Coherent Lidar Measurement...vegetation damage related to their deployment. High- resolution imaging RMD lidar systems can use this information as a further aid to minefield...example a CO2 laser- based system can be called a ladar, a lidar , an optical radar, or an infrared radar. The most commonly used expressions are lidar and

  7. Sixteenth International Laser Radar Conference, part 2

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick (Editor)

    1992-01-01

    Given here are extended abstracts of papers presented at the 16th International Laser Radar Conference, held in Cambridge, Massachusetts, July 20-24, 1992. Topics discussed include the Mt. Pinatubo volcanic dust laser observations, global change, ozone measurements, Earth mesospheric measurements, wind measurements, imaging, ranging, water vapor measurements, and laser devices and technology.

  8. A New Methodology for 3D Target Detection in Automotive Radar Applications

    PubMed Central

    Baselice, Fabio; Ferraioli, Giampaolo; Lukin, Sergyi; Matuozzo, Gianfranco; Pascazio, Vito; Schirinzi, Gilda

    2016-01-01

    Today there is a growing interest in automotive sensor monitoring systems. One of the main challenges is to make them an effective and valuable aid in dangerous situations, improving transportation safety. The main limitation of visual aid systems is that they do not produce accurate results in critical visibility conditions, such as in presence of rain, fog or smoke. Radar systems can greatly help in overcoming such limitations. In particular, imaging radar is gaining interest in the framework of Driver Assistance Systems (DAS). In this manuscript, a new methodology able to reconstruct the 3D imaged scene and to detect the presence of multiple targets within each line of sight is proposed. The technique is based on the use of Compressive Sensing (CS) theory and produces the estimation of multiple targets for each line of sight, their range distance and their reflectivities. Moreover, a fast approach for 2D focus based on the FFT algorithm is proposed. After the description of the proposed methodology, different simulated case studies are reported in order to evaluate the performances of the proposed approach. PMID:27136558

  9. A New Methodology for 3D Target Detection in Automotive Radar Applications.

    PubMed

    Baselice, Fabio; Ferraioli, Giampaolo; Lukin, Sergyi; Matuozzo, Gianfranco; Pascazio, Vito; Schirinzi, Gilda

    2016-04-29

    Today there is a growing interest in automotive sensor monitoring systems. One of the main challenges is to make them an effective and valuable aid in dangerous situations, improving transportation safety. The main limitation of visual aid systems is that they do not produce accurate results in critical visibility conditions, such as in presence of rain, fog or smoke. Radar systems can greatly help in overcoming such limitations. In particular, imaging radar is gaining interest in the framework of Driver Assistance Systems (DAS). In this manuscript, a new methodology able to reconstruct the 3D imaged scene and to detect the presence of multiple targets within each line of sight is proposed. The technique is based on the use of Compressive Sensing (CS) theory and produces the estimation of multiple targets for each line of sight, their range distance and their reflectivities. Moreover, a fast approach for 2D focus based on the FFT algorithm is proposed. After the description of the proposed methodology, different simulated case studies are reported in order to evaluate the performances of the proposed approach.

  10. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  11. Time-lapse 3D ground-penetrating radar during plot-scale infiltration experiments

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; Jackisch, Conrad; Tronicke, Jens

    2016-04-01

    In electrical resistive soils, surface-based ground-penetrating radar (GPR) is known as the geophysical tool providing the highest spatial resolution. Thus, 2D and 3D GPR surveys are commonly used for imaging subsurface structures or estimating soil moisture content. Due to its sensitivity to soil moisture and its non-invasive character, GPR provides a large potential to monitor soil moisture variation at high temporal and spatial resolution. As shown in previous experiments, the acquisition of time-lapse GPR data under field conditions requires a high data quality in terms of repeatability as well as spatial and temporal resolution. We present hydrogeophysical field experiments at the plot scale (1m x 1m), during which we record time-lapse 3D GPR. For GPR data acquisition, we use a pulseEKKO PRO GPR system equipped with a pair of 500 MHz antennas in combination with a specially designed metal-free measuring platform. Additionally, we collect tracer and soil moisture data, which are used to improve the interpretation of the GPR data with special focus on preferential flow paths and their structured advective flow field. After an accurate time-lapse GPR data processing, we compare 3D reflection events before and after infiltration and quantitatively interpret their relative time-shift in terms of soil moisture variations. Thereby, we are able to account for basically all of the infiltrated water. The first experiments demonstrate the general applicability of our experimental approach but are limited by the number of acquired time steps and measurement during the sprinkling period (the time of the highest temporal dynamics) are not possible at all. Based on this experience we redesign our experimental setup to continuously collect GPR data during irrigation and infiltration. Thereby, we strongly increase the temporal resolution of our measurements, improve the interpretability of the GPR data, and monitor the temporal and spatial dynamics of shallow subsurface

  12. Photographing Internal Fractures of the Archaeological Statues with 3D Visualization of Ground Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.; Kadioglu, Y. K.

    2009-04-01

    PHOTOGRAPHING INTERNAL FRACTURES OF THE ARCHAEOLOGICAL STATUES WITH 3D VISUALIZATION OF GROUND PENETRATING RADAR DATA Selma KADIOGLU1 and Yusuf K. KADIOGLU2 1Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr 2Ankara University, Faculty of Engineering, Department of Geological Engineering, 06100 Tandogan/ANKARA-TURKEY kadi@eng.ankara.edu.tr The aim of the study is to illustrate a new approach to image the discontinuities in the archaeological statues before restoration studies using ground penetrating radar (GPR) method. The method was successfully applied to detect and map the fractures and cavities of the two monument groups and lion statues in Mustafa Kemal ATATURK's tumb (ANITKABIR) in Ankara-Turkey. The tumb, which has been started to build in 1944 and completed in 1953, represents Turkish people and Ataturk, who is founder of the Republic of Turkey. Therefore this monument is very important for Turkish people. The monument groups and lion statues have been built from travertine rocks. These travertine have vesicular textures with the percent of 12. They have been mainly composed of calcite, aragonite with rare amount of plant relict and clay minerals. The concentrations of Fe, Mg, Cl and Mn may lead to verify their colours changing from white through pale green to beige. The atmospheric contamination of Ankara has been caused to cover some parts of the surface of these travertine with a thin film of Pb as blackish in colour. The micro fractures have been observed specially at the rim of the vesicular of the rocks by the polarizing microscope. Parallel two dimensional (2D) GPR profile data with 10cm profile space were acquired by RAMAC CU II system with 1600 MHz shielded antenna on the monument groups (three women, three men and 24 lion statues) and then a three dimensional (3D) data volume were built using parallel 2D GPR data. Air-filled fractures and cavities in the

  13. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  14. Femtosecond laser fabricated electrofluidic devices in glass for 3D manipulation of biological samples

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2016-03-01

    Novel electrofluidic microdevices based on monolithic integration of 3D metal electrodes into 3D glass microchannels have been prepared by femtosecond (fs) laser hybrid microfabrication. 3D microchannels with smooth internal walls are first prepared in photosensitive glass by fs laser-assisted chemical wet etching process combined with post-annealing. Then, 3D electrode patterning in prepared glass channels is carried out by water-assisted fs-laser direct-write ablation using the same laser followed by electroless metal plating. Laser processing parameters are optimized and the roles of water during the laser irradiation are discussed. The fabricated electrofluidic devices are applied to demonstrate 3D electro-orientation of cells in microfluidic environments.

  15. Roles of equalization in radar imaging: modeling for superesolution in 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Merched, Ricardo

    2012-12-01

    In radar imaging, resolution is generally dictated by its corresponding system point spread function, the response to a point source as a result of an external excitation. This notion of resolution turns out to be rather questionable, as the interpretation of echoes received from a range of continuous targets according to a linear model allows one to cast the imaging problem as a communication system that maps the target reflectivity function onto measurements, which in turn suggests that by virtue of sampling and equalization, one can achieve unlimited spatial resolution. This article reviews the fundamental problem inherent to pulse compression in a multistatic multi-input-multi-output (MIMO) scenario, from a communications viewpoint, in both focused and un-focused scenarios. We generalize the notion of 1D range compression and replace it by a more general 4D pulse compression. The process of focusing and scanning over a 3D object can be interpreted as a MIMO 4D convolution between a reflectivity tensor and a space-varying system, which naturally induces a 4D MIMO channel convolution model. This implies that several well-established block and linear equalization methods can be easily extended to a 3D scenario with the purpose of achieving exact reconstruction of a given reflectivity volume. That is, assuming that no multiple scattering occurs, resolution is only limited in range by the sampling device in the unfocused case, while unlimited in case of focusing at multiple depths. Exact reconstruction under a zero-forcing or least-squares criterion depends solely on the amount of diversity induced by sampling in both space (via scanning rate) and time (via sampling rate), which further allows for a tradeoff between range and cross-range resolution. For instance, the fastest scanning rate is achieved by steering non overlapping beams, in which case portions of the object can be reconstructed independently from each other.

  16. Compact 625-channel scannerless imaging laser radar receiver

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Steiner, Todd D.; Hayden, David R.

    1996-06-01

    In 1995, under a USAF SBIR Phase I program, Burns Engineering Corporation investigated the application of new integrated photonics technologies and hybrid manufacturing processes to the miniaturization of an imaging laser radar receiver which has complete receiving and range counting circuitry for each pixel in a 25-by-25 element avalanche photodiode array. The `parallel multichannel' receiver (PMR) is a compact, robust, and modular laser radar subsystem which can produce high resolution 3D range imagery at 1 kHz frame rates without the use of a scanner. The modular PMR is attractive as a common module solution for a wide variety of high performance, low cost, autonomous laser-guided seeker applications. The system described illustrates one approach to integrating and packaging high-density photonic arrays and associated signal processing electronics to yield a high-performance imaging laser radar receiver using existing technology. Burns Engineering has been selected by the USAF to build a benchtop prototype, proof-of-concept demonstrator in a follow-on, SBIR Phase II program.

  17. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-05-04

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  18. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  19. The design of infrared laser radar for vehicle initiative safety

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98

  20. 3D Structure of the Heavy Precipitation in South China by Dual-Doppler Radar

    NASA Astrophysics Data System (ADS)

    Haiguang, Z.

    2010-09-01

    As a result of the effect of the trough at 500hPa, the shear line at 850hPa and the low level cold air, it produced a heavy precipitation in the north region of Guangdong province and Pearl River Delta in China, up to 199.5mm rainfall from 01LST to 04LST and 99.1mm rainfall on 02LST 7 May 2010 at Wushan, 107.4mm rainfall on 02LST 7 May at Dongguan station. The one hour precipitation at Wushan has broken the record. The three dimensional wind fields were retrieved by the volume scan data of the dual-Doppler radar located in Guangzhou and Shenzhen cities. The structure evolution of the 3D wind fields of the heavy rainfall was investigated. It is a convective cloud precipitation as the radar echo analyses shown. The reflectivity is very strong at the heavy precipitation period time that the maximum value is more than 55dBZ. The supercell, bow-echo and the squall line located on the MβCS played an important role on this heavy rainfall. The dual-Doppler retrieval wind show that the heavy rainfall was induced by the meso-β-scale convergence line and the meso-β-scale vortex at the low and medium levels. The meso-β-scale convergence line triggered and maintained the heavy rainfall. The meso-β-scale convergence line moved southeastward. It stayed at Guangzhou and Dongguan city for period of time. There were strong convergence and vorticity at the low and medium levels of the MβCS. The rainband moved southeastward while the convergence line propagated along the same direction. Acknowledgements The work was supported by the Grant Agency of the National Science Foundation of China (grant 40975015, 40605014), the Grant Agency of the National Key Basic Research and Development Project of China (grant 2004CB418305), and the foundation of state key laboratory of severe weather.

  1. Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder.

    PubMed

    Shi, Jinlong; Sun, Zhengxing; Bai, Suqin

    2015-04-01

    This paper presents a three-dimensional (3D) measurement method of large-scale objects by integrating a 3D scanner and a laser rangefinder. The 3D scanner, used to perform partial section measurement, is fixed on a robotic arm which can slide on a guide rail. The laser rangefinder, used to compute poses of the 3D scanner, is rigidly connected to the 3D scanner. During large-scale measurement, after measuring a partial section, the 3D scanner is straightly moved forward along the guide rail to measure another section. Meanwhile, the poses of the 3D scanner are estimated according to its moved distance for different partial section alignments. The performance and effectiveness are evaluated by experiments.

  2. The Donegal Sign Tree: A Local Legend Confirmed with Holographic Radar and 3-D Magnetics

    NASA Astrophysics Data System (ADS)

    Bechtel, T.; Cassidy, M.; Inagaki, M.; Windsor, C.; Capineri, L.; Falorni, P.; Bulleti, A.; Valentini, S.; Borgioli, G.; Ivashov, S.; Zhuravlev, A.; Razewig, V.; Vasiliev, I.; Bechtel, E.

    2009-05-01

    A tree at a crossroad in Historic Donegal, PA (founded 1722) bears unusual burls. Two are similar in size, and lie on opposite sides of the trunk at a height of six feet. Locals say that the tree engulfed an old road sign, and the geometry of the burls gives this appearance. However, the trunk between these two burls bears no welt where it sealed after swallowing the sign. In addition, there are other burls farther up the tree, which are not consistent with engulfed signs. Although the locals all know the legend of the swallowed sign, none ever actually saw the sign; not even an octogenarian who has lived at the crossroad his entire life, and recalls the tree as a child just as it is today. In order to test the veracity of the legend, this study performed subsurface imaging of the tree using holographic subsurface radar (Rascan), and 3-D measurements of the magnetic field about the tree using cesium vapor sensors. The Rascan system used is a continuous wave subsurface radar that operates at 5 discrete frequencies between 1.5 and 2.0 GHz. Reflections from subsurface objects are recorded as the phase difference pattern between an internal reference signal, and the reflected signal. Thus, it is a microwave analogy for optical holography. Rascan records reflections with two receiving antennae - parallel and perpendicular to the transmitter - so a single set of scans provides ten images; five frequencies at two polarizations. This ensures that an object at arbitrary depth will produce a strong phase difference in one of the images. As a consequence, elongate objects that are angled from the plane of scanning (e.g. a dipping sheet) produce "zebra stripes" of contrast values that vary cyclically with depth. The presence of stripes, and their relative positions in the different frequency images (the movement of which has been dubbed the "zebra shift") is useful for determining the relative depth of different portions of a dipping planar, or curved subsurface object. Rascan

  3. Laser welding on trough panel: 3D body part

    NASA Astrophysics Data System (ADS)

    Shirai, Masato; Hisano, Hirohiko

    2003-03-01

    Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.

  4. The laser radar above 30 kilometers

    NASA Technical Reports Server (NTRS)

    Clemesha, B. R.

    1969-01-01

    A short "state of the art' report on laser radar observations of the atmosphere at heights greater than 30 km is presented. Graphs of recent measurements of the Rayleigh backscattering function between 30 and 70 and above 50 kilometers are included.

  5. Clutter processing of SEEK IGLOO: A modern long range 3-D radar

    NASA Astrophysics Data System (ADS)

    Smith, R. C.

    1983-04-01

    The radar is being developed to replace the outmoded and expensive to maintain AN/FPS-93 and AN/FPS-90 radars now used in Alaska. The AN/FPS-93 is a two-dimensional surveillance radar and the AN/FPS-90 is a two-dimensional height finder radar; both of these older radars have been in operation since the early 1950's. The specification requirements for SEEK IGL00 were set by a combination of the following: (1) performance characteristics of the AN/FPS-90 and AN/FPS-93 radars; (2) performance characteristics of the Semi-Automatic Ground Environment (SAGE) System and the Joint Surveillance System (JSS); (3) sensor requirements using the new generation fighter aircraft; and (4) stringent reliability, maintainability and availability requirements to reduce on-site maintenance and operations personnel. The SEEK IGLOO radar will provide digital output messages (as opposed to the conventional "blip' signals used with many radar displays) containing range, azimuth and height information for radar and beacon targets.

  6. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    EISCAT_3D will be Europe's next-generation radar for the study of the high-latitude atmosphere and geospace, located in northern Fenno-Scandinavia, with capabilities going well beyond anything currently available to the international research community. The facility will consist of several very large active phased-array antenna transmitters/receivers, and multiple passive sites located in three countries. Depending on the available funding, EISCAT_3D will be comprised of tens of thousands, up to more than 100 000, individual antenna elements. EISCAT_3D combines several key attributes which have never before been available together in a single radar, such as volumetric imaging and tracking, aperture synthesis imaging, multistatic configuration, improved sensitivity and transmitter flexibility. The use of advanced beam-forming technology allows the beam direction to be switched in milliseconds, rather than the minutes which it can take to re-position dish-based radars. This allows very wide spatial coverage to be obtained, by interleaving multiple beam directions to carry out quasi-simultaneous volumetric imaging. It also allows objects such as satellites and space debris to be tracked across the sky. At the passive sites, the design allows for at least five simultaneous beams at full bandwidth, rising to over twenty beams if the bandwidth is limited to the ion line, allowing the whole range of the transmitted beam to be imaged from each passive site, using holographic radar techniques. EISCAT_3D has a modular configuration, which allows an active array to be split into smaller elements to be used for aperture synthesis imaging. The result will be an entirely new data product, consisting of range-dependent images of small sub-beamwidth scale structures, with sizes down to 20 m. EISCAT_3D will be the first phased array incoherent scatter radar to use a multistatic configuration. A minimum of five radar sites, consisting of two pairs located around 120 km and 250 km

  7. Reducing Costs and Increasing Productivity in Ship Maintenance Using Product Lifecycle Management, 3D Laser Scanning and 3D Printing

    DTIC Science & Technology

    2014-03-01

    Advantages ........................................................ 28 7. 3D Printer Usage in the Department of Defense ................. 29 a. Army...28 Figure 17. 3D Printer Forecast (from 3D Systems, 2013) .................................... 29 Figure 18. History...Several companies, including 3D Systems and Stratasys, produce 3D printers for both personal and industrial use. In addition, open source models

  8. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  9. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  10. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  11. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.

    PubMed

    Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin

    2016-05-01

    3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads.

  12. Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Lusquiños, Fernando; del Val, Jesús; Arias-González, Felipe; Comesaña, Rafael; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    Cranial defect restoration requires a suitable implant capable to fulfill protective and aesthetic functions, such as polymeric and metallic implants. Nevertheless, the former materials cannot provide osteointegration of the implant within the host bone nor implant resorption, which is also required in pediatricorthopedics for normal patient growth. Resorbable and osteoconductivebioceramics are employed, such as silicate bioactive glasses. Nevertheless, manufacturing based on conventional casting in graphite moulds is not effective for warped shape implants suitable for patient tailored treatments. In this work, we analyze the application of rapid prototyping based on laser cladding to manufacture bioactive glass implants for low load bearing bone restoration. This laser-assisted additive technique is capable to produce three-dimensional geometries tailored to patient, with reduced fabrication time and implant composition modification. The obtained samples were characterized; the relationships between the processing conditions and the measured features were studied, in addition to the biological behavior analysis.

  13. Laser Provides First 3-D View of Mars' North Pole

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This first three-dimensional picture of Mars' north pole enables scientists to estimate the volume of its water ice cap with unprecedented precision, and to study its surface variations and the heights of clouds in the region for the first time.

    Approximately 2.6 million of these laser pulse measurements were assembled into a topographic grid of the north pole with a spatial resolution of 0.6 miles (one kilometer) and a vertical accuracy of 15-90 feet (5-30 meters).

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  14. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    NASA Astrophysics Data System (ADS)

    Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah

    2016-05-01

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.

  15. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    NASA Astrophysics Data System (ADS)

    Hazlett, Eric

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists

  16. 3D photomechanical model of tooth enamel ablation by Er-laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2014-02-01

    The three-dimensional (3D) photomechanical model of human tooth enamel ablation is described. It takes into account: the structural peculiarities of enamel, Er-laser beam energy spatial distribution and laser radiation attenuation in the tissue. Dynamics change of enamel coefficient of absorption during ablation is also discussed. We consider the 3D photomechanical model of incomplete removal (modification) of the enamel rods by the pressure of water contained in the enamel pores and heated by laser radiation, and complete removal (ablation) of the enamel rods as result of hydroxyapatite heated by laser radiation and evaporation. Modeling results are in close agreement with the experimental results.

  17. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  18. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  19. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  20. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    PubMed

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy.

  1. Determination of Percent Body Fat Using 3D Whole Body Laser Scanning: A Preliminary Investigation

    DTIC Science & Technology

    2006-11-01

    circumferences, 3D whole body laser scans and DEXA scans were performed on fifty-one men and women age 18-62. Mean percent body fat was not statistically...3D whole body laser scan , and DEXA scan to measure individuals during a one hour measurement session. 1 Report Documentation Page Form...underwent a 6 minute whole body DEXA scan using a GE Lunar Prodigy DEXA scanner running software version 7.53. Percent body fat was calculated from the

  2. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  3. Design of a compact 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Geusen, Mark, Jr.; van Amstel, Willem D.; Baumer, Stefan M. B.; Horijon, Jef L.

    1999-08-01

    A design study for a compact 3D scanner, called Coplan, is presented. The Coplan is intended to be used for high speed, in-line coplanarity and shape measurement of electronic components, like Ball Grid Arrays and Surface Mount Devices. The scanner should have a scan length of at least 2 inches and a resolution of 5 micrometers in all 3 dimensions. First an analysis of two different scan schemes is made: a so-called pre-objective scheme using an F-(theta) scan lens and a post- objective scheme using a so-called banana field flattener, consisting of a convex, cylindrical hyperbolic mirror and a concave, cylindrical parabolic mirror. Secondly, an analysis of height resolution requirements for triangulation and confocal depth sensing has been made. It is concluded that for both methods of depth sensing a synchronous scheme with a 50-60 degrees detection angle in cross scan direction is required. It is shown that a post-objective scheme consisting of a banana mirror system combined with triangulation height detection offers the best solution for the optical requirements.

  4. 3D reconstruction with two webcams and a laser line projector

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian

    2014-09-01

    Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.

  5. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  6. Integrated laser/radar satellite ranging and tracking system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1974-01-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse/sec ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f/11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling/recording systems. The basic concept of the laser/radar is outlined together with a listing of the numerous advantages over present singular laser range-finding systems. The developmental laser hardware is described along with preliminary range-finding results and expectations.

  7. Filtering method for 3D laser scanning point cloud

    NASA Astrophysics Data System (ADS)

    Liu, Da; Wang, Li; Hao, Yuncai; Zhang, Jun

    2015-10-01

    In recent years, with the rapid development of the hardware and software of the three-dimensional model acquisition, three-dimensional laser scanning technology is utilized in various aspects, especially in space exploration. The point cloud filter is very important before using the data. In the paper, considering both the processing quality and computing speed, an improved mean-shift point cloud filter method is proposed. Firstly, by analyze the relevance of the normal vector between the upcoming processing point and the near points, the iterative neighborhood of the mean-shift is selected dynamically, then the high frequency noise is constrained. Secondly, considering the normal vector of the processing point, the normal vector is updated. Finally, updated position is calculated for each point, then each point is moved in the normal vector according to the updated position. The experimental results show that the large features are retained, at the same time, the small sharp features are also existed for different size and shape of objects, so the target feature information is protected precisely. The computational complexity of the proposed method is not high, it can bring high precision results with fast speed, so it is very suitable for space application. It can also be utilized in civil, such as large object measurement, industrial measurement, car navigation etc. In the future, filter with the help of point strength will be further exploited.

  8. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    NASA Astrophysics Data System (ADS)

    Arias, Néstor; Meneses, Néstor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  9. Compact multichannel receiver using InGaAs APDs for single-pulse eye-safe laser radar imagery

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Yun, Steven T.; Dinndorf, Kenneth M.; Hayden, David R.

    1997-08-01

    Active imaging laser radars form 3D images which can be processed to provide target identification and precision aimpoint definition in real time. Earlier raster-scanned and pushbroom-scanned 3D imaging laser radar receivers required multiple laser pulses to assemble a complete 3D image frame. Platform/target motion and atmospheric effects caused tearing and jitter in the assembled 3D images, which complicated the subsequent image processing and necessitated the use of stabilized scanning systems. This paper describes the current status of the parallel/multichannel imaging laser radar receiver (PMR) which is being developed under an SBIR Phaser II program by the USAF Wright Laboratories Armament Directorate. The PMR uses an array of multichannel laser radar receivers to form single-pulse, 3D laser radar images, thus eliminating the complex and costly scanning system, and enabling much higher frame rates than were ever before possible. The heart of the PMR is the multichannel optical receiver photonic hybrid (MORPH), a high performance 16-channel laser radar receiver module which uses an array of InGaAs avalanche photodiodes for eyesafe operation. The MORPH provides high downrange resolution, multihit range data for each detector on a compact circuit card. Optical flux is transferred from the receiver focal plane to each MORPH via a fiber optic ribbon cable. An array of MORPHs are plugged into a compact passive backplane, along with a single digital control card (DCC). The DCC, which is the same form factor as the MORPH, synchronizes the MORPHs and transfers the digital range information to the host processor over a standard parallel data interface cable. The system described here illustrates one approach to integrating and packaging high-density photonic arrays and their associated signal processing electronics to yield a compact, low power, scannerless, high performance imaging laser radar receiver, using existing technology.

  10. Beat the diffraction limit in 3D direct laser writing in photosensitive glass.

    PubMed

    Bellec, Matthieu; Royon, Arnaud; Bousquet, Bruno; Bourhis, Kevin; Treguer, Mona; Cardinal, Thierry; Richardson, Martin; Canioni, Lionel

    2009-06-08

    Three-dimensional (3D) femtosecond laser direct structuring in transparent materials is widely used for photonic applications. However, the structure size is limited by the optical diffraction. Here we report on a direct laser writing technique that produces subwavelength nanostructures independently of the experimental limiting factors. We demonstrate 3D nanostructures of arbitrary patterns with feature sizes down to 80 nm, less than one tenth of the laser processing wavelength. Its ease of implementation for novel nanostructuring, with its accompanying high precision will open new opportunities for the fabrication of nanostructures for plasmonic and photonic devices and for applications in metamaterials.

  11. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  12. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  13. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions.

    PubMed

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-08-22

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  14. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    PubMed Central

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-01-01

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469

  15. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  16. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  17. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2005-08-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. The operator configures separate channels (laser, filters, detector settings) for each fluorochrome used in a particular experiment. Then, 3-D reconstructions are made from Z-series of confocal images: one series per channel. Channel signal separation is extremely important and measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is then performed to increase resolution. In the 3-D reconstruction program described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationship of 3-D-reconstructed structures with respect to structures seen in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided wherever possible.

  18. Laser radar measurements of the aerosol content of the atmosphere

    NASA Technical Reports Server (NTRS)

    Grams, G. W.

    1969-01-01

    A summary of the results of laser radar observations of atmospheric aerosols is presented along with a description of the laser radar system devised during the study and of the data handling techniques utilized for the analysis of the data of the temporal and spatial distribution of atmospheric aerosols. Current research conducted by the group is directed toward the analysis of the frequency spectrum of laser radar echoes to obtain absolute measurements of the dust content of the atmosphere by resolving the molecular and aerosol contributions to the laser radar echoes.

  19. Ground-based laser radar measurements of satellite vibrations.

    PubMed

    Schultz, K I; Fisher, S

    1992-12-20

    Vibration signatures from the low-power atmospheric compensation (LACE) satellite are obtained by using the MIT Lincoln Laboratory Firepond coherent CO(2) laser radar facility located in Westford, Mass. The LACE satellite is equipped with IR germanium retroreflectors on deployable/retractable booms to enhance ground-based IR laser radar measurements of on-orbit boom vibrations. Analysis of pulsed cw laser radar measurements of the satellite during and subsequent to boom retraction indicates the presence of a complex time-varying model structure. The observed vibration spectra include vibration modes not previously predicted. These data represent the first observations of satellite vibration modes from a ground-based laser radar.

  20. Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.

    PubMed

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-09-02

    3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique.

  1. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  2. Quantitative, nondestructive estimates of coarse root biomass in a temperate pine forest using 3-D ground-penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf

    2017-01-01

    Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.

  3. Fabrication of 3D embedded hollow structures inside polymer dielectric PMMA with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Chen, Tao; Hu, Anming; Liu, Shibing; Li, Junwei

    2016-11-01

    Recent progresses in femtosecond laser (fs) manufacturing have already proved that fs laser is a powerful tool in three dimensional internal structure fabrications. However, most studies are mainly focused on realize such structures in inorganic transparent dielectric, such as photosensitive glass and fused silica, etc. In this study, we present two methods to fabricate embedded internal 3D structures in a polymer dielectric material polymethyl methacrylate (PMMA). Both continuous hollow structure such as microfluidic channels and discrete hollow structures such as single microcavities are successfully fabricated with the help of femtosecond lasers. Among them, complicated 3D microchannel with a total length longer than 10mm and diameters around 80μm to 200μm are fabricated with a low repetition rate Ti: sapphire femtosecond laser by direct laser writing at a speed ranging from 25μm/s to 2000μm/s microcavities which function as concave microball lenses (CMBLs) and can be applied in super-wide-angle imaging are fabricated with a high repetition rate femtosecond fiber laser due to the distinct heat accumulation effect after 5s irradiation with the tightly focused fs laser beam. These new approaches proved that femtosecond laser direct writing technology has great application potential in 3D integrated devices manufacturing in the future.

  4. The research of 3D visualization techniques for the test of laser energy distribution

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Wang, Bo

    2013-07-01

    In the process of laser transmission in the atmosphere, the complexity and instability of the atmospheric composition that seriously interfere with, even change, the performance of the laser beam. The image of laser energy distribution can be captured and analyzed through infrared CCD and digital image processing technology. The basic features of laser energy density distribution, such as the location and power of the peak point and other basic parameters could be acquired; laser energy density distribution can display in real time continuous multi-frame; the 3D visualization of pseudo-color for laser energy density distribution could be displayed, that reflect the relative size and position of the energy distribution in the different regions of the laser spot, using the VC++, windows APIs and OpenGL programming. The laser energy density distribution can be observed from all angles.

  5. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  6. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction.

    PubMed

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-09-20

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer's rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  7. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  8. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction

    PubMed Central

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-01-01

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory. PMID:27657074

  9. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  10. CO2 laser oscillators for laser radar applications

    NASA Technical Reports Server (NTRS)

    Freed, C.

    1990-01-01

    This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.

  11. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder

    NASA Astrophysics Data System (ADS)

    Beecroft, M.

    2016-07-01

    3D printing is a form of additive manufacturing whereby the building up of layers of material creates objects. The selective laser sintering process (SLS) uses a laser beam to sinter powdered material to create objects. This paper builds upon previous research into 3D printed textile based material exploring the use of SLS using nylon powder to create flexible weft knitted structures. The results show the potential to print flexible textile based structures that exhibit the properties of traditional knitted textile structures along with the mechanical properties of the material used, whilst describing the challenges regarding fineness of printing resolution. The conclusion highlights the potential future development and application of such pieces.

  12. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  13. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    SciTech Connect

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  14. Probability of acquisition of three-dimensional imaging laser radar

    NASA Astrophysics Data System (ADS)

    Dong, Li-jun; Zhu, Shao-lan; Sun, Chuan-dong; Gao, Cun-xiao; Song, Zhi-yuan

    2011-06-01

    Three-dimensional imaging laser radar (3-D ladar) is widely used in area of modern military, scientific research, agriculture and industry. Because of its many features such as angle-angle-range capturing, high resolution, anti-jamming ability and no multipath effect ,but it has to scan for target searching, acquiring and tracking. This paper presents a novel probability model of target acquiring which provides a theoretical basis for optimizing the scanning mechanism. The model combines space and time, target moving velocity and ladar scanning velocity together. Then the optimum scanning mechanism to obtain the maximum probability of acquisition and associated with different targets can be gained. The result shows that this model provides a method to optimize parameter for designing of the scanner.

  15. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  16. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    NASA Astrophysics Data System (ADS)

    Naghshine, Babak. B.; Kiani, Amirkianoosh

    2017-02-01

    Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  17. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    SciTech Connect

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-02-29

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  18. Built-in test equipment of a 3-D radar signal processing

    NASA Astrophysics Data System (ADS)

    Boulin, M.

    The built-in test equipment (BITE) of a digital signal processing in a long-range three-dimensional radar is presented. The main BITE functions are summarized and its principle is described. The latter involves the integration of pseudorandom generation of test data into logic cards and the compression of responses into a signature. The implementation of BITEs using BILBOs (built-in logic block observers) and system BITE implementation are addressed. Software organization and the control of the external signature analyzer are discussed, and performance characteristics are presented.

  19. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  20. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  1. Thoracic Pedicle Screw Placement Guide Plate Produced by Three-Dimensional (3-D) Laser Printing

    PubMed Central

    Chen, Hongliang; Guo, Kaijing; Yang, Huilin; Wu, Dongying; Yuan, Feng

    2016-01-01

    Background The aim of this study was to evaluate the accuracy and feasibility of an individualized thoracic pedicle screw placement guide plate produced by 3-D laser printing. Material/Methods Thoracic pedicle samples of 3 adult cadavers were randomly assigned for 3-D CT scans. The 3-D thoracic models were established by using medical Mimics software, and a screw path was designed with scanned data. Then the individualized thoracic pedicle screw placement guide plate models, matched to the backside of thoracic vertebral plates, were produced with a 3-D laser printer. Screws were placed with assistance of a guide plate. Then, the placement was assessed. Results With the data provided by CT scans, 27 individualized guide plates were produced by 3-D printing. There was no significant difference in sex and relevant parameters of left and right sides among individuals (P>0.05). Screws were placed with assistance of guide plates, and all screws were in the correct positions without penetration of pedicles, under direct observation and anatomic evaluation post-operatively. Conclusions A thoracic pedicle screw placement guide plate can be produced by 3-D printing. With a high accuracy in placement and convenient operation, it provides a new method for accurate placement of thoracic pedicle screws. PMID:27194139

  2. Ship Maintenance Processes with Collaborative Product Lifecycle Management and 3D Terrestrial Laser Scanning Tools: Reducing Costs and Increasing Productivity

    DTIC Science & Technology

    2012-04-30

    approach that incorporates the 3D terrestrial laser scanning (3D TLS) and collaborative product lifecycle management (collab- PLM ) tool suite. Results...incorporated into final implementation of the 3D TLS and collab- PLM tools. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...terrestrial laser scanning (3D TLS) and collaborative product lifecycle management (collab- PLM ) tool suite. Results suggest that when the SHIPMAIN process

  3. Variation in the measurement of cranial volume and surface area using 3D laser scanning technology.

    PubMed

    Sholts, Sabrina B; Wärmländer, Sebastian K T S; Flores, Louise M; Miller, Kevin W P; Walker, Phillip L

    2010-07-01

    Three-dimensional (3D) laser scanner models of human crania can be used for forensic facial reconstruction, and for obtaining craniometric data useful for estimating age, sex, and population affinity of unidentified human remains. However, the use of computer-generated measurements in a casework setting requires the measurement precision to be known. Here, we assess the repeatability and precision of cranial volume and surface area measurements using 3D laser scanner models created by different operators using different protocols for collecting and processing data. We report intraobserver measurement errors of 0.2% and interobserver errors of 2% of the total area and volume values, suggesting that observer-related errors do not pose major obstacles for sharing, combining, or comparing such measurements. Nevertheless, as no standardized procedure exists for area or volume measurements from 3D models, it is imperative to report the scanning and postscanning protocols employed when such measurements are conducted in a forensic setting.

  4. Model studies of blood flow in basilar artery with 3D laser Doppler anemometer

    NASA Astrophysics Data System (ADS)

    Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.

    2015-03-01

    It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.

  5. Fusion of laser and image sensory data for 3-D modeling of the free navigation space

    NASA Technical Reports Server (NTRS)

    Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.

    1994-01-01

    A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.

  6. Experimental investigation of 3D scanheads for laser micro-processing

    NASA Astrophysics Data System (ADS)

    Penchev, Pavel; Dimov, Stefan; Bhaduri, Debajyoti

    2016-07-01

    The broader use of laser micro-processing technology increases the demand for executing complex machining and joining operations on free-from (3D) workpieces. To satisfy these growing requirements it is necessary to utilise 3D scanheads that integrate beam deflectors (X and Y optical axes) and Z modules with high dynamics. The research presented in this communication proposes an experimental technique to quantify the dynamic capabilities of Z modules, also called Dynamic Focusing Modules (DFM), of such 3D scanheads that are essential for efficient, accurate and repeatable laser micro-processing of free form surfaces. The proposed experimental technique is validated on state-of-art laser micro-machining platform and the results show that the DFM dynamic capabilities are substantially inferior than those of X and Y beam deflectors, in particular the maximum speed of the Z module is less than 10% of the maximum speeds achievable with X and Y optical axes of the scanhead. Thus, the DFM dynamics deficiencies can become a major obstacle for the broader use of high frequency laser sources that necessitate high dynamics 3D scanheads for executing cost effectively free-form surface processing operations.

  7. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    PubMed Central

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-01-01

    This paper presents a sensor fusion system of cameras and a 2D laser sensor for large-scale 3D reconstruction. The proposed system is designed to capture data on a fast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor, and they are synchronized by a hardware trigger. Reconstruction of 3D structures is done by estimating frame-by-frame motion and accumulating vertical laser scans, as in previous works. However, our approach does not assume near 2D motion, but estimates free motion (including absolute scale) in 3D space using both laser data and image features. In order to avoid the degeneration associated with typical three-point algorithms, we present a new algorithm that selects 3D points from two frames captured by multiple cameras. The problem of error accumulation is solved by loop closing, not by GPS. The experimental results show that the estimated path is successfully overlaid on the satellite images, such that the reconstruction result is very accurate. PMID:25375758

  8. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    PubMed

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-11-04

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  9. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    images from the modelled data. The simulated images show good agreement with the experimental images both in terms of the temporal and spatial response of the backscattered X-rays. The computer model has also been used to simulate scanning over an area to generate a 3D image of the test objects scanned. Range gating was applied to the simulated 3D data to show how significant signal-to-noise ratio enhancements could be achieved to resulting 2D images when compared to conventional backscatter X-ray images. Further predictions have been made using the computer simulation including the energy distribution of the backscatter X-rays, as well as multi-path and scatter effects not measured in the experiment. Multi-path effects were shown to be the primary contributor to undesirable image artefacts observed in the simulated images. The computer simulation allowed the sources of these artefacts to be identified and highlighted the importance of mitigating these effects in the experiment. These predicted effects could be explored and verified through future experiments. Additionally the model has provided insight into potential performance limitations of the X-ray RADAR concept and informed on possible solutions. Further model developments will include simulating a more realistic electron beam energy distribution and incorporating representative detector characteristics.

  10. Sixteenth International Laser Radar Conference, Part 1

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick (Editor)

    1992-01-01

    This publication contains extended abstracts of papers presented at the 16th International Laser Radar Conference. One-hundred ninety-five papers were presented in both oral and poster sessions. The topics of the conference sessions were: (1) Mt. Pinatubo Volcanic Dust Layer Observations; (2) Global Change/Ozone Measurements; (3) GLOBE/LAWS/LITE; (4) Mesospheric Measurements and Measurement Systems; (5) Middle Atmosphere; (6) Wind Measurements and Measurement Systems; (7) Imaging and Ranging; (8) Water Vapor Measurements; (9) Systems and Facilities; and (10) Laser Devices and Technology. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations relating to global change to the development of new lidar systems and technology.

  11. Nineteenth International Laser Radar Conference. Part 1

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling; Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  12. Nineteenth International Laser Radar Conference. Part 2

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling, Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, Including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  13. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  14. Inscription of 3D waveguides in diamond using an ultrafast laser

    NASA Astrophysics Data System (ADS)

    Courvoisier, Arnaud; Booth, Martin J.; Salter, Patrick S.

    2016-07-01

    Three dimensional waveguides within the bulk of diamond are manufactured using ultrafast laser fabrication. High intensities within the focal volume of the laser cause breakdown of the diamond into a graphitic phase leading to a stress induced refractive index change in neighboring regions. Type II waveguiding is thus enabled between two adjacent graphitic tracks, but supporting just a single polarization state. We show that adaptive aberration correction during the laser processing allows the controlled fabrication of more complex structures beneath the surface of the diamond which can be used for 3D waveguide splitters and Type III waveguides which support both polarizations.

  15. Reliability of a 3D surface laser scanner for orthodontic applications.

    PubMed

    Kusnoto, Budi; Evans, Carla A

    2002-10-01

    A device for recreating three-dimensional (3D) objects on a computer is the surface laser scanner. By triangulating distances between the reflecting laser beam and the scanned surface, the surface laser scanner can detect not only an object's length and width but also its depth. The scanner's ease of use has opened various possibilities in laboratory research and clinical investigation. We assessed the reliability of generating 3D object reconstructions using the Minolta Vivid700 3D surface laser scanner (Minolta USA, Ramsey, NJ). Accuracy and reproducibility were tested on a geometrical calibrated cylinder, a dental study model, and a plaster facial model. Tests were conducted at varying distances between the object and the scanner. It was found that (1) in the calibrated cylinder tests, spatial distance measurement was accurate to 0.5 mm (+/- 0.1 mm) in the vertical dimension and 0.3 mm (+/- 0.3 mm) in the horizontal dimension; (2) in the study model test, molar width was accurate to 0.2 mm (+/- 0.1 mm, P >.05), and palatal vault depth could be measured to 0.7 mm (+/- 0.2 mm, P > 0.05); and (3) for the facial model, an accuracy of 1.9 +/- 0.8 mm was obtained. The findings suggest that the surface laser scanner has great research potential because of its accuracy and ease of use. Treatment changes, growth, surgical simulations, and many other orthodontic applications can be approached 3-dimensionally with this device.

  16. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  17. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  18. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  19. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    NASA Astrophysics Data System (ADS)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  20. Femtosecond laser 3D nanofabrication in glass: enabling direct write of integrated micro/nanofluidic chips

    NASA Astrophysics Data System (ADS)

    Cheng, Ya; Liao, Yang; Sugioka, Koji

    2014-03-01

    The creation of complex three-dimensional (3D) fluidic systems composed of hollow micro- and nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D micro- and nanofluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. As a direct and maskless fabrication technique, femtosecond laser micromachining provides a straightforward approach for high-precision spatial-selective modification inside transparent materials through nonlinear optical absorption. Here, we demonstrate rapid fabrication of high-aspect-ratio micro- and/or nanofluidic structures with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate several functional micro- and nanofluidic devices including a 3D passive microfluidic mixer, a capillary electrophoresis (CE) analysis chip, and an integrated micro-nanofluidic system for single DNA analysis. This technology offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.

  1. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  2. The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations

    SciTech Connect

    Schumacher, Courtney

    2015-08-31

    During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students, many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to

  3. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  4. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Huang, Xing; Qian, Wei

    2017-01-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  5. Relativistic Laser Pulse Intensification with 3D Printed Micro-Tube Plasma Target

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang; Snyder, Joseph; Pukhov, Alexander; Akli, Kramer

    2015-11-01

    The potential and applications of laser-plasma interactions (LPI) are restricted by the parameter space of existing lasers and targets. Advancing the laser intensity to the extreme regime is motivated by the production of energetic particle beams and by the quest to explore the exotic regimes of light-matter interaction. Target density and dimensions can always be varied to optimize the outcome. Here, we propose to create another degree of freedom in the parameter space of LPI using recent advances in 3D printing of materials. Fine structures at nm scale with high repetition and accuracy can nowadays be manufactured, allowing for a full precise control of the target. We demonstrate, via particle-in-cell (PIC) simulations, that 3D-printed micro-tube plasma (MTP) targets yield an intensity enhancement factor of 2-5. The novel MTP targets not only act as a plasma optical device to reach the 1023W/cm2 threshold based on today's intensities, but can also boost the generation of secondary particle and radiation sources. This work demonstrates that the combination of high contrast high power lasers and nano-3D printing techniques opens new paths in the intensity frontier and LPI micro-engineering.

  6. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  7. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  8. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    PubMed Central

    Zenou, M.; Sa’ar, A.; Kotler, Z.

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  9. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  10. 3D printing of gas jet nozzles for laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  11. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  12. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction.

    PubMed

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-14

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  13. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  14. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    PubMed Central

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  15. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer.

    PubMed

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem

    2017-03-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturing in the micrometer to millimeter range, i.e., between lithography and other 3D printing technologies.

  16. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  17. Femtosecond pulsed light polarization induced effects in direct laser writing 3D nanolithography

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; RekštytÄ--, Sima; Jonavičius, Tomas; Gailevičius, Darius; Mizeikis, Vygantas; Gamaly, Eugene; Juodkazis, Saulius

    2016-03-01

    We demonstrate how the coupling between (i) polarization of the writing laser beam, (ii) tight focusing and (iii) heat conduction affects the size, shape and absorption in the laser-affected area and therefore the polymerization process. It is possible to control the sizes of 3D laser-produced structure at the scale of several nanometers. Specifically we were able to tune the aspect ratio of 3D suspended line up to 20% in hybrid SZ2080 resist. The focal spot of tightly focused linearly polarized beam has an elliptical form with the long axis in the field direction. It is shown here that this effect is enhanced by increase in the electronic heat conduction when polarization coincide with temperature gradient along with the absorption. Overlapping of three effects (i- iii) results in the difference of several tens of nanometers between two axes of the focal ellipse. Narrow line appears when polarization and scan direction coincide, while the wide line is produced when these directions are perpendicular to each other. The effect scales with the laser intensity giving a possibility to control the width of the structure on nanometer scale as demonstrated experimentally in this work. These effects are of general nature and can be observed in any laser-matter interaction experiments where plasma produced by using tight focusing of linear-polarized light.

  18. Laser-assisted direct manufacturing of functionally graded 3D objects

    NASA Astrophysics Data System (ADS)

    Iakovlev, A.; Trunova, E.; Grevey, Dominique; Smurov, Igor

    2003-09-01

    Coaxial powder injection into a laser beam was applied for the laser-assisted direct manufacturing of 3D functionally graded (FG) objects. The powders of Stainless Steel 316L and Stellite grade 12 were applied. The following laser sources were used: (1) quasi-cw CO2 Rofin Sinar laser with 120 μm focal spot diameter and (2) pulsed-periodic Nd:YAG (HAAS HL 304P) with 200 μm focal spot diameter. The objects were fabricated layer-by-layer in the form of "walls", having the thickness of about 200 μm for CO2 laser and 300 μm for Nd:YAG laser. SEM analysis was applied for the FG objects fabricated by CO2 laser, yielding wall elements distribution in vertical direction. It was found that microhardness distribution is fully correlated with the components distribution. The compositional gradient can be smooth or sharp. Periodic multi-layered structures can be obtained as well. Minimal thickness of a layer with the fixed composition (for cw CO2 laser) is about 50 μm. Minimal thickness of a graded material zone, i.e. zone with composition variation from pure stainless steel to pure stellite is about 30 μm.

  19. 3-D Laser-Based Multiclass and Multiview Object Detection in Cluttered Indoor Scenes.

    PubMed

    Zhang, Xuesong; Zhuang, Yan; Hu, Huosheng; Wang, Wei

    2017-01-01

    This paper investigates the problem of multiclass and multiview 3-D object detection for service robots operating in a cluttered indoor environment. A novel 3-D object detection system using laser point clouds is proposed to deal with cluttered indoor scenes with a fewer and imbalanced training data. Raw 3-D point clouds are first transformed to 2-D bearing angle images to reduce the computational cost, and then jointly trained multiple object detectors are deployed to perform the multiclass and multiview 3-D object detection. The reclassification technique is utilized on each detected low confidence bounding box in the system to reduce false alarms in the detection. The RUS-SMOTEboost algorithm is used to train a group of independent binary classifiers with imbalanced training data. Dense histograms of oriented gradients and local binary pattern features are combined as a feature set for the reclassification task. Based on the dalian university of technology (DUT)-3-D data set taken from various office and household environments, experimental results show the validity and good performance of the proposed method.

  20. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  1. Estimation of line dimensions in 3D direct laser writing lithography

    NASA Astrophysics Data System (ADS)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  2. 3D laser scanning and modelling of the Dhow heritage for the Qatar National Museum

    NASA Astrophysics Data System (ADS)

    Wetherelt, A.; Cooper, J. P.; Zazzaro, C.

    2014-08-01

    Curating boats can be difficult. They are complex structures, often demanding to conserve whether in or out of the water; they are usually large, difficult to move on land, and demanding of gallery space. Communicating life on board to a visiting public in the terra firma context of a museum can be difficult. Boats in their native environment are inherently dynamic artifacts. In a museum they can be static and divorced from the maritime context that might inspire engagement. New technologies offer new approaches to these problems. 3D laser scanning and digital modeling offers museums a multifaceted means of recording, monitoring, studying and communicating watercraft in their care. In this paper we describe the application of 3D laser scanning and subsequent digital modeling. Laser scans were further developed using computer-generated imagery (CGI) modeling techniques to produce photorealistic 3D digital models for development into interactive, media-based museum displays. The scans were also used to generate 2D naval lines and orthographic drawings as a lasting curatorial record of the dhows held by the National Museum of Qatar.

  3. Analysis of uncertainty and repeatability of a low-cost 3D laser scanner.

    PubMed

    Polo, María-Eugenia; Felicísimo, Angel M

    2012-01-01

    Portable 3D laser scanners are a valuable tool for compiling elaborate digital collections of archaeological objects and analysing the shapes and dimensions of pieces. Although low-cost desktop 3D laser scanners have powerful capacities, it is important to know their limitations. This paper performs an analysis of the uncertainty and repeatability of the NextEngine™ portable low-cost 3D laser scanner by scanning an object 20 times in two different resolution modes-Macro and Wide. Some dimensions of the object were measured using a digital calliper, and these results were used as the "true" or control data. In comparing the true and the scanned data, we verified that the mean uncertainty in the Macro Mode is approximately half that of the Wide Mode, at ± 0.81 mm and ± 1.66 mm, respectively. These experimental results are significantly higher than the accuracy specifications provided by the manufacturer. An analysis of repeatability shows that the successive replicates do not match in the same position. The results are better in Macro Mode than in Wide Mode; it is observed that the repeatability factor is slightly larger than the corresponding mode accuracy, with ± 0.84 vs. ± 0.81 mm in Macro Mode and ± 1.82 vs. ± 1.66 mm in Wide Mode. We suggest several improvements, such as adding an external reference scale or providing a calibrated object to allow for a self-calibration operation of the scanner.

  4. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  5. Laser processes and analytics for high power 3D battery materials

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  6. Adaptive laser beam forming for laser shock micro-forming for 3D MEMS devices fabrication

    NASA Astrophysics Data System (ADS)

    Zou, Ran; Wang, Shuliang; Wang, Mohan; Li, Shuo; Huang, Sheng; Lin, Yankun; Chen, Kevin P.

    2016-07-01

    Laser shock micro-forming is a non-thermal laser forming method that use laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. In this paper, we present an adaptive optical technique to engineer spatial profiles of the laser beam to exert precision control on the laser shock forming process for free-standing MEMS structures. Using a spatial light modulator, on-target laser energy profiles are engineered to control shape, size, and deformation magnitude, which has led to significant improvement of the laser shock processing outcome at micrometer scales. The results presented in this paper show that the adaptive-optics laser beam forming is an effective method to improve both quality and throughput of the laser forming process at micrometer scales.

  7. Integrated laser/radar satellite ranging and tracking system.

    PubMed

    Hoge, F E

    1974-10-01

    A laser satellite ranging system that is mounted upon and integrated with a microwave tracking radar is reported. The 1-pulse sec/ruby laser transmitter is attached directly to the radar's elevation axis and radiates through a new opening in the radar's parabolic dish. The laser photomultiplier tube receiver utilizes the radar's existing 20-cm diam f11 boresight telescope and observes through a similar symmetrically located opening in the dish. The laser system possesses separate ranging system electronics but shares the radar's timing, computer, and data handling[equation]recording systems. The basic concept of the laser[equation]radar is outlined together with a listing of the numerous advantages over present singular laser rangefinding systems. The developmental laser hardware is described along with preliminary rangefinding results and expectations. The prototype system was assembled to investigate the feasibility of such systems and aid in the development of detailed specifications for an operational system. Both the feasibility and desirability of such systems integrations have been adequately demonstrated.

  8. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.

    PubMed

    Liao, Hongen; Ishihara, Hirotaka; Tran, Huy Hoang; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi

    2010-01-01

    This paper describes a precision-guided surgical navigation system for minimally invasive surgery. The system combines a laser guidance technique with a three-dimensional (3D) autostereoscopic image overlay technique. Images of surgical anatomic structures superimposed onto the patient are created by employing an animated imaging method called integral videography (IV), which can display geometrically accurate 3D autostereoscopic images and reproduce motion parallax without the need for special viewing or tracking devices. To improve the placement accuracy of surgical instruments, we integrated an image overlay system with a laser guidance system for alignment of the surgical instrument and better visualization of patient's internal structure. We fabricated a laser guidance device and mounted it on an IV image overlay device. Experimental evaluations showed that the system could guide a linear surgical instrument toward a target with an average error of 2.48 mm and standard deviation of 1.76 mm. Further improvement to the design of the laser guidance device and the patient-image registration procedure of the IV image overlay will make this system practical; its use would increase surgical accuracy and reduce invasiveness.

  9. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy

    NASA Astrophysics Data System (ADS)

    Bavusi, Massimo; Soldovieri, Francesco; Di Napoli, Rosario; Loperte, Antonio; Di Cesare, Antonio; Carlo Ponzo, Felice; Lapenna, Vincenzo

    2011-09-01

    An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967-1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926-1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures.

  10. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  11. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  12. Topographical surveys: Classical method versus 3D laser scanning. Case study - An application in civil engineering

    NASA Astrophysics Data System (ADS)

    Grigoraş, I.-R.; Covăsnianu, A.; Pleşu, G.; Benedict, B.

    2009-04-01

    The paper describes an experiment which took place in Iasi town, Romania, consisted in two different topographical survey techniques applied for one and the same objective placed in a block within the city (western part) - a thermal power station. The purpose was to compare those methods and to determine which one is proper to be used in this domain in terms of fastness, optimization and speed of data processing. First technique applied for our survey was the classical one, with a total station. Using the CAD technique, we obtained a final product (a dwg file) and a list of coordinates (a text file). The second method, which we focused our attention more, was the measurement with a very precise 3D laser scanstation, also very suitable in archeology. The data obtained were processed with special software. Result was a 3D model of the thermal power plant composed of measurable cloud point data. Finally, analyzing the advantages and disadvantages of each method, we came to the conclusion that the 3D laser scanning which we used matches well the application, in this case civil engineering, but the future of accepting and implementing this technique is in the hands of Romanian authorities.

  13. Geoarchaeological site documentation and analysis of 3D data derived by terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Hoffmeister, D.; Zellmann, S.; Kindermann, K.; Pastoors, A.; Lang, U.; Bubenzer, O.; Weniger, G.-C.; Bareth, G.

    2014-05-01

    Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.

  14. Reconstruction of 3D tree stem models from low-cost terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Kelbe, Dave; Romanczyk, Paul; van Aardt, Jan; Cawse-Nicholson, Kerry

    2013-05-01

    With the development of increasingly advanced airborne sensing systems, there is a growing need to support sensor system design, modeling, and product-algorithm development with explicit 3D structural ground truth commensurate to the scale of acquisition. Terrestrial laser scanning is one such technique which could provide this structural information. Commercial instrumentation to suit this purpose has existed for some time now, but cost can be a prohibitive barrier for some applications. As such we recently developed a unique laser scanning system from readily-available components, supporting low cost, highly portable, and rapid measurement of below-canopy 3D forest structure. Tools were developed to automatically reconstruct tree stem models as an initial step towards virtual forest scene generation. The objective of this paper is to assess the potential of this hardware/algorithm suite to reconstruct 3D stem information for a single scan of a New England hardwood forest site. Detailed tree stem structure (e.g., taper, sweep, and lean) is recovered for trees of varying diameter, species, and range from the sensor. Absolute stem diameter retrieval accuracy is 12.5%, with a 4.5% overestimation bias likely due to the LiDAR beam divergence.

  15. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing.

    PubMed

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is ±0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  16. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  17. Triangular mesh establishment of 3D laser scanning data based on ellipsoidal projection

    NASA Astrophysics Data System (ADS)

    Zheng, De-hua; Xu, Jia; Li, Jia; Wang, Xin-sen

    2011-10-01

    The establishment of high quality triangular mesh is one of the key steps in 3D laser scanning data processing. Traditional triangulation algorithms have been proposed directly on the basis of adjacency relation between points in 3D space. However, when the point density is non-uniform or the noise exists, the problems such as surface hole, dough sheet overlapping and inconsistent normal appear easily. In this paper, a triangular mesh establishing algorithm based on ellipsoidal projection is proposed. After comparing the theory of ellipsoidal projection and cylindrical projection, the proposed triangular mesh establishing algorithm is analyzed in detail including basic idea and implementation method. To evaluate the performance and efficiency of the proposed algorithm, two experiments are then carried out on the 3D point cloud data of a foundation pit. The results indicate that though the computational efficiency of proposed algorithm is a little inferior to the algorithm based on cylindrical projection, the proposed algorithm is more effective for establishing point cloud of both top and bottom of the object and the original topological relation of 3D scanning points can be maintained better.

  18. 3D real-time measurement system of seam with laser

    NASA Astrophysics Data System (ADS)

    Huang, Min-shuang; Huang, Jun-fen

    2014-02-01

    3-D Real-time Measurement System of seam outline based on Moiré Projection is proposed and designed. The system is composed of LD, grating, CCD, video A/D, FPGA, DSP and an output interface. The principle and hardware makeup of high-speed and real-time image processing circuit based on a Digital Signal Processor (DSP) and a Field Programmable Gate Array (FPGA) are introduced. Noise generation mechanism in poor welding field conditions is analyzed when Moiré stripes are projected on a welding workpiece surface. Median filter is adopted to smooth the acquired original laser image of seam, and then measurement results of a 3-D outline image of weld groove are provided.

  19. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.

    PubMed

    Hübener, Hannes; Sentef, Michael A; De Giovannini, Umberto; Kemper, Alexander F; Rubio, Angel

    2017-01-17

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  20. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography

    PubMed Central

    2015-01-01

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410

  1. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials

    NASA Astrophysics Data System (ADS)

    Hübener, Hannes; Sentef, Michael A.; de Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  2. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.

    PubMed

    Tricinci, Omar; Terencio, Tercio; Mazzolai, Barbara; Pugno, Nicola M; Greco, Francesco; Mattoli, Virgilio

    2015-11-25

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere.

  3. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  4. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  5. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

    PubMed Central

    Hübener, Hannes; Sentef, Michael A.; De Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet–Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance. PMID:28094286

  6. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  7. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    , a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04

  8. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    NASA Astrophysics Data System (ADS)

    Nurunnabi, A.; West, G.; Belton, D.

    2013-10-01

    A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  9. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  10. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.

    PubMed

    Ulmeanu, M; Grubb, M P; Jipa, F; Quignon, B; Ashfold, M N R

    2015-06-01

    We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti-sapphire laser, 50fs pulse duration, 400nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquidncolloid - and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.

  11. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs.

    PubMed

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard.

  12. Automatic Reconstruction of 3D Building Models from Terrestrial Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    El Meouche, R.; Rezoug, M.; Hijazi, I.; Maes, D.

    2013-11-01

    With modern 3D laser scanners we can acquire a large amount of 3D data in only a few minutes. This technology results in a growing number of applications ranging from the digitalization of historical artifacts to facial authentication. The modeling process demands a lot of time and work (Tim Volodine, 2007). In comparison with the other two stages, the acquisition and the registration, the degree of automation of the modeling stage is almost zero. In this paper, we propose a new surface reconstruction technique for buildings to process the data obtained by a 3D laser scanner. These data are called a point cloud which is a collection of points sampled from the surface of a 3D object. Such a point cloud can consist of millions of points. In order to work more efficiently, we worked with simplified models which contain less points and so less details than a point cloud obtained in situ. The goal of this study was to facilitate the modeling process of a building starting from 3D laser scanner data. In order to do this, we wrote two scripts for Rhinoceros 5.0 based on intelligent algorithms. The first script finds the exterior outline of a building. With a minimum of human interaction, there is a thin box drawn around the surface of a wall. This box is able to rotate 360° around an axis in a corner of the wall in search for the points of other walls. In this way we can eliminate noise points. These are unwanted or irrelevant points. If there is an angled roof, the box can also turn around the edge of the wall and the roof. With the different positions of the box we can calculate the exterior outline. The second script draws the interior outline in a surface of a building. By interior outline we mean the outline of the openings like windows or doors. This script is based on the distances between the points and vector characteristics. Two consecutive points with a relative big distance will form the outline of an opening. Once those points are found, the interior outline

  13. Mesoscale 3D manufacturing: varying focusing conditions for efficient direct laser writing of polymers

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Malinauskas, Mangirdas

    2014-05-01

    In this paper, we report a novel approach for efficient fabrication of mesoscale polymer 3D microstructures. It is implemented by direct laser writing varying exposure beam focusing conditions. By carefully optimizing the fabrication parameters (laser intensity, scanning velocity/exposure time, changing objective lens) complex 3D geometries of the microstructures can be obtained rapidly. Additionally, we demonstrate this without the use of the photoinitiator as photosensitizer doped in the pre-polymer material (SZ2080). At femtosecond pulsed irradiation ~TW/cm² intensities the localized free radical polymerization is achieved via avalanche induced bond braking. Such microstructures have unique biocompatibility and optical transparency as well as optical damage threshold value. By creating the bulk part of the structure using low-NA (0.45) objective and subsequently fabricating the fine features using oil immersion high-NA (1.4) objective the manufacturing time is reduced dramatically (30x is demonstrated). Using this two objective method a prototype of functional microdevice was produced: 80 and 85 µm diameter microfluidic tubes with the fine filter consisting of 4 µm period grating structure that has 400 nm wide threads, which corresponds to a feature precision aspect ratio of ~200. Therefore, such method has great potential as a polymer fabrication tool for mesoscale optical, photonic and biomedical applications as well as highly integrated 3D µ-systems. Furthermore, the proposed approach is not limited to lithography and can be implemented in a more general type of laser writing, such as inscription within transparent materials or substractive manufacturing by ablation.

  14. Analysis of Uncertainty and Repeatability of a Low-Cost 3D Laser Scanner

    PubMed Central

    Polo, María-Eugenia; Felicísimo, Ángel M.

    2012-01-01

    Portable 3D laser scanners are a valuable tool for compiling elaborate digital collections of archaeological objects and analysing the shapes and dimensions of pieces. Although low-cost desktop 3D laser scanners have powerful capacities, it is important to know their limitations. This paper performs an analysis of the uncertainty and repeatability of the NextEngine™ portable low-cost 3D laser scanner by scanning an object 20 times in two different resolution modes—Macro and Wide. Some dimensions of the object were measured using a digital calliper, and these results were used as the “true” or control data. In comparing the true and the scanned data, we verified that the mean uncertainty in the Macro Mode is approximately half that of the Wide Mode, at ±0.81 mm and ±1.66 mm, respectively. These experimental results are significantly higher than the accuracy specifications provided by the manufacturer. An analysis of repeatability shows that the successive replicates do not match in the same position. The results are better in Macro Mode than in Wide Mode; it is observed that the repeatability factor is slightly larger than the corresponding mode accuracy, with ±0.84 vs. ±0.81 mm in Macro Mode and ±1.82 vs. ±1.66 mm in Wide Mode. We suggest several improvements, such as adding an external reference scale or providing a calibrated object to allow for a self-calibration operation of the scanner. PMID:23012532

  15. Directionality in laser fabrication of 3D graphitic microwires in diamond

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    Graphitic wires embedded beneath the surface of single crystal diamond are promising for a variety of applications. Through a combination of ultra short (femtosecond) pulsed fabrication, high numerical aperture focusing and adaptive optics, graphitic wires can be written along any 3D path. Here, we demonstrate a non-reciprocal directional dependence to the graphitization process: the features are distinct when the fabrication direction is reversed. The non-reciprocal effects are significantly determined by the laser power, the fabrication speed, the light polarization and pulse front tilt. The influences of these factors are studied.

  16. 3D handheld laser scanner based approach for automatic identification and localization of EEG sensors.

    PubMed

    Koessler, Laurent; Cecchin, Thierry; Ternisien, Eric; Maillard, Louis

    2010-01-01

    This paper describes and assesses for the first time the use of a handheld 3D laser scanner for scalp EEG sensor localization and co-registration with magnetic resonance images. Study on five subjects showed that the scanner had an equivalent accuracy, a better repeatability, and was faster than the reference electromagnetic digitizer. According to electrical source imaging, somatosensory evoked potentials experiments validated its ability to give precise sensor localization. With our automatic labeling method, the data provided by the scanner could be directly introduced in the source localization studies.

  17. Robust statistical approaches for local planar surface fitting in 3D laser scanning data

    NASA Astrophysics Data System (ADS)

    Nurunnabi, Abdul; Belton, David; West, Geoff

    2014-10-01

    This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis (PCA) for point cloud processing without any treatment of outliers. It is known that LS and PCA are sensitive to outliers and can give inconsistent and misleading estimates. RANdom SAmple Consensus (RANSAC) is one of the most well-known robust methods used for model fitting when noise and/or outliers are present. We concentrate on the recently introduced Deterministic Minimum Covariance Determinant estimator and robust PCA, and propose two variants of statistically robust algorithms for fitting planar surfaces to 3D laser scanning point cloud data. The performance of the proposed robust methods is demonstrated by qualitative and quantitative analysis through several synthetic and mobile laser scanning 3D data sets for different applications. Using simulated data, and comparisons with LS, PCA, RANSAC, variants of RANSAC and other robust statistical methods, we demonstrate that the new algorithms are significantly more efficient, faster, and produce more accurate fits and robust local statistics (e.g. surface normals), necessary for many point cloud processing tasks. Consider one example data set used consisting of 100 points with 20% outliers representing a plane. The proposed methods called DetRD-PCA and DetRPCA, produce bias angles (angle between the fitted planes with and without outliers) of 0.20° and 0.24° respectively, whereas LS, PCA and RANSAC produce worse bias angles of 52.49°, 39.55° and 0.79° respectively. In terms of speed, DetRD-PCA takes 0.033 s on average for fitting a plane, which is approximately 6.5, 25.4 and 25.8 times faster than RANSAC, and two other robust statistical methods, respectively. The estimated robust surface normals and curvatures from the new methods have been used for plane fitting, sharp feature

  18. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.

    PubMed

    Rodenas, Airan; Kar, Ajoy K

    2011-08-29

    We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

  19. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  20. Some Experiences in 3D Laser Scanning for Assisting Restoration and Evaluating Damage in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Fuentes, L. M.; Finat, Javier; Fernández-Martin, J. J.; Martínez, J.; SanJose, J. I.

    The recent incorporation of laser devices provides advanced tools for assisting the conservation and restoration of Cultural Heritage. It is necessary to have as complete as possible understanding of the object state before evaluating or defining the reach of the restoration process. Thus, a special effort is devoted to surveying, measuring and generating a high-resolution 3D model prior to restoration planning. This work presents results of several experiments performed on damaged pieces for evaluation purposes in Cultural Heritage. Some software tools are applied for carving-work analysis, conservation-state monitoring, and simulation of weathering processes for evaluating temporal changes. In all cases considered, a high resolution information capture has been performed with a laser scanner, the Minolta 910. Our approach is flexible enough to be adapted to other kinds of pieces or Cultural Heritage artefacts, in order to provide an assessment for intervention planning in conservation and restoration tasks.

  1. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  2. Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring.

    PubMed

    Farkas, Balázs; Dante, Silvia; Brandi, Fernando

    2017-01-20

    Photoinitiator-free fabrication of poly(ethylene glycol) diacrylate (PEGDA) scaffolds is achieved using a novel three-dimensional (3D) printing method called mask projected excimer laser stereolithography (MPExSL). The spatial resolution of photoinitiator-free curing is suitable for 3D layer-by-layer fabrication with a single layer thickness well controllable at tens to hundreds of microns using 248 nm wavelength for the irradiation. The photoinitiator-free scaffolds are superior compared to their counterparts fabricated by using photoinitiator molecules, showing a higher level of biocompatibility. A release of toxic chemicals from the photoinitiator containing scaffolds is proven by cell proliferation tests. In contrast, no toxic release is found from the photoinitiator-free scaffolds, resulting in the very same level of cell proliferation as the control sample. The demonstration of photoinitiator-free PEGDA scaffolds enables the fabrication of 3D scaffolds with the highest level of biocompatibility for both in vitro and in vivo applications.

  3. Error Analysis of Terrestrial Laser Scanning Data by Means of Spherical Statistics and 3D Graphs

    PubMed Central

    Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G.; Arias, Pedro

    2010-01-01

    This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics. PMID:22163461

  4. Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring

    NASA Astrophysics Data System (ADS)

    Farkas, Balázs; Dante, Silvia; Brandi, Fernando

    2017-01-01

    Photoinitiator-free fabrication of poly(ethylene glycol) diacrylate (PEGDA) scaffolds is achieved using a novel three-dimensional (3D) printing method called mask projected excimer laser stereolithography (MPExSL). The spatial resolution of photoinitiator-free curing is suitable for 3D layer-by-layer fabrication with a single layer thickness well controllable at tens to hundreds of microns using 248 nm wavelength for the irradiation. The photoinitiator-free scaffolds are superior compared to their counterparts fabricated by using photoinitiator molecules, showing a higher level of biocompatibility. A release of toxic chemicals from the photoinitiator containing scaffolds is proven by cell proliferation tests. In contrast, no toxic release is found from the photoinitiator-free scaffolds, resulting in the very same level of cell proliferation as the control sample. The demonstration of photoinitiator-free PEGDA scaffolds enables the fabrication of 3D scaffolds with the highest level of biocompatibility for both in vitro and in vivo applications.

  5. Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Danilevičius, P.; Žukauskas, A.; Bičkauskaitė, G.; Purlys, V.; Rutkauskas, M.; Gertus, T.; Paipulas, D.; Matukaitė, J.; Baltriukienė, D.; Malinauskas, M.

    2011-01-01

    A multi-photon polymerization system has been designed based on a pulsed irradiation light source (diode-pumped solid state femtosecond laser Yb:KGW, 300 fs, 1030 nm, 1-200 kHz) in combination with large working area and high precision linear motor driven stages (100×100×50 mm3). The system is intended for high resolution and throughput 3D micro- and nanofabrication and enables manufacturing the polymeric templates up to 1 cm2 areas with sub-micrometer resolution. These can be used for producing 3D artificial polymeric scaffolds to be applied for growing cells, specifically, in the tissue engineering. The bio-compatibility of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials is evaluated experimentally in vitro. Variously sized and shaped polymeric scaffolds of biocompatible photopolymers with intricate 3D geometry were successfully fabricated. Proliferation tests for adult rabbit myogenic stem cells have shown the applicability of artificial scaffolds in biomedicine practice.

  6. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    NASA Astrophysics Data System (ADS)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  7. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  8. Electromagnetic induction sounding and 3D laser imaging in support of a Mars methane analogue mission

    NASA Astrophysics Data System (ADS)

    Boivin, A.; Lai, P.; Samson, C.; Cloutis, E.; Holladay, S.; Monteiro Santos, F. A.

    2013-07-01

    The Mars Methane Analogue Mission simulates a micro-rover mission whose purpose is to detect, analyze, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested at the Jeffrey open-pit asbestos mine to identify and characterize geological environments favourable to the occurrence of methane. The presence of serpentinite in the form of chrysotile (asbestos), magnesium carbonate, and iron oxyhydroxides make the mine a likely location for methane production. The EMIS clearly delineated the contacts between the two geological units found at the mine, peridotite and slate, which are separated by a shear zone. Both the peridotite and slate units have low and uniform apparent electrical conductivity and magnetic susceptibility, while the shear zone has much higher conductivity and susceptibility, with greater variability. The EMIS data were inverted and the resulting model captured lateral conductivity variations through the different bedrock geological units buried beneath a gravel road. The 3D point cloud data acquired by the laser scanner were fitted with triangular meshes where steeply dipping triangles were plotted in dark grey to accentuate discontinuities. The resulting images were further processed using Sobel edge detection to highlight networks of fractures which are potential pathways for methane seepage.

  9. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  10. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.

    PubMed

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-12-22

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer.

  11. The development of laser-plasma interaction program LAP3D on thousands of processors

    SciTech Connect

    Hu, Xiaoyan Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin Guo, Hong

    2015-08-15

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  12. Laser Scanning for 3D Object Characterization: Infrastructure for Exploration and Analysis of Vegetation Signatures

    NASA Astrophysics Data System (ADS)

    Koenig, K.; Höfle, B.

    2012-04-01

    Mapping and characterization of the three-dimensional nature of vegetation is increasingly gaining in importance. Deeper insight is required for e.g. forest management, biodiversity assessment, habitat analysis, precision agriculture, renewable energy production or the analysis of interaction between biosphere and atmosphere. However the potential of 3D vegetation characterization has not been exploited so far and new technologies are needed. Laser scanning has evolved into the state-of-the-art technology for highly accurate 3D data acquisition. By now several studies indicated a high value of 3D vegetation description by using laser data. The laser sensors provide a detailed geometric presentation (geometric information) of scanned objects as well as a full profile of laser energy that was scattered back to the sensor (radiometric information). In order to exploit the full potential of these datasets, profound knowledge on laser scanning technology for data acquisition, geoinformation technology for data analysis and object of interest (e.g. vegetation) for data interpretation have to be joined. A signature database is a collection of signatures of reference vegetation objects acquired under known conditions and sensor parameters and can be used to improve information extraction from unclassified vegetation datasets. Different vegetation elements (leaves, branches, etc.) at different heights above ground with different geometric composition contribute to the overall description (i.e. signature) of the scanned object. The developed tools allow analyzing tree objects according to single features (e.g. echo width and signal amplitude) and to any relation of features and derived statistical values (e.g. ratio of laser point attributes). For example, a single backscatter cross section value does not allow for tree species determination, whereas the average echo width per tree segment can give good estimates. Statistical values and/or distributions (e.g. Gaussian

  13. 3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi

    2007-05-01

    3D integration of microcomponents in a single glass chip by femtosecond laser direct writing followed by post annealing and successive wet etching is described for application to biochemical analysis. Integration of microfluidics and microoptics realized some functional microdevices like a μ-fluidic dye laser and a biosensor. As one of practical applications, we demonstrate inspection of living microorganisms using the microchip with 3D microfluidic structures fabricated by the present technique.

  14. 3D modelling of facade features on large sites acquired by vehicle based laser scanning

    NASA Astrophysics Data System (ADS)

    Boulaassal, H.; Landes, T.; Grussenmeyer, P.

    2011-12-01

    Mobile mapping laser scanning systems have become more and more widespread for the acquisition of millions of 3D points on large and geometrically complex urban sites. Vehicle-based Laser Scanning (VLS) systems travel many kilometers while acquiring raw point clouds which are registered in real time in a common coordinate system. Improvements of the acquisition steps as well as the automatic processing of the collected point clouds are still a conundrum for researchers. This paper shows some results obtained by application, on mobile laser scanner data, of segmentation and reconstruction algorithms intended initially to generate individual vector facade models using stationary Terrestrial Laser Scanner (TLS) data. The operating algorithms are adapted so as to take into account characteristics of VLS data. The intrinsic geometry of a point cloud as well as the relative geometry between registered point clouds are different from that obtained by a static TLS. The amount of data provided by this acquisition technique is another issue. Such particularities should be taken into consideration while processing this type of point clouds. The segmentation of VLS data is carried out based on an adaptation of RANSAC algorithm. Edge points of each element are extracted by applying a second algorithm. Afterwards, the vector models of each facade element are reconstructed. In order to validate the results, large samples with different characteristics have been introduced in the developed processing chain. The limitations as well as the capabilities of each process will be emphasized in terms of geometry and processing time.

  15. Laser radar technology and applications; Proceedings of the Meeting, Quebec, Canada, June 3-5, 1986

    NASA Astrophysics Data System (ADS)

    Cruickshank, James M.; Harney, Robert C.

    1986-01-01

    Various papers on laser radar technology and applications are presented. The topics considered include: eye-safe solid lasers for lidar applications, practical DF laser for ranging applications, ultrafast surface barrier photodetectors, performance analyses for peak-detecting laser radars, multiple scattering for laser beams propagating in a layered atmosphere, laser radar cross section of objects immersed in the earth's atmosphere, measurements of pulse coherence in mode-locked TEA-CO2 lasers, and single longitudinal mode operation of a continuously tunable high pressure TE-CO2. Also discussed are: amplitude-modulated laser system for distance and displacement measurement, minilaser rangefinder, laser docking system radar flight experiment, improved optical resonator for laser radars, design of frequency-stable TEA-CO2 lasers, HgCdTe photodiodes for heterodyne applications, acoustooptic spectrum analyzer for laser radar applications, laser cloud mapper and its applications, scanning lidar bathymeter for water depth measurement, and fluorescence lidar for land and sea remote sensing.

  16. Production of 3D consistent image representation of outdoor scenery for multimedia ambiance communication from multiviewpoint range data measured with a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Imamura, Hiroshi; Sunaga, Shin-ichi; Komatsu, Takashi

    2002-03-01

    Toward future 3D image communication, we have started studying the Multimedia Ambiance Communication, a kind of shared-space communication, and adopted an approach to design the 3D-image space using actual images of outdoor scenery, by introducing the concept of the three-layer model of long-, mid- and short-range views. The long- and mid-range views do not require precise representation of their 3D structure, and hence we employ the setting representation like stage settings to approximate their 3D structure according to the slanting-plane-model. We deal with an approach to produce the consistent setting representation for describing long- and mid-range views from range and texture data measured with a laser scanner and a digital camera located at multiple viewpoints. The production of such a representation requires the development of several techniques: nonlinear smoothing of raw range data, plane segmentation of range data, registration of multi-viewpoint range data, integration of multi-viewpoint setting representations and texture mapping onto each setting plane. In this paper, we concentrate on the plane segmentation and the multi-viewpoint data registration. Our plane segmentation method is based on the concept of the region competition, and can precisely extract fitting planes from the range data. Our registration method uses the equations of the segmented planes corresponding between two different viewpoints to determine the 3D Euclidean transformation between them. A unifying consistent setting representation can be constructed by integrating multiple setting representations for multiple viewpoints.

  17. Laser machining for smooth continuous 3-D contouring for micro airflow blades

    NASA Astrophysics Data System (ADS)

    Heaton, Mark

    2005-06-01

    This paper describes an innovative excimer laser fabrication approach for profiling optimally smooth airflow contours. The research merit of the process is its use in producing a new type of electrical transducer micro-turbine using a novel axial format. The necessary micro-machining precision for this was achieved by computer-controlling a laser beam using an elevating stage to step a moving mask across a fixed mask, i.e. a variant of dynamic mask-dragging or mask-aperturing. The moving mask image was projected on to a series of flat 600 μm wide, 1000 μm deep preform surfaces, reducing each to 50 μm thickness with curvature. Precise control of each mask increment to ablation depth and focus allowed a range of 3-D curves to be realized. The ablation rate versus surface quality was optimized throughout by ablating just 300 nm per laser pulse and using 2000 pulses spread over 90 sites. The process represents a cost effective means of using basic masks to continuously shape flat surfaces in the axial direction with high aspect ratios, high speed and precision, and is applicable to both micro streamlining and the manufacture of micro expansion nozzles.

  18. Performance evaluation of laser line scanner for in-process inspection of 3D geometries

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Xu, Jian; Tao, Lei; Yan, Yu

    2016-09-01

    Non-contact measurement techniques using laser scanning have the power to deliver tremendous benefits to most notably manufacturing, and have the advantage of high speed and high detail output. However, a major obstacle to their widespread adoption in more complex on-line producing environments is their geometric constraints and low accuracy compared to the contact-based counterparts. The work presented in this paper introduces a performance evaluation test of laser line scanning for in-process inspection of 3D geometries. Some straightforward test methods that use a designed artifact are proposed. First, one work aims to experimentally investigate the location accuracy of knee point or corner point of edge features using a commercial laser stripe scanner, which is common in mechanical parts. Another work experimentally investigates the formation of outliers that may be usually promoted by reflective surfaces around surrounding area of corner point, and these outliers are characterized with large measurement errors, which significantly deteriorate the quality of the scanned point cloud data. Scanning path planning and outlier filter design are respectively discussed.

  19. Laser Fabrication of Affective 3D Objects with 1/f Fluctuation

    NASA Astrophysics Data System (ADS)

    Maekawa, Katsuhiro; Nishii, Tomohiro; Hayashi, Terutake; Akabane, Hideo; Agu, Masahiro

    The present paper describes the application of Kansei Engineering to the physical design of engineering products as well as its realization by laser sintering. We have investigated the affective information that might be included in three-dimensional objects such as a ceramic bowl for the tea ceremony. First, an X-ray CT apparatus is utilized to retrieve surface data from the teabowl, and then a frequency analysis is carried out after noise has been filtered. The surface fluctuation is characterized by a power spectrum that is in inverse proportion to the wave number f in circumference. Second, we consider how to realize the surface with a 1/f fluctuation on a computer screen using a 3D CAD model. The fluctuation is applied to a reference shape assuming that the outer surface has a spiral flow line on which unevenness is superimposed. Finally, the selective laser sintering method has been applied to the fabrication of 1/f fluctuation objects. Nylon powder is sintered layer by layer using a CO2 laser to form an artificial teabowl with complicated surface contours.

  20. Laser radar observation of the polar stratospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Hirasawa, T.; Fukunishi, H.; Fujiwara, M.; Fujii, R.; Miyaoka, H.

    1985-01-01

    The polar stratosphere has been speculated to be an active sink region of various stratospheric materials; ozone, water vapor, NOX, aerosol particles and so on, but this process is not theoretically and/or observationally made clear. The observation of the polar stratospheric aerosol layer using laser radar certainly contributes to the study of the global transport of these stratospheric minor constituents. In addition to this, from the viewpoint of aerosol science, there may be many interesting phenomena which cannot be found in the stratosphere at mid and low latitudes; the effect of precipitation of high energy molecules and atoms, of very cold winter stratosphere, of very cold mesopause in summer. Laser radar observation is one of the main activities of the Antarctic Middle Atmosphere (AMA) project at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica since May 1983. Laser radar measurement at Syowa Station is discussed in detail.

  1. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.

    2015-07-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.

  2. A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking

    SciTech Connect

    Mayer, J.R.R. . Mechanical Engineering Dept.); Parker, G.A. . Dept. of Mechanical Engineering)

    1994-08-01

    The paper describes the development and validation of a 3-D measurement instrument capable of determining the static and dynamic performance of industrial robots to ISO standards. Using two laser beams to track an optical target attached to the robot end-effector, the target position coordinates may be estimated, relative to the instrument coordinate frame, to a high accuracy using triangulation principles. The effect of variations in the instrument geometry from the nominal model is evaluated through a kinematic model of the tracking head. Significant improvements of the measurement accuracy are then obtained by a simple adjustment of the main parameters. Extensive experimental test results are included to demonstrate the instrument performance. Finally typical static and dynamic measurement results for an industrial robot are presented to illustrate the effectiveness and usefulness of the instrument.

  3. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    PubMed Central

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  4. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.

    PubMed

    Paiè, Petra; Bragheri, Francesca; Vazquez, Rebeca Martinez; Osellame, Roberto

    2014-06-07

    We report on the use of femtosecond laser irradiation followed by chemical etching as a microfabrication tool for innovative microfluidic networks that implement hydrodynamic focusing. The capability of our microfabrication technology to interconnect microchannels in three dimensions was exploited to demonstrate 2D hydrodynamic focusing, either in the horizontal or in the vertical plane, and full 3D hydrodynamic focusing. In all cases only two inlets were required, one for the sample and one for the sheath flows. Fluidic characterization of all devices was provided. In addition, taking advantage of the possibility to write optical waveguides using the same technology, a monolithic cell counter based on 3D hydrodynamic focusing and integrated optical detection was validated. Counting rates up to 5000 cells s(-1) were achieved in this very compact device, where focusing and counting operations were implemented in less than 1 mm(3). Integration of this hydrodynamic focusing module into several devices fabricated by the same technology as optical cell stretchers and cell sorters is envisaged.

  5. The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Friess, Martin

    2006-02-01

    Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.

  6. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  7. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms.

    PubMed

    Belegratis, M R; Schmidt, V; Nees, D; Stadlober, B; Hartmann, P

    2014-03-01

    The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown.

  8. Low-level laser therapy in 3D cell culture model using gingival fibroblasts.

    PubMed

    Basso, Fernanda G; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-07-01

    Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm(2). Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm(2) increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm(2), while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair.

  9. Confocal laser scanning microscopy and 3-D reconstructions of neuronal structures in human brain cortex.

    PubMed

    Belichenko, P V; Dahlström, A

    1995-09-01

    Human brain material was studied with Lucifer yellow (LY) microinjections, indirect Texas red immunofluorescence, and confocal laser scanning microscopy (CLSM). The scanned images were transferred to a Silicon Graphics (SG) IRIS computer equipped with software for reconstructing the 3-D architecture of cells. By employing dual channel CLSM (Bio-Rad MRC 600), LY-injected cells and Texas red immunofluorescence could be studied simultaneously. Autopsy material with 2- to 48-h postmortem delays (6 control and 2 Rett's syndrome cases) as well as biopsy material (14 cases with therapy-resistant partial epilepsy--TRPE--undergoing neurosurgery) were used. In each specimen, 100-200 pyramidal and nonpyramidal neurons were visualized by LY microinjection. Single neurons were imaged and 2-D reconstructions of each neuron were made using z-projections of serial optical images; 3-D reconstructions and rotations were computed using the SG workstation, with VoxelView software from Vital Images (UK), and stored in a "neuronal library" on laser or magnetic optical disks. In Ret's syndrome cases and in patients with TRPE various abnormalities in the dendritic geometry of pyramidal and nonpyramidal cells have been found. The combination of LY injections with immunofluorescence allows the investigation of transmitter-related substances around the LY-injected cells. Using antibodies to synaptic vesicle proteins, presynaptic elements docking onto individual spines have been demonstrated. This approach may contribute to the understanding of different neurological and psychiatric disorders and may be useful in the Mapping of the Human Brain project. It may also be integrated with functional imaging by PET scan and with the human genome project.

  10. Low-Cost 3D Laser Scanning in Air or Water Using Self-Calibrating Structured Light

    NASA Astrophysics Data System (ADS)

    Bleier, M.; Nüchter, A.

    2017-02-01

    In-situ calibration of structured light scanners in underwater environments is time-consuming and complicated. This paper presents a self-calibrating line laser scanning system, which enables the creation of dense 3D models with a single fixed camera and a freely moving hand-held cross line laser projector. The proposed approach exploits geometric constraints, such as coplanarities, to recover the depth information and is applicable without any prior knowledge of the position and orientation of the laser projector. By employing an off-the-shelf underwater camera and a waterproof housing with high power line lasers an affordable 3D scanning solution can be built. In experiments the performance of the proposed technique is studied and compared with 3D reconstruction using explicit calibration. We demonstrate that the scanning system can be applied to above-the-water as well as underwater scenes.

  11. Examination of heterogeneous crossing sequences between toner and rollerball pen strokes by digital microscopy and 3-D laser profilometry.

    PubMed

    Montani, Isabelle; Mazzella, Williams; Guichard, Marion; Marquis, Raymond

    2012-07-01

    The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner.

  12. Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes

    NASA Astrophysics Data System (ADS)

    Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.

    2013-03-01

    The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.

  13. Hardware-in-the-loop testing for the LOCAAS laser radar antimateriel munition

    NASA Astrophysics Data System (ADS)

    Byrd, Lawrence Y., III; Thompson, Rhoe A.

    1996-05-01

    The KHILS facility in the Wright Laboratory Armament Directorate at Eglin AFB has developed a hardware-in-the- loop (HWIL) simulation for the Low Cost Autonomous Attack System. Unique techniques have been developed for real-time closed-loop signal injection testing of this Laser Radar (LADAR) guided munition concept. The overall HWIL layout will be described including discussion of interfaces, real- time 3D LADAR scene generation, flight motion simulation, and real-time graphical visualization. In addition, the practical application of a new simulation Verification, Validation and Accreditation procedure will be described in relation to this HWIL simulation.

  14. Applications of FM-CW laser radar to antenna contour mapping

    NASA Technical Reports Server (NTRS)

    Slotwinski, A. R.

    1989-01-01

    The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.

  15. Comparison between 3D model of Pisciarelli area (Campi Flegrei caldera) through Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Caputo, Teresa; Somma, Renato; Marino, Ermanno; Terracciano, Rosario; Troise, Claudia; De Natale, Giuseppe

    2016-04-01

    The volcanic/geothermal area of Pisciarelli is located within Campi Flegrei caldera .This last is a densely populated area, including the Pozzuoli town and bordering the western side of the Naples city, this causes a high vulnerability and consequently a high volcanic risk. In the recent decades this area has experienced minor ground uplift episodes accompanied by low magnitude seismicity and by strong intensification of degassing activity in particular localized at Pisciarelli area. We present the results of the Terrestrial Laser Scanner (TLS), using a Reigl VZ1000®, analysis of Pisciarelli area performed in June 2013 and the comparison with the data acquired later in March 2014. We apply the TLS technique based on Time of Flight (TOF) method in order to define an accurate 3D digital model for detailed analysis of this area performing numerous scans from different points of view in the area. In this ways was ensured a good coverage of the whole investigated area in order to avoid shaded portion due to the high soil degassing activity. Such fact limits the capacity of laser penetration is caused by wavelength near infrared range. For each survey was obtained a Digital Terrain Model (DTM) from the reconstructed data and both were compared. In particular, we have identified two "critical" areas of interest that will be monitored more frequently. These are: 1) in the lower part of the studied area a major fault line that bounding the Agnano caldera moderately NE-dipping; 2) in the upper part of the study area a zone of depletion with its zone of accumulation. The DTM were georeferenced into the UTM-WGS84 reference frame. The aim of this work is to define a procedure to compare between 3D model applied to monitoring of this area. Also to evaluate of volumetric and morphologic changes and to recognizing unstable masses by comparison of 3D data. For this purpose other TLS surveys will be performed in the upcoming in this active volcanic/geothermal area.

  16. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2016-02-29

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  17. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  18. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  19. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    1 Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing , 3D Laser Scanning Technology...management during operations 4 Potential Technology 3: Additive Manufacturing (“3D Printing”) 5 • 3D design/image (e.g. from 3D LS) of final part

  20. Multi-laser QED cascades in 2D and 3D geometry

    NASA Astrophysics Data System (ADS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A.; Silva, Luis O.

    2015-11-01

    Studying the plasma dynamics in the presence of extreme laser fields requires taking into account physics beyond classical electrodynamics. Pair production seeded by an electron has a lowest threshold among the first quantum mechanisms that appear as the intensity increases, which makes it relevant for the future experiments planned at ELI and other facilities. We have included the two-step pair production process (non linear Compton scattering + Breit-Wheeler) in a massively parallel PIC code (Osiris 2.0 framework) via a Monte Carlo module. With this approach, we take self-consistently into account the interaction of the intense fields with the generated pair plasma. We have also developed a macroparticle merging algorithm that reduces the number of macroparticles in the simulations, while conserving local particle distributions. This algorithm is crucial for simulating scenarios where a large number of pairs are being created, such as QED cascades. We present 2D and 3D PIC-QED study of pair cascades induced with multiple laser pulses. The polarization dependence is discussed, together with the properties of the emitted radiation and experimental signatures. Supported by PRACE and ERC-2010-AdG Grant 267841.

  1. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    NASA Astrophysics Data System (ADS)

    Casal, A.; Cerrato, R.; Mateo, M. P.; Nicolas, G.

    2016-06-01

    A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  2. Development of 3D functionally graded models by laser-assisted coaxial powder injection

    NASA Astrophysics Data System (ADS)

    Yakovlev, Artem; Bertrand, Ph.; Smurov, Igor Y.

    2004-04-01

    Relatively new method of producing 3D objects with Functionally Graded Material (FGM) structure is realized by coaxial powder injection with variable composition into the zone of laser beam action. The desired 3-dimensional material distribution is realized by repetitive deposition process. Theoretical analysis and experimental results show essential role of radiation mode and powder granularity as optimization parameters. Applied laser sources are continuous wave Nd:YAG(HAAS 2006D, 2kW), pulse-periodic Nd:YAG(HAAS HL304P, avg. power 300 W), quazi-cw CO2 (Rofin-Sinar, 300 W). Among applied materials are nanostructured WC/Co, CuSn, Stainless steel 316L, 430L, Co-base alloy, nanostructured FeCu, etc. The originality of obtained results is that different gradient types are produced "in situ" and combined within one sample: smooth, sharp or multilayered gradients. The number of samples is produced and examined with metallographical and SEM analysis. The minimal spatial gradient resolution (transition zone between two different materials) is starting from 10 microns and can be varied in a wide range; the surface roughness depends from powder granularity, best value of Ra is about 5 μm, microhardness of differet zones of samples is varied from 120 to 450 HV. The achieved geometry spatial resolution is 200 μm.

  3. 3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography

    NASA Astrophysics Data System (ADS)

    Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer

    Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.

  4. EEG-MRI co-registration and sensor labeling using a 3D laser scanner.

    PubMed

    Koessler, L; Cecchin, T; Caspary, O; Benhadid, A; Vespignani, H; Maillard, L

    2011-03-01

    This paper deals with the co-registration of an MRI scan with EEG sensors. We set out to evaluate the effectiveness of a 3D handheld laser scanner, a device that is not widely used for co-registration, applying a semi-automatic procedure that also labels EEG sensors. The scanner acquired the sensors' positions and the face shape, and the scalp mesh was obtained from the MRI scan. A pre-alignment step, using the position of three fiducial landmarks, provided an initial value for co-registration, and the sensors were automatically labeled. Co-registration was then performed using an iterative closest point algorithm applied to the face shape. The procedure was conducted on five subjects with two scans of EEG sensors and one MRI scan each. The mean time for the digitization of the 64 sensors and three landmarks was 53 s. The average scanning time for the face shape was 2 min 6 s for an average number of 5,263 points. The mean residual error of the sensors co-registration was 2.11 mm. These results suggest that the laser scanner associated with an efficient co-registration and sensor labeling algorithm is sufficiently accurate, fast and user-friendly for longitudinal and retrospective brain sources imaging studies.

  5. Comparison of simulated and experimental 3D laser images using a GmAPD array: application to long range detection

    NASA Astrophysics Data System (ADS)

    Coyac, Antoine; Riviere, Nicolas; Hespel, Laurent; Briottet, Xavier

    2016-05-01

    In this paper, we show the feasibility and the benefit to use a Geiger-mode Avalanche Photo-Diode (GmAPD) array for long range detection, up to several kilometers. A simulation of a Geiger detection sensor is described, which is a part of our end-to-end laser simulator, to generate simulated 3D laser images from synthetic scenes. Resulting 3D point clouds have been compared to experimental acquisitions, performed with our GmAPD 3D camera on similar scenarios. An operational case of long range detection is presented: a copper cable outstretched above the ground, 1 kilometer away the experimental system and with a horizontal line-of-sight (LOS). The detection of such a small object from long distance observation strongly suggests that GmAPD focal plane arrays could be easily used for real-time 3D mapping or surveillance applications from airborne platforms, with good spatial and temporal resolutions.

  6. Study of imaging radar using ultra-wideband microwave-modulated infrared laser

    NASA Astrophysics Data System (ADS)

    Mase, Atsushi; Kogi, Yuichiro; Ikezi, Hiroyuki; Inutake, Masaaki; Wang, Xiaolong

    2016-09-01

    In this paper, we present an ultra-wideband microwave-modulated laser radar which is designed and fabricated for improvement of the spatial resolution both in the range direction and the azimuth direction. The amplitude modulation in a range of 0.01-18 GHz is applied to an infrared laser source of 1550 nm wavelength. The frequency and the bandwidth are assigned by the Administration of Radio under the Ministry of Internal Affairs and Communications in Japan. However, there is no bandwidth limitation in the infrared region. Considering the influence of radiation pattern for microwave antennas case, there is no side lobe in laser beam transmission. Ambiguous signal and interferences which are returned from the ground can be suppressed. A prototype of laser-radar system with a fiber collimator for both transmitting and receiving optics has been fabricated. A vector network analyzer is used to obtain S21 signal between the microwave modulation input and that of received signal. The system is, at first, applied to the measurement of the distance (position) of an object. It is proved that the spatial resolution is less than 1 cm during 5-10 m. As an initial experiment, we have succeeded to obtain 3D image of object by scanning a laser beam in two dimensions.

  7. An Evaluation of the Observational Capabilities of A Scanning 95-GHz Radar in Studying the 3D Structures of Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Bowley, Kevin

    Marine stratocumulus clouds play a critical role in Earth's radiative balance primarily due to the role of their high albedo reflecting incoming solar radiation, causing a cooling effect, while weakly reflecting outgoing infrared radiation. Characterization of the 3-Dimensional (3D) structure of these cloud systems over scales of 20-40 km is required to accurately account for the role of cloud inhomogeneity and structure on their shortwave forcing and lifetime, which has important applications for Global Climate Models. For first time, such 3D measurements in clouds were made available from a scanning cloud radar during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign in the Azores Islands. The scanning radar observations were complemented by a suite of zenith-pointing active and passive remote sensors that were deployed to provide a detailed description of marine stratus over a long-term observation period in the ideal marine environment commonly found at the Azores. The scanning cloud radar observations present a shift from a multi-instrument, vertically pointing 'soda-straw' observation technique to a radar-only, 'radar-centric' observation technique. The scanning radar observations were gridded using a nearest-neighbor type scheme devised to take the natural variability of the observed field into account. The ability of the scheme to capture primary cloud properties (cloud fraction, cloud boundaries, drizzle detection) was assessed using measurements from the vertically pointing sensors. Despite the great sensitivity of the scanning cloud radar (-42.5 dBZ at 1 km range), the drop in sensitivity with range resulted in an artificial thinning of clouds with range from the radar. Drizzle-free cloud structures were undetectable beyond 5 km from the radar. Cloud fields containing drizzle were generally detectable to ranges exceeding 10 km from

  8. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  9. X-Ray and Optical Videography for 3D Measurement of Capillary and Melt Pool Geometry in Laser Welding

    NASA Astrophysics Data System (ADS)

    Boley, M.; Abt, F.; Weber, R.; Graf, T.

    This paper describes a method to reconstruct the 3D shape of the melt pool and the capillary of a laser keyhole welding process. Three different diagnostic methods, including X-Ray and optical videography as well as metallographic cross sections are combined to gain the three dimensional data of the solidus-liquidus-surface. A detailed description of the experimental setup and a discussion of different methods to combine the 2D data sets of the three different diagnostic methods to a 3D-model will be given. The result will be a static 3D description of the welding process.

  10. The use of custom 3D printed stereotactic frames for laser interstitial thermal ablation: technical note.

    PubMed

    Brandmeir, Nicholas J; McInerney, James; Zacharia, Brad E

    2016-10-01

    Over the last several years, laser interstitial thermotherapy (LITT) has gained wide acceptance for the treatment of a myriad of cranial lesions. A wide variety of techniques for placement of the laser fiber have been reported with a spectrum of perceived benefits and drawbacks. The authors present the first report of a customized 3D printed stereotactic frame for LITT. Approximately 1 week prior to surgery, 3-4 skull fiducials were placed after each of 5 patients received a local anesthetic as an outpatient. Radiographs with these fiducials were then used to create a trajectory to the lesion that would be treated with LITT. After the plan was completed, software was used to render a customized frame. On the day of surgery, the frame was attached to the implanted skull fiducials and the LITT catheter was placed. This procedure was carried out in 5 consecutive patients. In 2 patients, a needle biopsy was also performed. Intraoperative and postoperative imaging studies confirmed the accurate placement of the LITT catheter and the lesion created. Mean operating room time for all patients was 45 minutes but only 26 minutes when excluding the cases in which a biopsy was performed. To the best of the authors' knowledge, this is the first report of the use of a specific system, the STarFix microTargeting system, for use with LITT and brain biopsy. This system offers several advantages including fast operating times, extensive preoperative planning, no need for cranial fixation, and no need for frame or fiducial placement on the day of surgery. The accuracy of the system combined with these advantages may make this a preferred stereotactic method for LITT, especially in centers where LITT is performed in a diagnostic MRI suite.

  11. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  12. Comparison of 3D representations depicting micro folds: overlapping imagery vs. time-of-flight laser scanner

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, Aristidis D.; Georgopoulos, Andreas; Lozios, Stylianos G.

    2012-10-01

    A relatively new field of interest, which continuously gains grounds nowadays, is digital 3D modeling. However, the methodologies, the accuracy and the time and effort required to produce a high quality 3D model have been changing drastically the last few years. Whereas in the early days of digital 3D modeling, 3D models were only accessible to computer experts in animation, working many hours in expensive sophisticated software, today 3D modeling has become reasonably fast and convenient. On top of that, with online 3D modeling software, such as 123D Catch, nearly everyone can produce 3D models with minimum effort and at no cost. The only requirement is panoramic overlapping images, of the (still) objects the user wishes to model. This approach however, has limitations in the accuracy of the model. An objective of the study is to examine these limitations by assessing the accuracy of this 3D modeling methodology, with a Terrestrial Laser Scanner (TLS). Therefore, the scope of this study is to present and compare 3D models, produced with two different methods: 1) Traditional TLS method with the instrument ScanStation 2 by Leica and 2) Panoramic overlapping images obtained with DSLR camera and processed with 123D Catch free software. The main objective of the study is to evaluate advantages and disadvantages of the two 3D model producing methodologies. The area represented with the 3D models, features multi-scale folding in a cipollino marble formation. The most interesting part and most challenging to capture accurately, is an outcrop which includes vertically orientated micro folds. These micro folds have dimensions of a few centimeters while a relatively strong relief is evident between them (perhaps due to different material composition). The area of interest is located in Mt. Hymittos, Greece.

  13. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  14. Reliability of 3D laser-based anthropometry and comparison with classical anthropometry

    PubMed Central

    Kuehnapfel, Andreas; Ahnert, Peter; Loeffler, Markus; Broda, Anja; Scholz, Markus

    2016-01-01

    Anthropometric quantities are widely used in epidemiologic research as possible confounders, risk factors, or outcomes. 3D laser-based body scans (BS) allow evaluation of dozens of quantities in short time with minimal physical contact between observers and probands. The aim of this study was to compare BS with classical manual anthropometric (CA) assessments with respect to feasibility, reliability, and validity. We performed a study on 108 individuals with multiple measurements of BS and CA to estimate intra- and inter-rater reliabilities for both. We suggested BS equivalents of CA measurements and determined validity of BS considering CA the gold standard. Throughout the study, the overall concordance correlation coefficient (OCCC) was chosen as indicator of agreement. BS was slightly more time consuming but better accepted than CA. For CA, OCCCs for intra- and inter-rater reliability were greater than 0.8 for all nine quantities studied. For BS, 9 of 154 quantities showed reliabilities below 0.7. BS proxies for CA measurements showed good agreement (minimum OCCC > 0.77) after offset correction. Thigh length showed higher reliability in BS while upper arm length showed higher reliability in CA. Except for these issues, reliabilities of CA measurements and their BS equivalents were comparable. PMID:27225483

  15. 3D microscale laser dynamic forming: Multiscale modeling and experimental validation

    SciTech Connect

    Gao Huang; Cheng, Gary J.

    2011-05-15

    Microscale laser dynamic forming ({mu}LDF) shows great potential in fabricating robust and high-aspect-ratio metallic microcomponents. Experiments revealed that strain rate and sample size play important roles in determining the dynamic plasticity and final results of {mu}LDF. To further understand these effects, a multiscale modeling methodology is adopted to characterize the microscale dynamic plasticity considering the evolutions of nano-to-submicron dislocations avalanches under shock loading. In this methodology, 3D discrete dislocation dynamics simulations are implemented to derive the yield strength and the initial strain hardening dependence on size and strain rate. It is observed that there exist three dynamic stages during deformation process. The initial strain hardening rate in Stage II increases with strain rate. The mechanical threshold stress model, intrinsically equipped with strain-rate-dependent flow stress and initial hardening, is chosen and modified to incorporate size effect quantitatively. This scale-dependent model, implemented in abaqus/explicit, provides deformation depths and thickness variations in good agreement with experimental results in {mu}LDF.

  16. Optimization of 3D laser scanning speed by use of combined variable step

    NASA Astrophysics Data System (ADS)

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  17. 3D laser measurements of bare and shod feet during walking.

    PubMed

    Novak, Boštjan; Možina, Janez; Jezeršek, Matija

    2014-01-01

    This article presents a new system for 3D foot-shape measurements during walking. It is based on the laser-triangulation, multiple-line-illumination and color-modulation techniques. It consists of a walking stage and four measuring modules that simultaneously acquire the foot shape from the top, bottom and side views. The measuring speed is 30 fps. Custom-developed software makes it possible to analyze the foot's dimensions at an arbitrary cross-section by means of the width, height, girth and section orientation. Six subjects were measured during bare and shod walking, and the bare foot and the outside dimensions of the footwear during the entire stance phase are presented. The relative measurement repeatability of a single subject is 0.5% for bare foot and 1% for shod foot. This means that it is possible to study the differences between various influences on the foot-shape dynamics, such as a bare/shod foot, different loading conditions and the shoe's stiffness condition.

  18. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.

    PubMed

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-07-15

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R(2) = 0:99 for the leaf area and R(2) = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  19. Application of the staring-edge tracking in laser radar

    NASA Astrophysics Data System (ADS)

    He, Lianhe; Wu, Jian

    1997-04-01

    The extended target that the size is larger that the diameter of the light beam can be tracked in the laser tracking radar designed on the basic of the method and the algorithm of the staring edge tracking. A moving aluminium plate is tracked by a coherent CO2 laser tracking radar facility with transmitter power 5W and the divergent angle of the transmitter light beam less than 0.18 mrad at a n approximate range of 1 km. The error signals of the azimuth and the elevation are generated from the quad detector. This successful experiment results indicates that the question that the traditional tracking method of quad detector is vain to the extended target has been overcome and testifies that our theory of the staring edge tracking is correct. This tracking method has many advantages. For example, is we choose the tracking position at the top of the target, then the ground target is not easy to lose. So it can avoid tracking the ground. On the other hand, the range of the laser radar using this method is longer than the range of the radar using the point tracking, because the target using narrow light beam illumination is taken as an extended Lambertian target.

  20. A method for simultaneously delineating multiple targets in 3D-FISH using limited channels, lasers, and fluorochromes.

    PubMed

    Zhao, F Y; Yang, X; Chen, D Y; Ma, W Y; Zheng, J G; Zhang, X M

    2014-01-01

    Many studies have suggested a link between the spatial organization of genomes and fundamental biological processes such as genome reprogramming, gene expression, and differentiation. Multicolor fluorescence in situ hybridization on three-dimensionally preserved nuclei (3D-FISH), in combination with confocal microscopy, has become an effective technique for analyzing 3D genome structure and spatial patterns of defined nucleus targets including entire chromosome territories and single gene loci. This technique usually requires the simultaneous visualization of numerous targets labeled with different colored fluorochromes. Thus, the number of channels and lasers must be sufficient for the commonly used labeling scheme of 3D-FISH, "one probe-one target". However, these channels and lasers are usually restricted by a given microscope system. This paper presents a method for simultaneously delineating multiple targets in 3D-FISH using limited channels, lasers, and fluorochromes. In contrast to other labeling schemes, this method is convenient and simple for multicolor 3D-FISH studies, which may result in widespread adoption of the technique. Lastly, as an application of the method, the nucleus locations of chromosome territory 18/21 and centromere 18/21/13 in normal human lymphocytes were analyzed, which might present evidence of a radial higher order chromatin arrangement.

  1. A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations

    NASA Astrophysics Data System (ADS)

    Chmelina, Klaus; Jansa, Josef; Hesina, Gerd; Traxler, Christoph

    2012-11-01

    The paper presents the mobile multi-sensor system Orthos Plus for the monitoring and mapping of tunnel walls, a scan data processing method for the evaluation of 3-d tunnel wall displacements from subsequent wall scans and, finally, a virtual reality tool supporting the interpretation of data. The measuring system consists of a 3-d laser scanner, a motorised total station and a digital camera that are integrated on a light metal frame that is installed on a mobile platform. It has been designed to perform tunnel measurements most efficiently and to meet the special requirements of tunnels under construction. The evaluation of 3-d displacements is based on a 3-d matching algorithm that takes advantage of the particular conditions of tunnel (shotcrete) surfaces. The virtual reality tool allows viewing of data in a 3-d virtual reality tunnel model and their animation in time and space in order supports understanding in an optimal way. The measuring system Orthos Plus has been developed in the course of a national research project, the 3-d matching method in the frame of the Austrian Christian Doppler Laboratory Spatial Data from Laser Scanning and Remote Sensing and the VR tool in the Austrian COMET K1 Competence Center VRVis Center (www.vrvis.at).

  2. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  3. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    PubMed Central

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  4. Ship-in-a-bottle integration by hybrid femtosecond laser technology for fabrication of true 3D biochips

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Wu, Dong; Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2015-03-01

    We propose herein the "ship-in-a-bottle" integration of three-dimensional (3D) polymeric sinusoidal ridges inside photosensitive glass microfluidic channel by a hybrid subtractive - additive femtosecond laser processing method. It consists of Femtosecond Laser Assisted Wet Etching (FLAE) of a photosensitive Foturan glass followed by Two-Photon Polymerization (TPP) of a SU-8 negative epoxy-resin. Both subtractive and additive processes are carried out using the same set-up with the change of laser focusing objective only. A 522 nm wavelength of the second harmonic generation from an amplified femtosecond Yb-fiber laser (FCPA µJewel D-400, IMRA America, 1045 nm; pulse width 360 fs, repetition rate 200 kHz) was employed for irradiation. The new method allows lowering the size limit of 3D objects created inside channels to smaller details down to the dimensions of a cell, and improve the structure stability. Sinusoidal periodic patterns and ridges are of great use as base scaffolds for building up new structures on their top or for modulating cell migration, guidance and orientation while created interspaces can be exploited for microfluidic applications. The glass microchannel offers robustness and appropriate dynamic flow conditions for cellular studies while the integrated patterns are reducing the size of structure to the level of cells responsiveness. Taking advantage of the ability to directly fabricate 3D complex shapes, both glass channels and polymeric integrated patterns enable us to 3D spatially design biochips for specific applications.

  5. Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

    NASA Astrophysics Data System (ADS)

    Balčiūnas, Evaldas; Lukoševičius, Laurynas; Mackevičiūtė, Dovilė; Rekštytė, Sima; Rutkūnas, Vygandas; Paipulas, Domas; Stankevičiūtė, Karolina; Baltriukienė, Daiva; Bukelskienė, Virginija; Piskarskas, Algis P.; Malinauskas, Mangirdas

    2014-03-01

    We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.

  6. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy.

    PubMed

    Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M

    2013-02-01

    3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.

  7. Permanent 3D laser scanning system for an active landslide in Gresten (Austria)

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Höfle, Bernhard; Hämmerle, Martin; Benni, Thiebes; Glade, Thomas

    2015-04-01

    Terrestrial laser scanners (TLS) have widely been used for high spatial resolution data acquisition of topographic features and geomorphic analyses. Existing applications encompass different landslides including rockfall, translational or rotational landslides, debris flow, but also coastal cliff erosion, braided river evolution or river bank erosion. The main advantages of TLS are (a) the high spatial sampling density of XYZ-measurements (e.g. 1 point every 2-3 mm at 10 m distance), particularly in comparison with the low data density monitoring techniques such as GNSS or total stations, (b) the millimeter accuracy and precision of the range measurement to centimeter accuracy of the final DEM, and (c) the highly dense area-wide scanning that enables to look through vegetation and to measure bare ground. One of its main constraints is the temporal resolution of acquired data due to labor costs and time requirements for field campaigns. Thus, repetition measurements are generally performed only episodically. However, for an increased scientific understanding of the processes as well as for early warning purposes, we present a novel permanent 3D monitoring setup to increase the temporal resolution of TLS measurements. This accounts for different potential monitoring deliverables such as volumetric calculations, spatio-temporal movement patterns, predictions and even alerting. This system was installed at the active Salcher landslide in Gresten (Austria) that is situated in the transition zone of the Gresten Klippenbelt (Helvetic) and the Flyschzone (Penninic). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that are covered by a sequence of marly and silty beds with intercalated sandy limestones. Permanent data acquisition can be implemented into our workflow with any long-range TLS system offering fully automated capturing. We utilize an Optech ILRIS-3D scanner. The time interval between two scans is currently set to 24 hours, but can be

  8. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  9. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  10. Surface emitting distributed feedback laser as a source for laser radar

    NASA Astrophysics Data System (ADS)

    Akkapeddi, P.; Macomber, S. H.

    1991-08-01

    The requirements for a diode source for a laser radar system are presented. It is shown how microcollimation of incoherent diode laser arrays can produce a usable beam divergence. A unique diode source under development and the associated technologies required for a compact, efficient, reliable and low divergence source are described.

  11. Fs-laser microstructuring of laser-printed LiMn2O4 electrodes for manufacturing of 3D microbatteries

    NASA Astrophysics Data System (ADS)

    Pröll, J.; Kim, H.; Mangang, M.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2014-03-01

    Lithium manganese oxide composite cathodes are realized by laser-printing. The printed cathode is a composite and consists of active powder, binder and conductive agents. Laser-printed cathodes are first calendered and then laser structured using femtosecond-laser radiation in order to form three-dimensional (3D) micro-grids in the cathode material. Three-dimensional micro-grids in calendered/laser structured cathodes exhibit improved discharge capacity retention at a 1 C discharging rate. Calendered but unstructured cathodes indicate the poorest cycling behavior at 1 C discharge. The improved capacity retention and the reduced degradation of calendered/structured cathodes can be attributed to both the increased electrical contact through calendering as well as shortened Li-ion pathways due to laser-induced 3D microgrids.

  12. Novel Doppler laser radar for diagnostics in fusion reactors

    SciTech Connect

    Menon, Madhavan; Slotwinski, Anthony

    2004-10-01

    We describe the development of a novel Doppler laser radar (DOLAR) for remote measurement of flow velocity (0-10 m/s) and film thickness of liquid metal walls, currently being studied for their superior heat handling and self-healing characteristics. Small fluctuations in flow velocity({approx}mm/s) and flow thickness ({approx}50 {mu}m) that may arise during plasma discharges can also be measured. The DOLAR is also designed for non intrusive mapping of features of plasma-facing solid surfaces with very high precision ({approx}50 {mu}m). It can also measure the motion of structural components of a fusion reactor during plasma discharges and during plasma disruptions. The device utilizes frequency modulation laser radar principles for precision range measurements. Compensation of Doppler frequency shift is used to measure flow velocity. The DOLAR probe head is designed with acousto-optic and piezoelectric devices for operation in the harsh fusion environment.

  13. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  14. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.

    PubMed

    Kovacs, L; Zimmermann, A; Brockmann, G; Baurecht, H; Schwenzer-Zimmerer, K; Papadopulos, N A; Papadopoulos, M A; Sader, R; Biemer, E; Zeilhofer, H F

    2006-06-01

    Three-dimensional (3-D) recording of the surface of the human body or anatomical areas has gained importance in many medical specialties. Thus, it is important to determine scanner precision and accuracy in defined medical applications and to establish standards for the recording procedure. Here we evaluated the precision and accuracy of 3-D assessment of the facial area with the Minolta Vivid 910 3D Laser Scanner. We also investigated the influence of factors related to the recording procedure and the processing of scanner data on final results. These factors include lighting, alignment of scanner and object, the examiner, and the software used to convert measurements into virtual images. To assess scanner accuracy, we compared scanner data to those obtained by manual measurements on a dummy. Less than 7% of all results with the scanner method were outside a range of error of 2 mm when compared to corresponding reference measurements. Accuracy, thus, proved to be good enough to satisfy requirements for numerous clinical applications. Moreover, the experiments completed with the dummy yielded valuable information for optimizing recording parameters for best results. Thus, under defined conditions, precision and accuracy of surface models of the human face recorded with the Minolta Vivid 910 3D Scanner presumably can also be enhanced. Future studies will involve verification of our findings using test persons. The current findings indicate that the Minolta Vivid 910 3D Scanner might be used with benefit in medicine when recording the 3-D surface structures of the face.

  15. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    NASA Astrophysics Data System (ADS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  16. Precision metrology of NSTX surfaces using coherent laser radar ranging

    SciTech Connect

    H.W. Kugel; D. Loesser; A. L. Roquemore; M. M. Menon; R. E. Barry

    2000-07-13

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 {micro}m laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100{micro}m at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated.

  17. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Crua, Cyril; Heikal, Morgan R.

    2014-12-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the

  18. Breakthrough in multichannel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip

    NASA Astrophysics Data System (ADS)

    Schwarte, Rudolf M.

    2004-11-01

    The purpose of this paper is to describe a new proved multi-channel laser-radar technology which enables several thousands of high-sensitive laser-radar or lidar receivers to be integrated on a fingernail-sized CMOS-chip for fast 3D-perception and, furthermore, to explain the huge number of resulting applications and to estimate the desirable scientific, economic and society impacts. These extraordinary capabilities rely on the revolutionary improvements introduced by a smart inherently-mixing photodiode with two controllable photo-current outputs [1]. We call it PMD (Photonic Mixer Device) because the opto-electronic mixing process is accomplished directly in the photonic state, followed by an integration process to get OE-correlation and the delay of the optical echo and the modulation signal. The PMD-principle provides an unbelievable simplification, size-reduction and improvement in Multi-Channel Light Detecting and Ranging as a MC-PMD-Lidar or 3D-PMD-camera without scanner. Thanks to the competence and merit of the PMDTechnologies GmbH in cooperation with the INV of the University of Siegen finally brought the PMD in big steps to reliability and to large pixel numbers and to products with today about 20.000 lidar receivers in a 120x160 PMD-matrix, which exhibits homogenous and exquisite specifications like very constant mean value and low standard deviation compared with conventional radar receivers. This innovation may be seen as a breakthrough in the history of camera development. The "3D-camera" of today comprises more 3D-pixels in a PMD-array than, about 1970, the first CCD-cameras contained 2D-pixel in a CCD-array. Both are of similar size aside from the modulated sender with integrated LED's or laser diodes required for a homogenous illumination of the field-of-view.

  19. 3D digitization methods based on laser excitation and active triangulation: a comparison

    NASA Astrophysics Data System (ADS)

    Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric

    2016-04-01

    3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.

  20. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  1. 3D imaging of the internal structure of a rock-cored drumlin using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; Spagnolo, Matteo; Rea, Brice; Ely, Jeremy; Lee, Joshua

    2016-04-01

    One key question linking subglacial bedform analyses to ice dynamics relates to the flux of sediment at the bed. It is relatively easy to measure the upper surface of subglacial sediments either in active contemporary systems (using ice-penetrating radar surveys) or in relict subglacial terrain (using high-resolution digital elevation models). However, constraining the lower surface of subglacial sediments, i.e. the contact between the bedform sediment and a lower sediment unit or bedrock, is much more difficult, yet it is crucial to any determination of sediment volume and hence flux. Without observations, we are reliant on assumptions about the nature of the lower sediment surface. For example, we might assume that all the drumlins in a particular drumlin field are deposited on a planar surface, or that all comprise a carapace of till over a rock core. A calculation of sediment volume will give very different results leading to very different interpretations of sediment flux. We have been conducting experiments in the use of ground-penetrating radar to find the lower sedimentary surface beneath drumlins near Kirkby Stephen (Northern England), part of the extensive Eden Valley drumlin field. The drumlins comprise diamict overlying a bedrock surface of Carboniferous limestone which outcrops frequently between the drumlins. Here we present the results of a grid survey over one of the drumlins that clearly demonstrate this drumlin comprises a thin carapace of till overlying a stepped limestone bedrock surface. We provide details on the field data acquisition parameters and discuss the implications for further geophysical studies of drumlin fields.

  2. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology

    PubMed Central

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-01-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object’s macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured. PMID:26713197

  3. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    NASA Astrophysics Data System (ADS)

    Farid Seyed Shirazi, Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Azuan Abu Osman, Noor

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  4. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    PubMed

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  5. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    PubMed

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  6. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    PubMed Central

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-01-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783

  7. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation.

    PubMed

    Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-08-12

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  8. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  9. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  10. 3-D confocal laser scanning microscopy used in morphometric analysis of rat Purkinje cell dendritic spines after chronic ethanol consumption.

    PubMed

    Wenisch, S; Fortmann, B; Steinmetz, T; Kriete, A; Leiser, R; Bitsch, I

    1998-12-01

    A confocal laser scanning microscope (with a 543 nm laser) was used for imaging rat Purkinje cell dendritic spines at high 3-D resolution. In a nutritionally controlled study of the rat, 5 months of ethanol consumption was demonstrated to alter the spines of Purkinje cell dendrites in rat cerebellum. Intact spines showed significant elongation after ethanol exposure, whereas this neuromorphological alteration could not be detected in controls. Spine elongation could be regarded as compensative growth of spines in search of new synaptic contacts due to alcohol induced cell loss.

  11. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    NASA Astrophysics Data System (ADS)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  12. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region

    DTIC Science & Technology

    2005-08-01

    al. 2005). Background The highly accurate and dense point data (or point clouds ) captured by terrestrial 3D laser scanners, such as the Leica...intensity value. The sophisticated design of the scanner enables point clouds to be captured that 1...additional analyses. A ScanWorld can be defined as a collection of scanned point clouds that are derived from consecutive scans at the same scanner

  13. Holographic frequency modulated continuous wave laser radar

    NASA Astrophysics Data System (ADS)

    Delaye, P.; Roosen, G.

    2007-10-01

    We present the operating principle and a first experimental characterization of a holographic rangefinder, that couples a two wave mixing phase demodulation set-up with a frequency modulated laser source. In its first implementation, the system allows millimetre sensitivity on tens of meters measurement range with the ability to work with scattering surfaces. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  14. Experimental investigation and 3D-simulation of the ablated morphology of titanium surface using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Man, Baoyuan; Meng, Xue; Sun, Yanna; Li, Feifei

    2015-12-01

    The femtosecond laser ablated morphology on titanium surface is investigated theoretically and experimentally. A three dimensional two temperature model (3D-TTM) is used to simulate the surface morphology of titanium sample which is irradiated by femtosecond laser pulses. The electron heat capacity and electron-phonon coupling coefficient of titanium (transition metal) are complex temperature dependent, so the two parameters are corrected based on the theory of electron density of states (DOS). The model is solved by the finite difference time domain (FDTD) method. The 3D temperature field near the target surface is achieved. The radius and depth of the ablated crater are obtained based on the temperature field. The evolutions of the crate's radius and depth with laser fluence are discussed and compared with the experimental results. It is found that the back-flow of the molten material and the deposition of the material vapor should be responsible for the little discrepancy between the simulated and experimental results. The present work makes a better understanding of the thermodynamic process of femtosecond laser ablating metal and meanwhile provides an effective method tool to predict the micro manufacturing process on metals with femtosecond laser.

  15. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.

    PubMed

    Saucedo-A, Tonatiuh; De la Torre-Ibarra, M H; Santoyo, F Mendoza; Moreno, Ivan

    2010-09-13

    The use of digital holographic interferometry for 3D measurements using simultaneously three illumination directions was demonstrated by Saucedo et al. (Optics Express 14(4) 2006). The technique records two consecutive images where each one contains three holograms in it, e.g., one before the deformation and one after the deformation. A short coherence length laser must be used to obtain the simultaneous 3D information from the same laser source. In this manuscript we present an extension of this technique now illuminating simultaneously with three different lasers at 458, 532 and 633 nm, and using only one high resolution monochrome CMOS sensor. This new configuration gives the opportunity to use long coherence length lasers allowing the measurement of large object areas. A series of digital holographic interferograms are recorded and the information corresponding to each laser is isolated in the Fourier spectral domain where the corresponding phase difference is calculated. Experimental results render the orthogonal displacement components u, v and w during a simple load deformation.

  16. 3D integration of microfluidics and microoptics inside photosensitive glass by femtosecond laser direct writing for photonic biosensing

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Wang, Zhongke; Midorikawa, Katsumi

    2008-02-01

    Optical waveguides with a propagation loss of around 0.5 dB/cm are written inside photosensitive Foturan glass by internal modification of refractive index using femtosecond (fs) laser. Integration of the optical wafveguides with a micromirror enables us to bend the guided laser beam at an angle of 90° with a bending loss of less than 0.3 dB. In the meanwhile, a plano-convex microlens is completely embedded inside the Foturan glass chip via formation of a three-dimensional (3D) hollow microstructure using fs laser direct writing followed by heat treatment and successive wet etching. This technique can also be used to fabricate microfluidic devices and therefore realizes 3D integration of microoptical and microfluidic components by one continuous procedure. Subsequently, microoptical waveguides are further integrated into the single glass chip. Demonstration of optical measurements using the integrated microchip reveals that photonic biosensing can be performed with an efficiency increased by a factor of 8 for fluorescence detection and by a factor of 3 for absorption detection.

  17. SYDESCO: a laser-video scanner for 3D scoliosis evaluations.

    PubMed

    Treuillet, S; Lucas, Y; Crepin, G; Peuchot, B; Pichaud, J C

    2002-01-01

    SYDESCO is a new 3D vision system developed for trunk surface topography. This structured light surface scanner uses the principle of triangulation-based range sensing to infer 3D shape. The complete trunk acquisition is fast (2 seconds). The accuracy of the metric data is ensured by a subpixel image detection and a calibration process, which rectifies image deformations. A preliminary study presents results on 50 children in a gymnastics school. These children, aged between eight to sixteen years, are particularly exposed to spinal deformities. An asymmetry index is calculated from the 3D data to detect the pathologic cases. These results have been compared to an independent medical diagnosis. The system results have been confirmed for 72,1% of the patients.

  18. An automated system for collection of time-lapse 3D radar data to investigate vadose zone flow and transport processes

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.

    2013-12-01

    Capturing three-dimensional ground-penetrating radar (GPR) images can significantly enhance our understanding of subsurface variability during vadose zone flow and transport processes. The high spatial sampling (i.e., small step sizes between profiles) required to collect full resolution 3D data can be a major challenge - particularly for high frequency imaging of detailed structures such as those related to preferential flow patterns in soils. We have developed an automated system for collecting GPR data to address these challenges. The system is based on the Sensors and Software SPIDAR (OEM NIC) platform running a 1000MHz source and receiver antenna that can be independently positioned using a 2-axis motion control system, with both the radar and positioning components integrated through LabView. The antennas can be positioned independently along a rail parallel with the x-axis, which can itself be moved along a second set of rails along the y-axis. The positioning accuracy along each axis has been estimated to be 3um and 0.2mm along each direction, respectively, thus indicating that high resolution positioning for accurate 3D imaging is readily attained. The integrated radar and positioning system is currently capable of collecting up to 100 traces per second over a 25ns time window with 4 stacks, or an equivalent lateral velocity of approximately 50cm/s with traces collected every 0.5cm along the profile. This high speed data collection means that a full 3D section of data (>75,000 traces) over a 0.75m x 1.5m area can be collected in under 20 minutes at sub-centimeter resolution, implying that near real-time imaging of infiltration over reasonably large areas can be achieved. In our case, the radar system has been implemented for a lab environment where it is able to perform imaging experiments over a 4m x 4m x 2m (LxWxH) sand-filled tank. In this presentation we will provide examples of three dimensional data collected over the tank. Experiments imaging rocks

  19. Increase of Readability and Accuracy of 3d Models Using Fusion of Close Range Photogrammetry and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Gašparović, M.; Malarić, I.

    2012-07-01

    The development of laser scanning technology has opened a new page in geodesy and enabled an entirely new way of presenting data. Products obtained by the method of laser scanning are used in many sciences, as well as in archaeology. It should be noted that 3D models of archaeological artefacts obtained by laser scanning are fully measurable, written in 1:1 scale and have high accuracy. On the other hand, texture and RGB values of the surface of the object obtained by a laser scanner have lower resolution and poorer radiometric characteristics in relation to the textures captured with a digital camera. Scientific research and the goal of this paper are to increase the accuracy and readability of the 3D model with textures obtained with a digital camera. Laser scanning was performed with triangulation scanner of high accuracy, Vivid 9i (Konica Minolta), while for photogrammetric recording digital camera Nikon D90 with a lens of fixed focal length 20 mm, was used. It is important to stress that a posteriori accuracy score of the global registration of point clouds in the form of the standard deviation was ± 0.136 mm while the average distance was only ± 0.080 mm. Also research has proven that the quality projection texture model increases readability. Recording of archaeological artefacts and making their photorealistic 3D model greatly contributes to archaeology as a science, accelerates processing and reconstruction of the findings. It also allows the presentation of findings to the general public, not just to the experts.

  20. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  1. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  2. MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form.

    PubMed

    Ma, Changzheng; Yeo, Tat Soon; Zhao, Yongbo; Feng, Junjie

    2014-05-01

    In inverse synthetic aperture radar (ISAR) imaging, a target is usually regarded as consist of a few strong (specular) scatterers and the distribution of these strong scatterers is sparse in the imaging volume. In this paper, we propose to incorporate the sparse signal recovery method in 3D multiple-input multiple-output radar imaging algorithm. Sequential order one negative exponential (SOONE) function, which forms homotopy between 1 and 0 norms, is proposed to measure the sparsity. Gradient projection is used to solve a constrained nonconvex SOONE function minimization problem and recover the sparse signal. However, while the gradient projection method is computationally simple, it is not robust when a matrix in the algorithm is ill conditioned. We thus further propose using diagonal loading and singular value decomposition methods to improve the robustness of the algorithm. In order to handle targets with large flat surfaces, a combined amplitude and total-variation objective function is also proposed to regularize the shapes of the flat surfaces. Simulation results show that the proposed gradient projection of SOONE function method is better than orthogonal matching pursuit, CoSaMp, l1-magic, Bayesian method with Laplace prior, smoothed l0 method, and l1-ls in high SNR cases for recovery of ± 1 random spikes sparse signal. The quality of the simulated 3D images and real data ISAR images obtained using the new method is better than that of the conventional correlation method and minimum l2 norm method, and competitive to the aforementioned sparse signal recovery algorithms.

  3. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  4. Theoretical distribution of range data obtained by laser radar and its applications

    NASA Astrophysics Data System (ADS)

    Haijiao, Jiang; Jiancheng, Lai; Wei, Yan; Chunyong, Wang; Zhenhua, Li

    2013-02-01

    This paper addresses the distribution of range data obtained by laser radar. An analytical solution of the range distribution was obtained for direct detection laser radar using constant threshold discriminator based on the time-of-flight principle. The analytical solution was verified by experiments and simulations. The results show that the derived analytical function can describe the probability density distribution of the range data obtained by laser radar with a constant threshold discriminator. The probability density distribution of the range data is proportional to the probability density function of the noise and to the slope of the rising edge of the laser echo pulse. The probability density distributions of the range data obtained by laser radar with different pulse shapes, amplitudes, widths and thresholds are also presented. These factors are important for improvements in the design of laser radar systems.

  5. Coherent laser radar at 1.06 micron using Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Kozlovsky, W. J.; Byer, Robert L.; Byvik, Charles E.

    1987-01-01

    A coherent laser radar system operating at the 1.06 micron Nd:YAG laser wavelength has been built and operated. A laser-diode-pumped monolithic ring laser served as the master oscillator. A single flash-lamp-pumped zigzag slab amplified the oscillator output to a power of 2.3 kW. Single-mode optical fiber was used to collect and mix the return signal with the local-oscillator output. Signals from clouds at a range of 2.7 km and from atmospheric aerosols at a range of 600 m were detected.

  6. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System

    PubMed Central

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-01-01

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS. PMID:27213385

  7. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System.

    PubMed

    Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo

    2016-05-19

    The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.

  8. Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air

    SciTech Connect

    Tavangar, Amirhossein; Venkatakrishnan, K.; Tan Bo

    2013-01-14

    In this study, we describe the formation mechanism of web-like three-dimensional (3-D) titania nanofibrous structures during femtosecond laser ablation of titanium (Ti) targets in the presence of background air. First, we demonstrate the mechanism of ablation of Ti targets by multiple femtosecond laser pulses at ambient air in an explicit analytical form. The formulas for evaporation rates and the number of ablated particles, which is analogous to the deposition rate of the synthesized nanofibers, for the ablation by a single pulse and multiple pulses as a function of laser parameters, background gas, and material properties are predicted and compared to experimental results. Afterwards, the formation of nanofibrous structures is demonstrated by applying an existing simplified kinetic model to Ti targets and ambient conditions. The predicted theory provides nanofiber diameter dependency with the combination of laser parameters, target properties, and ambient gas characteristics. Experimental studies are then performed on titania nanofibrous structures synthesized by laser ablation of Ti targets using MHz repletion-rate femtosecond laser at ambient air. The models' predictions are then compared with the experimental results, where nanostructures with different morphologies are manufactured by altering laser parameters. Our results indicate that femtosecond laser ablation of Ti targets at air background yields crystalline titania nanostructures. The formation of crystalline titania nanostructures is preceded by thermal mechanism of nucleation and growth. The results point out that laser pulse repetition and dwell time can control the density, size, and pore size of the engineered nanofibrous structure. As the deposition rate of nanostructures is analogous to the ablation rate of the target, higher density of nanofibrous structure is seen at greater laser fluences. The predicted theory can be applied to predict ablation mechanism and nanofiber formation of different

  9. Time and wavelength domain algorithms for chemical analysis by laser radar

    NASA Technical Reports Server (NTRS)

    Rosen, David L.; Gillespie, James B.

    1992-01-01

    Laser-induced fluorescence (LIF) is a promising technique for laser radar applications. Laser radar using LIF has already been applied to algae blooms and oil slicks. Laser radar using LIF has great potential for remote chemical analysis because LIF spectra are extremely sensitive to chemical composition. However, most samples in the real world contain mixtures of fluorescing components, not merely individual components. Multicomponent analysis of laser radar returns from mixtures is often difficult because LIF spectra from solids and liquids are very broad and devoid of line structure. Therefore, algorithms for interpreting LIF spectra from laser radar returns must be able to analyze spectra that overlap in multicomponent systems. This paper analyzes the possibility of using factor analysis-rank annihilation (FARA) to analyze emission-time matrices (ETM) from laser radar returns instead of excitation-emission matrices (EEM). The authors here define ETM as matrices where the rows (or columns) are emission spectra at fixed times and the columns (or rows) are temporal profiles for fixed emission wavelengths. Laser radar usually uses pulsed lasers for ranging purposes, which are suitable for measuring temporal profiles. Laser radar targets are hard instead of diffuse; that is, a definite surface emits the fluorescence instead of an extended volume. A hard target would not broaden the temporal profiles as would a diffuse target. Both fluorescence lifetimes and emission spectra are sensitive to chemical composition. Therefore, temporal profiles can be used instead of excitation spectra in FARA analysis of laser radar returns. The resulting laser radar returns would be ETM instead of EEM.

  10. Clumped Isotope Thermometry of Geologic Methane (13CH3D) using Tunable Laser Mid-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ono, S.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2013-12-01

    Methane is both an alternative energy source as well as a significant greenhouse gas, and holds the potential for rapid release to the atmosphere, possibly triggering abrupt climate change in the past and in the future. The majority of methane on the Earth is biogenic, originating from microbial methanogenesis, or thermogenic sourced from previously formed biogenic organic materials. Methane can be also produced abiogenically during serpentinization and even mantle-sourced methane has been implicated. Carbon (13C/12C) and hydrogen (D/H) isotope ratios of methane and associated short chain hydrocarbons provide critical information about the abiogenic/biogenic origin of methane but data can be inconclusive. We have developed and tested a Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) Instrument to be used for precise measurements of the abundance of doubly isotope-substituted methane (13CH3D). The TILDAS instrument measures direct absorption in the mid-infrared (~ 8 μm) region using continuous wave quantum cascade laser combined with a 76 m pathlength astigmatic absorption cell. Initial test result indicates the precision for 13CH4, 12CH3D and 13CH3D for 0.2 ‰ or better for comparison between two reference gases. Accuracy of the methods for δ13C and δD is evaluated by comparing measurements by conventional isotope ratio mass spectrometry. Calibration of clumped isotope scale (δ13CH3D) is underway using methane produced at various temperatures. Following an isotope exchange reaction (13CH4 + 12CH3D ↔ 13CH3D + 12CH4), precise measurements of 13CH3D abundance is expected to provide new and critical information about the temperature at which methane was formed (or thermally equilibrated). Biogenic origin becomes highly unlikely, for example, if the estimated temperature is higher than 120°C, i.e., current high-temperature limit of microbial methanogenesis. Although significant questions remain regarding isotope exchange kinetics, and clumped

  11. Height control of laser metal-wire deposition based on iterative learning control and 3D scanning

    NASA Astrophysics Data System (ADS)

    Heralić, Almir; Christiansson, Anna-Karin; Lennartson, Bengt

    2012-09-01

    Laser Metal-wire Deposition is an additive manufacturing technique for solid freeform fabrication of fully dense metal structures. The technique is based on robotized laser welding and wire filler material, and the structures are built up layer by layer. The deposition process is, however, sensitive to disturbances and thus requires continuous monitoring and adjustments. In this work a 3D scanning system is developed and integrated with the robot control system for automatic in-process control of the deposition. The goal is to ensure stable deposition, by means of choosing a correct offset of the robot in the vertical direction, and obtaining a flat surface, for each deposited layer. The deviations in the layer height are compensated by controlling the wire feed rate on next deposition layer, based on the 3D scanned data, by means of iterative learning control. The system is tested through deposition of bosses, which is expected to be a typical application for this technique in the manufacture of jet engine components. The results show that iterative learning control including 3D scanning is a suitable method for automatic deposition of such structures. This paper presents the equipment, the control strategy and demonstrates the proposed approach with practical experiments.

  12. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    PubMed Central

    2012-01-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  13. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-12-11

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  14. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    PubMed Central

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  15. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.

  16. 3D modelling of Mt. Talaga Bodas Crater (Indonesia) by using terrestrial laser scanner for volcano hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gumilar, Irwan; Abidin, Hasanuddin Z.; Putra, Andreas D.; Haerani, Nia

    2015-04-01

    Indonesia is a country with many volcanoes. Each volcano in Indonesia typically has its own crater characteristics. One of them is the Mt.Talaga Bodas, located in Garut, West Java. Researches regarding the crater characteristics are necessary for volcanic disaster mitigation process. One of them is the modelling of the shape of the crater. One of the methods that can be used to model the volcanic crater is using Terrestrial Laser Scanner (TLS). This research aims to create a 3 dimensional (3D) model of the crater of the Mt. Talaga Bodas, that hopefully can be utilized for volcanic disaster mitigation. The methodology used in this research is by obtaining the scanning data using TLS and GPS measurements to obtain the coordinates of the reference points. The data processing methods consist of several steps, namely target to target registration, filterization, georeference, meshing point cloud, surface making, drawing, and 3D modelling. These steps were done using the Cyclone 7 software, and also using 3DS MAX for 3D modelling. The result of this data processing is a 3D model of the crater of the Mt. Talaga Bodas which is similar with the real shape. The calculation result shows that the height of the crater is 62.522 m, the diameter of the crater is 467.231 m, and the total area is 2961054.652 m2. The main obstacle in this research is the dense vegetation which becomes the noise and affects the crater model.

  17. Development of a low cost, 3-DOF desktop laser cutter using 3D printer hardware

    NASA Astrophysics Data System (ADS)

    Jivraj, Jamil; Huang, Yize; Wong, Ronnie; Lu, Yi; Vuong, Barry; Ramjist, Joel; Gu, Xijia; Yang, Victor X. D.

    2015-03-01

    This paper presents the development of a compact, desktop laser-cutting system capable of cutting materials such as wood, metal and plastic. A re-commissioned beheaded MakerBot® Replicator 2X is turned into a 3-DOF laser cutter by way of integration with 800W (peak power) fiber laser. Special attention is paid to tear-down, modification and integration of the objective lens in place of the print head. Example cuts in wood and metal will be presented, as well as design of an exhaust system.

  18. Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management

    DTIC Science & Technology

    2016-04-30

    methods use subtractive processes (e.g., machining), but AM builds a 3D object by gradually adding successive layers of material that are laid down...practice. For example, RFID is frequently used to control construction material flows (CoreRFID, 2008). Damen Industries is developing animated... build -up part • Variety of possible materials (plastic, titanium) & methods (e.g. for material bonding) • No dominant method, materials

  19. Determination of the sequence of line crossings by means of 3D laser profilometry

    NASA Astrophysics Data System (ADS)

    Schirripa Spagnolo, Giuseppe; Simonetti, Carla; Cozzella, Lorenzo

    2005-09-01

    The determination of the sequence of line crossings is still a current problem in the field of forensic documents examination. This paper presents the potentiality of the 3D micro-topography to resolve the writing order of signatures (if partially superimposed), to detect the tampering of manuscripts (if the added inscription superimposes itself on parts already written), to analyze pressure variation, and to identify strokes in handwritten. The system used, in this paper for creating 3D micro-topography, is based on conoscopic holography. It is a non-contact three-dimensional measuring system that allows producing holograms, even with incoherent light, with fringe periods that can be measured precisely to determine the exact distance to the point measured. This technique is suitable to obtain 3D micro-topography with high resolution also on surfaces with unevenness reflectivity (which is usual on the surface of the handwritten document). The proposed technique is able to obtained 3D profile in non-invading way. Therefore, the original draft do not be physically or chemically modified, allowing the possibility of multi-analysis in different time, also in case of forensic analysis with the necessity to preserving the original sample. The experiments performed with line crossings data base show that the proposed method is able of "positive identification" of writing sequence in the majority of the tests. When we have not had a positive identification, the result has been "inconclusive". The proposed technique, if correctly used, does not supply "false positive" or "probable" identifications. The possible results are only: "positive identification" and "inconclusive".

  20. Suspect Height Estimation Using the Faro Focus(3D) Laser Scanner.

    PubMed

    Johnson, Monique; Liscio, Eugene

    2015-11-01

    At present, very little research has been devoted to investigating the ability of laser scanning technology to accurately measure height from surveillance video. The goal of this study was to test the accuracy of one particular laser scanner to estimate suspect height from video footage. The known heights of 10 individuals were measured using an anthropometer. The individuals were then recorded on video walking along a predetermined path in a simulated crime scene environment both with and without headwear. The difference between the known heights and the estimated heights obtained from the laser scanner software were compared using a one-way t-test. The height estimates obtained from the software were not significantly different from the known heights whether individuals were wearing headwear (p = 0.186) or not (p = 0.707). Thus, laser scanning is one technique that could potentially be used by investigators to determine suspect height from video footage.

  1. Time-dependent 3-D modelling of laser surface heating for the hardening of metallic materials

    NASA Astrophysics Data System (ADS)

    Colombo, V.; Mentrelli, A.; Trombetti, T.

    2003-12-01

    A numerical code for the time-dependent three-dimensional modelling of the laser surface heating for the hardening of metallic materials has been developed by the authors. The temperature-dependence of the thermal properties of the material (stainless steel) is taken into account in the frame of a heating process that doesn’t lead to material melting or evaporation. Calculations have been carried out for various dimensions of the parallelepiped-shaped and of the square-shaped spot of the laser beam, as well as for different scanning velocity and for different levels of the laser source power. Various patterns of the laser spot path have also been studied, including a single-pass hardening pattern, a double-pass hardening pattern with and without overlapping, multiple discontinuous and continuous hardening patterns and spiral hardening patterns. The presented results show how the proposed model can be usefully employed in the prediction of the time-evolution of temperature distribution which arises in the workpiece as a consequence of the laser-workpiece interaction under operating conditions typically encountered in industrial applications of the laser hardening process.

  2. Automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners and RFID sensors.

    PubMed

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results.

  3. Automatic Construction of 3D Basic-Semantic Models of Inhabited Interiors Using Laser Scanners and RFID Sensors

    PubMed Central

    Valero, Enrique; Adan, Antonio; Cerrada, Carlos

    2012-01-01

    This paper is focused on the automatic construction of 3D basic-semantic models of inhabited interiors using laser scanners with the help of RFID technologies. This is an innovative approach, in whose field scarce publications exist. The general strategy consists of carrying out a selective and sequential segmentation from the cloud of points by means of different algorithms which depend on the information that the RFID tags provide. The identification of basic elements of the scene, such as walls, floor, ceiling, windows, doors, tables, chairs and cabinets, and the positioning of their corresponding models can then be calculated. The fusion of both technologies thus allows a simplified 3D semantic indoor model to be obtained. This method has been tested in real scenes under difficult clutter and occlusion conditions, and has yielded promising results. PMID:22778609

  4. Experimental evidence of signal-optical noise interferencelike effect in underwater amplitude-modulated laser optical radar systems.

    PubMed

    Bartolini, L; De Dominicis, L; Ferri de Collibus, M; Fornetti, G; Francucci, M; Guarneri, M; Nuvoli, M; Paglia, E; Ricci, R

    2008-11-15

    We report experimental evidence that in an amplitude-modulated laser optical radar system for underwater 3D imaging the observed contrast oscillations as a function of the modulation frequency originate from an interference-like effect between target signal VT and water backscattered radiation VW. The demonstration relies on the ability to perform a direct measurement of VW in a 25 m long test tank. The proposed data processing method enables one to remove the contribution of water backscattering from the detected signal and drastically reduce signal fluctuations due to the medium. Experiments also confirm the possibility to improve the signal to optical noise ratio and contrast by increasing the modulation frequency.

  5. Off the line-of-sight laser radar.

    PubMed

    Krishnaswami, K; Tilleman, M

    1998-01-20

    The results of field and laboratory experiments of a novel laser radar (ladar) are presented. This ladar was designed to detect objects off the line of sight by deploying a fiber-optic relay between the launch and probe sites by monitoring the retroreflected signals. The apparatus incorporates a pulsed diode laser emitting at 1.55 mum, a wavelength that is ideal for eye safety and bears minimum loss in silica fibers. With its immediate application in transportation safety, the system issues a warning within a millisecond of detecting an obstacle in the path of a vehicle. The results of the field experiments yield signal-to-noise ratios high enough to trigger reliably an alarm with a probability of greater than 0.999 for detecting an obstacle and less than 10(-12) probability of false alarms.

  6. Technical note: Reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans.

    PubMed

    Villa, Chiara; Buckberry, Jo; Cattaneo, Cristina; Lynnerup, Niels

    2013-05-01

    Previous studies have reported that the ageing method of Suchey-Brooks (pubic bone) and some of the features applied by Lovejoy et al. and Buckberry-Chamberlain (auricular surface) can be confidently performed on 3D visualizations from CT-scans. In this study, seven observers applied the Suchey-Brooks and the Buckberry-Chamberlain methods on 3D visualizations based on CT-scans and, for the first time, on 3D visualizations from laser scans. We examined how the bone features can be evaluated on 3D visualizations and whether the different modalities (direct observations of bones, 3D visualization from CT-scan and from laser scans) are alike to different observers. We found the best inter-observer agreement for the bones versus 3D visualizations, with the highest values for the auricular surface. Between the 3D modalities, less variability was obtained for the 3D laser visualizations. Fair inter-observer agreement was obtained in the evaluation of the pubic bone in all modalities. In 3D visualizations of the auricular surfaces, transverse organization and apical changes could be evaluated, although with high inter-observer variability; micro-, macroporosity and surface texture were very difficult to score. In conclusion, these methods were developed for dry bones, where they perform best. The Suchey-Brooks method can be applied on 3D visualizations from CT or laser, but with less accuracy than on dry bone. The Buckberry-Chamberlain method should be modified before application on 3D visualizations. Future investigation should focus on a different approach and different features: 3D laser scans could be analyzed with mathematical approaches and sub-surface features should be explored on CT-scans.

  7. ROMY - The First Large 3D Ring Laser Structure for Seismology and Geodesy

    NASA Astrophysics Data System (ADS)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Lin, Chin-Jen; Gebauer, André; Wells, Jon-Paul

    2016-04-01

    Large ring laser gyroscopes have matured to the point that they can routinely observe rotational motions from geophysical processes that can be used in geodesy and seismology. The ring lasers used for this purpose enclose areas between 16 and 800 square meters and have in common that they can only measure rotations around the vertical axis because the structures are horizontally placed on the floor. With the ROMY project we have embarked on the construction of a full 3-dimensional rotation sensor. The actual apparatus consists of four individual triangular ring lasers arranged in the shape of a tetrahedron with 12 m of length on each side. At each corner of the tetrahedron three of the ring lasers are rigidly tied together to the same mechanical reference. The overall size of the installation provides a promising compromise between sensor stability on one side and sensor resolution on the other side. This talk introduces the technical concept of the ROMY ring laser installation and will also briefly outline the requirements for applications in space geodesy.

  8. Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Weekes, Ben; Ewins, David

    2015-06-01

    Continuous scan laser Doppler vibrometry (CSLDV) is a technique which has been described and explored in the literature for over two decades, but remains niche compared to SLDV inspection by a series of discrete-point measurements. This is in part because of the unavoidable phenomenon of laser speckle, which deteriorates signal quality when velocity data is captured from a moving spot measurement. Further, applicability of CSLDV has typically been limited to line scans and rectangular areas by the application of sine, step, or ramp functions to the scanning mirrors which control the location of the measurement laser spot. In this paper it is shown that arbitrary functions to scan any area can easily be derived from a basic calibration routine, equivalent to the calibration performed in conventional discrete-point laser vibrometry. This is extended by performing the same scan path upon a test surface from three independent locations of the laser head, and decomposing the three sets of one-dimensional deflection shapes into a single set of three-dimensional deflection shapes. The test was performed with multi-sine excitation, yielding 34 operating deflection shapes from each scan.

  9. Amplitude-modulated laser range-finder for 3D imaging with multi-sensor data integration capabilities

    NASA Astrophysics Data System (ADS)

    Bartolini, L.; Ferri de Collibus, M.; Fornetti, G.; Guarneri, M.; Paglia, E.; Poggi, C.; Ricci, R.

    2005-06-01

    A high performance Amplitude Modulated Laser Rangefinder (AM-LR) is presented, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The scanning system enables to sweep the sounding beam either linearly across the object or circularly around it, by placing the object on a controlled rotating platform. Both phase shift and amplitude of the modulating wave of back-scattered light are collected and processed, resulting respectively in an accurate range image and a shade-free, high resolution, photographic-like intensity image. The best performances obtained in terms of range resolution are ~100 μm. Resolution itself can be made to depend mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW. 3D models are reconstructed from sampled points by using specifically developed software tools, optimized so as to take advantage of the system peculiarities. Special procedures have also been implemented to perform precise matching of data acquired independently with different sensors (LIF laser sensors, thermographic cameras, etc.) onto the 3D models generated using the AM-LR. The system has been used to scan different types of real surfaces (stone, wood, alloys, bones) and ca be applied in various fields, ranging from industrial machining to medical diagnostics, vision in hostile environments cultural heritage conservation and restoration. The relevance of this technology in cultural heritage applications is discussed in special detail, by providing results obtained in different campaigns with an emphasis on the system's multi-sensor data integration capabilities.

  10. Multi-user 3D display using a head tracker and RGB laser illumination source

    NASA Astrophysics Data System (ADS)

    Surman, Phil; Sexton, Ian; Hopf, Klaus; Bates, Richard; Lee, Wing Kai; Buckley, Edward

    2007-05-01

    A glasses-free (auto-stereoscopic) 3D display that will serve several viewers who have freedom of movement over a large viewing region is described. This operates on the principle of employing head position tracking to provide regions referred to as exit pupils that follow the positions ofthe viewers' eyes in order for appropriate left and right images to be seen. A non-intrusive multi-user head tracker controls the light sources of a specially designed backlight that illuminates a direct-view LCD.

  11. The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography

    NASA Astrophysics Data System (ADS)

    Wang, Dezhong; Zhuang, Tiange

    2001-09-01

    A real time nondestructive temperature measurement technique based on laser holographic interference tomography technique is presented. An He-Ne laser is used as light source, and a CCD video camera is used to grab the interferogram. This laser holographic tomography technique is applied to the measurement of the temperature fields generated by two heated rods. Since data error is inevitable in engineering measurement, it is necessary to study the reconstruction techniques for reconstructing the temperature field. Three techniques including convolution back projection (CBP), algebra reconstruction technique (ART) and simultaneous iterative reconstruction technique (SIRT) are studied. Based on the reconstruction techniques and experimental situation, ART is used to reconstruct the asymmetric temperature fields. The thermocouples are used to measure the temperatures of the two heated rods. Comparing the reconstructed result with the measured temperature value, a satisfactory result is obtained.

  12. Femtosecond laser 3D micromachining and its applications to biochip fabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2014-03-01

    Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultra-short pulse widths and extremely high peak intensities that induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. Then, the femtosecond laser can directly fabricate three-dimensional microfluidic, micromechanic, microelectronic, and micro-optical components in glass. These microcomponents can be easily integrated in a single glass microchip, which enable us to fabricate functional biochips quickly screening large number of biological analytes. In this talk, the detailed fabrication procedure of biochips using the femtosecond laser and applications of the fabricated biochips to material synthesis, analysis of biochemical samples, and determination of functions of microorganisms are introduced.

  13. End-to-end laser radar range code for coherent cw lasers

    NASA Astrophysics Data System (ADS)

    Yoder, M. John; Seliverstov, Dima

    1996-06-01

    A user friendly modular computer code is described for CW coherent laser radar which includes all relevant physical effects needed to evaluate the probability of detection versus time after launch for ballistic missiles or other targets of interest. The beginning point of the code is the conventional laser radar range equation. Atmospheric attenuation is determined from an integral FASCODE calculation, and the laser radar range equation is solved for a curved-earth geometry including free air turbulence induced beam spreading. Several different atmospheric turbulence models are selectable. Target cross-sections can be input into the code as a function of aspect angle Coherence time and transverse coherence length limits are included in the code. Beam jitter effects are also calculated. The carrier-to-noise ratio is calculated including all of these (complicated) variables and degradations. The code then calculates the probability of detection of the target as a function of time using incoherent integration of coherent sub-pulses. The governing equations and practical results are presented for detection and tracking of long range theater ballistic missiles from airborne surveillance platforms. The use of CW lasers requires increased measurement times compared to pulsed lasers and results in an averaging of the target fading statistics.

  14. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-08-18

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  15. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  16. Development of charge structure in a short live convective cell observed by a 3D lightning mapper and a phased array radar

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2015-12-01

    Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions

  17. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    NASA Astrophysics Data System (ADS)

    Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.

    2016-10-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.

  18. 3D printed facial laser scans for the production of localised radiotherapy treatment masks - A case study.

    PubMed

    Briggs, Matthew; Clements, Helen; Wynne, Neil; Rennie, Allan; Kellett, Darren

    This study investigates the use of 3D printing for patients that require localised radiotherapy treatment to the face. The current process involves producing a lead mask in order to protect the healthy tissue from the effects of the radiotherapy. The mask is produced by applying a thermoplastic sheet to the patient's face and allowing to set hard. This can then be used as a mould to create a plaster impression of the patient's face. A sheet of lead is then hammered on to the plaster to create a bespoke fitted face mask. This process can be distressing for patients and can be problematic when the patient is required to remain motionless for a prolonged time while the thermoplastic sets. In this study, a 1:1 scale 3D print of a patient's face was generated using a laser scanner. The lead was hammered directly on to the surface of the 3D print in order to create a bespoke fitted treatment mask. This eliminated the thermoplastic moulding stage and significantly reduced the time needed for the patient to be in clinic. The higher definition impression of the the face resulted in a more accurate, better fitting treatment mask.

  19. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Fang, Lina; Li, Jonathan

    2013-05-01

    Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive "scanning lines", which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech's Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.

  20. In-bore chronograph--a laser radar for interior ballistics measurements, part 1: system design

    NASA Astrophysics Data System (ADS)

    Lawson, Greg; Fowler, Stuart R.; Halsey, Howard W.; Whittle, Kerry B.; Kamerman, Gary W.

    1993-10-01

    An internal research and development program at Teledyne Brown Engineering has produced a laser radar device to measure velocities of projectiles as they travel through the barrel of a gun. The technique measures velocities directly via the Doppler shift imposed on a retro- reflected laser beam. The device, called the In-Bore Chronograph (IBC), is believed to be the first coherent laser radar to be offered commercially. The IBC measures in-bore velocities from 5 to 2500 m/sec.

  1. Laser scanner data processing and 3D modeling using a free and open source software

    SciTech Connect

    Gabriele, Fatuzzo; Michele, Mangiameli Giuseppe, Mussumeci; Salvatore, Zito

    2015-03-10

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue.

  2. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    PubMed

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process.

  3. 3D model for laser heating of a heterogeneous turbid medium

    NASA Astrophysics Data System (ADS)

    Rossacci, Michael J.; DiMarzio, Charles A.; Lindberg, Scott C.; Pankratov, Michail M.

    1997-05-01

    In order to better understand the interaction of laser light with biological tissue, a light-transport model is integrated with a heat-transport model. The outputs include temperature as a function of position and time, given the illumination conditions and the optical and thermal properties of the tissue. The optical portion of the algorithm is based on the theory of radiative transfer through a turbid medium. Our computer program models multiple scattering in three dimensions using seven discrete irradiances which approximate the radiative transport equation. The distribution of absorbed light in the tissue is calculated and used as the source term in a discrete approximation to the thermal diffusion equation. Recently, we have been using the model to better understand the laser-heating of heterogeneous tissue. Rather than modeling a homogeneous mixture having properties given by weighted averages of those of tissue and blood, we model this medium as an array of blood vessels in a bloodless dermis background. We are currently analyzing temporal and spatial variations of temperature in homogeneous and heterogeneous tissue having identical blood concentrations. A particular application of the model is to the study of laser coagulation tonsillectomy.

  4. Fabrication of 3D components by laser-aided direct metal deposition

    NASA Astrophysics Data System (ADS)

    Mazumder, Jyotirmoy; Qi, Huan

    2005-03-01

    Breinan and Kear first reported fabrication of three-dimensional metallic components via layer by layer laser cladding in 1978 and subsequently a patent was issued to Brown et al. in 1982. Recently, various groups are working world wide on different types of layered manufacturing techniques for fabrication of near net shape metallic components. Integration of lasers with multi-axis presently available CNC machines, CAD/CAM, sensors and powder metal delivery through co-axial nozzles along with the laser beam are the main innovations for fabrication of 3-Dimensional components. Continuous corrective measures during the manufacturing process are necessary to fabricate net shape functional parts with close tolerances and acceptable residual stress. The closed loop Direct Metal Deposition(DMD) System, using an optical feedback loop along with a CNC working under the instructions from a CAD/CAM software, indicate that it can produce three dimensional components directly from the CAD data eliminating intermediate machining and reduces final machining considerably. This technology is now being commercialized.

  5. New laser driver for physics modeling codes using unstructured 3d grids

    SciTech Connect

    Kaiser, T; Milovich, J L; Prasad, M K; Shestakov, A I

    1999-02-01

    We present a status report on the current state of development, testing and application of a new scheme for laser beam evolution and power deposition on three-dimensional unstructured grids. The scheme is being encapsulated in a C++ library for convenient porting to existing modeling codes. We have added a new ray propagator that is second order in time, allowing rays to refract within computational zones as well as at zone interfaces. In a globally constant free-electron density gradient on a randomized hexahedral mesh,the new integrator produces ray trajectories that agree with analytic results to within machine roundoff. A new method for computing the inverse-bremmstrahlung energy deposition rate that captures its highly non-uniform spatial dependence within a zone has also been added. This allows accurate trajectories without the necessity of sub-stepping in time. Other enhancements (not discussed) include multiple user-configurable beams, computation of the electron oscillation velocity in the laser electric field and energy-deposition accounting. Results of laser-driven simulations are presented in a companion paper.

  6. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Amiri, Nina; Yao, Wei; Heurich, Marco; Krzystek, Peter; Skidmore, Andrew K.

    2016-10-01

    Forest understory and regeneration are important factors in sustainable forest management. However, understanding their spatial distribution in multilayered forests requires accurate and continuously updated field data, which are difficult and time-consuming to obtain. Therefore, cost-efficient inventory methods are required, and airborne laser scanning (ALS) is a promising tool for obtaining such information. In this study, we examine a clustering-based 3D segmentation in combination with ALS data for regeneration coverage estimation in a multilayered temperate forest. The core of our method is a two-tiered segmentation of the 3D point clouds into segments associated with regeneration trees. First, small parts of trees (super-voxels) are constructed through mean shift clustering, a nonparametric procedure for finding the local maxima of a density function. In the second step, we form a graph based on the mean shift clusters and merge them into larger segments using the normalized cut algorithm. These segments are used to obtain regeneration coverage of the target plot. Results show that, based on validation data from field inventory and terrestrial laser scanning (TLS), our approach correctly estimates up to 70% of regeneration coverage across the plots with different properties, such as tree height and tree species. The proposed method is negatively impacted by the density of the overstory because of decreasing ground point density. In addition, the estimated coverage has a strong relationship with the overstory tree species composition.

  7. Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Owens, C. T.; Liu, K. C.; Swenson, E.; Ghoshal, A.; Weiss, V.

    2013-01-01

    The application of guided waves to interrogate remote areas of structural components has been researched extensively in characterizing damage. However, there exists a sparsity of work in using piezoelectric transducer-generated guided waves as a method of assessing stress intensity factors (SIF). This quantitative information enables accurate estimation of the remaining life of metallic structures exhibiting cracks, such as military and commercial transport vehicles. The proposed full wavefield approach, based on 3D laser vibrometry and piezoelectric transducer-generated guided waves, provides a practical means for estimation of dynamic stress intensity factors (DSIF) through local strain energy mapping via the J-integral. Strain energies and traction vectors can be conveniently estimated from wavefield data recorded using 3D laser vibrometry, through interpolation and subsequent spatial differentiation of the response field. Upon estimation of the Jintegral, it is possible to obtain the corresponding DSIF terms. For this study, the experimental test matrix consists of aluminum plates with manufactured defects representing canonical elliptical crack geometries under uniaxial tension that are excited by surface mounted piezoelectric actuators. The defects' major to minor axes ratios vary from unity to approximately 133. Finite element simulations are compared to experimental results and the relative magnitudes of the J-integrals are examined.

  8. Documentation and Visualization of AN As-Built Tunnel by Combining 3d Laser Scanning and Web Mapping

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Arditi, D.; Chen, Z.

    2013-08-01

    A new way to document and visualize the as-built condition of an urban tunnel project with high accuracy is described in this paper, based on recent developments of laser scanning technology. In traditional surveying, the components of a tunnel are organized on the basis of the location of stations and offsets along the project alignment specified in the drawings. It is difficult for people without an engineering background to understand the information involved in surveying reports, drawings, and engineering data. However, in the interest of transparency, public agencies that commission construction projects have to make project information available to government officials and to the general public. This paper discusses the combined use of laser scanning technology and web mapping services to improve the documentation and visualization of an urban metro tunnel. Laser scanning technology is introduced to perform the surveyor's task, document the as-built condition, and geo-reference the construction elements. A set of panoramic pictures is generated by laser scanning that allows for taking measurements and extracting 3D coordinates. An XML file that contains geo-reference information is appended to each panoramic picture. Using application programming interface (API), this information is referenced to a web mapping service. A case study of the CTA Red line Tunnel in Chicago, IL demonstrates this method in a real life project.

  9. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  10. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  11. Three-dimensional recording of the human face with a 3D laser scanner.

    PubMed

    Kovacs, L; Zimmermann, A; Brockmann, G; Gühring, M; Baurecht, H; Papadopulos, N A; Schwenzer-Zimmerer, K; Sader, R; Biemer, E; Zeilhofer, H F

    2006-01-01

    Three-dimensional recording of the surface of the human body or of certain anatomical areas has gained an ever increasing importance in recent years. When recording living surfaces, such as the human face, not only has a varying degree of surface complexity to be accounted for, but also a variety of other factors, such as motion artefacts. It is of importance to establish standards for the recording procedure, which will optimise results and allow for better comparison and validation. In the study presented here, the faces of five male test persons were scanned in different experimental settings using non-contact 3D digitisers, type Minolta Vivid 910). Among others, the influence of the number of scanners used, the angle of recording, the head position of the test person, the impact of the examiner and of examination time on accuracy and precision of the virtual face models generated from the scanner data with specialised software were investigated. Computed data derived from the virtual models were compared to corresponding reference measurements carried out manually between defined landmarks on the test persons' faces. We describe experimental conditions that were of benefit in optimising the quality of scanner recording and the reliability of three-dimensional surface imaging. However, almost 50% of distances between landmarks derived from the virtual models deviated more than 2mm from the reference of manual measurements on the volunteers' faces.

  12. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials.

    PubMed

    Moughames, J; Jradi, S; Chan, T M; Akil, S; Battie, Y; Naciri, A En; Herro, Z; Guenneau, S; Enoch, S; Joly, L; Cousin, J; Bruyant, A

    2016-10-04

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ(3), slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  13. Feature-constrained surface reconstruction approach for point cloud data acquired with 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Sheng, Yehua; Lu, Guonian; Tian, Peng; Zhang, Kai

    2008-04-01

    Surface reconstruction is an important task in the field of 3d-GIS, computer aided design and computer graphics (CAD & CG), virtual simulation and so on. Based on available incremental surface reconstruction methods, a feature-constrained surface reconstruction approach for point cloud is presented. Firstly features are extracted from point cloud under the rules of curvature extremes and minimum spanning tree. By projecting local sample points to the fitted tangent planes and using extracted features to guide and constrain the process of local triangulation and surface propagation, topological relationship among sample points can be achieved. For the constructed models, a process named consistent normal adjustment and regularization is adopted to adjust normal of each face so that the correct surface model is achieved. Experiments show that the presented approach inherits the convenient implementation and high efficiency of traditional incremental surface reconstruction method, meanwhile, it avoids improper propagation of normal across sharp edges, which means the applicability of incremental surface reconstruction is greatly improved. Above all, appropriate k-neighborhood can help to recognize un-sufficient sampled areas and boundary parts, the presented approach can be used to reconstruct both open and close surfaces without additional interference.

  14. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    PubMed Central

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  15. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    NASA Astrophysics Data System (ADS)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-10-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  16. The Structure of the Kaali Impact Crater (Estonia) based on 3D Laser Scanning, Photogrammetric Modelling and Strike and Dip Measurements

    NASA Astrophysics Data System (ADS)

    Zanetti, Michael; Wilk, Jakob; Joeleht, Argo; Välja, Rudolf; Losiak, Anna; Wisniowski, Tomek; Huber, Matthew; Pavel, Kristiina; Kriiska, Aivar; Plado, Jüri; Geppert, Wolf Dietrich; Kukko, Antero; Kaartinen, Harri

    2015-04-01

    Introduction: The Kaali Impact Crater on the island of Saaremaa, Estonia (58.37° N, 22.67° E) is part of a crater-strewn-field consisting of nine identified craters, ranging in size from 110m (Kaali Main) to a few meters in diameter [1-3]. The strewn field was formed by the breakup of an IAB iron meteorite during atmospheric entry [4]. The main crater is due to its size an important crater to study the effects of small asteroidal impacts on terrestrial planets. Despite some anthropomorphic changes, the crater is well preserved. During a scientific expedition in August 2014, we mapped the crater in unprecedented detail using 3D laser scanning tools and made detailed strike and dip measurements of all outcrops. Additional measurements using ground-penetrating radar and electro-resistivity tomography we also conducted to further refine the subsurface crater morphology. The results include a high resolution topographic map of the crater, previously unreported observations of overturned ejecta, and refined morphometric estimates of the crater. Additionally, research conducted as part of the expedition has provided a new, best-estimate for the formation of the crater (3200a +/- 30 BP) based on 14C AMS dating of charcoal from within the ejecta blanket [Losiak et al., 2015, this conference]. Structural Mapping: Although Kaali Main has been the subject of previous investigation (e.g. [2,5,6]), most of the structural descriptions of the crater pre-date modern crater investigations. Strongly inclined blocks were previously considered being affected by erosion and slope processes, our new observations show that most high dip-angle features fit well with overall dip-angle systematics. The existence of the overturned flap can be demonstrated in at least four areas around the crater. 3D Laser Scanning: A point cloud containing 16 million data points was created using 43 individual scans from a tripod mounted Faro 3D 330x laser scanner. Scans were processed using Trimble

  17. 3D Monte Carlo model of optical transport in laser-irradiated cutaneous vascular malformations

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Milanič, Matija; Jia, Wangcun; Nelson, J. S.

    2010-11-01

    We have developed a three-dimensional Monte Carlo (MC) model of optical transport in skin and applied it to analysis of port wine stain treatment with sequential laser irradiation and intermittent cryogen spray cooling. Our MC model extends the approaches of the popular multi-layer model by Wang et al.1 to three dimensions, thus allowing treatment of skin inclusions with more complex geometries and arbitrary irradiation patterns. To overcome the obvious drawbacks of either "escape" or "mirror" boundary conditions at the lateral boundaries of the finely discretized volume of interest (VOI), photons exiting the VOI are propagated in laterally infinite tissue layers with appropriate optical properties, until they loose all their energy, escape into the air, or return to the VOI, but the energy deposition outside of the VOI is not computed and recorded. After discussing the selection of tissue parameters, we apply the model to analysis of blood photocoagulation and collateral thermal damage in treatment of port wine stain (PWS) lesions with sequential laser irradiation and intermittent cryogen spray cooling.

  18. Laser processing system for stitching structured patterns on large 3D parts

    NASA Astrophysics Data System (ADS)

    Cano Zuriguel, Rafael; Saludes Rodil, Sergio

    2015-07-01

    The paper addresses the development of laser based equipment to structure large surfaces (1×1×0.5m - 3×3×1.5ft) that are shaped in three dimensions. A mechanic-optical system to process curved surfaces with an acceptance angle of up to 267° is presented. The challenge is to control the combined motion of the beam delivery system with respect to distortion of the motifs and positioning tolerances. The project starting Technology Readiness Level (TRL) was 5. Currently the project is under development and at the end of September 2015 the project will reach TRL 7 after industrial-like environment testing. The proposed system will enable manufacturers to offer individualized marking for large products.

  19. Precise Laser-Based Optical 3d Measurement of Welding Seams Under Water

    NASA Astrophysics Data System (ADS)

    Ekkel, T.; Schmik, J.; Luhmann, T.; Hastedt, H.

    2015-04-01

    This paper deals with the development of a measuring procedure and an experimental set-up (stereo camera system in combination with a projecting line laser and a positioning unit) which are intended to detect the surface topography, particularly of welds, with high accuracy in underwater environments. The system concept makes provision for the fact that the device can be positioned in space and manipulated by hand. The development, optimization and testing of the system components for surface measurements as well as calibration and accuracy evaluations are the main objectives within this research project. Testing procedures and probes are constructed and evaluated to verify the results. First results will be shown, where the test objects are underwater. The development considers conditions for a future adaption to underwater use.

  20. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines.

  1. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  2. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    SciTech Connect

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  3. Laser-plasma interaction in ignition relevant plasmas: benchmarking our 3D modelling capabilities versus recent experiments

    SciTech Connect

    Divol, L; Froula, D H; Meezan, N; Berger, R; London, R A; Michel, P; Glenzer, S H

    2007-09-27

    We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.

  4. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    NASA Astrophysics Data System (ADS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  5. Scanning laser optical computed tomography system for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  6. Laser cone beam computed tomography scanner geometry for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K. J.; Turnbull, D.; Batista, J. J.

    2013-06-01

    A new scanner geometry for fast optical cone-beam computed tomography is reported. The system consists of a low power laser beam, raster scanned, under computer control, through a transparent object in a refractive index matching aquarium. The transmitted beam is scattered from a diffuser screen and detected by a photomultiplier tube. Modest stray light is present in the projection images since only a single ray is present in the object during measurement and there is no imaging optics to introduce further stray light in the form of glare. A scan time of 30 minutes was required for 512 projections with a field of view of 12 × 18 cm. Initial performance from scanning a 15 cm diameter jar with black solutions is presented. Averaged reconstruction coefficients are within 2% along the height of the jar and within the central 85% of diameter, due to the index mismatch of the jar. Agreement with spectrometer measurements was better than 0.5% for a minimum transmission of 4% and within 4% for a dark, 0.1% transmission sample. This geometry's advantages include high dynamic range and low cost of scaling to larger (>15 cm) fields of view.

  7. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  8. Processing and properties of arsenic trisulfide chalcogenide glasses for direct laser writing of 3D microstructures

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Williams, Henry E.; Grabill, Chris N.; Lewis, Anna M.; Kuebler, Stephen M.; Gleason, Benn; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Drake, Christina; Rivero-Baleine, Clara

    2014-03-01

    Arsenic trisulfide (As2S3) is a transparent material from ~620 nm to 11 μm with direct applications in sensors, photonic waveguides, and acousto-optics. As2S3 may be thermally deposited to form glassy films of molecular chalcogenide (ChG) clusters. It has been shown that linear and multi-photon exposure can be used to photo-pattern thermally deposited As2S3. Photo-exposure cross-links the film into a network solid. Treating the photo-patterned material with a polarsolvent removes the unexposed material leaving behind a structure that is a negative-tone replica of the photo-pattern. In this work, nano-structure arrays were photo-patterned in As2S3 films by multi-photon direct laser writing (DLW) and the resulting structure, morphology, and chemical composition were characterized and correlated with the conditions of the thermal deposition, patterned irradiation, and etch processing. Raman spectroscopy was used to characterize the chemical structure of the unexposed and photo-exposed material, and near infrared ellipsometry was used to measure the refractive index. Physical characterization including structure size and surface adhesion of nano-scale features is related to the processing conditions.

  9. In-process 3D laser measurement to control the fiber tape-laying for composite production

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Mersmann, Christoph; Damm, Björn

    2010-05-01

    Metrology is the key to an economically feasible production of fiber-reinforced composites in the field of automated tape laying, applying a novel laser light-section sensor system (LLSS) to measure process quality and feed back the results to close control loops of the production system. The developed method derives 3D measurements from height profiles through an in-process surface scan by the integrated LLSS. Gaps, overlaps, misalignment and defects of the composite tapes are detected during their lay-up and consolidation by comparing the measurement results with a CAD/CAM model of the lay-up. The height profiles are processed with a novel algorithm based on a non-linear least-square fitting to a set of sigmoid functions to ensure sub-pixel accuracy.

  10. Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Qian, Dan; Zhang, Anfeng; Zhu, Jianxue; Li, Yao; Zhu, Wenxin; Qi, Baolu; Tamura, Nobumichi; Li, Dichen; Song, Zhongxiao; Chen, Kai

    2016-09-01

    In this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. The hardening mechanism of the cladding region, on the other hand, is shown to originate not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.

  11. Writing of 3D optical integrated circuits with ultrashort laser pulses in the presence of strong spherical aberration

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Skryabin, N. N.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    A novel technique was proposed for 3D femtosecond writing of waveguides and optical integrated circuits in the presence of strong spherical aberration, caused by inscription at significantly different depth under the surface of optical glasses and crystals. Strong negative effect of spherical aberration and related asymmetry of created structures was reduced due to transition to the cumulative thermal regime of femtosecond interaction with the material. The differences in the influence of spherical aberration effect in a broad depth range (larger than 200 µm) was compensated by dynamic adjustment of laser pulse energy during the process of waveguides recording. The presented approach has been experimentally implemented in fused silica. Obtained results can be used in production of a broad class of femtosecond written three-dimensional integrated optical systems, inscripted at non-optimal (for focusing lens) optical depth or in significantly extended range of depths.

  12. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  13. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Danilevicius, Paulius; Georgiadi, Leoni; Pateman, Christopher J.; Claeyssens, Frederik; Chatzinikolaidou, Maria; Farsari, Maria

    2015-05-01

    The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds' porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  14. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-10-16

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy.

  15. 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot.

    PubMed

    Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge

    2011-01-01

    This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.

  16. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  17. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  18. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  19. Development of Coherent Laser Radar for Space Situational Awareness Applications

    NASA Astrophysics Data System (ADS)

    Prasad, N.; DiMarcantonio, A.

    2013-09-01

    NASA Langley Research Center (LaRC) is working on an innovative and high performance mobile coherent laser radar (ladar) system known as ExoSPEAR for space situational awareness applications in LEO and beyond. Based on continuously agile pulse doublet technology, the 100 W, nanosecond class, near-IR laser based coherent ladar is being developed for short dwell time measurements of resident space objects (RSOs). ExoSPEAR system is designed to provide rapid and precision tracking of RSOs over very long ranges. The goal is to demonstrate mm-class range resolution, mm/s class velocity resolution and microrad angular resolution with significantly reduced error-covariance in track accuracy. Precise orbit determination would help in advancing functionality of early warning systems for tracking uncooperative targets for planetary protection applications. Furthermore, improvements in resolution of micromotion measurements would enhance our understanding of astrodymanical properties of resident space objects. In this paper, salient features of the evolution and current experimental status of ExoSPEAR ladar architecture will be discussed. Performance simulations illustrating the dependence of range and velocity precision in LEO orbits on ladar power aperture product will be presented. Estimated limits on detectable optical cross sections of RSOs in LEO orbits will be analyzed.

  20. LASERS IN THE UK, PART I: THE ROYAL RADAR ESTABLISHMENT (RRE), GREAT MALVERN, WORCESTERSHIRE.

    DTIC Science & Technology

    Solid state laser research and development at the Royal Radar Establishment is described. Particular attention is devoted to new crystalline ... materials . Measurement of photon density fluctuation in coherent source is also reported. (Author)

  1. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    NASA Astrophysics Data System (ADS)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  2. Terahertz Inverse Synthetic Aperture Radar (ISAR) Imaging With a Quantum Cascade Laser Transmitter

    DTIC Science & Technology

    2010-01-01

    Terahertz inverse synthetic aperture radar ( ISAR ) imaging with a quantum cascade laser transmitter Andriy A. Danylov1,*, Thomas M. Goyette1...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Terahertz inverse synthetic aperture radar ( ISAR ) imaging with a quantum cascade laser...band ISAR Imagery of Scale-Model Tactical Targets Using a 1.56 THz Compact Range," Proc. SPIE 5095, 66-74 (2003). 10. M. J. Coulombe, T. Horgan, J

  3. Saturated semiconductor optical amplifier phase modulation for long range laser radar applications.

    PubMed

    Carns, Jennifer L; Duncan, Bradley D; Dierking, Matthew P

    2012-08-20

    We investigate the use of a semiconductor optical amplifier operated in the saturation regime as a phase modulator for long range laser radar applications. The nature of the phase and amplitude modulation resulting from a high peak power Gaussian pulse, and the impact this has on the ideal pulse response of a laser radar system, is explored. We also present results of a proof-of-concept laboratory demonstration using phase-modulated pulses to interrogate a stationary target.

  4. HI-CLASS on AEOS: A Large Aperture Laser Radar for Space Surveillance/ Situational Awareness Investigations

    DTIC Science & Technology

    2010-11-01

    the ALVA (Applications of Lidars for Vehicles with Analysis) program installed in late 2000 a wideband, 12J, 15Hz CO2 laser radar (ladar) on the 3.67...representative data, and current status of pulsed high-power coherent CO2 laser radar systems at MSSS. The paper reviews the first generation kilowatt...Chemical-biological detection, such as Doppler Shift Scanning Differential Absorption Lidar (DSS DIAL) and remote sensing data 6) Field Ladar tactical

  5. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

    PubMed

    Das, Suprem R; Nian, Qiong; Cargill, Allison A; Hondred, John A; Ding, Shaowei; Saei, Mojib; Cheng, Gary J; Claussen, Jonathan C

    2016-09-21

    Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

  6. Laser processing of SnO2 electrode materials for manufacturing of 3D micro-batteries

    NASA Astrophysics Data System (ADS)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Pfleging, W.

    2011-03-01

    The material development for advanced lithium-ion batteries plays an important role in future mobile applications and energy storage systems. It is assumed that electrode materials made of nano-composited materials will improve battery lifetime and will lead to an enhancement of lithium diffusion and thus improve battery capacity and cyclability. A major problem concerning thin film electrodes is, that increasing film thickness leads to an increase in lithium diffusion path lengths and thereby a decrease in power density. To overcome this problem, the investigation of a 3D-battery system with an increased surface area is necessary. UV-laser micromachining was applied to create defined line or grating structures via mask imaging. SnO2 is a highly investigated anode material for lithium-ion batteries. Yet, the enormous volume changes occurring during electrochemical cycling lead to immense loss of capacity. The formation of micropatterns via laser ablation to create structures which enable the compensation of the volume expansion was investigated in detail. Thin films of SnO2 were deposited in Ar:O2 atmosphere via r.f. magnetron sputtering on silicon and stainless steel substrates. The thin films were studied with X-ray diffraction to determine their crystallinity. The electrochemical properties of the manufactured films were investigated via electrochemical cycling against a lithium anode.

  7. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  8. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  9. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-02-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  10. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  11. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  12. Effect of defocusing distance on the contaminated surface of brass ring with nanosecond laser in a 3D laser scanning system

    NASA Astrophysics Data System (ADS)

    Zhao, Mali; Liu, Tiegen; Jiang, Junfeng; Wang, Meng

    2014-08-01

    Defocusing distance plays a key role in laser cleaning result and can be either positive or negative, depending on the focus position relative to the sample surface. In this paper, we investigate the effect of the defocusing distance on the cleaning efficiency of oxidized brass surface. The oxide layer from the surface of a brass ring was processed with a three dimensional (3-D) dynamically focused laser galvanometer scanning system. The relationship between removal efficiency of the oxide layer and the defocusing distance was analyzed. The sample surface topography, element content before and after the laser cleaning were analyzed by a scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS), the surface quality after laser cleaning was analyzed by a Atomic Force Microscope (AFM), the chemical constituents of the oxide layer on the sample surface after being processed with different defocusing distances were examined by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The results show that the ratios of Cu/O and Zn/O reach the maximum of 53.2 and 27.78 respectively when the defocusing distance is +0.5 mm. The laser pulses will lose the ability to remove the oxide layer from the substrate surface when the defocusing distance is larger than ±2 mm.

  13. Acquisition, Visualization and Analysis of Photo Real 3D Virtual Geology at High Accuracy: Oblique, Close Range Data Acquisition From the Ground With Digital Cameras, Terrestrial Laser Scanners and GPS

    NASA Astrophysics Data System (ADS)

    Xu, X.; Aiken, C. L.

    2005-12-01

    For almost seven years we have been mapping geology digitally using a combination of laser rangefinding and GPS. We have extended that concept to add unique real photo texture mapping. This is a unique method combining computer visualization and photogrammetry and has been used to build 3D photo real models at millimeter to centimeter accuracy and resolution of a variety of 3D features especially extensive geologic outcrops in the US, Spain, Ireland, United Kingdom, and Mexico. Although the method is independent of the type of laser rangefinder being used we presently are using fast laser scanners for faster and more detailed models although these data sets are then extremely large resulting in hardware and software problems for users. These models are globally oriented so they can be integrated with other globally positioned data sets such as drill holes, geophysical surveys (seismic and ground penetrating radar), and conventional geologic mapping (stratigraphic sections, outcrop mapping of contacts and orientations.) etc. Three dimensional measurements such as strikes, dips and thicknesses are extracted by fitting surfaces to digitized lines in 3D space defining the intersection of a boundary or fracture/fault with the surface, allowing quantitative measurements with associated statistics. The models have incorporated data from as many as one hundred close range oblique photos (taken from the ground or helicopters etc.) and 60 terrestrial scans over a single site, and laterally over several kilometers. We have also applied the method to processing air photos, using the terrestrial scanners for the terrain model ( at a few centimeters), control from GPS and the commercially acquired air photos for the real photo texture mapping for a fully realized 3D orthophoto. We use the term "real photos" rather than "photorealistic" because the latter has been used for models with texture surfaces that are "like the real" but not the "real" photo surface whereas our approach

  14. 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cel

    NASA Astrophysics Data System (ADS)

    Nabiei, F.; Cantoni, M.; Badro, J.; Dorfman, S. M.; Gaal, R.; Piet, H.; Gillet, P.

    2015-12-01

    The diamond anvil cell is a unique tool to study materials under static pressures up to several hundreds of GPa. It is possible to generate temperatures as high as several thousand degrees in the diamond anvil cell by laser heating. This allows us to achieve deep mantle conditions in the laser-heated diamond anvil cell (LHDAC). The small heated volume is surrounded by thermally conductive diamond anvils results in high temperature gradients which affect phase transformation and chemical distribution in the LH-DAC. Analytical characterization of samples in three dimensions is essential to fully understand phase assemblages and equilibrium in LHDAC. In this study we used San Carlos olivine as a starting material as a simple proxy to deep mantle composition. Three samples were melted at ~3000 K and at ~45 GPa for three different durations ranging from 1 to 6 minutes; two other samples were melted at 30 GPa and 70 GPa. All samples were then sliced by focused ion beam (FIB). From each slice, an electron image and energy dispersive X-ray (EDX) map were acquired by scanning electron microscope (SEM) in the dual beam FIB instrument. These slices were collected on one half of the heated area in each sample, from which we obtained 3D elemental and phase distribution. The other half of the heated area was used to extract a 100 nm thick section for subsequent analysis by analytical transmission electron microscopy (TEM) to obtain diffraction patterns and high resolution EDX maps. 3D reconstruction of SEM EDX results shows at least four differentiated regions in the heated area for all samples. The exact Fe and Mg compositions mentioned below are an example of the sample melted at 45 GPa for 6 minutes. The bulk of the heated are is surrounded by ferropericlase (Mg0.92, Fe0.08)O shell (Fp). Inside this shell we find a thick region of (Mg,Fe)SiO3 perovskite-structured bridgmanite (Brg) coexisting with Fp. In the center lies a Fe-rich core which is surrounded by magnesiow

  15. Registration of partially overlapping laser-radar range images

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-10-01

    To register partially overlapping three-dimensional point sets from different viewpoints, it is necessary to remove spurious corresponding point pairs that are not located in overlapping regions. Most variants of the iterative closest point (ICP) algorithm require users to manually select the rejection parameters for discarding spurious point pairs between the registering views. This requirement often results in unreliable and inaccurate registration. To overcome this problem, we present an improved ICP algorithm that can automatically determine the rejection percentage to reliably and accurately align partially overlapping laser-radar (ladar) range images. The similarity of k neighboring features of each nonplanar point is employed to determine reasonable point pairs in nonplanar regions, and the distance measurement method is used to find reasonable point pairs in planar regions. The rejection percentage can be obtained from these two sets of reasonable pairs. The performance of our algorithm is compared with that of five other algorithms using various models with low and high curvatures. The experimental results show that our algorithm is more accurate and robust than the other algorithms.

  16. A 16-channel CMOS preamplifier for laser ranging radar receivers

    NASA Astrophysics Data System (ADS)

    Liu, Ru-qing; Zhu, Jing-guo; Jiang, Yan; Li, Meng-lin; Li, Feng

    2015-10-01

    A 16-channal front-end preamplifier array has been design in a 0.18um CMOS process for pulse Laser ranging radar receiver. This front-end preamplifier array incorporates transimpedance amplifiers(TIAs) and differential voltage post-amplifier(PAMP),band gap reference and other interface circuits. In the circuit design, the regulated cascade (RGC) input stage, Cherry-Hooper and active inductor peaking were employed to enhance the bandwidth. And in the layout design, by applying the layout isolation structure combined with P+ guard-ring(PGR), N+ guard-ring(NGR),and deep-n-well(DNW) for amplifier array, the crosstalk and the substrate noise coupling was reduced effectively. The simulations show that a single channel receiver front-end preamplifier achieves 95 dBΩ transimpedance gain and 600MHz bandwidth for 3 PF photodiode capacitance. The total power of 16-channel front-end amplifier array is about 800mW for 1.8V supply.

  17. Real-time microstructure imaging by Laue microdiffraction: A sample application in laser 3D printed Ni-based superalloys

    PubMed Central

    Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai

    2016-01-01

    Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments). PMID:27302087

  18. Real-time microstructure imaging by Laue microdiffraction: A sample application in laser 3D printed Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai

    2016-06-01

    Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).

  19. 3-D simulation of high-intensity ultra-short laser pulse propagation through atmospheric optical systems

    NASA Astrophysics Data System (ADS)

    Dodd, Evan S.; Schmitt, Mark J.

    2001-10-01

    The manipulation of ultra-short pulses (USPs) in the laboratory is affected by three main factors; (a) the layout of optical elements in the optical train, (b) the non-linear interaction of the pulse with the transmissive optical elements (including the intervening atmosphere) and (c) ionization effects near beam focal regions. These effects have been included in our simulation code in order to examine 3-D aspects of USP propagation through "real" optical systems. Our models for optical elements include the ability to examine the effects of element misalignments and asymmetric finite apertures. In the atmosphere, we have included the effect of the USP electric field intensity on the local index of refraction. A model to include the effects of ionization in the atmosphere has also been added. The collective behavior from these sources results in complex interactions within the laser pulse as it propagates. This is important since it reduces the distance the pulse may travel and the spatial and temporal energy distribution of the pulse after propagation. Simulation examples are presented.

  20. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis.

    PubMed

    Chatzinikolaidou, Maria; Pontikoglou, Charalampos; Terzaki, Konstantina; Kaliva, Maria; Kalyva, Athanasia; Papadaki, Eleni; Vamvakaki, Maria; Farsari, Maria

    2017-01-01

    The regeneration of bone via a tissue engineering approach involves components from the macroscopic to the nanoscopic level, including appropriate 3D scaffolds, cells and growth factors. In this study, hexagonal scaffolds of different diagonals were fabricated by Direct Laser Writing using a photopolymerizable hybrid material. The proliferation of bone marrow (BM) mesenchymal stem cells (MSCs) cultured on structures with various diagonals, 50, 100, 150 and 200μm increased significantly after 10days in culture, however without significant differences among them. Next, recombinant human bone morphogenetic protein 2 (rhBMP-2) was immobilized onto the hybrid material both via covalent binding and physical adsorption. Both immobilization types exhibited similar high releaseate bioactivity profiles and a sustained delivery of rhBMP-2. The collagen and calcium levels produced in the extracellular matrix (ECM) were significantly elevated for the samples functionalized with BMP-2 compared to those in the osteogenic medium. Furthermore, significant upregulation of gene expression in both types of BMP-2 immobilized scaffolds was observed for alkaline phosphatase (ALPL) and osteocalcin (BGLAP) at days 7, 14, and 21, for RUNX2 at day 21, and for osteonectin (SPARC) at days 7 and 14. The results suggest that the release of bioactive rhBMP-2 from the hybrid scaffolds enhance the control over the osteogenic differentiation during cell culture.

  1. Pulsetrain-burst mode, ultrafast-laser interactions with 3D viable cell cultures as a model for soft biological tissues.

    PubMed

    Qian, Zuoming; Mordovanakis, Aghapi; Schoenly, Joshua E; Covarrubias, Andrés; Feng, Yuanfeng; Lilge, Lothar; Marjoribanks, Robin S

    2013-12-13

    A 3D living-cell culture in hydrogel has been developed as a standardized low-tensile-strength tissue proxy for study of ultrafast, pulsetrain-burst laser-tissue interactions. The hydrogel is permeable to fluorescent biomarkers and optically transparent, allowing viable and necrotic cells to be imaged in 3D by confocal microscopy. Good cell-viability allowed us to distinguish between typical cell mortality and delayed subcellular tissue damage (e.g., apoptosis and DNA repair complex formation), caused by laser irradiation. The range of necrosis depended on laser intensity, but not on pulsetrain-burst duration. DNA double-strand breaks were quantified, giving a preliminary upper limit for genetic damage following laser treatment.

  2. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  3. Multiple-return laser radar for three-dimensional imaging through obscurations.

    PubMed

    Schilling, Bradley W; Barr, Dallas N; Templeton, Glen C; Mizerka, Lawrence J; Trussell, C Ward

    2002-05-20

    A compact imaging laser radar was constructed and tested to investigate phenomenological issues in targeting, especially cases involving imaging through obscurations such as foliage and camouflage netting. The laser radar employs a Nd:YAG microchip laser that operates at a wavelength of 1.06 microm and produces pulses of 1.2-ns duration at a 3-kHz rate. The detector is a commercial indium gallium arsenide avalanche photodiode. A single computer controls the scanning mirrors and performs the digitization of the returning signal at 2 giga samples/s. A detailed description of the laser radar is presented as well as results from field experiments that examined its range accuracy capability and its ability to image a target through camouflage. Results of data collected from deciduous tree lines are also discussed to characterize the presence and quantity of multiple returns.

  4. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  5. The Structure of the Kaali Impact Crater (Estonia) Based on 3D Laser Scanning, Electro-Resistivity Tomography, and iSale Hydrocode Modelling

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Wilk, J.; Kukko, A.; Kaartinen, H.; Kohv, M.; Jõeleht, A.; Välja, R.; Paavel, K.; Kriiska, A.; Plado, J.; Losiak, A.; Wisniowski, T.; Huber, M.; Zhu, M. H.

    2015-09-01

    A field investigation using 3D laser scans, ERT, and strike and dip measurements has produced the highest resolution DEM and structural characterization of the Kaali Main crater to date. We use field measurements to constrain iSale formation models.

  6. Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser.

    PubMed

    Lui, H S; Taimre, T; Bertling, K; Lim, Y L; Dean, P; Khanna, S P; Lachab, M; Valavanis, A; Indjin, D; Linfield, E H; Davies, A G; Rakić, A D

    2014-05-01

    We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

  7. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  8. Flow visualization and 1- and 3-D laser-Doppler-anemometer measurements in models of human carotid arteries.

    PubMed

    Liepsch, D; Pflugbeil, G; Matsuo, T; Lesniak, B

    1998-04-01

    Pulsatile flow, wall distensibility, non-Newtonian flow characteristics of blood in flow separation regions, and high/low blood pressure were studied in elastic silicon rubber models having a compliance similar to human vessels and the same surface structure as the biological intima models of (1) a healthy carotid artery model, (2) a 90% stenosis in the ICA, and (3) 80% stenosis in both the internal and external carotid arteries. Flow was visualized for steady flow and pulsatile studies to localize flow separation regions and reattachment points. Local velocity was measured with a 1-, 2-, or 3-D laser-Doppler-anemometer (LDA). Flow in the unstenosed model was Re = 250. In the stenosed models, the Re number decreased to Re = 180 and 213 under the same experimental conditions. High velocity fluctuations with vortices were found in the stenosed models. The jet flow in the stenosis increased up to 4 m/s. With an increasing bifurcation angle, the separation regions in the ECA and ICA increased. Increased flow (Re = 350) led to an increase in flow separation and high velocity shear gradients. The highest shear stresses were nearly 20 times higher than normal. The 90% stenosis created high velocity shear gradients and velocity fluctuations. Downstream of the stenoses, eddies were found over the whole cross-section. In the healthy model a slight flow separation region was observed in the ICA at the branching cross-section whereas in the stenosed models, the flow separation regions extended far into the ICA. We conclude that a detailed understanding of flow is necessary before vascular surgery is performed especially before artificial grafts or patches are implanted.

  9. High-frequency scannerless imaging laser radar for industrial inspection and measurement applications

    SciTech Connect

    Schmitt, R.L.; Williams, R.J.; Matthews, J.D.

    1996-11-01

    This report describes the development and testing of a high-frequency scannerless imaging laser radar system to evaluate its viability as an industrial inspection and measurement sensor. We modified an existing 5.5-Mhz scannerless laser radar to operate at 150 Mhz, and measured its performance including its spatial resolution and range resolution. We also developed new algorithms that allow rapid data reduction with improved range resolution. The resulting 150-Mhz ladar system demonstrated a range resolution of better than 3 mm, which represents nearly a factor-of-100 improvement in range resolution over the existing scannerless laser radar system. Based on this work, we believe that a scannerless range imager with 1- to 2-mm range resolution is feasible. This work was performed as part of a small-business CRADA between Sandia National Laboratories and Perceptron, Inc.

  10. A 729 nm laser with ultra-narrow linewidth for probing 4S 1/2-3D 5/2 clock transition of 40Ca +

    NASA Astrophysics Data System (ADS)

    Guan, Hua; Liu, Qu; Huang, Yao; Guo, Bin; Qu, Wancheng; Cao, Jian; Huang, Guilong; Huang, Xueren; Gao, Kelin

    2011-01-01

    A Coherent Inc. Ti:sapphire laser MBR-110 is locked to a temperature-controlled high finesse Fabry-Perot cavity supported on an isolated platform. The linewidth is measured by locking the laser to another similar super-cavity at the same time and the heterodyne beatnote between two laser beams that locked to different cavities determines the linewidth. The result shows that the laser's linewidth is suppressed to be 41 Hz. The long-term drift is measured with a femtosecond comb and determined to be ~ 0.1 Hz/s. This laser is used to probe the 4S 1/2-3D 5/2 clock transition of a single 40Ca + ion. The Zeeman components of the clock transition with a linewidth of 160 Hz have been observed.

  11. Temperature surface measurements with a 3D velocity fluid flow measurement system using the same laser source and a single instrument

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cervantes, Victor; Guerrero-Viramontes, J. Ascencion; Funes-Gallanzi, Marcelo

    2005-02-01

    The combination of flow velocimetry techniques and Temperature Sensitive Paints, (TSP), requires working with different laser beam intensities. Because velocity flow measurements (i.e. Particle Image Velocimetry, PIV) needs high level laser power compared with temperature surface measurement, where lower levels of laser power is required, is necessary to adjust the system to avoid the damage of the paint due to the high intensities in laser velocimetry measurements. The use of a paint of different grey levels, from white to black, as backgrounds above the TSP film deposition allows to make both, velocity and temperature measurements with the same laser power without damaging the TSP. This work is centered in the characterization, testing and calibration improvements of the temperature surface measurements using Temperature Sensitive Paints as a part of the 3D tunneling velocimetry system.

  12. The Design and Performance Characteristics of a Cellular Logic 3-D Image Classification Processor.

    DTIC Science & Technology

    1981-04-01

    number) Pattern Recognition Cellular Automata " Cellular Logic Target Classificatio4 1Neighborhood Transformation Image Processing Laser Radar iASSTRACT...AND PERFORMANCE CHARACTERISTICS OF A CELLULAR LOGIC 3-D IMAGE CLASSIFICATION PROCESSOR 1 &/. , DISSERTATION AFIT/DS/EE/81-1 Lawrence A. Ankeney... CELLULAR LOGIC 3-D IMAGE - -- A&I PRCSRDTIC T B CLASSIFICATION PROCESSOR Unannounced 0 Justificatio b yD t i u i n Lawrence A. Ankeney, B.S., M.S

  13. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope.

    PubMed

    Gong, Yuanzheng; Johnston, Richard S; Melville, C David; Seibel, Eric J

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  14. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    PubMed Central

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-01-01

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm. PMID:26640425

  15. Real-time motion- and B0-correction for LASER-localized spiral-accelerated 3D-MRSI of the brain at 3T.

    PubMed

    Bogner, Wolfgang; Hess, Aaron T; Gagoski, Borjan; Tisdall, M Dylan; van der Kouwe, Andre J W; Trattnig, Siegfried; Rosen, Bruce; Andronesi, Ovidiu C

    2014-03-01

    The full potential of magnetic resonance spectroscopic imaging (MRSI) is often limited by localization artifacts, motion-related artifacts, scanner instabilities, and long measurement times. Localized adiabatic selective refocusing (LASER) provides accurate B1-insensitive spatial excitation even at high magnetic fields. Spiral encoding accelerates MRSI acquisition, and thus, enables 3D-coverage without compromising spatial resolution. Real-time position- and shim/frequency-tracking using MR navigators correct motion- and scanner instability-related artifacts. Each of these three advanced MRI techniques provides superior MRSI data compared to commonly used methods. In this work, we integrated in a single pulse sequence these three promising approaches. Real-time correction of motion, shim, and frequency-drifts using volumetric dual-contrast echo planar imaging-based navigators were implemented in an MRSI sequence that uses low-power gradient modulated short-echo time LASER localization and time efficient spiral readouts, in order to provide fast and robust 3D-MRSI in the human brain at 3T. The proposed sequence was demonstrated to be insensitive to motion- and scanner drift-related degradations of MRSI data in both phantoms and volunteers. Motion and scanner drift artifacts were eliminated and excellent spectral quality was recovered in the presence of strong movement. Our results confirm the expected benefits of combining a spiral 3D-LASER-MRSI sequence with real-time correction. The new sequence provides accurate, fast, and robust 3D metabolic imaging of the human brain at 3T. This will further facilitate the use of 3D-MRSI for neuroscience and clinical applications.

  16. Self-contained eye-safe laser radar using an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard

    2003-07-01

    An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.

  17. The Precision Expandable Radar Calibration Sphere (PERCS) With Applications for Laser Imaging and Ranging

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.

    The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).

  18. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  19. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  20. Monitoring buried remains with a transparent 3D half bird's eye view of ground penetrating radar data in the Zeynel Bey tomb in the ancient city of Hasankeyf, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Akin Akyol, Ali

    2011-09-01

    The aim of this paper is to show a new monitoring approximation for ground penetrating radar (GPR) data. The method was used to define buried archaeological remains inside and outside the Zeynel Bey tomb in Hasankeyf, an ancient city in south-eastern Turkey. The study examined whether the proposed GPR method could yield useful results at this highly restricted site, which has a maximum diameter inside the tomb of 4 m. A transparent three-dimensional (3D) half bird's eye view was constructed from a processed parallel-aligned two-dimensional GPR profile data set by using an opaque approximation instead of linear opacity. Interactive visualizations of transparent 3D sub-data volumes were conducted. The amplitude-colour scale was balanced by the amplitude range of the buried remains in a depth range, and appointed a different opaque value for this range, in order to distinguish the buried remains from one another. Therefore, the maximum amplitude values of the amplitude-colour scale were rearranged with the same colour range. This process clearly revealed buried remains in depth slices and transparent 3D data volumes. However, the transparent 3D half bird's eye views of the GPR data better revealed the remains than the depth slices of the same data. In addition, the results showed that the half bird's eye perspective was important in order to image the buried remains. Two rectangular walls were defined, one within and the other perpendicularly, in the basement structure of the Zeynel Bey tomb, and a cemetery was identified aligned in the east-west direction at the north side of the tomb. The transparent 3D half bird's eye view of the GPR data set also determined the buried walls outside the tomb. The findings of the excavation works at the Zeynel Bey tomb successfully overlapped with the new visualization results.

  1. 3D mapping of reinforcement and tendon ducts on pre-stressed concrete bridges by means of Ground Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Cheilakou, E.; Theodorakeas, P.; Koui, M.; Zeris, C.

    2014-03-01

    The present study evaluates the potential of GPR for the inspection of pre-stressed concrete bridges and its usefulness to provide non visible information of the interior structural geometry and condition, required for strengthening and rehabilitation purposes. For that purpose, different concrete blocks of varying dimensions with embedded steel reinforcement bars, tendon ducts and fabricated voids, were prepared and tested by means of GPR in a controlled laboratory environment. 2D data acquisition was carried out in reflection mode along single profile lines of the samples in order to locate the internal structural elements. 3D surveys were also performed in a grid format both along horizontal and vertical lines, and the individual profiles collected were interpolated and further processed using a 3D reconstruction software, in order to provide a detailed insight into the concrete structure. The obtained 2D profiles provided the accurate depth and position of the embedded rebars and tendon ducts, verifying the original drawings. 3D data cubes were created enabling the presentation of depth slices and providing additional information such as shape and localization of the internal elements. The results obtained from this work showed the effectiveness and reliability of the GPR technique for pre-stressed concrete bridge investigations.

  2. Initial progress in the recording of crime scene simulations using 3D laser structured light imagery techniques for law enforcement and forensic applications

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Monson, Keith L.

    1998-03-01

    Representation of crime scenes as virtual reality 3D computer displays promises to become a useful and important tool for law enforcement evaluation and analysis, forensic identification and pathological study and archival presentation during court proceedings. Use of these methods for assessment of evidentiary materials demands complete accuracy of reproduction of the original scene, both in data collection and in its eventual virtual reality representation. The recording of spatially accurate information as soon as possible after first arrival of law enforcement personnel is advantageous for unstable or hazardous crime scenes and reduces the possibility that either inadvertent measurement error or deliberate falsification may occur or be alleged concerning processing of a scene. Detailed measurements and multimedia archiving of critical surface topographical details in a calibrated, uniform, consistent and standardized quantitative 3D coordinate method are needed. These methods would afford professional personnel in initial contact with a crime scene the means for remote, non-contacting, immediate, thorough and unequivocal documentation of the contents of the scene. Measurements of the relative and absolute global positions of object sand victims, and their dispositions within the scene before their relocation and detailed examination, could be made. Resolution must be sufficient to map both small and large objects. Equipment must be able to map regions at varied resolution as collected from different perspectives. Progress is presented in devising methods for collecting and archiving 3D spatial numerical data from crime scenes, sufficient for law enforcement needs, by remote laser structured light and video imagery. Two types of simulation studies were done. One study evaluated the potential of 3D topographic mapping and 3D telepresence using a robotic platform for explosive ordnance disassembly. The second study involved using the laser mapping system on a

  3. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-02

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.

  4. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    PubMed

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  5. A comparative study of thermal effects of 3 types of laser in eye: 3D simulation with bioheat equation.

    PubMed

    Joukar, Amin; Nammakie, Erfan; Niroomand-Oscuii, Hanieh

    2015-01-01

    The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space-time dependant Pennes bioheat transfer equation has been applied in this study. Lambert-Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.

  6. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  7. Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Overbeck, Jay A.; Salisbury, Michael S.; Mark, Martin B.; Watson, Edward A.

    1995-11-01

    The transmitted energy required for an airborne laser radar system to be able to image a target at 20 km is investigated. Because direct detection is being considered, two methods of using an avalanche photodiode (APD) as the detector and (2) using a commercial fiber amplifier as a preamplifier before a photodetector. For this analysis a specified signal-to-noise ratio was used in conjunction with the radar range equation, which includes the effects of atmospheric transmission and turbulence. Theoretical analysis reveals that a system with a fiber amplifier performs nearly the same as a system incorporating an APD.

  8. Photo-Based 3d Scanning VS. Laser Scanning - Competitive Data Acquisition Methods for Digital Terrain Modelling of Steep Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Kolecka, N.

    2011-09-01

    The paper presents how terrestrial laser scanning (TLS) and terrestrial digital photogrammetry were used to create a 3D model of a steep mountain wall. Terrestrial methods of data acquisition are the most suitable for such relief, as the most effective registration is perpendicular to the surface. First, various aspects of photo-based scanning and laser scanning were discussed. The general overview of both technologies was followed by the description of a case study of the western wall of the Kościelec Mountain (2155 m). The case study area is one of the most interesting and popular rock climbing areas in the Polish High Tatra Mts. The wall is about 300 meters high, has varied relief and some parts are overhung. Triangular irregular mesh was chosen to represent the true- 3D surface with its complicated relief. To achieve a more smooth result for visualization NURBS curves and surfaces were utilized. Both 3D models were then compared to the standard DTM of the Tatra Mountains in TIN format, obtained from aerial photographs (0.2 m ground pixel size). The results showed that both TLS and terrestrial photogrammetry had similar accuracy and level of detail and could effectively supplement very high resolution DTMs of the mountain areas.

  9. Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel.

    PubMed

    Sannomiya, Eduardo Kazuo; Silva, Jorge Vicente L; Brito, Antonio Albuquerque; Saez, Daniel Martinez; Angelieri, Fernanda; Dalben, Gisele da Silva

    2008-07-01

    Ameloblastoma is a benign locally aggressive infiltrative odontogenic lesion. It is characterized by slow growth and painless swelling. The treatment for ameloblastoma varies from curettage to en bloc resection, and the reported recurrence rates after treatment are high; the safety margin of resection is important to avoid recurrence. Advances in technology brought about great benefits in dentistry; a new generation of computed tomography scanners and 3-dimensional images enhance the surgical planning and management of maxillofacial tumors. The development of new prototyping systems provides accurate 3D biomodels on which surgery can be simulated, especially in cases of ameloblastoma, in which the safety margin is important for treatment success. A case of mandibular follicular ameloblastoma is reported where a 3D biomodel was used before and during surgery.

  10. 3D velocity field time series using synthetic aperture radar: application to tidal-timescale ice-flow variability in Rutford Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Minchew, Brent; Agram, Piyush; Riel, Bryan; Simons, Mark

    2016-10-01

    We present a general method for retrieving time-series of three component surface velocity field vector given a set of continuous synthetic aperture radar (SAR) acquisitions collected from multiple geometries. Our algorithm extends the single-line-of-sight mathematical framework developed for time-series analysis using interferometric SAR (InSAR) to three spatial dimensions. The inversion is driven by a design matrix corresponding to a dictionary of displacement functions parameterized in time. The resulting model minimizes a cost function using a non-regularized least-squares method. We applied our method to Rutford ice stream (RIS), West Antarctica, using a set of 101 multi-track multi-angle COSMO-SkyMed displacement maps generating azimuth and range pixel offsets.

  11. Investigation of laser radar systems based on mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rybaltowski, Adam

    This dissertation deals with the possibility of utilizing mid-infrared semiconductor lasers in systems of optical remote sensing with range resolution, called laser radar or lidar. The main subject investigated in this dissertation is two-fold: firstly, an analysis of the signal-to-noise ratio (SNR) and related maximum sensing range calculations in this type of lidar based on available system components, and---secondly---improvements in the Random-Modulation Continuous-Wave (RM-CW) lidar technique to better utilize available mid-infrared semiconductor lasers. As far as the SNR analysis is concerned, an appropriate framework has been constructed to analyze post-demodulation noise in mid-infrared direct-detection RM-CW lidar. It is based on a generalization of the Wiener-Khintchine theorem; noise is assumed to be additive, stationary, and have an arbitrary power spectrum. This is in contrast to the SNR analysis in the literature on this subject, which is inadequate for mid-infrared RM-CW lidar as it only considers Poissonian fluctuations of the number of detected photons. In addition to regular SNR analysis, the framework derived in this dissertation allows treatment of singularities such as demodulation with an unbalanced sequence in 1/f noise. To calculate maximum lidar sensing range, the following detection limits have been considered: signal shot noise, background blackbody radiation shot noise based on the Background-Limited Photodetection (BLIP) detectivity limit, and minimum-size detector noise given by diffraction-limited focusing. The latter is found to be of greatest practical interest. Furthermore, a lidar figure of merit has been introduced, and all quantities related to lidar performance and its detection limits have been presented graphically. Since pseudo-random sequences discussed in the literature have been found highly non-optimal for most applications of RM-CW lidar, a framework for the construction of new pseudo-random sequences of desired

  12. Cyclone Rusty's Landfall in 3-D

    NASA Video Gallery

    This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...

  13. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  14. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An example from the Lessini mountains (North Italy)

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Sauro, Francesco; Santagata, Tommaso; Rossi, Guido; De Waele, Jo

    2017-03-01

    Terrestrial laser scanning (TLS) is increasingly used in geomorphology for the study of medium- to small scale landforms. A light weight, compact and portable TLS device has been used in the Grotta A Cave (Mt. Lessini, N Italy) to make a detailed 3D model of the underground environment. A total of 16 scans were used to survey the about 150 m long cave in < 6 h. The 3D model of the cave walls makes it possible to carry out morphometric measurements on the different cave environments. The TLS data allowed us to calculate cave volumes and distinguish cupola, phreatic conduit and basalt dike volumes. Wall roughness analysis also allowed recognising smaller-scale morphologies such as megascallops, differential corrosion forms and mineral crusts. These observations have enabled us to discern between different karstification processes and speleogenetic phases, highlighting the importance of condensation-corrosion on the cave passage enlargement in a quantitative way.

  15. Accurate assessment of breast volume: a study comparing the volumetric gold standard (direct water displacement measurement of mastectomy specimen) with a 3D laser scanning technique.

    PubMed

    Yip, Jia Miin; Mouratova, Naila; Jeffery, Rebecca M; Veitch, Daisy E; Woodman, Richard J; Dean, Nicola R

    2012-02-01

    Preoperative assessment of breast volume could contribute significantly to the planning of breast-related procedures. The availability of 3D scanning technology provides us with an innovative method for doing this. We performed this study to compare measurements by this technology with breast volume measurement by water displacement. A total of 30 patients undergoing 39 mastectomies were recruited from our center. The volume of each patient's breast(s) was determined with a preoperative 3D laser scan. The volume of the mastectomy specimen was then measured in the operating theater by water displacement. There was a strong linear association between breast volumes measured using the 2 different methods when using a Pearson correlation (r = 0.95, P < 0.001). The mastectomy mean volume was defined by the equation: mastectomy mean volume = (scan mean volume × 1.03) -70.6. This close correlation validates the Cyberware WBX Scanner as a tool for assessment of breast volume.

  16. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing.

    PubMed

    Beck, Steven M; Buck, Joseph R; Buell, Walter F; Dickinson, Richard P; Kozlowski, David A; Marechal, Nicholas J; Wright, Timothy J

    2005-12-10

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  17. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing

    NASA Astrophysics Data System (ADS)

    Beck, Steven M.; Buck, Joseph R.; Buell, Walter F.; Dickinson, Richard P.; Kozlowski, David A.; Marechal, Nicholas J.; Wright, Timothy J.

    2005-12-01

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  18. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectropho